JP4432780B2 - How to identify rice production areas - Google Patents

How to identify rice production areas Download PDF

Info

Publication number
JP4432780B2
JP4432780B2 JP2005001969A JP2005001969A JP4432780B2 JP 4432780 B2 JP4432780 B2 JP 4432780B2 JP 2005001969 A JP2005001969 A JP 2005001969A JP 2005001969 A JP2005001969 A JP 2005001969A JP 4432780 B2 JP4432780 B2 JP 4432780B2
Authority
JP
Japan
Prior art keywords
rice
isotope ratio
water
hydrogen
isotope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005001969A
Other languages
Japanese (ja)
Other versions
JP2006189351A (en
Inventor
晃 上田
敏郎 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005001969A priority Critical patent/JP4432780B2/en
Publication of JP2006189351A publication Critical patent/JP2006189351A/en
Application granted granted Critical
Publication of JP4432780B2 publication Critical patent/JP4432780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、高い精度で生産地域を特定し得る米の生産地特定方法に関するものである。   The present invention relates to a rice production area specifying method that can specify a production area with high accuracy.

米は、日本国内の生産だけでなく、海外からも輸入され販売されている。消費者に販売される全ての米について品種と産地の表示が義務付けられているが、品種や生産地表示を偽るケースが報告されている。そのため、販売される米の生産地表示が合致しているかどうかを判定する方法が必要とされている。米の生産地を特定する手法として、従来は米の色調、粒の形状、味などから判断する経験的手法や、米の主成分であるタンパク質や炭水化物など主要成分分析、米が保有するDNAを抽出して生産地域における同種類の米と比較検討する科学的識別が行われていた。   Rice is imported and sold not only in Japan but also overseas. Although all rice sold to consumers is required to display varieties and production areas, cases have been reported that misrepresent varieties and production areas. Therefore, there is a need for a method for determining whether the display of the production area of the rice to be sold matches. As a method to identify the rice production area, conventionally, an empirical method to judge from the color, grain shape, taste, etc. of rice, analysis of main components such as protein and carbohydrate, which are the main ingredients of rice, and DNA contained in rice Scientific identification was done to extract and compare with the same type of rice in the production area.

科学的識別として、例えば、近赤外分光分析技術を応用した研究を行い、佐賀県内の大麦の生産地判別を行ったのをはじめ、県内米の産地判別も行ったことが報告されている(例えば、非特許文献1参照。)。この非特許文献1によれば、産地判別がほぼ100%可能であることが判明し、生産地の特定が農産物から可能であることが記載されている。また、同じ生産地内の米であれば、品種の判別がほぼ100%の確率で可能であると記載されている。
また、米に微量に含まれるホウ素の同位体比(11B/10B比)と、ストロンチウムの同位体比(87Sr/86Sr)を用いた産地国判別方法が提案されている(例えば、非特許文献2参照。)。この非特許文献2によれば、米サンプルを乾式灰化或いはマイクロウェーブ分解した後にイオン交換樹脂によりホウ素を分離精製し、ICP−MSによりホウ素同位体比、ストロンチウム同位体比を測定するものである。この方法では、米に含まれるホウ素が、米を生産した土地の土壌中に含まれるホウ素の同位体比を反映していることを利用している。
小島孝之、農業施設学会誌「農業施設」28巻4号、農業施設学会、1998年3月発行、p191〜192 織田久男ら、社団法人日本分析化学会機関誌「ぶんせき」2002年第12号、2002年発行、p678〜683
As scientific identification, for example, research that applied near-infrared spectroscopic analysis technology and barley production area identification in Saga Prefecture, as well as production area identification of rice in the prefecture has been reported ( For example, refer nonpatent literature 1.). According to this non-patent document 1, it is found that the production area can be identified almost 100%, and it is described that the production area can be specified from the agricultural products. Further, it is described that the rice can be discriminated with a probability of almost 100% if the rice is in the same production area.
Further, a method of discriminating the country of origin using an isotope ratio of boron ( 11 B / 10 B ratio) contained in a trace amount of rice and an isotope ratio of strontium ( 87 Sr / 86 Sr) has been proposed (for example, (Refer nonpatent literature 2.). According to this Non-Patent Document 2, after a rice sample is dry ashed or subjected to microwave decomposition, boron is separated and purified by ion exchange resin, and boron isotope ratio and strontium isotope ratio are measured by ICP-MS. . This method utilizes the fact that boron contained in rice reflects the isotope ratio of boron contained in the soil of the land where the rice was produced.
Takayuki Kojima, Journal of Agricultural Facility Association, “Agricultural Facility” Vol. 28, No. 4, Agricultural Facility Society, published in March 1998, p. Hisao Oda et al., Journal of the Analytical Society of Japan “Bunseki” 2002 12th, 2002, p678-683

