JP5777242B2 - Phosphor material and light emitting device - Google Patents

Phosphor material and light emitting device Download PDF

Info

Publication number
JP5777242B2
JP5777242B2 JP2011038210A JP2011038210A JP5777242B2 JP 5777242 B2 JP5777242 B2 JP 5777242B2 JP 2011038210 A JP2011038210 A JP 2011038210A JP 2011038210 A JP2011038210 A JP 2011038210A JP 5777242 B2 JP5777242 B2 JP 5777242B2
Authority
JP
Japan
Prior art keywords
phosphor
coating layer
particles
phosphor material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011038210A
Other languages
Japanese (ja)
Other versions
JP2012031377A (en
Inventor
美史 傳井
美史 傳井
佐藤 豊
豊 佐藤
誉史 阿部
誉史 阿部
井口 真仁
真仁 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd filed Critical Nihon Ceratec Co Ltd
Priority to JP2011038210A priority Critical patent/JP5777242B2/en
Priority to KR1020127033095A priority patent/KR101771446B1/en
Priority to TW100122540A priority patent/TWI541324B/en
Priority to PCT/JP2011/064789 priority patent/WO2012002377A1/en
Priority to CN2011800316259A priority patent/CN102959041A/en
Publication of JP2012031377A publication Critical patent/JP2012031377A/en
Application granted granted Critical
Publication of JP5777242B2 publication Critical patent/JP5777242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、蛍光体粒子の表面に被覆層を有する蛍光体材料およびそれを用いた発光装置に関する。   The present invention relates to a phosphor material having a coating layer on the surface of phosphor particles and a light emitting device using the same.

現在、液晶テレビのバックライトまたは次世代照明としてLEDランプに注目が集まっている。LEDランプを白色に発光させるためには、LED素子自体の発光を赤・青・緑等の蛍光体の塗布または練りこまれたレンズを通し、蛍光体からの発光を重ね合わせることにより白色を得る必要がある。しかし、蛍光体は水分、熱、あるいは紫外線に曝露されると、発光特性が低下してしまうという弱点を有している。そこで、それらの外因から保護するために、蛍光体粒子を金属酸化物の被膜でコーティングする場合がある。   At present, LED lamps are attracting attention as backlights or next-generation lighting for liquid crystal televisions. In order to make the LED lamp emit white light, the light emitted from the LED element itself is passed through a phosphor, such as red, blue, or green, or a kneaded lens, and the white light is obtained by superimposing the light emitted from the phosphor. There is a need. However, phosphors have a weak point in that their light emission characteristics deteriorate when exposed to moisture, heat, or ultraviolet rays. Therefore, in order to protect against these external causes, the phosphor particles may be coated with a metal oxide film.

特願2009−137727号Japanese Patent Application No. 2009-137727 特開2008−291251号公報JP 2008-291251 A

コーティングの方法は各種あるが、その中の一つにゾルゲル法がある(特許文献1参照)。しかしながら、ゾルゲル法の場合、蛍光体粒子の表面に前駆体膜を形成したのち、酸化雰囲気により熱処理をして金属酸化物の被膜を形成するので、蛍光体の種類によっては、熱処理により特性の低下などの影響が生じてしまう場合があった。   There are various coating methods, and one of them is the sol-gel method (see Patent Document 1). However, in the case of the sol-gel method, a precursor film is formed on the surface of the phosphor particles, and then a heat treatment is performed in an oxidizing atmosphere to form a metal oxide film. In some cases, such effects may occur.

また、他のコーティング方法としては、金属酸化物の微粒子を用いて蛍光体の表面をコーティングする方法もある(特許文献2参照)。この方法によれば、金属酸化物の微粒子を用いているので、酸化雰囲気での熱処理は必要なく、熱処理による特性の低下の問題は発生しない。しかしながら、一般に、この方法を用いた場合には、蛍光体粒子全面をコーティングすることは困難であり、電子顕微鏡レベルで観察すると、蛍光体の露出部分が確認される。また、一見一様にコーティングされている場合でも、金属酸化物の微粒子の界面から水分または紫外線が透過し、寿命が短くなってしまうという問題があった。   In addition, as another coating method, there is a method of coating the surface of a phosphor using metal oxide fine particles (see Patent Document 2). According to this method, since metal oxide fine particles are used, there is no need for heat treatment in an oxidizing atmosphere, and there is no problem of deterioration in characteristics due to heat treatment. However, in general, when this method is used, it is difficult to coat the entire surface of the phosphor particles, and an exposed portion of the phosphor is confirmed when observed at the electron microscope level. In addition, even if the coating is seemingly uniform, there is a problem that moisture or ultraviolet rays are transmitted from the interface of the metal oxide fine particles and the life is shortened.

本発明は、このような問題に基づきなされたものであり、耐水性や耐紫外光などの特性を向上させることができ、かつ、コーティングによる特性劣化を抑制することができる蛍光体材料および発光装置を提供することを目的とする。   The present invention has been made based on such a problem, and can improve characteristics such as water resistance and ultraviolet light resistance, and can suppress deterioration of characteristics due to coating, and a light emitting device. The purpose is to provide.

本発明の蛍光体材料は、蛍光体粒子と、この蛍光体粒子の表面を被覆した被覆層とを有し、被覆層は、平均粒子径が10nm以上40nm以下の微粒子が積層された構造を有するものである。   The phosphor material of the present invention has phosphor particles and a coating layer that covers the surface of the phosphor particles, and the coating layer has a structure in which fine particles having an average particle diameter of 10 nm to 40 nm are laminated. Is.

本発明の発光装置は、本発明の蛍光体材料を含むものである。   The light emitting device of the present invention includes the phosphor material of the present invention.

本発明の蛍光体材料によれば、平均粒子径が10nm以上40nm以下の微粒子を積層した構造を有する被覆層を備えるようにしたので、蛍光体粒子の全面を実質的に被覆することができると共に、微粒子の界面から水分または紫外線が透過してしまうことを抑制することができる。よって、耐水性や耐紫外光などの特性を向上させることができ、時間の経過による輝度維持率を向上させることができる。また、微粒子を積層した構造としたので、蛍光体粒子が劣化する温度で熱処理をしなくても製造することができ、熱処理による特性の低下を防止することができる。よって、初期輝度の低下を抑制することができ、高い特性を得ることができる。従って、本発明の蛍光体材料を用いた発光装置によれば、優れた特性を得ることができると共に、長寿命化を図ることができる。   According to the phosphor material of the present invention, since the coating layer having a structure in which fine particles having an average particle diameter of 10 nm or more and 40 nm or less are laminated, the entire surface of the phosphor particles can be substantially covered. Further, it is possible to prevent moisture or ultraviolet light from being transmitted from the interface of the fine particles. Therefore, characteristics such as water resistance and ultraviolet light resistance can be improved, and the luminance maintenance rate with the passage of time can be improved. In addition, since the structure is formed by laminating fine particles, the phosphor particles can be manufactured without being subjected to heat treatment at a temperature at which the phosphor particles are deteriorated, and deterioration of characteristics due to the heat treatment can be prevented. Therefore, a decrease in initial luminance can be suppressed and high characteristics can be obtained. Therefore, according to the light emitting device using the phosphor material of the present invention, excellent characteristics can be obtained and the life can be extended.

