JP5758758B2 - Origin determination method of domestic wheat using trace elements - Google Patents

Origin determination method of domestic wheat using trace elements Download PDF

Info

Publication number
JP5758758B2
JP5758758B2 JP2011198653A JP2011198653A JP5758758B2 JP 5758758 B2 JP5758758 B2 JP 5758758B2 JP 2011198653 A JP2011198653 A JP 2011198653A JP 2011198653 A JP2011198653 A JP 2011198653A JP 5758758 B2 JP5758758 B2 JP 5758758B2
Authority
JP
Japan
Prior art keywords
wheat
production area
strontium
discriminating
rubidium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011198653A
Other languages
Japanese (ja)
Other versions
JP2013061184A (en
Inventor
悦基 石田
悦基 石田
晃 川崎
晃 川崎
薫 有山
薫 有山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP2011198653A priority Critical patent/JP5758758B2/en
Publication of JP2013061184A publication Critical patent/JP2013061184A/en
Application granted granted Critical
Publication of JP5758758B2 publication Critical patent/JP5758758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、国内産小麦の産地を判別することができる方法に関するものである。   The present invention relates to a method capable of discriminating the production area of domestic wheat.

米、小麦、大麦等の穀物のうち理化学分析により産地を判別する方法については米を対象とした研究が最も進んでいる。その方法として、(i)DNA分析を用いてオーストラリア産特定品種に特異的な遺伝子型を検出することによるオーストラリア産麺用小麦銘柄を判別する方法(特許文献1)、(ii)小麦粉中の微量元素(S、Ca、Cu、Br、Rb、Sr、Mo)を定量分析することにより国内産小麦粉とそれ以外(外国産・混合)の小麦粉を判別する方法(非特許文献1)、(iii)水素、炭素、窒素、酸素などの軽元素の同位体比の分析と、カルシウム、銅、鉄、ストロンチウム等の微量元素の定量分析を組み合わせて、それらの情報の違いから産地を判別する方法(特許文献2)、(iv)重元素であるストロンチウムの同位体比を分析することにより各産地の米の同位体比の違いから産地を判別する方法(非特許文献2)などの研究報告がある。   Research on rice is the most advanced method for discriminating the origin of rice, wheat, barley and other grains by physicochemical analysis. As the method, (i) a method for discriminating wheat brands for Australian noodles by detecting a genotype specific to a specific Australian variety using DNA analysis (Patent Document 1), (ii) a trace amount in wheat flour A method for discriminating domestic flour and other (foreign / mixed) flour by quantitative analysis of elements (S, Ca, Cu, Br, Rb, Sr, Mo), (iii) A method of discriminating localities from differences in information by combining analysis of isotope ratios of light elements such as hydrogen, carbon, nitrogen and oxygen and quantitative analysis of trace elements such as calcium, copper, iron and strontium (patents) There are research reports such as (2), (iv) a method (Non-patent Document 2) for discriminating the production area from the difference in the isotope ratio of rice in each production area by analyzing the isotope ratio of strontium which is a heavy element.