流通網が発達した現代において、米の販売される品質も多岐にわたり、その生産地も多様化している。このような状況で、従来の経験的な判断や主要成分分析、非特許文献1に示されるような近赤外分光分析方法では、十分な対応をすることができない問題があった。また、非特許文献2に示されるホウ素同位体比を用いた判別方法では、ホウ素は天然での変化量が少ないために産地の異なる地域でも同じ値になることも考えられ、生産地を特定するには十分であるとはいえなかった。
本発明の目的は、短期間でかつ高い精度で生産地を特定し得る、米の生産地特定方法を提供することにある。
In the present day when the distribution network has developed, the quality of rice sold is also diverse and the production areas are diversified. Under such circumstances, the conventional empirical judgment, main component analysis, and the near-infrared spectroscopic analysis method as shown in Non-Patent Document 1 have a problem that sufficient measures cannot be taken. Further, in the discrimination method using the boron isotope ratio shown in Non-Patent Document 2, it is considered that boron has the same value in different regions of production because the amount of natural change is small, and the production region is specified. It was not enough.
An object of the present invention is to provide a rice production area specifying method capable of specifying a production area in a short period of time and with high accuracy.

請求項1に係る発明は、図1に示すように、複数の米生産地域における天水を安定同位体比質量分析計を用いて天水毎に水素同位体比並びに酸素同位体比を求める工程10と、生産地域が未知の米サンプルを所定の型に入れて所定の圧力で圧縮することにより米サンプルに含まれる水分を抽出する工程11と、米サンプルから抽出した水分を安定同位体比質量分析計を用いて水素同位体比並びに酸素同位体比を求める工程12と、求めた米サンプルから抽出した水分における水素同位体比並びに酸素同位体比を複数の米生産地域における天水の水素同位体比並びに酸素同位体比と比較して米サンプルの生産地域を特定する工程13とを含むことを特徴とする米の生産地特定方法である。
請求項2に係る発明は、請求項1に係る発明であって、米サンプルを1〜5MPaの圧力で一軸加圧する方法である。
As shown in FIG. 1, the invention according to claim 1 is a process 10 for obtaining a hydrogen isotope ratio and an oxygen isotope ratio for each of the rainwaters in a plurality of rice production areas using a stable isotope ratio mass spectrometer. A step 11 of extracting the moisture contained in the rice sample by putting a rice sample whose production area is unknown into a predetermined mold and compressing it at a predetermined pressure; and a stable isotope ratio mass spectrometer for extracting the moisture extracted from the rice sample Step 12 for determining the hydrogen isotope ratio and oxygen isotope ratio using water, and the hydrogen isotope ratio and oxygen isotope ratio in the water extracted from the obtained rice sample to determine the hydrogen isotope ratio of natural water in a plurality of rice production areas and And a step 13 of identifying a rice sample production region in comparison with the oxygen isotope ratio.
The invention according to claim 2 is the invention according to claim 1, wherein the rice sample is uniaxially pressed at a pressure of 1 to 5 MPa.

本発明の米の生産地特定方法は、複数の米生産地域における天水を天水毎に水素同位体比並びに酸素同位体比を求め、生産地域が未知の米サンプルを所定の型に入れて所定の圧力で圧縮することにより米サンプルに含まれる水分を抽出し、米サンプルから抽出した水分を安定同位体比質量分析計を用いて水素同位体比並びに酸素同位体比を求め、米サンプルから抽出した水分における水素同位体比並びに酸素同位体比を複数の米生産地域における天水の水素同位体比並びに酸素同位体比と比較して米サンプルの生産地域を特定するため、短期間でかつ高い精度で生産地を特定することができる。   The method for specifying the production area of rice of the present invention obtains hydrogen isotope ratios and oxygen isotope ratios of rainwater for each rainwater in a plurality of rice production areas, and puts a rice sample whose production area is unknown into a predetermined mold. Moisture contained in the rice sample was extracted by compressing under pressure, and the water extracted from the rice sample was extracted from the rice sample using a stable isotope ratio mass spectrometer to determine the hydrogen isotope ratio and oxygen isotope ratio. Compare the hydrogen isotope ratio and oxygen isotope ratio of water to the hydrogen isotope ratio and oxygen isotope ratio of rainwater in multiple rice production areas to identify the production area of rice samples. The production area can be specified.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
本発明者らは、米に含まれている水分が、その米を生産する地域における雨水、河川水、地下水等の天水に応じて決定される所定の値の水素同位体比並びに酸素同位体比組成を反映しているという知見を得た。そして係る知見に基づいて、米に含まれる水分の水素同位体比並びに酸素同位体比の組成を分析すれば、米生産地域を高精度で特定できるという考えに至った。即ち、水分の主成分である水素同位体組成、酸素同位体組成は、地域によって違いを生じており、本発明は地域による組成の違いを用いて米の生産地を特定するものである。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
The present inventors have determined that the water isotope ratio and oxygen isotope ratio of a predetermined value determined according to rainwater, river water, ground water and other natural water in the area where the rice is produced. The knowledge that it reflects the composition was obtained. And based on such knowledge, if the composition of the hydrogen isotope ratio and the oxygen isotope ratio of the moisture contained in rice was analyzed, it came to the idea that a rice production area could be specified with high precision. That is, the hydrogen isotope composition and the oxygen isotope composition, which are the main components of moisture, vary depending on the region, and the present invention specifies the rice production region using the difference in composition depending on the region.