特に、微粒子の最大粒子径を50nm以下とするようにすれば、蛍光体粒子をより安定して被覆することができ、耐水性や耐紫外光などの特性をより向上させることができる。   In particular, if the maximum particle size of the fine particles is 50 nm or less, the phosphor particles can be coated more stably, and characteristics such as water resistance and ultraviolet light resistance can be further improved.

また、被覆層は、微粒子が厚み方向に3粒子層以上積層された構造を有するようにすれば、水分または紫外線の透過をより効果的に抑制することができ、耐水性や耐紫外光などの特性を向上させることができる。   Moreover, if the coating layer has a structure in which three or more particle layers are laminated in the thickness direction, transmission of moisture or ultraviolet light can be more effectively suppressed, and water resistance, ultraviolet light resistance, etc. Characteristics can be improved.

更に、被覆層の厚みを、10nm以上1μm以下とするようにすれば、優れた耐水性を得ることができると共に、高い透過性を得ることができる。   Furthermore, if the thickness of the coating layer is 10 nm or more and 1 μm or less, excellent water resistance can be obtained and high permeability can be obtained.

加えて、被覆層は、希土類酸化物,酸化ジルコニウム,酸化チタン,酸化亜鉛,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を含むようにすれば、耐水性や耐紫外光などの特性をより向上させることができる。   In addition, the coating layer is at least one member selected from the group consisting of rare earth oxides, zirconium oxides, titanium oxides, zinc oxides, aluminum oxides, composite oxides of yttrium and aluminum, magnesium oxide, and composite oxides of aluminum and magnesium. If the metal oxide is included, characteristics such as water resistance and ultraviolet light resistance can be further improved.

更にまた、被覆層は、イットリウム(Y),ガドリニウム(Gd),セリウム(Ce)およびランタン(La)からなる群のうちの少なくとも1種の元素を含む希土類酸化物を含むようにすれば、より高い特性を得ることができ、また、コストを抑制することができる。   Furthermore, if the coating layer contains a rare earth oxide containing at least one element selected from the group consisting of yttrium (Y), gadolinium (Gd), cerium (Ce) and lanthanum (La), High characteristics can be obtained, and cost can be reduced.

本発明の一実施の形態に係る蛍光体材料の構成を表す模式図である。It is a schematic diagram showing the structure of the phosphor material which concerns on one embodiment of this invention. 図1の蛍光体材料を用いた発光装置の構成を表す図である。It is a figure showing the structure of the light-emitting device using the fluorescent substance material of FIG. 実施例1の蛍光体材料のSEM写真である。2 is a SEM photograph of the phosphor material of Example 1. 実施例1で用いた蛍光体粒子のSEM写真である。2 is an SEM photograph of phosphor particles used in Example 1. 実施例1の蛍光体材料のTEM写真である。2 is a TEM photograph of the phosphor material of Example 1. 図5の蛍光体材料の拡大写真である。6 is an enlarged photograph of the phosphor material of FIG. 比較例1−2の蛍光体材料のTEM写真である。It is a TEM photograph of the phosphor material of Comparative Example 1-2. 実施例1および比較例1−1,1−2の輝度維持率を示す特性図である。It is a characteristic view which shows the brightness | luminance maintenance factor of Example 1 and Comparative Examples 1-1 and 1-2. 実施例3の蛍光体材料のTEM写真である。4 is a TEM photograph of the phosphor material of Example 3. 実施例3の輝度維持率を示す特性図である。FIG. 10 is a characteristic diagram illustrating a luminance maintenance rate of Example 3. 実施例4の蛍光体材料のSEM写真である。6 is a SEM photograph of the phosphor material of Example 4. 比較例4の蛍光体材料のSEM写真である。4 is a SEM photograph of the phosphor material of Comparative Example 4.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施の形態に係る蛍光体材料10を模式的に表したものである。この蛍光体材料10は、蛍光体粒子11と、蛍光体粒子11の表面を被覆する被覆層12とを有している。   FIG. 1 schematically shows a phosphor material 10 according to an embodiment of the present invention. The phosphor material 10 includes phosphor particles 11 and a coating layer 12 that covers the surfaces of the phosphor particles 11.

蛍光体粒子11としては、例えば、BaMgAl1017:Eu,ZnS:Ag,Cl,BaAl2S4:EuあるいはCaMgSi:Euなどの青色系蛍光体、ZnSiO:Mn,(Y,Gd)BO:Tb,ZnS:Cu,Alあるいは(Ba,Sr,Mg)O・aAl:Mnなどの緑色系蛍光体、(Y,Gd)BO:Eu,YS:EuあるいはYPVO:Euなどの赤色系蛍光体が挙げられる。蛍光体粒子11の粒子径は、基本的には問わないが、平均粒子径が5μmから20μm程度で、粒子径はできるだけ揃っていた方が好ましい。特性を安定させることができるからである。 Examples of the phosphor particles 11 include blue phosphors such as BaMgAl 10 O 17 : Eu, ZnS: Ag, Cl, BaAl 2 S 4: Eu or CaMgSi 2 O 6 : Eu, Zn 2 SiO 4 : Mn, (Y, Gd ) BO 3 : Tb, ZnS: Cu, Al or (Ba, Sr, Mg) O.aAl 2 O 3 : Green phosphor such as Mn, (Y, Gd) BO 3 : Eu, Y 2 O 2 S: Examples thereof include red phosphors such as Eu or YPVO 4 : Eu. The particle diameter of the phosphor particles 11 is basically not limited, but it is preferable that the average particle diameter is about 5 μm to 20 μm and the particle diameters are as uniform as possible. This is because the characteristics can be stabilized.