前記(i)の方法は判別したい産地の小麦の間で品種が違うなど塩基配列に違いがある場合にしか判別できず、また当該品種をオーストラリア以外で生産した場合でもオーストラリア産と誤判定してしまう。前記(ii)の方法では、国内産小麦粉間の産地、例えば、北海道産小麦と、関東産小麦と、九州産小麦とを判別することができない。また施肥や燻蒸など人的要因により変動する元素(S、Ca、Brなど)の選択は作成したデータベースに影響を及ぼすため分析対象には適さない。前記(iii)の方法は安定同位体比質量分析装置により軽元素の同位体比を測定し、各産地の米の同位体比情報の違いから産地を判別する。同一産地で栽培された穀物でも栽培時の気温、湿度及び施肥条件の違い、海からの近さ、標高など様々な要因により変動するため、検査等に使えるようにするには様々な産地についてのデータを収穫の都度収集する必要があり、膨大なデータベースの構築が必要になる。前記(iv)の方法で対象とする重元素同位体は軽元素と異なり同位体分別がされにくい。このため同じ地域で栽培された穀物であれば、部位、年、品目による変動はほとんどなく、穀物中の重元素同位体比は、土壌中の可給態の重元素同位体比と一致する。即ち、栽培土壌から穀物の同位体比の推定及びその逆が可能であり、これは元素組成や軽元素同位体比による判別法にはない特徴である。また、ストロンチウム及び鉛は通常の農業資材にはほとんど含まれておらず、農業活動による同位体比の変動は無視できる。これらのことから重元素同位体比による産地判別はこれまで非常に期待されてきた技術であるが、国内産小麦では重元素同位体比の差はごく僅かであるため、重元素同位体比のみでは、国内産小麦の産地を精度よく判別することができない。   The above method (i) can be discriminated only when there is a difference in the base sequence such as different varieties among the wheat of the production area to be discriminated. End up. In the method (ii), it is not possible to distinguish between domestic wheat flour producing areas such as Hokkaido wheat, Kanto wheat, and Kyushu wheat. In addition, selection of elements (S, Ca, Br, etc.) that vary due to human factors such as fertilization and fumigation affects the created database and is not suitable for analysis. In the method (iii), the isotope ratio of light elements is measured by a stable isotope ratio mass spectrometer, and the production area is determined from the difference in the isotope ratio information of rice in each production area. Grains grown in the same production area vary depending on various factors such as temperature, humidity, fertilization conditions, proximity from the sea, altitude, etc. at the time of cultivation. It is necessary to collect data at every harvest and it is necessary to construct a huge database. Unlike the light element, the heavy element isotope targeted by the method (iv) is difficult to be separated. For this reason, if the grains are grown in the same region, there is almost no variation depending on the site, year, and item, and the heavy element isotope ratio in the grain is consistent with the available heavy element isotope ratio in the soil. In other words, it is possible to estimate the isotope ratio of cereals from the cultivated soil and vice versa, which is a feature that is not found in the discrimination method based on elemental composition and light element isotope ratio. In addition, strontium and lead are scarcely contained in ordinary agricultural materials, and isotope ratio fluctuations due to agricultural activities can be ignored. Based on these facts, it is a technique that has been highly anticipated so far, but the difference in the heavy element isotope ratio is very small in domestic wheat. Therefore, it is not possible to accurately determine the production area of domestic wheat.

特許第4041524号公報Japanese Patent No. 4041524 国際公開第2007/124068号パンフレットInternational Publication No. 2007/124068 Pamphlet

大高亜生子ら、分析化学, Vol. 58, No. 12, pp. 1011-1022, (2009)Akiko Otaka et al., Analytical Chemistry, Vol. 58, No. 12, pp. 1011-1022, (2009) 織田久男、川崎晃、「ぶんせき」, 日本分析化学会, 2002年発行, 12号, pp. 678-683Oda Hisao, Kawasaki Satoshi, “Bunseki”, Analytical Society of Japan, 2002, No. 12, pp. 678-683

本発明の課題は、国内産小麦の産地を判別することができる方法を提供することである。   The subject of this invention is providing the method which can discriminate | determine the production region of domestic wheat.

本発明者らは前記課題を解決するため鋭意研究を重ねた結果、特定の微量元素の量を利用することにより前記課題を解決することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by utilizing the amount of a specific trace element, and the present invention has been completed.

即ち、本発明の要旨は、以下のとおりである。
(1)小麦試料に含まれるルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルの量を分析し、それらの分析情報を用いて小麦の産地を判別する方法。
(2)日本産小麦の産地を判別するための前記(1)に記載の方法。
(3)北海道産小麦と、関東産小麦と、九州産小麦とを判別するための前記(1)に記載の方法。
(4)次の工程:
(i)小麦試料を酸分解して無機成分を主に含む溶液を調製する工程、
(ii)工程(i)で調製した溶液中のルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルのそれぞれの量を測定する工程、及び
(iii)工程(ii)で得られたルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルのそれぞれの量と、判別したい産地由来の小麦試料の前記各元素の量とを比較する工程
を含む前記(1)〜(3)のいずれかに記載の方法。
That is, the gist of the present invention is as follows.
(1) A method of analyzing the amount of rubidium, strontium, molybdenum, manganese, cobalt and nickel contained in a wheat sample, and discriminating the production area of wheat using those analysis information.
(2) The method as described in said (1) for discriminating the production area of Japanese wheat.
(3) The method as described in said (1) for discriminating Hokkaido wheat, Kanto wheat, and Kyushu wheat.
(4) Next step:
(I) a step of acid-decomposing a wheat sample to prepare a solution mainly containing inorganic components;
(Ii) a step of measuring each amount of rubidium, strontium, molybdenum, manganese, cobalt and nickel in the solution prepared in step (i); and (iii) rubidium, strontium and molybdenum obtained in step (ii). The method in any one of said (1)-(3) including the process of comparing each quantity of manganese, cobalt, and nickel with the quantity of each said element of the wheat sample derived from the production center to distinguish.