本発明の米の生産地特定方法を説明する。
先ず、図1に示すように、複数の米生産地域における天水を安定同位体比質量分析計を用いて天水毎に水素同位体比並びに酸素同位体比を求める(工程10)。天然に存在する水を構成する酸素及び水素には、それぞれ質量数の異なる安定同位体が存在する。その存在割合は、酸素が16O:17O:18O=99.757:0.038:0.205(%)であり、水素が1H:2H=99.9885:0.0115(%)である。なお、1HはH、2HはD(Deuterium)とも表現される。これらは、H2 16O、H2 18O、HD16O等として水分子を構成している。天水の同位体比は、地域或いは時間、季節により様々に異なる値を持つ。降水が地下に浸透し地下水として貯留、流動し、また河川へ流出する過程では、化学成分のようにその周辺物質と化学反応を起こさず、その同位体比は変化しない。この同位体比の保存性を利用して、本発明では天水の水素同位体比並びに酸素同位体比を米の生産地域を特定するトレーサーとして利用する。複数の米生産地域における天水の水素同位体分析は、約5mgの天水を真空中で金属亜鉛と400〜500℃、好ましくは約420℃で、2〜8時間、好ましくは4時間反応させて水素ガスを生成し、生成した水素ガスを安定同位体比質量分析計を用いて水素同位体比(D/H)を測定する。また、複数の米生産地域における天水の酸素同位体分析は、1〜5gの天水を密閉容器内でCO2ガスと15〜40℃、好ましくは約25℃で、4〜6時間、好ましくは5時間反応させて、同位体交換反応を生じさせる。次に、反応させたCO2ガスを回収し、この回収したCO2ガスを安定同位体比質量分析計を用いて酸素同位体比(18O/16O)を測定する。
The rice production area specifying method of the present invention will be described.
First, as shown in FIG. 1, the hydrogen isotope ratio and the oxygen isotope ratio are obtained for each of the rainwater in a plurality of rice production areas using a stable isotope ratio mass spectrometer (step 10). Stable isotopes having different mass numbers exist in oxygen and hydrogen that constitute water that exists in nature. The existence ratio of oxygen is 16 O: 17 O: 18 O = 99.757: 0.038: 0.205 (%), and hydrogen is 1 H: 2 H = 99.9885: 0.0115 (%) ). 1 H is also expressed as H, and 2 H is also expressed as D (Deuterium). These constitute water molecules as H 2 16 O, H 2 18 O, HD 16 O and the like. The isotope ratio of rainwater has different values depending on the region, time and season. In the process of precipitation penetrating into the ground, storing and flowing as groundwater, and flowing into rivers, chemical reactions with surrounding materials do not occur like chemical components, and the isotopic ratio does not change. In the present invention, the hydrogen isotope ratio and oxygen isotope ratio of natural water are used as a tracer for specifying the rice production area by utilizing the storage stability of this isotope ratio. The hydrogen isotope analysis of natural water in a plurality of rice production areas is carried out by reacting about 5 mg of natural water with metal zinc in a vacuum at 400 to 500 ° C., preferably about 420 ° C. for 2 to 8 hours, preferably 4 hours. A gas is generated, and a hydrogen isotope ratio (D / H) of the generated hydrogen gas is measured using a stable isotope ratio mass spectrometer. In addition, oxygen isotope analysis of natural water in a plurality of rice production areas is conducted by using 1 to 5 g of natural water in a sealed container with CO 2 gas and 15 to 40 ° C., preferably about 25 ° C. for 4 to 6 hours, preferably 5 The reaction is allowed to occur for an isotope exchange reaction. Next, the reacted CO 2 gas is recovered, and the oxygen isotope ratio ( 18 O / 16 O) of the recovered CO 2 gas is measured using a stable isotope ratio mass spectrometer.

水素同位体比並びに酸素同位体比は、一般に存在量の多い同位体に対する比、即ち、D/H、18O/16Oが測定される。これらの同位体比は絶対比ではなく標準試料の同位体比からの千分偏差として次の数式(1)及び数式(2)で示されるδ値で表現される。標準試料としては、世界共通の標準平均海水(Standard Mean Ocean Water;SMOW)が使用される。 As for the hydrogen isotope ratio and the oxygen isotope ratio, generally, ratios to isotopes having a large abundance, that is, D / H and 18 O / 16 O are measured. These isotope ratios are not absolute ratios but are expressed as δ values represented by the following formulas (1) and (2) as a thousandths deviation from the isotope ratio of the standard sample. As a standard sample, standard mean ocean water (SMOW) common in the world is used.