被覆層12は、蛍光体粒子11の表面に、平均粒子径が40nm以下の微粒子12Aが積層された構造を有している。これにより、蛍光体粒子11の表面全体を実質的に被覆することができると共に、微粒子12Aの界面から水分または紫外線が透過してしまうことを抑制することができるようになっている。また、蛍光体粒子11が劣化する温度で熱処理をしなくても製造することができるので、熱処理による特性の低下がなく、高い特性を得ることができるようになっている。なお、本発明において、被覆層12が蛍光体粒子11の表面全体を被覆しているというのは、空孔などの欠陥が存在する場合までも排除するものではなく、実質的に100%近くの被覆率であることを意味している。また、微粒子12Aの平均粒子径というのは、一次粒子の平均粒子径のことである。   The coating layer 12 has a structure in which fine particles 12A having an average particle diameter of 40 nm or less are laminated on the surface of the phosphor particles 11. Thereby, the entire surface of the phosphor particles 11 can be substantially covered, and moisture or ultraviolet light can be prevented from being transmitted from the interface of the fine particles 12A. Further, since the phosphor particles 11 can be manufactured without heat treatment at a temperature at which the phosphor particles 11 deteriorate, the characteristics are not deteriorated by the heat treatment, and high characteristics can be obtained. In the present invention, the fact that the coating layer 12 covers the entire surface of the phosphor particles 11 does not exclude even the presence of defects such as vacancies, and is substantially close to 100%. It means that it is coverage. The average particle diameter of the fine particles 12A is the average particle diameter of primary particles.

微粒子12Aの平均粒子径は、例えば、30nm以下であればより好ましく、25nm以下であれば更に好ましい。また、微粒子12Aの平均粒子径は、10nm以上であることが好ましく、15nm以上であればより好ましい。微粒子12Aの平均粒子径があまり小さいと、粗大な二次凝集粒子が発生し、蛍光体粒子11を均一に被覆することが難しくなるからである。なお、微粒子12Aの平均粒子径は、蛍光体粒子11の平均粒子径の1/100以下から1/500以下程度であることが好ましい。被覆層12をより安定して形成することができるからである。   For example, the average particle diameter of the fine particles 12A is more preferably 30 nm or less, and further preferably 25 nm or less. The average particle size of the fine particles 12A is preferably 10 nm or more, and more preferably 15 nm or more. This is because if the average particle diameter of the fine particles 12A is too small, coarse secondary aggregated particles are generated and it is difficult to uniformly coat the phosphor particles 11. The average particle diameter of the fine particles 12A is preferably about 1/100 or less to 1/500 or less of the average particle diameter of the phosphor particles 11. This is because the coating layer 12 can be formed more stably.

微粒子12Aの最大粒子径は、例えば、50nm以下であることが好ましい。50nmよりも大きい粒子が存在すると、蛍光体粒子11が露出する欠陥が生じやすくなるからである。微粒子12Aの最大粒子径は、例えば、40nm以下であればより好ましく、30nm以下であれば更に好ましい。   The maximum particle diameter of the fine particles 12A is preferably 50 nm or less, for example. This is because if particles larger than 50 nm are present, defects that expose the phosphor particles 11 are likely to occur. For example, the maximum particle size of the fine particles 12A is preferably 40 nm or less, and more preferably 30 nm or less.

また、被覆層12は、微粒子12Aが厚み方向に3粒子層以上積層された構造を有していることが好ましい。微粒子12Aの界面から水分または紫外線が透過してしまうことをより効果的に抑制することができるからである。被覆層12の厚みは、10nm以上1μm以下であることが好ましい。厚みが薄いと耐水性および耐紫外線の効果が少なくなり、蛍光体粒子11が劣化し、厚みが厚いと、光透過性が低下して発光効率が低下してしまうからである。   The covering layer 12 preferably has a structure in which the fine particles 12A are laminated in a thickness direction by three or more particle layers. This is because moisture or ultraviolet light can be more effectively suppressed from passing through the interface of the fine particles 12A. The thickness of the covering layer 12 is preferably 10 nm or more and 1 μm or less. This is because if the thickness is thin, the effects of water resistance and ultraviolet resistance are reduced, the phosphor particles 11 are deteriorated, and if the thickness is thick, the light transmittance is lowered and the light emission efficiency is lowered.

被覆層12は、希土類酸化物,酸化ジルコニウム,酸化チタン,酸化亜鉛,酸化アルミニウム,イットリウム・アルミニウム・ガーネットなどのイットリウムとアルミニウムの複合酸化物,酸化マグネシウム,およびMgAlなどのアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を主成分として含んでいることが好ましい。具体的には、この金属酸化物を含む酸化物粒子を微粒子12の少なくとも一部に含んでいることが好ましい。耐水性および耐紫外光などの特性を向上させることができるからである。中でも、希土類酸化物が好ましく、イットリウム,ガドリニウム,セリウムおよびランタンからなる群のうちの少なくとも1種の元素を含む希土類酸化物がより好ましく、特にYが望ましい。より高い効果を得ることができ、また、コストを抑制することができるからである。 The coating layer 12 is made of rare earth oxide, zirconium oxide, titanium oxide, zinc oxide, aluminum oxide, yttrium / aluminum composite oxide such as yttrium / aluminum / garnet, magnesium oxide, and aluminum / magnesium such as MgAl 2 O 4 . It is preferable that at least one metal oxide selected from the group consisting of complex oxides is contained as a main component. Specifically, it is preferable that oxide particles containing the metal oxide are included in at least a part of the fine particles 12. This is because characteristics such as water resistance and ultraviolet light resistance can be improved. Among these, rare earth oxides are preferable, rare earth oxides containing at least one element selected from the group consisting of yttrium, gadolinium, cerium and lanthanum are more preferable, and Y 2 O 3 is particularly preferable. This is because higher effects can be obtained and costs can be suppressed.

被覆層12は、これらの1種を単独で含んでいてもよいが、2種以上を混合して含んでいてもよい。例えば、複数種の酸化物粒子を混合して含んでいてもよく、層状に異なる酸化物粒子を積層して含んでいてもよく、1つの酸化物粒子の中に複数種の酸化物を含んでいてもよい。また、被覆層12は、他の成分を含んでいてもよいが、他の成分の割合は、0.1質量%以下であることが好ましい。他の成分の割合が多くなると、光透過性および耐紫外線が低下してしまうからである。   The coating layer 12 may contain one of these alone, or may contain a mixture of two or more. For example, a plurality of types of oxide particles may be mixed and may be included by laminating different oxide particles in layers, or a plurality of types of oxides may be included in one oxide particle. May be. Moreover, the coating layer 12 may contain other components, but the proportion of the other components is preferably 0.1% by mass or less. This is because when the proportion of other components is increased, the light transmittance and ultraviolet resistance are lowered.

なお、緑色系蛍光体は紫外光による劣化が大きいが、Yにより被覆層12を形成すれば、劣化を飛躍的に抑制することができるので好ましい。 Although the green phosphor is greatly deteriorated by ultraviolet light, it is preferable to form the coating layer 12 with Y 2 O 3 because the deterioration can be remarkably suppressed.