本発明の方法によれば、国内産小麦の産地を精度よく判別することができる。   According to the method of the present invention, the production area of domestic wheat can be determined with high accuracy.

図1は3種の日本産小麦(北海道産小麦、関東産小麦及び九州産小麦)の判別結果を示す図である。FIG. 1 is a diagram showing the discrimination results of three types of Japanese wheat (Hokkaido wheat, Kanto wheat and Kyushu wheat).

以下、本発明を詳細に説明する。
本発明において対象となる小麦は、外皮を含む全粒及び外皮を除去した穀粒、加工時に汚染されていないものであれば、押し麦、粉などの粉砕物も含まれる。
Hereinafter, the present invention will be described in detail.
In the present invention, the target wheat includes whole grains including the hull, grains from which the hull has been removed, and pulverized products such as pressed wheat and flour as long as they are not contaminated during processing.

本発明により産地を判別することができる小麦として、例えば北海道産小麦、関東産小麦、九州産小麦が挙げられる。   Examples of wheat that can be identified by the present invention include Hokkaido wheat, Kanto wheat, and Kyushu wheat.

本発明の対象となる小麦の品種は特に限定されないが、例えばホクシン、農林61号、シロガネコムギ、キタホナミ、チクゴイズミ、春よ恋、タイセツコムギ、シラネコムギ、ナンブコムギ、ホロシリコムギ、つるぴかり、きたもえ、あやひかり、ニシホナミ、タクネコムギ、ネバリゴシ、さぬきの夢2000、キタカミコムギ、タマイズミ、ふくさやか、ふくほのか、シラサギコムギ、チホクコムギ、ハルユタカ、キタノカオリ、ニシノカオリ、ミナミノカオリ、イワイノダイチ、ダイチノミノリ、バンドウワセ、きぬの波、きぬあずま、春のかがやき、アブクマワセ、コユキコムギ、しゅんよう、ゆきちから、キヌヒメ、きぬいろは、ダブル8号、農林26号、ユメアサヒが挙げられ、好ましくはホクシン、農林61号、シロガネコムギが挙げられる。   The wheat varieties that are the subject of the present invention are not particularly limited. Nishihonami, Takunekomugi, Nebarigoshi, Sanuki no Yume 2000, Kitakami Wheat, Tamaizumi, Fusayaka, Fukunoka, Egret Wheat, Chihokukomugi, Haruyutaka, Kitanokaori, Nishinokaori, Minaminokaori, Iwainodaiichi, Bandaikinaki, Bandaikinaki , Koyukimugi, Shinyo, Yukichi, Kinuhime, Kinuiro include Double No. 8, Norin 26, Yumeasahi, preferably Hokushin, No. 61, Shirogane Wheat And the like.

本発明の産地判別方法としては、小麦試料に含まれるルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルの量を分析し、それらの分析情報を用いて小麦の産地を判別しうるものであれば、特に制限はない。   As the method for determining the production area of the present invention, the amount of rubidium, strontium, molybdenum, manganese, cobalt and nickel contained in the wheat sample is analyzed, and if the production area of wheat can be determined using the analysis information thereof, There is no particular limitation.

前記元素の定量は公知の微量元素分析法、例えば誘導結合プラズマ質量分析法(ICP−MS:Inductively Coupled Plasma Mass Spectrometry)、誘導結合プラズマ発光分光分析法(ICP−AES:Inductively Coupled Plasma Atomic Emission Spectrometry)、原子吸光分析法(AAS:Atomic Absorption Spectrometry)、蛍光X線分析法(XRF:X-ray Fluorescence Analysis)、中性子放射化分析法(NAA:Neutron Activation Analysis)により行うことができる。   The element is quantified by known trace element analysis methods such as inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectrometry (ICP-AES). , Atomic absorption spectrometry (AAS), X-ray fluorescence analysis (XRF), and neutron activation analysis (NAA).