Figure 0004432780
Figure 0004432780

Figure 0004432780
Figure 0004432780

上記δ値がそれぞれ大きいほど、質量数の大きい同位体、即ちD又は18Oの割合が多く、重い水であり、δ値が小さいほど、軽い水と表現する。この方法による分析誤差は、δDが±1.0‰であり、δ18Oが±0.1‰である。 The larger the δ value, the higher the mass number of isotopes, that is, the proportion of D or 18 O, and the heavier water, and the smaller the δ value, the lighter the water. Analytical error by this method, [delta] D is the ± 1.0 ‰, a [delta] 18 O is ± 0.1 ‰.

次いで、生産地域が未知の米サンプルを所定の型に入れて所定の圧力で圧縮することにより米サンプルに含まれる水分を抽出する(工程11)。本発明では米に含まれる水分の回収手段として、同位体分別を起こさせない水分抽出法を採用している。同位体の分別(Fractionation)とは、自然界で種々の化学的、生物化学的、物理的な過程を経て化合物の形が変化すると、同位体比も変化することをいう。この同位体分別を起こす過程は、1)同位体交換平衡、2)同位体非平衡反応及び3)蒸発、凝縮の物理的過程が挙げられる。   Next, water contained in the rice sample is extracted by putting a rice sample whose production area is unknown into a predetermined mold and compressing it at a predetermined pressure (step 11). In the present invention, a water extraction method that does not cause isotope fractionation is adopted as a means for collecting water contained in rice. Isotope fractionation (Fractionation) means that the isotopic ratio changes when the form of a compound changes through various chemical, biochemical, and physical processes in nature. The processes that cause this isotope fractionation include 1) isotope exchange equilibrium, 2) isotope non-equilibrium reaction, and 3) physical processes of evaporation and condensation.

1)同位体交換平衡とは、二化合物間での同位体の分配のされ方が温度によって決まる反応をいい、一般に、分子量の大きい化合物の方に重い同位体が濃縮するものである。2)同位体非平衡反応とは、化学反応非平衡反応を経た場合で、一般に反応物質に比べ生成物質の方に軽い同位体が濃縮するものである。3)蒸発、凝縮の物理的過程は以下の通りである。水の蒸発の場合は、質量数の小さい同位体を含む分子が水蒸気になり易い。また、水蒸気の凝縮の場合は質量数の大きい同位体が優先的に液体になり易く、より後で凝縮する水滴ほど質量数の大きい同位体に乏しくなっていく。これは、軽い水(軽い同位体を含む水)の方が、重い水よりも蒸気圧が高いため、蒸発時には優先的に水蒸気になり易いからである。例えば、酸素同位体の場合は、海水等からの蒸発時に、18Oの乏しくなった(δ18O値が低い)水蒸気がある温度で凝縮して次々に水滴になっていくと、その過程で水蒸気から18Oに富んだ(δ18O値が高い)水が次々に取り除かれるため、残った水蒸気は徐々に18Oに乏しく(δ18O値が低く)なり、それから凝縮する水も徐々に18Oに乏しく(δ18O値が低く)なっていく。なお、米に含まれる水分は、その含有量に大きな違いがあるが、加熱による水分の抽出では、米に残存した水分との間で同位体組成の違い、いわゆる同位体分別が発生してしまう。 1) Isotope exchange equilibrium refers to a reaction in which the manner in which isotopes are distributed between two compounds is determined by temperature. In general, heavier isotopes concentrate in compounds with higher molecular weights. 2) An isotope non-equilibrium reaction is a chemical reaction non-equilibrium reaction, and generally a lighter isotope is concentrated in a product compared to a reactant. 3) The physical process of evaporation and condensation is as follows. In the case of water evaporation, a molecule containing an isotope having a small mass number is likely to become water vapor. In the case of condensation of water vapor, isotopes having a large mass number are preferentially liable to become liquid, and water droplets that condense later become poor in isotopes having a large mass number. This is because light water (water containing a light isotope) has a higher vapor pressure than heavy water, and is thus preferentially converted to water vapor during evaporation. For example, in the case of oxygen isotopes, when evaporating from seawater or the like, 18 O-poor (low δ 18 O value) water vapor is condensed at a certain temperature and becomes water droplets one after another. since enriched 18 O water vapor ([delta] 18 O value is high) water is removed sequentially, the remaining water vapor gradually 18 O to poor ([delta] 18 O value is low) becomes, then water to condense gradually 18 O becomes scarce (δ 18 O value decreases). In addition, the moisture contained in rice has a large difference in the content, but the extraction of moisture by heating causes a difference in isotope composition from the moisture remaining in the rice, so-called isotopic fractionation occurs. .