この蛍光体材料10は、例えば、次のようにして製造するこができる。まず、平均粒子径が40nm以下の微粒子12Aを溶媒に分散させたスラリーを用意し、次に、このスラリーに蛍光体粒子11を混合することにより、または、蛍光体粒子11の流動層内でスラリーを噴霧することにより、蛍光体粒子11の表面にスラリーを塗布する。続いて、塗布層を乾燥させて溶媒を除去し、被覆層12を形成する。その際、熱処理をしなくてもよいが、450℃以下の温度で熱処理をすることが好ましい。蛍光体粒子11の特性の劣化を防止しつつ、被覆層12の密着性を高めることができるからである。熱処理時の雰囲気は、大気雰囲気でも構わないが、熱処理時の酸素に起因する特性劣化を防止するため窒素雰囲気やアルゴン雰囲気などの不活性雰囲気とすることがより好ましい。また、蛍光体粒子11に対するスラリーの塗布工程および乾燥工程は、2回以上繰り返すことが好ましく、3回以上繰り返すようにすればより好ましい。繰り返すことにより微粒子12Aを確実に3粒子層以上積層することができるからである。但し、3粒子層以上の積層が可能であれば特に塗布回数を複数回に増やす必要は無い。   The phosphor material 10 can be manufactured, for example, as follows. First, a slurry in which fine particles 12A having an average particle diameter of 40 nm or less are dispersed in a solvent is prepared. Next, the phosphor particles 11 are mixed with the slurry, or the slurry in the fluidized bed of the phosphor particles 11 The slurry is applied to the surface of the phosphor particles 11 by spraying. Subsequently, the coating layer is dried to remove the solvent, and the coating layer 12 is formed. At that time, heat treatment is not necessary, but heat treatment is preferably performed at a temperature of 450 ° C. or lower. This is because the adhesion of the coating layer 12 can be enhanced while preventing the deterioration of the characteristics of the phosphor particles 11. The atmosphere during the heat treatment may be an air atmosphere, but it is more preferable to use an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere in order to prevent characteristic deterioration due to oxygen during the heat treatment. Moreover, it is preferable to repeat the application | coating process and drying process of the slurry with respect to the fluorescent substance particle 11 twice or more, and it is more preferable if it repeats 3 times or more. This is because it is possible to reliably stack three or more particle layers 12A by repeating. However, there is no need to increase the number of coatings to a plurality of times as long as three or more particle layers can be stacked.

図2は、この蛍光体材料10を用いた発光装置20の一構成例を表わすものである。この発光装置20は、基板21の上に発光素子22が搭載されており、発光素子22は基板21の上に形成された配線23とワイヤ24により電気的に接続されている。また、発光素子22の周りには例えばリフレクタ枠25が形成されており、発光素子22の上には、発光素子22を覆うように封止層26が形成されている。封止層26は、例えば、蛍光体材料10を分散させた樹脂により構成されている。   FIG. 2 shows a configuration example of the light emitting device 20 using the phosphor material 10. In the light emitting device 20, a light emitting element 22 is mounted on a substrate 21, and the light emitting element 22 is electrically connected to a wiring 23 formed on the substrate 21 by a wire 24. For example, a reflector frame 25 is formed around the light emitting element 22, and a sealing layer 26 is formed on the light emitting element 22 so as to cover the light emitting element 22. The sealing layer 26 is made of, for example, a resin in which the phosphor material 10 is dispersed.

発光素子22には、例えば、励起光として紫外光、青色光、または緑色光を発するものが用いられる。蛍光体材料10としては、例えば、発光素子22から発光された励起光により赤色光を発するもの、青色光を発するもの、緑色光を発するもの、黄色光を発するものなどが、1種類または必要に応じて混合して用いられる。   As the light emitting element 22, for example, an element that emits ultraviolet light, blue light, or green light as excitation light is used. As the phosphor material 10, for example, one that emits red light by excitation light emitted from the light emitting element 22, one that emits blue light, one that emits green light, one that emits yellow light, or the like is necessary. Depending on the mixture, they are used.

このように本実施の形態によれば、平均粒子径が10nm以上40nm以下の微粒子12Aを積層した構造を有する被覆層12を備えるようにしたので、蛍光体粒子11の全面を実質的に被覆することができると共に、微粒子12Aの界面から水分または紫外線が透過してしまうことを抑制することができる。よって、耐水性や耐紫外光などの特性を向上させることができ、時間の経過による輝度維持率を向上させることができる。また、微粒子12Aを積層した構造としたので、蛍光体粒子11が劣化する温度で熱処理をしなくても製造することができ、熱処理による特性の低下を防止することができる。よって、初期輝度の低下を抑制することができ、高い特性を得ることができる。従って、この蛍光体材料10を用いた発光装置20によれば、優れた特性を得ることができると共に、長寿命化を図ることができる。   As described above, according to the present embodiment, since the coating layer 12 having a structure in which the fine particles 12A having an average particle diameter of 10 nm to 40 nm are stacked is provided, the entire surface of the phosphor particles 11 is substantially covered. In addition, it is possible to prevent moisture or ultraviolet light from being transmitted from the interface of the fine particles 12A. Therefore, characteristics such as water resistance and ultraviolet light resistance can be improved, and the luminance maintenance rate with the passage of time can be improved. Further, since the structure is formed by laminating the fine particles 12A, the phosphor particles 11 can be manufactured without being subjected to heat treatment at a temperature at which the phosphor particles 11 are deteriorated, and deterioration of characteristics due to the heat treatment can be prevented. Therefore, a decrease in initial luminance can be suppressed and high characteristics can be obtained. Therefore, according to the light emitting device 20 using the phosphor material 10, it is possible to obtain excellent characteristics and to extend the life.

特に、微粒子12Aの最大粒子径を50nm以下とするようにすれば、蛍光体粒子11をより安定して被覆することができ、耐水性や耐紫外光などの特性をより向上させることができる。   In particular, if the maximum particle diameter of the fine particles 12A is set to 50 nm or less, the phosphor particles 11 can be coated more stably, and characteristics such as water resistance and ultraviolet light resistance can be further improved.

また、被覆層12は、微粒子が厚み方向に3粒子層以上積層された構造を有するようにすれば、水分または紫外線の透過をより効果的に抑制することができ、耐水性や耐紫外光などの特性を向上させることができる。   Further, if the coating layer 12 has a structure in which fine particles are laminated in the thickness direction, three or more particle layers are laminated, so that the transmission of moisture or ultraviolet light can be more effectively suppressed. The characteristics can be improved.