前記の分析法のうち、誘導結合プラズマ質量分析法(ICP−MS)、誘導結合プラズマ発光分光分析法(ICP−AES)及び原子吸光分析法(AAS)は、基本的には溶液又は溶液に溶かした試料を用いる。蛍光X線分析法(XRF)及び中性子放射化分析法(NAA)は通常酸分解せずに固体試料を測定に用いる。   Among the above analysis methods, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectroscopy (ICP-AES) and atomic absorption spectrometry (AAS) are basically dissolved in a solution or a solution. The sample is used. X-ray fluorescence analysis (XRF) and neutron activation analysis (NAA) usually use solid samples for measurement without acid decomposition.

誘導結合プラズマ質量分析法の特徴としては多くの元素に対し高感度であることと、多元素の同時測定が可能であることが挙げられる。   The features of inductively coupled plasma mass spectrometry include high sensitivity to many elements and the ability to measure multiple elements simultaneously.

誘導結合プラズマ発光分光分析法は、誘導結合プラズマを熱源とした発光分光分析法の一つである。誘導結合プラズマ発光分光分析法は感度的にはフレーム原子吸光法より優れているが、フレームレス原子吸光法と比べると同等か元素によっては劣る。しかし、多元素同時分析が可能である点は原子吸光法に比べて大きな利点である。また、誘導結合プラズマ質量分析法と比べると、同じく多元素同時分析ができるものの感度的には劣る。   The inductively coupled plasma emission spectroscopy is one of the emission spectroscopy using inductively coupled plasma as a heat source. Inductively coupled plasma atomic emission spectrometry is superior to flame atomic absorption in terms of sensitivity, but is equivalent or inferior to some elements compared to flameless atomic absorption. However, the fact that simultaneous multi-element analysis is possible is a significant advantage over atomic absorption spectrometry. Also, compared with inductively coupled plasma mass spectrometry, multielement simultaneous analysis can be performed, but sensitivity is inferior.

原子吸光分析法は、アセチレンなどのフレーム中や黒鉛炉(高電流を流す)など高温状態下に試料溶液を噴射し、元素を原子化し、そこに光を透過して吸収スペクトルを測定することで元素の濃度を測定する方法である。原子化された状態に、目的元素の波長の光を入射すると、その元素の濃度に応じてそれが吸収されるので、元素の同定及び定量が可能になる。この方法は、個々の元素に対し高い選択性をもっており、装置もそれほど複雑ではないので広く利用されている。しかし、一度に1元素の定量しかできず、また、誘導結合プラズマ質量分析法や誘導結合プラズマ発光分光分析法と比べると、フレーム法においては分析感度的の点で劣る。   Atomic absorption spectrometry is a method in which a sample solution is injected into a flame such as acetylene or a high temperature condition such as a graphite furnace (flowing high current) to atomize the element and transmit light therethrough to measure the absorption spectrum. This is a method for measuring the concentration of an element. When light having the wavelength of the target element is incident on the atomized state, it is absorbed according to the concentration of the element, so that the element can be identified and quantified. This method is widely used because it has high selectivity for individual elements and the apparatus is not so complicated. However, only one element can be quantified at a time, and the flame method is inferior in terms of analytical sensitivity as compared with inductively coupled plasma mass spectrometry and inductively coupled plasma emission spectrometry.

蛍光X線分析法(XRF)は、3次元偏光光学系蛍光X線分析装置を用いることにより従来法よりも高感度定量が可能となったが(非特許文献1)、誘導結合プラズマ質量分析法(ICP−MS)、誘導結合プラズマ発光分光分析法(ICP−AES)等と比較すると検出感度が低く、微量元素の高感度定量は困難である。   Fluorescence X-ray analysis (XRF) can be quantified with higher sensitivity than the conventional method by using a three-dimensional polarization optical X-ray fluorescence analyzer (Non-Patent Document 1), but inductively coupled plasma mass spectrometry. Compared with (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-AES) and the like, the detection sensitivity is low, and high-sensitivity quantification of trace elements is difficult.