工程11における米サンプルから水分を抽出する方法を説明する。
先ず、図2(a)に示すような内径50mm、長さ300mm程度の円筒型容器21を用意する。この円筒型容器21の側面には、内部に連通する抽出孔21aが形成される。また、この円筒型容器21の内径と同径の円柱形状を有する第1ピストン22及び第2ピストン23を用意する。次いで、図3に示すように、円筒型容器21の抽出孔21aにマイクロチューブ24を接続し、容器21内部で抽出した水分を容器外部に排出するように構成する。続いて円筒型容器21の下方より第1ピストン22を容器21内に挿入して、所定の高さに保持して、米サンプルを装填するための底部を形成する。次に、円筒型容器21内に米サンプルを装填する。米サンプルの装填量は約300g程度が好ましい。
A method for extracting moisture from the rice sample in step 11 will be described.
First, a cylindrical container 21 having an inner diameter of 50 mm and a length of about 300 mm as shown in FIG. An extraction hole 21 a communicating with the inside is formed on the side surface of the cylindrical container 21. In addition, a first piston 22 and a second piston 23 having a cylindrical shape having the same diameter as the inner diameter of the cylindrical container 21 are prepared. Next, as shown in FIG. 3, the microtube 24 is connected to the extraction hole 21a of the cylindrical container 21, and the water extracted inside the container 21 is discharged to the outside of the container. Subsequently, the first piston 22 is inserted into the container 21 from below the cylindrical container 21 and held at a predetermined height to form a bottom for loading the rice sample. Next, the rice sample is loaded into the cylindrical container 21. The loading amount of the rice sample is preferably about 300 g.

このような状態で、上方より第2ピストン23を容器21に挿入し、第2ピストン23を押し下げることにより、容器21内に装填した米サンプルを圧縮して米サンプル中の水分を抽出する。なお、第2ピストン23を押し下げるとともに、第1ピストン22を押し上げることで容器21内の米サンプルを圧縮してもよい。米サンプルを圧縮する圧力としては、1〜5MPa、好ましくは2〜3MPaである。抽出された水分は、抽出孔21aからマイクロチューブ24を通って容器21外部へと排出され、ビーカー25にて回収される。米サンプルから回収される水分量を調節するため、抽出初期段階には1〜2MPaの低圧で水分を抽出し、回収される水分量を確認しながら、次第に圧力を上げてゆくことが好ましい。このような操作により米サンプルに含まれる水分が回収されるが、水分が米中に残留したとしても、同位体分別は発生しない。   In such a state, the second piston 23 is inserted into the container 21 from above and the second piston 23 is pushed down to compress the rice sample loaded in the container 21 and extract the moisture in the rice sample. Note that the rice sample in the container 21 may be compressed by pushing down the second piston 23 and pushing up the first piston 22. The pressure for compressing the rice sample is 1 to 5 MPa, preferably 2 to 3 MPa. The extracted moisture is discharged from the extraction hole 21 a through the microtube 24 to the outside of the container 21 and collected by the beaker 25. In order to adjust the amount of water recovered from the rice sample, it is preferable to extract the water at a low pressure of 1 to 2 MPa in the initial extraction stage and gradually increase the pressure while confirming the amount of recovered water. Although the moisture contained in the rice sample is recovered by such an operation, even if the moisture remains in the rice, isotope fractionation does not occur.

次に、図1に戻って、米サンプルから抽出した水分を安定同位体比質量分析計を用いて水素同位体比並びに酸素同位体比を求める(工程12)。米サンプルから抽出した水分の水素同位体分析は、前述した工程10における天水の水素同位体分析と同様の方法により水素同位体比(D/H)を測定する。また、米サンプルから抽出した水分の酸素同位体分析も、前述した工程10における天水の酸素同位体分析と同様の方法により酸素同位体比(18O/16O)を測定する。続いて、標準試料の同位体比からの千分偏差として次の数式(3)及び数式(4)で示されるδD並びにδ18Oをそれぞれ算出する。標準試料は上記数式(1)及び数式(2)で使用したSMOWを用いる。 Next, returning to FIG. 1, the hydrogen isotope ratio and the oxygen isotope ratio of water extracted from the rice sample are obtained using a stable isotope ratio mass spectrometer (step 12). In the hydrogen isotope analysis of the water extracted from the rice sample, the hydrogen isotope ratio (D / H) is measured by the same method as the hydrogen isotope analysis of natural water in Step 10 described above. Also, the oxygen isotope analysis of water extracted from the rice sample, measuring the oxygen isotope ratio (18 O / 16 O) by the same method as meteoric oxygen isotope analysis in step 10 described above. Subsequently, δD and δ 18 O expressed by the following mathematical formulas (3) and (4) are calculated as the thousandth deviation from the isotope ratio of the standard sample. As the standard sample, SMOW used in the above formulas (1) and (2) is used.