更に、被覆層12の厚みを、10nm以上1μm以下とするようにすれば、優れた耐水性を得ることができると共に、高い透過性を得ることができる。   Furthermore, if the thickness of the coating layer 12 is 10 nm or more and 1 μm or less, excellent water resistance can be obtained and high permeability can be obtained.

加えて、被覆層12は、希土類酸化物,酸化ジルコニウム,酸化チタン,酸化亜鉛,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を含むようにすれば、耐水性や耐紫外光などの特性をより向上させることができる。   In addition, the coating layer 12 is at least one member selected from the group consisting of rare earth oxides, zirconium oxides, titanium oxides, zinc oxides, aluminum oxides, yttrium and aluminum composite oxides, magnesium oxide, and aluminum and magnesium composite oxides. If a metal oxide of a kind is included, characteristics such as water resistance and ultraviolet light resistance can be further improved.

更にまた、被覆層12は、イットリウム,ガドリニウム,セリウムおよびランタンからなる群のうちの少なくとも1種の元素を含む希土類酸化物を含むようにすれば、より高い特性を得ることができ、また、コストを抑制することができる。   Furthermore, if the coating layer 12 includes a rare earth oxide containing at least one element selected from the group consisting of yttrium, gadolinium, cerium and lanthanum, higher properties can be obtained, and the cost can be reduced. Can be suppressed.

(実施例1)
平均粒子径20nm、最大粒子径50nmの酸化イットリウム(Y)の微粒子12Aを溶媒に分散させたスラリーを用意し、このスラリーに平均粒子径が10μm程度の緑色系の蛍光体粒子11を混合して、蛍光体粒子11の表面にスラリーを塗布した。次いで、スラリーを塗布した蛍光体粒子11を熱処理して乾燥させた。熱処理は、大気中において300℃で2時間、または、窒素雰囲気中において400℃で2時間とした。続いて、乾燥させた蛍光体粒子11について、同様にしてスラリーの塗布工程および乾燥工程をもう1回繰り返し、蛍光体材料10を得た。
Example 1
A slurry in which fine particles 12A of yttrium oxide (Y 2 O 3 ) having an average particle diameter of 20 nm and a maximum particle diameter of 50 nm are dispersed in a solvent is prepared, and green phosphor particles 11 having an average particle diameter of about 10 μm are prepared in this slurry. After mixing, the slurry was applied to the surface of the phosphor particles 11. Next, the phosphor particles 11 coated with the slurry were heat-treated and dried. The heat treatment was performed at 300 ° C. for 2 hours in the air or at 400 ° C. for 2 hours in a nitrogen atmosphere. Subsequently, with respect to the dried phosphor particles 11, the slurry application step and the drying step were repeated once more to obtain the phosphor material 10.

図3は、得られた蛍光体材料10のSEM(Scanning Electron Microscope:走査型電子顕微鏡)写真の一例を表したものであり、図4は、被覆層12を形成する前の蛍光体粒子11のSEM写真の一例を表したものである。また、図5は、得られた蛍光体材料10の表面付近のTEM(Transmission Electron Microscope:透過型電子顕微鏡)写真の一例を表したものであり、図6は、図5のTEM写真の一部を拡大したものである。図3および図5に示したように、この蛍光体材料10は、蛍光体粒子11の表面全体に被覆層12が形成されていることが分かる。また、図6に示したように、被覆層12は、蛍光体粒子11の表面に微粒子12Aが平均的に3粒子層以上積層された構造を有していることが分かる。   FIG. 3 shows an example of an SEM (Scanning Electron Microscope) photograph of the obtained phosphor material 10, and FIG. 4 shows the phosphor particles 11 before the coating layer 12 is formed. It shows an example of an SEM photograph. FIG. 5 shows an example of a TEM (Transmission Electron Microscope) photograph in the vicinity of the surface of the obtained phosphor material 10, and FIG. 6 shows a part of the TEM photograph of FIG. Is an enlarged version. As shown in FIGS. 3 and 5, it can be seen that the phosphor material 10 has the coating layer 12 formed on the entire surface of the phosphor particles 11. Further, as shown in FIG. 6, it can be seen that the coating layer 12 has a structure in which three or more particle layers are averagely laminated on the surface of the phosphor particles 11.

続いて、得られた蛍光体材料10を用い、図2に示したような発光装置20を作製した。発光素子22には紫外光を発するものを用いた。   Subsequently, a light emitting device 20 as shown in FIG. 2 was produced using the obtained phosphor material 10. The light emitting element 22 used emits ultraviolet light.

(比較例1−1)
蛍光体粒子に被覆層を形成せずに、そのまま蛍光体材料として用いたことを除き、他は実施例1と同様にして発光装置を作製した。
(Comparative Example 1-1)
A light emitting device was fabricated in the same manner as in Example 1 except that the phosphor particles were used as they were without forming a coating layer on the phosphor particles.

(比較例1−2)
溶媒にイットリウム塩を溶解した溶液に蛍光体粒子11を混合して、蛍光体粒子11の表面に溶液を付着させ、乾燥させてゲル化したのち、大気雰囲気中において500℃で2時間焼成した。蛍光体粒子11には実施例1と同一のものを用いた。図7は、得られた蛍光体材料の表面付近のTEM写真の一例を表したものである。図7において、111で示した部分が蛍光体粒子であり、112で示した部分が被覆層である。なお、蛍光体粒子11および被覆層112の上の白色の部分は、分析時に用いるカーボン膜である。図7に示したように、この蛍光体材料についても、蛍光体粒子111の表面全体に被覆層112が形成されているが、微粒子の積層構造は見られなかった。この蛍光体材料についても、実施例1と同様にして発光装置を作製した。
(Comparative Example 1-2)
Phosphor particles 11 were mixed in a solution in which a yttrium salt was dissolved in a solvent, the solution was adhered to the surface of the phosphor particles 11, dried and gelled, and then baked at 500 ° C. for 2 hours in an air atmosphere. The same phosphor particles 11 as in Example 1 were used. FIG. 7 shows an example of a TEM photograph near the surface of the obtained phosphor material. In FIG. 7, the portion indicated by 111 is a phosphor particle, and the portion indicated by 112 is a coating layer. In addition, the white part on the fluorescent substance particle 11 and the coating layer 112 is a carbon film used at the time of analysis. As shown in FIG. 7, in this phosphor material as well, the coating layer 112 was formed on the entire surface of the phosphor particles 111, but a laminated structure of fine particles was not seen. With respect to this phosphor material, a light emitting device was produced in the same manner as in Example 1.