本発明の産地判別方法としては、特に制限はないが、例えば、下記の〔酸分解〕工程、〔微量元素の定量〕工程、及び〔微量元素の組成を利用した産地の判別〕工程を含む方法が挙げられる。   There are no particular restrictions on the method of discriminating the production area of the present invention. For example, the method includes the following [acid decomposition] step, [quantification of trace elements] step, and [identification of production region using the composition of trace elements] step. Is mentioned.

〔酸分解〕
本工程は、小麦試料を酸分解して無機成分を主に含む溶液を調製する工程である。小麦に含まれるルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルの量はごく僅かであることから、使用する器具などからサンプルへのコンタミネーションを抑制するため、清浄な樹脂製使い捨てチューブ、例えばデジチューブ(ジーエルサイエンス)を分解容器として試料を採取し、更に硝酸を主とした酸を添加して、例えばデジプレップ酸分解用ヒートブロックシステム(ジーエルサイエンス)により加温して酸分解し、有機物を揮散させて無機成分を主に含む溶液を調製する。
[Acid degradation]
This step is a step of preparing a solution mainly containing inorganic components by acid decomposition of a wheat sample. Since the amount of rubidium, strontium, molybdenum, manganese, cobalt, and nickel contained in wheat is very small, a clean resin disposable tube, such as a digital tube, is used to suppress contamination from the equipment used to the sample. (GL Science) is taken as a decomposition vessel, and acid, mainly nitric acid, is added, followed by heating with a heat block system for digiprep acid decomposition (GL Science) to decompose the acid and volatilize the organic matter. To prepare a solution mainly containing inorganic components.

〔微量元素の定量〕
本工程は、〔酸分解〕工程で調製した溶液中のルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルのそれぞれの量を、例えば誘導結合プラズマ質量分析法(ICP−MS)、誘導結合プラズマ発光分光分析法(ICP−AES)又は原子吸光分析法(AAS)により測定する工程である。
[Quantification of trace elements]
In this step, the amounts of rubidium, strontium, molybdenum, manganese, cobalt, and nickel in the solution prepared in the [acid decomposition] step are measured using, for example, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma emission spectroscopy. This is a step of measuring by an analytical method (ICP-AES) or atomic absorption spectrometry (AAS).

〔微量元素の組成を利用した産地の判別〕
前記の工程に従って、判別したい産地内の様々な地域由来の小麦のルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルの量を決定してデータベースとし、試料のデータと比較することで産地を判別することができる。信頼性の高い産地判別法にするには、対象となる産地から偏りなくできるだけ産地を代表するように試料を多数収集し、データを得る必要がある。各産地由来の小麦についてこれらのデータベースを構築する。
構築しておいたデータベースと比較してどの産地に近いか確認することで産地を判別する。
[Distinction of production area using the composition of trace elements]
Determine the amount of rubidium, strontium, molybdenum, manganese, cobalt and nickel in wheat from various regions within the production area to be identified according to the above process, and determine the production area by comparing it with the sample data. Can do. In order to make a highly reliable production area discrimination method, it is necessary to collect a large number of samples so as to represent the production area as much as possible without deviation from the target production area and obtain data. These databases are constructed for wheat from each production area.
The production area is determined by confirming which production area is close to the constructed database.