Figure 0004432780
Figure 0004432780

Figure 0004432780
Figure 0004432780

更に、求めた米サンプルから抽出した水分における水素同位体比並びに酸素同位体比を複数の米生産地域における天水の水素同位体比並びに酸素同位体比と比較して米サンプルの生産地域を特定する(工程13)。米サンプルから抽出した水分における水素同位体比と酸素同位体比との関係を示す図と、複数の米生産地域における天水の水素同位体比と酸素同位体比との関係を示す図をそれぞれ作成し、上記2つの図を照らし合わせて比較することにより、生産地域が未知の米サンプルの生産地域を特定することができる。また、工程10において求めた複数の米生産地域における天水の水素同位体比並びに酸素同位体比をデータベース化しておき、工程12で求めた米サンプルから抽出した水分の水素同位体比並びに酸素同位体比を照らし合わせ、水素同位体比及び酸素同位体比の2点が一致ないしは近似している地域を米サンプルの生産地域と特定してもよい。このように本発明の米の生産地特定方法では、工程10〜工程13を経ることにより、短期間でかつ高い精度で生産地を特定することができる。   In addition, the hydrogen isotope ratio and oxygen isotope ratio in the water extracted from the obtained rice sample are compared with the hydrogen isotope ratio and oxygen isotope ratio of natural water in multiple rice production areas to identify the rice sample production area (Step 13). A diagram showing the relationship between hydrogen isotope ratio and oxygen isotope ratio in water extracted from rice samples and a diagram showing the relationship between rainwater hydrogen isotope ratio and oxygen isotope ratio in multiple rice production areas Then, by comparing the above two figures in comparison, it is possible to specify the production area of the rice sample whose production area is unknown. In addition, the hydrogen isotope ratio and oxygen isotope ratio of natural water in a plurality of rice production areas obtained in step 10 are stored in a database, and the hydrogen isotope ratio and oxygen isotope of water extracted from the rice sample obtained in step 12 By comparing the ratios, the region where the two points of the hydrogen isotope ratio and the oxygen isotope ratio match or approximate may be identified as the rice sample production region. In this way, in the rice production area specifying method of the present invention, the production area can be specified in a short period of time and with high accuracy by going through Steps 10 to 13.

また、工程10において求めた複数の米生産地域における天水の水素同位体比並びに酸素同位体比をデータベース化することで、今後本発明の方法を行う場合には、工程10を省略し、工程11〜工程13を行うだけで米サンプルの生産地を高い精度で特定することができる。   Further, when the method of the present invention is performed in the future by creating a database of hydrogen isotope ratios and oxygen isotope ratios of natural water in a plurality of rice production areas obtained in step 10, step 10 is omitted, and step 11 The production area of the rice sample can be specified with high accuracy only by performing Step 13.

次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
複数の米生産地域における天水として札幌市、秋田市、仙台市、千葉市、高松市及び日南市の天水を用意した。また、生産地域が未知の米サンプルA〜Fを用意した。先ず、各地域の天水を安定同位体比質量分析計を用い、天水毎に水素同位体比(D/H)並びに酸素同位体比(18O/16O)を求めた。次いで、図3に示す抽出装置を用い、米サンプルA〜Fに含まれる水分を抽出した。次に、抽出した水分を安定同位体比質量分析計を用い、天水毎に水素同位体比(D/H)並びに酸素同位体比(18O/16O)を求めた。続いて、天水の同位体比、米サンプルA〜Fの同位体比について、SMOWの同位体比からの千分偏差としてδD並びにδ18Oをそれぞれ算出した。図4に各地域における天水のδD値とδ18O値の関係を、図5に米サンプルA〜Fに含まれる水分のδD値とδ18O値の関係を、図6に図4と図5を重ね合わせたものをそれぞれ示す。
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
The rainfed waters of Sapporo, Akita, Sendai, Chiba, Takamatsu and Nichinan were prepared as rainfed water in several rice production areas. In addition, rice samples A to F whose production areas were unknown were prepared. First, rainwater using stable isotope ratio mass spectrometer for each region was determined rainwater each hydrogen isotope ratio (D / H) and oxygen isotope (18 O / 16 O). Subsequently, the water | moisture content contained in the rice samples AF was extracted using the extraction apparatus shown in FIG. Then, the extracted water using stable isotope ratio mass spectrometer to determine the rainwater each hydrogen isotope ratio (D / H) and oxygen isotope (18 O / 16 O). Subsequently, δD and δ 18 O were calculated as the thousand-thousand deviation from the isotope ratio of SMOW for the isotope ratio of rainwater and the isotope ratios of rice samples A to F, respectively. FIG. 4 shows the relationship between the δD value and δ 18 O value of rain water in each region, FIG. 5 shows the relationship between the δD value and δ 18 O value of the moisture contained in the rice samples A to F, and FIG. 5 are superimposed.