(劣化試験)
実施例1および比較例1−1,1−2の各発光装置20について、発光試験を行い、輝度の経時変化を調べた。図8に実施例1と比較例1−1,1−2の結果を比較して示す。図8において、縦軸は被覆層を形成していない比較例1の初期輝度を100%とした場合の相対的な輝度維持率である。なお、実施例1について、熱処理を大気中において300℃で2時間行ったものと、窒素雰囲気中において400℃で2時間行ったものとは、同様の結果が得られた。
(Deterioration test)
With respect to each light emitting device 20 of Example 1 and Comparative Examples 1-1 and 1-2, a light emission test was performed to examine a change in luminance with time. FIG. 8 shows a comparison of the results of Example 1 and Comparative Examples 1-1 and 1-2. In FIG. 8, the vertical axis represents the relative luminance maintenance rate when the initial luminance of Comparative Example 1 in which no coating layer is formed is 100%. In Example 1, the same results were obtained when the heat treatment was performed at 300 ° C. for 2 hours in the air and when the heat treatment was performed at 400 ° C. for 2 hours in the nitrogen atmosphere.

図8に示したように、被覆層12が微粒子12Aの積層構造を有する実施例1によれば、被覆層を形成していない比較例1−1に比べて時間による輝度の低下を大幅に抑制することができた。また、比較例1−2では、時間による輝度維持率は高いものの、初期輝度の低下が見られるのに対して、実施例1によれば、初期輝度の低下を大幅に抑制することができた。すなわち、蛍光体粒子11の表面を微粒子12Aの積層構造を有する被覆層12で被覆するようにすれば、時間の経過による輝度維持率を向上させることができると共に、初期輝度の低下を抑制することができ、高い特性を得られることが分かった。   As shown in FIG. 8, according to Example 1 in which the coating layer 12 has a laminated structure of the fine particles 12A, a decrease in luminance over time is significantly suppressed as compared with Comparative Example 1-1 in which the coating layer is not formed. We were able to. Further, in Comparative Example 1-2, although the luminance maintenance ratio with time is high, a decrease in the initial luminance is observed, whereas according to Example 1, the decrease in the initial luminance can be significantly suppressed. . That is, if the surface of the phosphor particles 11 is covered with the coating layer 12 having the laminated structure of the fine particles 12A, the luminance maintenance rate with the passage of time can be improved and the decrease in the initial luminance can be suppressed. It was found that high characteristics can be obtained.

(実施例2−1〜2−4,比較例2−1)
微粒子12Aの平均粒子径および最大粒子径を変化させたことを除き、他は実施例1と同様にして蛍光体材料10および発光装置20を作製した。実施例2−1では平均粒子径が40nm、最大粒子径が50nm、実施例2−2では平均粒子径が30nm、最大粒子径が50nm、実施例2−3では平均粒子径が25nm、最大粒子径が50nm、実施例2−4では平均粒子径が20nm、最大粒子径が40nm、比較例2−1では平均粒子径が50nm、最大粒子径が80nmの微粒子12Aを用いた。得られた発光装置20について実施例1と同様にして発光試験を行い、輝度の経時変化を調べた。得られた結果を実施例1および比較例1−1,1−2の結果と共に表1に示す。表1において、2000時間後の輝度維持率というのは、被覆層を形成していない比較例1−1の初期輝度を100%とした場合の相対値である。
(Examples 2-1 to 2-4, Comparative Example 2-1)
A phosphor material 10 and a light emitting device 20 were produced in the same manner as in Example 1 except that the average particle size and the maximum particle size of the fine particles 12A were changed. In Example 2-1, the average particle size is 40 nm and the maximum particle size is 50 nm. In Example 2-2, the average particle size is 30 nm and the maximum particle size is 50 nm. In Example 2-3, the average particle size is 25 nm and the maximum particle size. In Example 2-4, the average particle size was 20 nm and the maximum particle size was 40 nm. In Comparative Example 2-1, fine particles 12A having an average particle size of 50 nm and a maximum particle size of 80 nm were used. The obtained light-emitting device 20 was subjected to a light emission test in the same manner as in Example 1, and the change in luminance with time was examined. The obtained results are shown in Table 1 together with the results of Example 1 and Comparative Examples 1-1 and 1-2. In Table 1, the luminance maintenance rate after 2000 hours is a relative value when the initial luminance of Comparative Example 1-1 in which no coating layer is formed is 100%.

表1に示したように、微粒子12Aの平均粒子径が40nm以下において良好な結果が得られた。すなわち、微粒子12Aの平均粒子径を40nm以下とすれば高い特性を得られることが分かった。また、微粒子12Aの最大粒子径が50nm以下において良好な結果が得られた。すなわち、微粒子12Aの最大粒子径を50nm以下とすればより高い特性を得られることが分かった。   As shown in Table 1, good results were obtained when the average particle size of the fine particles 12A was 40 nm or less. That is, it was found that high characteristics can be obtained if the average particle size of the fine particles 12A is 40 nm or less. Further, good results were obtained when the maximum particle size of the fine particles 12A was 50 nm or less. That is, it was found that higher characteristics can be obtained if the maximum particle size of the fine particles 12A is 50 nm or less.

(実施例3)
スラリーの塗布工程および乾燥工程を1回しか行わなかったことを除き、他は実施例1と同様にして蛍光体材料10および発光装置20を作製した。得られた蛍光体材料10をTEMにより観察したところ、蛍光体粒子11の表面全体に被覆層12が形成されている様子が確認された。また、被覆層12は、平均的に、微粒子12が1粒子層から3粒子層の間で積層された構造を有していた。図9に得られた蛍光体材料10の表面付近のTEM写真を示す。また、得られた発光装置20について実施例1と同様にして発光試験を行い、輝度の経時変化を調べた。得られた結果を実施例1および比較例1−1の結果と共に表2および図10に示す。表2および図10において、輝度維持率というのは、被覆層を形成していない比較例1−1の初期輝度を100%とした場合の相対値である。
(Example 3)
A phosphor material 10 and a light emitting device 20 were manufactured in the same manner as in Example 1 except that the slurry application step and the drying step were performed only once. When the obtained phosphor material 10 was observed by TEM, it was confirmed that the coating layer 12 was formed on the entire surface of the phosphor particles 11. Moreover, the coating layer 12 had a structure in which the fine particles 12 were laminated between one particle layer and three particle layers on average. FIG. 9 shows a TEM photograph near the surface of the obtained phosphor material 10. Further, the obtained light emitting device 20 was subjected to a light emission test in the same manner as in Example 1, and the change with time of luminance was examined. The obtained results are shown in Table 2 and FIG. 10 together with the results of Example 1 and Comparative Example 1-1. In Table 2 and FIG. 10, the luminance maintenance rate is a relative value when the initial luminance of Comparative Example 1-1 in which no coating layer is formed is 100%.