本発明の方法は、目的に応じて、水素、炭素、窒素、硫黄などの軽元素の同位体比、ストロンチウム、鉛などの重元素の同位体比、1種又は2種以上の元素(例えば、Ca、Fe、K、Mg、Cd、Cu、Zn、Ba及びPから選ばれる1種又は2種以上の元素)の濃度など他のファクターと併せて判断してもよいが、ルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルの量のみを利用すれば、国内産小麦の産地を判別することができるので、国内産小麦の産地の判別においては、コスト面を考慮して他のファクターは省略することが好ましい。実際に本発明では施肥など人的影響が少なく、また小麦中の主要元素ではないNa、Rb、Sr、Mo、Ba、Al、Mn、Fe、Co、Ni、Cu、Zn、Se並びに同位体比として87Sr/86Sr、208Pb/206Pb、207Pb/206Pb、204Pb/206Pb、208Pb/207Pb、208Pb/204Pb、207Pb/204Pbを測定し、統計解析ソフトにより測定項目を選抜した結果、ルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルのみを選択することで精度よく判別することができた。   Depending on the purpose, the method of the present invention may comprise an isotope ratio of light elements such as hydrogen, carbon, nitrogen and sulfur, an isotope ratio of heavy elements such as strontium and lead, one or more elements (for example, Although it may be judged together with other factors such as the concentration of one or more elements selected from Ca, Fe, K, Mg, Cd, Cu, Zn, Ba and P), rubidium, strontium, molybdenum If only the amounts of manganese, cobalt and nickel are used, the production area of domestic wheat can be determined. Therefore, in determining the production area of domestic wheat, other factors should be omitted in consideration of cost. Is preferred. Actually, in the present invention, there is little human influence such as fertilization, and Na, Rb, Sr, Mo, Ba, Al, Mn, Fe, Co, Ni, Cu, Zn, Se and isotope ratios which are not main elements in wheat. As a result of measuring 87Sr / 86Sr, 208Pb / 206Pb, 207Pb / 206Pb, 204Pb / 206Pb, 208Pb / 207Pb, 208Pb / 204Pb, 207Pb / 204Pb, and selecting measurement items with statistical analysis software, rubidium, strontium, molybdenum, manganese It was possible to discriminate accurately by selecting only cobalt and nickel.

以下に実施例を記載するが、本発明は実施例の範囲に限定されるものではない。   Examples will be described below, but the present invention is not limited to the scope of the examples.

(実施例1)
〔試料〕
小麦試料は粒状態未加工のものであり、詳細は以下に示す。
Example 1
〔sample〕
The wheat sample is raw in grain state, details are given below.

Figure 0005758758
Figure 0005758758

〔酸分解〕
小麦を2.5gずつデジチューブに2本量り取った。各チューブに69%硝酸を10mL添加し、デジプレップ酸分解用ヒートブロックシステムにより加熱して酸分解した。この途中で30%過酸化水素2mLを添加して分解を促進させた。残渣に69%硝酸3mLを加え加温して溶解し、分解液2本分を15mL容遠沈チューブに超純水で洗い込み、12mLの目盛りまでメスアップし約8M硝酸水溶液になるように調製した。
[Acid degradation]
Two 2.5 grams of wheat were weighed into a digital tube. 10 mL of 69% nitric acid was added to each tube, and acid decomposition was performed by heating with a heat block system for digipprep acid decomposition. In the middle of this, 2 mL of 30% hydrogen peroxide was added to promote decomposition. Add 3mL of 69% nitric acid to the residue and heat to dissolve, then dissolve the two decomposition solutions into a 15mL centrifuge tube with ultrapure water, and make up to 12mL scale to make about 8M nitric acid aqueous solution. did.

〔Rb、Sr、Mo、Mn、Co及びNiの定量〕
酸分解溶液に内標としてインジウムを添加し、40倍希釈して、溶液中のRb、Sr、Mo、Mn、Co及びNiを誘導結合プラズマ質量分析法(ICP−MS)により測定した。
[Quantification of Rb, Sr, Mo, Mn, Co and Ni]
Indium was added as an internal standard to the acid decomposition solution, diluted 40 times, and Rb, Sr, Mo, Mn, Co and Ni in the solution were measured by inductively coupled plasma mass spectrometry (ICP-MS).

〔微量元素の組成を利用した産地の判別〕
判別したい試料のRb、Sr、Mo、Mn、Co及びNiの濃度を測定し、データベースと比較することで産地を判別した。
[Distinction of production area using the composition of trace elements]
The concentration of Rb, Sr, Mo, Mn, Co and Ni of the sample to be discriminated was measured, and the production area was discriminated by comparing with the database.

微量元素として、Rb、Sr、Mo、Mn、Co及びNiの6種の量を用いて統計解析ソフトにより判別分析を行った結果を図1に示す。   FIG. 1 shows the results of discriminant analysis using statistical analysis software using six kinds of Rb, Sr, Mo, Mn, Co, and Ni as trace elements.