図4より明らかなように、米の生産地域により天水の水素、酸素同位体組成が異なっていることが判る。図5は、米サンプルA〜Fに含まれる水分のδD値とδ18O値であるが、水素、酸素同位体組成が異なっており各米サンプルが全て生産地域が異なることが確認される。図6より明らかなように、図4の天水のδD値とδ18O値と、図5の米サンプルA〜FのδD値とδ18O値を重ね合わせることで、米サンプルA〜Fがどの地域の天水の水素、酸素同位体組成と一致又は近似しているか判別でき、生産地域が未知の米サンプルA〜Fの生産地域を特定することができた。 As is clear from FIG. 4, it can be seen that the hydrogen and oxygen isotope compositions of Tenshu differ depending on the rice production region. FIG. 5 shows the δD value and δ 18 O value of water contained in the rice samples A to F, but the hydrogen and oxygen isotope compositions are different, and it is confirmed that all rice samples have different production regions. As is clear from FIG. 6, by superposing the δD value and δ 18 O value of the rain water of FIG. 4 and the δD value and δ 18 O value of the rice samples A to F of FIG. It was possible to discriminate which region of rainwater coincided with or approximated the hydrogen and oxygen isotope compositions, and to identify the production regions of rice samples A to F whose production regions were unknown.

本発明の生産地特定方法は、米の生産地特定に限らず、対象物が農作物や畜産物で、かつ非加熱食品や非加工食品であれば、これら非加熱食品や非加工食品の生産地特定の用途にも適用できる。   The production location identification method of the present invention is not limited to rice production location identification, and if the target is a crop or livestock product, and if it is a non-heated food or non-processed food, the production location of these non-heated food or non-processed food Applicable to specific applications.

本発明の米の生産地特定方法における各工程を示す図。The figure which shows each process in the production area identification method of the rice of this invention. 本発明の水分抽出工程11に使用する容器及びピストンの斜視図。The perspective view of the container and piston used for the moisture extraction process 11 of this invention. 本発明の水分抽出工程11における米サンプルに含まれる水分を抽出する方法を示す図。The figure which shows the method of extracting the water | moisture content contained in the rice sample in the water | moisture content extraction process 11 of this invention. 実施例1における複数の米生産地域における天水のδD値とδ18O値の関係を示す図。Diagram showing the relationship δD values of meteoric water and [delta] 18 O values of a plurality of rice growing region in the first embodiment. 実施例1における米サンプルA〜FのδD値とδ18O値の関係を示す図。View showing the relationship δD values and [delta] 18 O value of rice samples A~F in Example 1. 図4と図5を重ね合わせた図。The figure which superposed | stacked FIG. 4 and FIG.

符号の説明Explanation of symbols

10 複数の米生産地域における天水の水素、酸素同位体比を求める工程
11 生産地域が未知の米サンプルに含まれる水分を抽出する工程
12 抽出水分の水素、酸素同位体比を求める工程
13 比較して生産地域を特定する工程
10 Steps for obtaining hydrogen and oxygen isotope ratios of rainwater in multiple rice production regions 11 Steps for extracting water contained in rice samples whose production regions are unknown 12 Steps for obtaining hydrogen and oxygen isotope ratios of extracted water 13 To identify the production area

Claims (2)

複数の米生産地域における天水を安定同位体比質量分析計を用いて前記天水毎に水素同位体比並びに酸素同位体比を求める工程(10)と、
生産地域が未知の米サンプルを所定の型に入れて所定の圧力で圧縮することにより前記米サンプルに含まれる水分を抽出する工程(11)と、
前記米サンプルから抽出した水分を安定同位体比質量分析計を用いて水素同位体比並びに酸素同位体比を求める工程(12)と、
前記求めた米サンプルから抽出した水分における水素同位体比並びに酸素同位体比を前記複数の米生産地域における天水の水素同位体比並びに酸素同位体比と比較して前記米サンプルの生産地域を特定する工程(13)と
を含むことを特徴とする米の生産地特定方法。
Step (10) for determining the hydrogen isotope ratio and the oxygen isotope ratio for each of the rainwater using the stable isotope ratio mass spectrometer for the rainwater in a plurality of rice production areas,
Extracting the moisture contained in the rice sample by putting the rice sample of unknown production region into a predetermined mold and compressing it at a predetermined pressure;
Step (12) for determining the hydrogen isotope ratio and oxygen isotope ratio of the water extracted from the rice sample using a stable isotope ratio mass spectrometer,
Compare the hydrogen isotope ratio and oxygen isotope ratio in the water extracted from the obtained rice sample with the hydrogen isotope ratio and oxygen isotope ratio of natural water in the multiple rice production areas to identify the production area of the rice sample And a step (13) of performing the following steps:
米サンプルを1〜5MPaの圧力で一軸加圧する請求項1記載の方法。
The method according to claim 1, wherein the rice sample is uniaxially pressed at a pressure of 1 to 5 MPa.
JP2005001969A 2005-01-07 2005-01-07 How to identify rice production areas Expired - Fee Related JP4432780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001969A JP4432780B2 (en) 2005-01-07 2005-01-07 How to identify rice production areas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001969A JP4432780B2 (en) 2005-01-07 2005-01-07 How to identify rice production areas

Publications (2)

Publication Number Publication Date
JP2006189351A JP2006189351A (en) 2006-07-20
JP4432780B2 true JP4432780B2 (en) 2010-03-17