表2および図10に示したように、実施例3では、被覆層12を形成しない比較例1−1に比べて輝度維持率を大幅に向上させることができたものの、実施例1に比べて輝度維持率は低かった。これは、微粒子12Aの積層数が少ないために微粒子12Aの界面から水分または紫外線が透過する場合があるためであると考えられる。すなわち、微粒子12Aを厚み方向において3粒子層以上積層させるようにすれば、より高い特性を得られることが分かった。   As shown in Table 2 and FIG. 10, in Example 3, although the luminance maintenance rate could be significantly improved as compared with Comparative Example 1-1 in which the coating layer 12 was not formed, compared with Example 1. The luminance maintenance rate was low. This is presumably because moisture or ultraviolet light may be transmitted from the interface of the fine particles 12A because the number of the fine particles 12A is small. That is, it has been found that higher characteristics can be obtained by laminating the fine particles 12A in the thickness direction by three or more particle layers.

(実施例4,比較例4)
微粒子12Aの平均粒子径を小粒径側に変化させ、それに付随して最大粒子径が変化したことを除き、他は実施例1と同様にして蛍光体材料10および発光装置20を作製した。実施例4では平均粒子径が15nm、最大粒子径が40nm、比較例4では平均粒子径が8nm、最大粒子径が30nmの微粒子12Aを用いた。得られた発光装置20について実施例1と同様にして発光試験を行い、輝度の経時変化を調べた。得られた結果を実施例1および比較例1−1の結果と共に表3に示す。表3において、2000時間後の輝度維持率というのは、被覆層を形成していない比較例1−1の初期輝度を100%とした場合の相対値である。
(Example 4, Comparative Example 4)
The phosphor material 10 and the light emitting device 20 were manufactured in the same manner as in Example 1 except that the average particle size of the fine particles 12A was changed to the small particle size side and the maximum particle size was changed accordingly. In Example 4, fine particles 12A having an average particle size of 15 nm and a maximum particle size of 40 nm, and Comparative Example 4 having an average particle size of 8 nm and a maximum particle size of 30 nm were used. The obtained light-emitting device 20 was subjected to a light emission test in the same manner as in Example 1, and the change in luminance with time was examined. The obtained results are shown in Table 3 together with the results of Example 1 and Comparative Example 1-1. In Table 3, the luminance maintenance rate after 2000 hours is a relative value when the initial luminance of Comparative Example 1-1 in which no coating layer is formed is 100%.

表3に示したように、微粒子12Aの平均粒子径を15nmとした実施例4では、実施例1と同様に良好な結果が得られた。これに対して、微粒子12Aの平均粒子径を8nmとした比較例4では、経時による輝度維持率が著しく低下した。すなわち、微粒子12Aの平均粒子径を10nm以上、好ましくは15nm以上とすれば、高い特性を得られることが分かった。   As shown in Table 3, in Example 4 in which the average particle size of the fine particles 12A was 15 nm, the same good results as in Example 1 were obtained. On the other hand, in Comparative Example 4 in which the average particle diameter of the fine particles 12A was 8 nm, the luminance maintenance rate over time was significantly reduced. That is, it was found that high characteristics can be obtained when the average particle size of the fine particles 12A is 10 nm or more, preferably 15 nm or more.

これらの原因を検証するため、実施例4および比較例4で得られた蛍光体材料10についてSEMを用いて観察を行った。図11は実施例4の蛍光体材料10のSEM写真の一例であり、図12は比較例4の蛍光体材料のSEM写真の一例である。図11および図12に示したように、実施例4では一様に微粒子12Aが被覆しているのに対して、比較例4では微粒子12Aが均一に被覆せず、微粒子12Aの凝集体と見られる粗大な二次凝集粒子として付着していることが分かった。すなわち、微粒子12Aの平均粒子径が小さすぎると、蛍光体粒子11を被覆する前に、微粒子12A同士の異常な二次凝集が生じてしまい、蛍光体粒子11を均一に被覆することが難しくなると考えられる。   In order to verify these causes, the phosphor material 10 obtained in Example 4 and Comparative Example 4 was observed using an SEM. FIG. 11 is an example of an SEM photograph of the phosphor material 10 of Example 4, and FIG. 12 is an example of an SEM photograph of the phosphor material of Comparative Example 4. As shown in FIGS. 11 and 12, in Example 4, the fine particles 12A are uniformly coated, whereas in Comparative Example 4, the fine particles 12A are not uniformly coated, and are regarded as aggregates of the fine particles 12A. It was found that the particles were attached as coarse secondary aggregated particles. That is, if the average particle size of the fine particles 12A is too small, abnormal secondary aggregation of the fine particles 12A occurs before the phosphor particles 11 are coated, and it becomes difficult to uniformly coat the phosphor particles 11. Conceivable.

以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、蛍光体粒子11の表面に微粒子12Aを積層した構造を有する被覆層12を形成したものについて説明したが、蛍光体粒子11に悪影響を与えない他の物質を含む層が更に形成されていてもよい。   The present invention has been described with reference to the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made. For example, in the above-described embodiment, the case where the coating layer 12 having the structure in which the fine particles 12A are laminated on the surface of the phosphor particles 11 has been described, but the layer containing other substances that do not adversely affect the phosphor particles 11 May be further formed.

LEDなどの発光装置に用いることができる。   It can be used for light emitting devices such as LEDs.

10…蛍光体材料、11…蛍光体粒子、12…被覆層、12A…微粒子、20…発光装置、21…基板、22…発光素子、23…配線、24…ワイヤ、25…リフレクタ枠、26…封止層   DESCRIPTION OF SYMBOLS 10 ... Phosphor material, 11 ... Phosphor particle, 12 ... Coating layer, 12A ... Fine particle, 20 ... Light emitting device, 21 ... Substrate, 22 ... Light emitting element, 23 ... Wiring, 24 ... Wire, 25 ... Reflector frame, 26 ... Sealing layer

Claims (6)

蛍光体粒子と、この蛍光体粒子の表面を被覆した被覆層とを有し、
前記被覆層は、平均粒子径が15nm以上40nm以下の微粒子が積層された構造を有し、
前記微粒子の最大粒子径は50nm以下である
ことを特徴とする蛍光体材料。
Having phosphor particles and a coating layer covering the surface of the phosphor particles;
The coating layer may have a mean particle diameter are stacked 15 nm or more 40nm less fine structure,
A phosphor material having a maximum particle size of 50 nm or less .
前記被覆層は、前記微粒子が厚み方向に3粒子層以上積層された構造を有することを特徴とする請求項1に記載の蛍光体材料。 The phosphor material according to claim 1, wherein the coating layer has a structure in which three or more particle layers are stacked in the thickness direction. 前記被覆層の厚みは、10nm以上1μm以下であることを特徴とする請求項1または請求項2に記載の蛍光体材料。 The thickness of the coating layer, the phosphor material of claim 1 or claim 2, characterized in that at 10nm or more 1μm or less. 前記被覆層は、希土類酸化物,酸化ジルコニウム,酸化チタン,酸化亜鉛,酸化アルミニウム,イットリウムとアルミニウムの複合酸化物,酸化マグネシウムおよびアルミニウムとマグネシウムの複合酸化物からなる群のうちの少なくとも1種の金属酸化物を含むことを特徴とする請求項1から請求項のいずれか1に記載の蛍光体材料。 The coating layer includes at least one metal selected from the group consisting of rare earth oxides, zirconium oxide, titanium oxide, zinc oxide, aluminum oxide, yttrium / aluminum composite oxide, magnesium oxide, and aluminum / magnesium composite oxide. phosphor material according to any one of claims 1 to 3, characterized in that it comprises an oxide. 前記希土類酸化物は、イットリウム(Y),ガドリニウム(Gd),セリウム(Ce)およびランタン(La)からなる群のうちの少なくとも1種の元素を含むことを特徴とする請求項に記載の蛍光体材料。 The fluorescence according to claim 4 , wherein the rare earth oxide includes at least one element selected from the group consisting of yttrium (Y), gadolinium (Gd), cerium (Ce), and lanthanum (La). Body material. 請求項1からのいずれかに記載の蛍光体材料を含む発光装置。 Emitting device comprising a phosphor material according to any one of claims 1 to 5.
JP2011038210A 2010-06-29 2011-02-24 Phosphor material and light emitting device Active JP5777242B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011038210A JP5777242B2 (en) 2010-06-29 2011-02-24 Phosphor material and light emitting device
KR1020127033095A KR101771446B1 (en) 2010-06-29 2011-06-28 Phosphor material and light-emitting device
TW100122540A TWI541324B (en) 2010-06-29 2011-06-28 Fluorescent substance material and light-emitting device
PCT/JP2011/064789 WO2012002377A1 (en) 2010-06-29 2011-06-28 Phosphor material and light-emitting device
CN2011800316259A CN102959041A (en) 2010-06-29 2011-06-28 Phosphor material and light-emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010147350 2010-06-29
JP2010147350 2010-06-29
JP2011038210A JP5777242B2 (en) 2010-06-29 2011-02-24 Phosphor material and light emitting device

Publications (2)

Publication Number Publication Date
JP2012031377A JP2012031377A (en) 2012-02-16
JP5777242B2 true JP5777242B2 (en) 2015-09-09

Family

ID=45402084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038210A Active JP5777242B2 (en) 2010-06-29 2011-02-24 Phosphor material and light emitting device

Country Status (5)

Country Link
JP (1) JP5777242B2 (en)
KR (1) KR101771446B1 (en)
CN (1) CN102959041A (en)
TW (1) TWI541324B (en)
WO (1) WO2012002377A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038960A (en) * 2013-05-16 2015-02-26 株式会社日本セラテック Light emitting device
JP6122747B2 (en) * 2013-09-25 2017-04-26 三井金属鉱業株式会社 Phosphor
CN107180908B (en) * 2017-06-27 2019-12-27 深圳Tcl新技术有限公司 LED, backlight module and liquid crystal display device
CN108011013B (en) * 2017-10-30 2020-03-20 佛山市国星光电股份有限公司 Coated fluorescent powder, preparation method thereof, LED device and LED lamp
JP7170917B2 (en) 2019-06-25 2022-11-14 ルミレッズ リミテッド ライアビリティ カンパニー Phosphor layer for micro LED
JP2022038930A (en) * 2020-08-27 2022-03-10 住友化学株式会社 Luminescent compound particle, and luminescent compound particle composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725008B2 (en) * 2003-09-11 2011-07-13 日亜化学工業株式会社 Light emitting device, phosphor for light emitting element, and method for manufacturing phosphor for light emitting element
DE10307281A1 (en) * 2003-02-20 2004-09-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Coated phosphor, light-emitting device with such phosphor and method for its production
KR100735320B1 (en) * 2005-12-27 2007-07-04 삼성전기주식회사 Formation method of phosphor film and fabrication method of light emitting diode package using the same
JP4213168B2 (en) * 2006-03-28 2009-01-21 アルプス電気株式会社 Light emitting device
JP2008291251A (en) * 2007-04-26 2008-12-04 Sharp Corp Manufacturing method of phosphor, wavelength converting member and light-emitting device
KR101366491B1 (en) * 2007-08-22 2014-02-24 삼성전자주식회사 Metal hydroxy carbonate Nano Particle Coated phosphor and Method for preparing the same

Also Published As

Publication number Publication date
TWI541324B (en) 2016-07-11
KR101771446B1 (en) 2017-08-25
TW201202392A (en) 2012-01-16
KR20130114589A (en) 2013-10-17
CN102959041A (en) 2013-03-06
JP2012031377A (en) 2012-02-16
WO2012002377A1 (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5777242B2 (en) Phosphor material and light emitting device
JP5941464B2 (en) Moisture-resistant phosphor and related methods
TWI685132B (en) Light emitting device
JP2017147467A (en) Red line emitting phosphors for use in led applications
JP2020183541A (en) Coated narrow band red phosphor
JP2008063446A (en) Coated phosphor, method for producing the same and light-emitting device comprising the coated phosphor
JP2015211150A (en) Wavelength conversion member and illumination device using the same
JP6186201B2 (en) Light emitting device
TW201535800A (en) Light-emitting element, light-emitting device, and manufacturing method thereof
WO2010143618A1 (en) Fluorescent material and luminescent device
WO2014021353A1 (en) Fluorescent material, and light-emitting device
WO2012001821A1 (en) Fluorescent material and light-emitting device
JP4886221B2 (en) Method for manufacturing light emitting device
JP5820606B2 (en) Method for manufacturing phosphor material, phosphor material, and light emitting device
KR200475471Y1 (en) Fluorescent material and luminescent device
TWI464235B (en) Phosphor composition and light emitting diode device using the same
WO2015064046A1 (en) Wavelength conversion particle, method for producing same, wavelength conversion member, and light-emitting device
JP2016028170A (en) Method for producing coated phosphor, coated phosphor, and white light source
JP2013023635A (en) Yag-based phosphor particle with coating film and method for producing the same
KR20140135638A (en) Luminescent device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5777242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250