図1において、「正準1」とは、Rb、Sr、Mo、Mn、Co及びNiの量を統計解析ソフト「JMP8」により正準判別分析を実施した際に出力される結果の第一正準軸であり、北海道産小麦、関東産小麦、九州産小麦を判別するために選択される寄与率の高い正準変量の一つである。同様に「正準2」とは二番目に寄与率の高い正準変量である。   In FIG. 1, “canonical 1” means the first canonical result output when canonical discriminant analysis is performed on the amount of Rb, Sr, Mo, Mn, Co, and Ni by statistical analysis software “JMP8”. It is a quasi axis and is one of the canonical variables with a high contribution rate selected to distinguish wheat from Hokkaido, wheat from Kanto and wheat from Kyushu. Similarly, “canonical 2” is a canonical variable having the second highest contribution rate.

微量元素の含有量を用いてステップワイズ法により判別分析を実行した場合の誤判別の数、誤判別の割合(%)及び−2対数尤度を表2に示す。   Table 2 shows the number of misclassifications, the rate of misclassification (%), and -2 log likelihood when discriminant analysis is performed by the stepwise method using the content of trace elements.

Figure 0005758758
Figure 0005758758

表2から北海道産小麦、関東産小麦、九州産小麦を判別する場合、統計解析ソフトのステップワイズ法に従いSr、Mn、Co、Rb、Ni、Moと選択項目を増加すると誤判別の数、誤判別の割合及び−2対数尤度は減少し判別精度は向上していくが、更に項目を追加すると−2対数尤度が増加、すなわち判別精度が低下した。   When discriminating wheat from Hokkaido, Kanto and Kyushu from Table 2, the number of misclassifications and misjudgments increases as the selection items are increased to Sr, Mn, Co, Rb, Ni, and Mo according to the stepwise method of statistical analysis software. Another ratio and -2 log likelihood decreased and the discrimination accuracy improved, but adding more items increased the -2 log likelihood, that is, the discrimination accuracy decreased.

図1から、Rb、Sr、Mo、Mn、Co及びNiの6種の量を組み合わせることにより、日本産小麦(北海道産小麦、関東産小麦及び九州産小麦)の産地を高い信頼性で判別することができることがわかる。   From FIG. 1, the origin of Japanese wheat (Hokkaido wheat, Kanto wheat, and Kyushu wheat) is determined with high reliability by combining six amounts of Rb, Sr, Mo, Mn, Co, and Ni. You can see that

したがって、Rb、Sr、Mo、Mn、Co及びNiの量のみを選択すれば国内産小麦(北海道産小麦、関東産小麦及び九州産小麦)の産地を判別することができることが分かった。   Therefore, it was found that if only the amounts of Rb, Sr, Mo, Mn, Co and Ni are selected, the production area of domestic wheat (Hokkaido wheat, Kanto wheat and Kyushu wheat) can be determined.

本発明によれば、理化学分析という客観的な手段により、日本産小麦の産地を高い信頼性で判別することができる。   According to the present invention, the production area of Japanese wheat can be determined with high reliability by an objective means of physicochemical analysis.

Claims (4)

小麦試料に含まれるルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルの量を分析し、それらの分析情報を用いて小麦の産地を判別する方法。   A method of analyzing the amount of rubidium, strontium, molybdenum, manganese, cobalt and nickel contained in a wheat sample, and discriminating the production area of the wheat using those analysis information. 日本産小麦の産地を判別するための請求項1記載の方法。   The method according to claim 1 for discriminating the production area of Japanese wheat. 北海道産小麦と、関東産小麦と、九州産小麦とを判別するための請求項1記載の方法。   The method of Claim 1 for discriminating wheat from Hokkaido, wheat from Kanto, and wheat from Kyushu. 次の工程:
(i)小麦試料を酸分解して無機成分を主に含む溶液を調製する工程、
(ii)工程(i)で調製した溶液中のルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルのそれぞれの量を測定する工程、及び
(iii)工程(ii)で得られたルビジウム、ストロンチウム、モリブデン、マンガン、コバルト及びニッケルのそれぞれの量と、判別したい産地由来の小麦試料の前記各元素の量とを比較する工程
を含む請求項1〜3のいずれか1項に記載の方法。
Next step:
(I) a step of acid-decomposing a wheat sample to prepare a solution mainly containing inorganic components;
(Ii) a step of measuring each amount of rubidium, strontium, molybdenum, manganese, cobalt and nickel in the solution prepared in step (i); and (iii) rubidium, strontium and molybdenum obtained in step (ii). The method of any one of Claims 1-3 including the process of comparing each quantity of manganese, cobalt, and nickel with the quantity of each said element of the wheat sample derived from the production center to distinguish.
JP2011198653A 2011-09-12 2011-09-12 Origin determination method of domestic wheat using trace elements Active JP5758758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011198653A JP5758758B2 (en) 2011-09-12 2011-09-12 Origin determination method of domestic wheat using trace elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011198653A JP5758758B2 (en) 2011-09-12 2011-09-12 Origin determination method of domestic wheat using trace elements

Publications (2)

Publication Number Publication Date
JP2013061184A JP2013061184A (en) 2013-04-04
JP5758758B2 true JP5758758B2 (en) 2015-08-05

Family

ID=48185981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011198653A Active JP5758758B2 (en) 2011-09-12 2011-09-12 Origin determination method of domestic wheat using trace elements

Country Status (1)

Country Link
JP (1) JP5758758B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6148101B2 (en) * 2013-07-26 2017-06-14 京セラ株式会社 Cutting tools
JP2015206706A (en) * 2014-04-22 2015-11-19 日清オイリオグループ株式会社 Production place discrimination method of soybean produced in south america using trace element
JP6619323B2 (en) * 2016-12-19 2019-12-11 日本電信電話株式会社 Rice production area estimation method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432780B2 (en) * 2005-01-07 2010-03-17 三菱マテリアル株式会社 How to identify rice production areas
WO2007124068A2 (en) * 2006-04-21 2007-11-01 State Of Oregon Acting By & Through The State Board Of Higher Edu. On Behalf Of Oregon State Unv. Method for analyzing foods
JP4041524B1 (en) * 2007-05-01 2008-01-30 独立行政法人農業・食品産業技術総合研究機構 Method for distinguishing wheat brands for Australian noodles
JP5037642B2 (en) * 2010-03-17 2012-10-03 一般財団法人日本穀物検定協会 Grain production method using heavy element isotopic composition

Also Published As

Publication number Publication date
JP2013061184A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
Chudzinska et al. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity
Cheajesadagul et al. Discrimination of geographical origin of rice based on multi-element fingerprinting by high resolution inductively coupled plasma mass spectrometry
Ozbek et al. Microwave plasma atomic emission spectrometric determination of Ca, K and Mg in various cheese varieties
JP5037642B2 (en) Grain production method using heavy element isotopic composition
Snyder Methods for silicon analysis in plants, soils, and fertilizers
Vemireddy et al. Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study
JP2014209096A (en) Place of production determination method for soybean raw material and soybean processed product
Lei et al. Use of near-infrared reflectance spectroscopy to predict species composition in tree fine-root mixtures
Sadiq et al. Optimization of the operating conditions of solid sampling electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry for the sensitive direct analysis of powdered rice
Comino et al. Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination
US20110299085A1 (en) Rapid Tissue Analysis Technique
JP5758758B2 (en) Origin determination method of domestic wheat using trace elements
De Babos et al. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis
Devey et al. Pasture vegetation elemental analysis by laser-induced breakdown spectroscopy
Höhner et al. A rapid total reflection X-ray fluorescence protocol for micro analyses of ion profiles in Arabidopsis thaliana
JP5758244B2 (en) Origin determination method of Australian wheat using trace elements and isotope ratio
JP2021081406A (en) Method and system for distinguishing mixture of production areas of salmon
Elango et al. Analytical methods for iron and zinc quantification in plant samples
Ivanova et al. Determination of lanthanoids and some heavy and toxic elements in plant certified reference materials by inductively coupled plasma mass spectrometry
JP5885168B2 (en) Method and apparatus for analyzing soil geological traits
JP2015206706A (en) Production place discrimination method of soybean produced in south america using trace element
Dhawale et al. Predicting extractable soil phosphorus using visible/near-infrared hyperspectral soil reflectance measurements
Feher et al. Application of light stable isotope ratios and elemental profile in the organic vegetables characterization
Dibi et al. Use of fluorescence and reflectance spectra for predicting okra (Abelmoschus esculentus) yield and macronutrient contents of leaves
Sperling et al. Measuring foliar mineral concentrations by X-ray fluorescence requires crop-specific partial regression models

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5758758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250