Family

ID=36796705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001969A Expired - Fee Related JP4432780B2 (en) 2005-01-07 2005-01-07 How to identify rice production areas

Country Status (1)

Country Link
JP (1) JP4432780B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5466428B2 (en) * 2009-05-28 2014-04-09 ビジョンバイオ株式会社 Origin determination method for biomass samples
US20130062516A1 (en) * 2011-09-09 2013-03-14 Hsien-Shou Kuo Diganosis of a renal disease by oxygen and hydrogen isotopes in a biological sample
JP5758758B2 (en) * 2011-09-12 2015-08-05 日清製粉株式会社 Origin determination method of domestic wheat using trace elements
JP5758244B2 (en) * 2011-09-12 2015-08-05 日清製粉株式会社 Origin determination method of Australian wheat using trace elements and isotope ratio
JP5907521B2 (en) * 2011-12-26 2016-04-26 独立行政法人酒類総合研究所 Raw water source judgment method and raw water source judgment system
JP5663654B2 (en) * 2013-12-06 2015-02-04 ビジョンバイオ株式会社 Rice production method
JP6619323B2 (en) * 2016-12-19 2019-12-11 日本電信電話株式会社 Rice production area estimation method
CN107318596B (en) * 2017-08-03 2023-05-05 欧拉(中国)科技发展有限公司成都公司 Highway green belt spraying device and spraying control method
US11275024B2 (en) 2018-03-13 2022-03-15 Nippon Telegraph And Telephone Corporation Method for estimating production location
CN112525976B (en) * 2020-10-19 2022-04-22 中国科学院广州地球化学研究所 Method for simultaneously analyzing water content, oxygen isotope and hydrogen isotope in water-containing mineral based on large-scale ion probe
CN112772304B (en) * 2021-01-14 2022-11-15 中国科学院地理科学与资源研究所 Method for identifying vegetation water utilization in desert area
CN116298184B (en) * 2022-12-07 2023-11-21 中国科学院南京土壤研究所 Tracing method for farmland soil evapotranspiration water vapor migration process by utilizing oxyhydrogen isotope
CN115980167B (en) * 2023-01-09 2023-12-01 广东省农业科学院农业质量标准与监测技术研究所 Method for discriminating duck feces fragrance single-cluster tea harvesting season by stable isotope analysis technology and application

Also Published As

Publication number Publication date
JP2006189351A (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4432780B2 (en) How to identify rice production areas
Hua et al. Progress in radiocarbon target preparation at the ANTARES AMS Centre
Geana et al. Geographical origin identification of Romanian wines by ICP-MS elemental analysis
Schultz et al. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water
Haswell et al. Multivariate data visualisation methods based on multi-elemental analysis of wines and coffees using total reflection X-ray fluorescence analysis
Kruve Semi‐quantitative non‐target analysis of water with liquid chromatography/high‐resolution mass spectrometry: How far are we?
Tfaily et al. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry
Adami et al. Geographic origin of southern Brazilian wines by carbon and oxygen isotope analyses
Weiner et al. A method for analyzing the δ18O of resin‐extractable soil inorganic phosphate
JP5037642B2 (en) Grain production method using heavy element isotopic composition
Li et al. Dissolved organic matter in Lake Superior: insights into the effects of extraction methods on chemical composition
Krachler et al. Optimising accuracy and precision of lead isotope measurement (206 Pb, 207 Pb, 208 Pb) in acid digests of peat with ICP-SMS using individual mass discrimination correction
Canizo et al. Quality monitoring and authenticity assessment of wines: Analytical and chemometric methods
CN112162054A (en) Authenticity evaluation method of sophora moorcroftianain honey
Van der Linde Multi-element analysis of South African wines and their provenance soils by ICP-MS and their classification according to geographical origin using multivariate statistics
CN111257452B (en) Method for detecting addition of synthetic acetic acid into Zhenjiang aromatic vinegar
CN111337605A (en) Method for evaluating authenticity of lotus bee pollen
Druffel et al. Marine organic carbon and radiocarbon—present and future challenges
Bertinetti et al. Strontium isotopic analysis of environmental microsamples by inductively coupled plasma–tandem mass spectrometry
Lu et al. The bio-and thermal lability of dissolved organic matter as revealed by high-resolution mass spectrometry and thermal chemical analyses
Wang et al. Ultra-trace determination of vanadium in lake sediments: a performance comparison using O 2, N 2 O, and NH3 as reaction gases in ICP-DRC-MS
SUHAJ Chemometric prediction of wines affiliation with organic and conventional production systems through their elemental profiles
JP2013061183A (en) Origin discrimination method for australian wheat using trace element and isotopic ratio
Dehelean et al. Differentiation of Transylvanian fruit distillates using supervised statistical tools based on isotopic and elemental fingerprint
CN112285302A (en) Method for identifying organic attribute of dairy product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees