JP5756767B2 - 漏水検知装置 - Google Patents

漏水検知装置 Download PDF

Info

Publication number
JP5756767B2
JP5756767B2 JP2012043205A JP2012043205A JP5756767B2 JP 5756767 B2 JP5756767 B2 JP 5756767B2 JP 2012043205 A JP2012043205 A JP 2012043205A JP 2012043205 A JP2012043205 A JP 2012043205A JP 5756767 B2 JP5756767 B2 JP 5756767B2
Authority
JP
Japan
Prior art keywords
water
distribution block
nodes
main line
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012043205A
Other languages
English (en)
Other versions
JP2013178207A (ja
Inventor
真 宮田
真 宮田
信補 高橋
信補 高橋
進吾 足立
進吾 足立
田所 秀之
秀之 田所
学 福島
福島  学
宏充 栗栖
宏充 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012043205A priority Critical patent/JP5756767B2/ja
Priority to SG2013007851A priority patent/SG193083A1/en
Priority to CN201310042147.2A priority patent/CN103292966B/zh
Publication of JP2013178207A publication Critical patent/JP2013178207A/ja
Application granted granted Critical
Publication of JP5756767B2 publication Critical patent/JP5756767B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Description

本発明は、上水道施設の配水管網を構成する配水ブロックの状態を監視する漏水検知装置に関する。
一般的に、上水道の配水管網には、管の破断や腐食や、接続部のパッキンの劣化等による大小様々な漏水がある。これらの漏水は、発見が遅れることで貴重な水資源が無駄になるばかりか、道路の陥没や浸水等の被害を引き起こすため、できるだけ早い段階で発見して修理することが望ましい。
そこで、配水管網の漏水を防止するために、現場調査員が定期的に巡回し、音聴棒等を用いて漏水の有無を調査する方法が用いられている。しかしながら、音調棒により漏水の有無を的確に判別するためには、現場調査員に高い熟練度が要求されるため、自動的に漏水音を分析して付近の漏水の有無を判別する装置が提案されている。(例えば、特許文献1参照)。
また、各管路の埋設位置、埋設年数、材質、口径、管路延長、給水栓数等の情報から計算される構成比率に基づき、配水ブロック内のエリア単位での漏水量を確率的に推定する装置が提案されている。(例えば、特許文献2参照)。
そしてまた、管網計算(管網解析、水理解析とも言う)で計算した圧力推定値と、圧力計で測定した圧力値との差を最小化する最適化計算によって、管網の各節点の漏水割付量を推定する装置が提案されている(例えば、特許文献3参照)。
さらにまた、配水管網をバルブの閉止等により複数の配水ブロックに分割し、各配水ブロックに流入する夜間の流量を測定することで、配水ブロック内の漏水量を把握し、どの配水ブロックを重点的に調査すべきかに関する情報を提供するシステムが提案されている。(例えば、特許文献4参照)。
特開2000−155066号公報 特開2009−192329号公報 特開2010−48058号公報 特開2011−191064号公報
しかしながら、特許文献1に記載された方法は、漏水音を手がかりとするものであるため、近距離の漏水のみ検知可能であり、管網全体の漏水を調査するには多くの時間やコストを要するのが実情である。
また、特許文献2に記載された方法は、配水ブロック内の漏水調査の効率を高めることを目的として、配水ブロック内のエリア単位での漏水量(以下、「漏水分布」という)を推定する装置を使用し、各管路の埋設年数等の情報を利用して漏水量を確率的に推定するものであるが、この推定された漏水分布は、実際の漏水分布と必ずしも一致せず、常に信頼性の高い調査結果を提供することが困難である。また、漏水の箇所をピンポイントで推定することができないため、配水ブロック内の個々の漏水を特定することが困難である。
そしてまた、特許文献3に記載された推定装置は、最適化計算により各節点の漏水割付量を計算するものであるが、大小様々な複数の漏水の位置及び量を同時に決定する組合せの計算を行う必要があるため、管網の節点の数や漏水の数が増えるにしたがって計算量が膨大になり、実際の管網での適用は難しいのが現状である。
さらにまた、特許文献4に記載された方法は、漏水調査の効率化を目的として、配水ブロック毎の漏水量を把握するものであるが、配水ブロックの面積が大きいと、配水ブロック内の漏水位置の特定に多くの時間を要する。そこで、漏水位置の特定に要する時間を短縮するため、配水ブロックを更に小さく分割することが考えられるが、配水ブロックを小さく分割するには、バルブの設置や管網の整備にかかる費用が増大すると共に、火災時の消火活動等に必要な水量の確保が困難になるといった制約があるので限度がある。
以上のように、従来の方法では、配水ブロック毎の漏水量の把握は可能であるものの、配水ブロック内の漏水分布の推定は困難であり、配水ブロック内の個々の漏水の特定が難しいという課題がある。
本発明は、このような事情に鑑みなされたものであり、配水ブロック内の漏水分布を効率よく推定可能であり、配水ブロック内の個々の漏水を特定することができる漏水検知装置を提供することを目的とする。
この目的を達成するため本発明は、水源に接続され且つ配水管網を構成する配水ブロックの状態を監視する漏水検知装置であって、前記配水ブロックの節点の水需要を記憶する水需要データベースと、前記配水ブロックの節点と管路に関する情報を記憶する管網データベースと、前記水源と配水ブロックとの間に位置し両者を連通させる連通管の流量値と、前記配水ブロックの幹線上の複数の節点の圧力値とを収集するデータ収集部と、前記水需要データベースに記憶されている情報と前記管網データベースに記憶されている情報とに基づき、前記配水ブロック全体の節点の圧力値、及び前記管路の流量値を推定する管網計算部と、前記連通管の流量値と前記水需要データベースに記憶されている情報とに基づき前記配水ブロック全体の漏水量を推定し、前記配水ブロック全体の漏水量と、前記データ収集部で収集した幹線上の複数の節点の圧力値と、前記管網計算部が推定した幹線上の複数の節点の圧力値に基づき、幹線上の複数の節点の仮想的な漏水量を推定する幹線漏水推定部と、を備えたことを特徴とする漏水検知装置を提供するものである。
本発明によれば、配水ブロック内の漏水分布を効率よく推定可能であり、配水ブロック内の個々の漏水を特定することができ漏水調査の効率を高める漏水検知装置を提供することができる。
本発明の実施形態1に係る漏水検知装置を備えた配水監視システムを模式的に示す図である。 図1に示す漏水検知装置の幹線漏水推定部における処理を模式的に示す図である。 図1に示す漏水検知装置の幹線漏水推定部における処理を示すフローチャートである。 図1に示す漏水検知装置のエリア形成部における処理を示すフローチャートである。 図1に示す漏水検知装置のエリアDB(データベース)のデータ例を示すテーブルである。 図1に示す漏水検知装置のスポット漏水推定部における処理を模式的に示す図である。 図1に示す漏水検知装置のスポット漏水推定部における処理を示すフローチャートである。 図1に示す漏水検知装置の入出力部が出力する画面例である。 本発明の実施形態2に係る漏水検知装置の幹線漏水推定部における処理を模式的に示す図である。 本発明の実施形態2に係る漏水検知装置の幹線漏水推定部における処理を示すフローチャートである。 本発明の実施形態3に係る漏水検知装置の幹線漏水推定部における処理を示すフローチャートである。 本発明の他の実施形態に係る漏水検知装置の構成の一部を示す模式図である。
次に、本発明の実施形態に係る漏水検知装置について図面を参照して説明する。なお、以下に記載される実施形態は、本発明を説明するための例示であり、本発明をこれらの実施形態にのみ限定するものではない。したがって、本発明は、その要旨を逸脱しない限り、様々な形態で実施することができる。
(実施形態1)
図1は、本発明の実施形態1に係る漏水検知装置を備えた配水監視システムを模式的に示す図である。
図1に示すように、実施形態1に係る配水監視システム100は、配水設備101と、配水設備101に接続され、配水設備101の状態を監視する漏水検知装置102とを備えている。
配水設備101は、水源である配水池131と、配水池131に接続され、配水池131から供給される水を流通させる配水管網132と、配水管網132の節点に配設されたリモートセンサ141〜153とから構成されている。
なお、実施形態1では、配水管網132に配水ブロック133及び134を配設した構成としたが、実際には、配水ブロックの数は、一つであってもよく、三つ以上であってもよい。また、配水ブロックが一つである場合は、実質的に配水管網と配水ブロックは同義である。以下、説明を分かり易くするため、配水ブロック134は配水ブロック133と同様の構成を有しているものとし、配水ブロック134に関する説明は省略する。
配水ブロック133は、配水池131と配水ブロック133との間に配設され且つ両者を連通させる連通管135を介して配水池131に接続されている。この配水ブロック133は、網目のように接続された水道管を有しており、需要家に水を供給するためのネットワークの役割を担っている。
本発明では、配水ブロック133の経路のうち、最も流量の大きい経路を「幹線」といい、幹線以外の経路を「支線」という。幹線は、配水ブロック133の入口から下流に向けて、最も流量の大きな管を辿ることで判別することができる。また、配水ブロック133内の、水道管と水道管の接続箇所、リモートセンサの設置箇所、及びその他の水需要がある箇所を「節点」といい、節点と節点とを結ぶ各々の水道管を「管路」という。また、「経路」とは、上流から下流へ管路を辿ることでできる管路の繋がりのことである。
連通管135には、配水ブロック133に流入する流量を計測するリモートセンサ141が配設されている。また、配水ブロック133内の幹線上の節点には、当該節点の圧力を計測するリモートセンサ142〜145が各々配設され、配水ブロック133内の支線上の節点には、当該節点の圧力を計測するリモートセンサ146〜153が各々配設されている。これらのリモートセンサ141〜153は、通信ネットワークを介して漏水検知装置102に接続されており、計測したデータを漏水検知装置102のデータ収集部114へと送信する。
漏水検知装置102は、CPU、記憶装置(RAM、ハードディスク、フラッシュメモリ等)、入出力部116(キーボード、ディスプレイ等)から構成される一般的なコンピュータシステムである。記憶装置には、エリア形成部111と、管網計算部112と、幹線漏水推定部113と、データ収集部114と、スポット漏水推定部115とがプログラムとして記憶されており、CPUがこれらのプログラムを実行する。また、記憶装置には、水需要DB(データベース)121と、管網DB(データベース)122と、エリアDB(データベース)123がテーブル等の形式でデータとして記憶されており、前記プログラムを実行する際に利用することができるようになっている。そしてまた、入出力部116は、配水ブロック133の監視を行う担当者等とのインターフェースの役割を担っている。
水需要DB121は、過去の実績データを利用して予測した、配水ブロック133内の節点での水の需要量のデータである。一般的な配水管網では、需要家に水を供給する水道管には水道メータが設置されており、作業員が2ヶ月に1回等の周期で検針するので、需要家毎の水の利用量を把握することができる。ここで、水の利用量は大きく変わるものではなく、また需要家の特性(住宅、工場、店等)から季節、曜日、時刻毎の水の利用パターンはある程度推定可能であるから、各時刻の水需要が予測可能である。特に大口の需要家については、各時刻の流量を記憶可能な水道メータを設置して水の利用パターンを正確に把握する、あるいは通信機能を備えたスマートメータの設置によりリアルタイムの水需要を把握するといった方法により、配水ブロック133全体としての水需要の予測を精緻にすることができる。なお、水需要の予測手法については、公知の技術がいくつか知られているので、詳細な説明は省略する。
また、水道メータにより把握できる実際の水需要量と、配水ブロック133へ流入した流量との差は、「無収水量」といわれている。無収水量は、漏水の他に、消火栓等からの盗水や、メータで計測できなかった分の水量等で構成される。なお、一般的には、無収水量は、漏水以外が占める比率が小さいので、以下では、説明を簡単にするため、一まとめにして「漏水」ということにする。
管網DB122は、後述する管網計算を行うために必要な、管路と節点の接続関係、管路の口径、長さ、流速係数、節点の標高、及び配水池の標高と水位等を記憶する。
エリアDB123は、後に詳述するエリア形成部111で計算したエリア番号及びエリア係数を記憶する。
エリア形成部111は、配水ブロック133内に複数のエリアを形成する。なお、エリア形成部111における処理については、後に詳述する。
管網計算部112は、水需要DB121及び管網DB122に記憶されたデータに基づき、一時刻または複数時刻における、節点の圧力と、管路の流量を推定(シミュレーション)する。なお、このシミュレーションを行うための計算を管網計算という。この管網計算自体は公知の技術であるため、詳細な説明は省略する。管網計算部112は、エリア形成部111、幹線漏水推定部113、及びスポット漏水推定部115から、データを受け取り、これらのデータに基づいて管網計算を行い、計算結果をそれぞれに返す。以下、これら一連の処理を単に「管網計算を行う」という。
管網計算は、配水ブロック133に漏水がある場合でも行うことができる。管網計算によって節点における漏水量を設定する方法は2つある。一つは、漏水孔の大きさや形状を表す放出係数を設定する方法であり、放出係数が大きいほど漏水量が大きく、また節点の圧力が高いほど漏水量が大きいという性質がある。もう一つは、漏水量を節点の元々の水需要に上乗せし、新しい水需要とする方法である。以下では、前者の方法を採用する場合は、節点に放出係数を設定すると記述し、後者の方法を採用する場合は、節点に漏水量を設定すると記述する。
幹線漏水推定部113は、配水ブロック133の漏水分布を推定する。具体的には、配水ブロック133の幹線上の複数の節点の仮想的な漏水量を推定する。これらの推定量は、エリア形成部111で形成した複数のエリア毎の近似的な漏水量に相当する。幹線漏水推定部113における処理については、後に詳述する。
データ収集部114は、リモートセンサ141〜153が計測したデータを収集する。データ収集部114が収集したデータは、幹線漏水推定部113及びスポット漏水推定部115で利用される。
スポット漏水推定部115は、配水ブロック133内の個々の漏水の位置と漏水量を推定する。なお、スポット漏水とは、比較的漏水量の多い漏水のことである。スポット漏水推定部115における処理については、後に詳述する。
入出力部116は、エリア形成部111、幹線漏水推定部113、及びスポット漏水推定部115による推定結果等を画面等に表示し、配水ブロック133の状態を監視する担当者等に示す。また、配水ブロックの状態を監視する担当者等が入力したコマンド等に応じて、より詳細な推定結果等を表示する等の処理を行う。
次に、幹線漏水推定部113における処理、エリア形成部111における処理、及びスポット漏水推定部115における処理の詳細について順に説明する。図2は、図1に示す漏水検知装置102の幹線漏水推定部113における処理を模式的に示す図であり、上半分は、配水ブロック133を表す図であり、下半分は、幹線上の節点のピエゾ水頭をプロットしたグラフである。なお、図2では、説明をわかりやすくするため、管路及びリモートセンサの一部を省略し、配水ブロック133をツリー形状にして表している。
図2において、Fは、リモートセンサ141を設置した節点であり、配水ブロック133への流入量を計測する。Nm(m=1〜e、但しmは整数)は、幹線上のリモートセンサを設置した節点群であり、Nm(m=1〜e)のうち、一番上流の節点がN1であり、一番下流の節点がNeである。なお、図2では、便宜上、m=1〜4として表している。即ち、N1〜N4は、幹線上のリモートセンサ142〜145を設置した節点群であり、リモートセンサ142〜145によって各々の節点における圧力を計測する。
ここで、N1から分岐する支線上の節点L1に漏水があると仮定し、その漏水量をQ1とする。L1に漏水がない場合と比較すると、配水ブロック133には、漏水量Q1だけ多く水が流入し、N1を経由してL1に至り、漏水となって管路外に流出する。この時、幹線だけに着目すると、N1に漏水量Q1の仮想的な漏水があると見なすこともできる。実際の漏水はL1にあるので、N1にあるように見えるのは、あくまで仮想的な漏水である。
図2に記載したグラフにおいて、点Aは配水池131の出口の節点である。ここでは、説明を簡単にするため、水需要は支線の末端だけにあり、管の口径と流速係数は一定であると仮定している。なお、「ピエゾ水頭」とは、水の圧力エネルギーと位置エネルギーの和を、高さに置き換えた値のことである。水が管路を流れる時、摩擦によってエネルギーが低下するので、通常、ピエゾ水頭は下流ほど低くなる。また、節点のピエゾ水頭をつなげた線分または折れ線のことを「動水勾配線」といい、動水勾配線の傾きを「動水勾配」という。動水勾配は、管路の流量、長さ、口径、流速係数から、ヘーゼンウィリアムス公式などを用いて推定することができる。逆に、管路の長さ、口径、及び流速係数が既知であれば、動水勾配から流量を逆算で推定することができる。流量が多いほど、摩擦によるエネルギー低下が大きいので、動水勾配は大きくなる(傾きが急になる)という性質がある。
図2に示すグラフの折れ線A−B1−C1−D1は、配水ブロック133に漏水がない場合の動水勾配線である。折れ線A−B2−C2−D2は、L1に漏水がある場合の動水勾配線である。折れ線A−B2−C3−D3は、漏水がL1ではなく幹線上のNe(実施形態1ではN4)にあると仮定した場合の動水勾配線である。点B1及び点B2はN1に対応しており、点C1、点C2及び点C3はN2に対応しており、点D1、点D2及び点D3はN4に対応している。
線分A−B2の部分の動水勾配が線分A−B1より急である理由は、L1の漏水量Q1の分だけ流量が多いためである。図2から、漏水の有無、及び漏水の位置と漏水量によって、動水勾配線が異なることが分かる。この性質を利用して漏水の有無、及び漏水の位置と漏水量を推定することができる。
L1に漏水がある場合、点Aの座標は配水池131の標高と水位から求まり、線分A−B2の傾きはFの流量を計測すればヘーゼンウィリアムス公式等から求まる。点B2と点C2の座標はN1とN2のリモートセンサで圧力を計測すれば標高を足して求まるので、線分B2−C2の傾きが求まる。線分A−B2の傾きと線分B2−C2の傾きとを比較して、線分B2−C2の傾きが、線分A−B2の傾きよりも小さければ、N1に仮想的な漏水(実際はL1に漏水)があることが分かる。線分B2−C2の傾きから計算した流量とFの流量の差が漏水量である。以上の処理を、Nm(m=1〜e−1)について、上流から順に繰り返し、幹線上の節点における仮想的な漏水量を推定するのが、幹線漏水推定部113における処理の概要である。
図2から分かるように、幹線上の節点に仮想的な漏水がある時は、その節点付近、またはその節点付近から分岐する支線上に実際の漏水がある。つまり、幹線上の節点における仮想的な漏水量は、その節点付近またはその節点付近から分岐する支線上の節点で構成されるエリアの漏水量に、近似的に等しいといえる。
次に、図3に示すフローチャートに沿って、幹線漏水推定部113における具体的な処理について説明する。
Nm(m=1〜e)は、幹線上のリモートセンサ(図2ではリモートセンサ142〜145)を設置した節点群である。また、Nm(m=1〜e)の漏水量を表す変数をQm(m=1〜e)とする。また、漏水量を表す一時的な変数としてQoを用いる。
ステップS201では、変数Qoの初期化を行う。具体的には、配水ブロック133の全体の漏水量を変数Qoに代入する。配水ブロック133の全体の漏水量は、配水ブロック133に流入する流量から、水需要DB121に記憶されている配水ブロック133の全節点の一時刻の水需要の合計値を引くことにより算出する。次に、ステップS202に進む。
ステップS202では、mを1とし、漏水量を表す変数Q1〜Qeはゼロとする。次に、ステップS203に進む。
ステップS203では、Nmの漏水量を仮決めし、この値をQmに代入する。但し、変数QmはQo以下の値とする。次に、ステップS204に進む。
ステップS204では、QeにQoからQmを引いた値(Qo−Qm)を代入する。次に、ステップS205に進む。
ステップS205では、N1〜Neの漏水量をQ1〜Qeに設定し、管網計算を行う。管網計算により、Nmより一つ下流であるN(m+1)の圧力を推定する。即ち、mが3の場合は、N4の圧力を推定する。次に、ステップS206に進む。
ステップS206では、Nmより一つ下流のN(m+1)について、管網計算で推定した圧力値と、リモートセンサで計測した圧力値の差の絶対値dを算出する。次に、ステップS207に進む。
ステップS207では、圧力差dを、予め設定されているしきい値と比較する。圧力差dがしきい値以上(ステップS207:YES)の場合、ステップS203に戻り、Qmに別の値を代入して処理をやり直す。一方、圧力差dがしきい値未満(ステップS207:NO)の場合、ステップS208に進む。
ステップS208では、m+1がeに等しいか否かを判定する。m+1がeに等しくない(ステップS208:NO)場合は、ステップS209に進む。m+1がeに等しい(ステップS208:YES)場合は、Qm(m=1〜e)が全て計算されたことになるので、処理を終了する。
ステップS209では、mに1を足し、QoにQoからQmを引いた値(Qo−Qm)を代入し、ステップS203に戻る。
以上が、幹線漏水推定部113における具体的な処理の流れである。なお、ステップS203からステップS207においてQmを求める処理は、山登り法等のアルゴリズムを用いて処理を高速化することが望ましい。図2との対応では、ステップS203からステップS207でQmを求める処理が、図2の線分B2−C2の傾きを求める部分に相当する。Qoが線分A−B2の傾きに対応し、Qo−Qmが線分B2−C2の傾きに対応する。以上のように、幹線漏水推定部113は、幹線上の節点に仮想的な漏水があると見なし、その漏水量を推定する。この漏水量は、エリア形成部111により形成されるエリア毎の近似的な漏水量である。
次に、エリア形成部111における処理の詳細について、図4に示すフローチャートに沿って説明する。なお、ここでは、ある節点Niにエリア番号を割り当てる処理の流れについて説明する。
エリア形成部111は、配水ブロック133の全ての節点に、1〜eのエリア番号をそれぞれ割り当てることで、エリア1〜エリアeを形成する。幹線上のリモートセンサを設置した節点群をNm(m=1〜e)とし、Nm(m=1〜e)の漏水量を表す変数をQm(m=1〜e)とする。また、一般的な漏水一箇所あたりの漏水量をQuとする。
先ず、ステップS301では、節点Niの漏水量をQuに設定する。次に、ステップS302に進む。
ステップS302では、管網計算を行い、Nm(m=1〜e)の圧力、及び配水ブロック133への流入量を推定する。これらの値は、Niに漏水があると仮定した場合の、リモートセンサの測定値に相当する。次に、ステップS303に進む。
ステップS303では、幹線漏水推定部113により、Nm(m=1〜e)の仮想的な漏水量Qm(m=1〜e)を求める。但し、リモートセンサで計測した圧力と流量のかわりに、ステップS302で管網計算により推定した圧力と流量を用いる。次に、ステップS304に進む。
ステップS304では、Qm(m=1〜e)をQmの合計値で割り、節点Niに関するエリア係数Kim(m=1〜e)を求める。また、Qm(m=1〜e)のうち、最大のQmの添え字の番号mをNiのエリア番号とする。エリア番号とエリア係数はエリアDB123に記憶する。
以上が、エリア形成部111において、ある節点Niにエリア番号を割り当てる処理の流れである。上記の処理を、配水ブロック133の全ての節点について繰り返し、全ての節点のエリア番号及びエリア係数をエリアDB123に記憶する。
図5は、エリア番号とエリア係数を記憶したエリアDB123のデータ例である。一行が一つの節点のエリア番号とエリア係数に相当する。エリア形成部111で形成したエリア内の節点に漏水がある場合、そのエリア番号と同じ数字の添え字である幹線上の節点に、最も大きい仮想的な漏水が表れる。また、幹線上の複数の節点に表れる仮想的な漏水量の比率がエリア係数である。図2に戻って説明すると、L1に漏水がある場合、幹線上の節点N1に最も大きな仮想的な漏水が表れる。
図6は、配水ブロック133内にエリアを形成した例であり、破線をエリアの境界線として、4つのエリアが形成されている。図6では、節点L1〜L4に漏水がある。漏水が1つのエリアもあれば、漏水が複数のエリアもある。それぞれのエリアの漏水量は、幹線漏水推定部113により、幹線上の節点N1〜N4の仮想的な漏水量として、近似的に求められる。より正確に言えば、L1〜L4のそれぞれの漏水量が、エリア係数の比率で幹線上の節点N1〜N4に配分され、それぞれの合計が、幹線上の節点N1〜N4の仮想的な漏水量として表れるようになっている。
次に、図6を参照して、スポット漏水推定部115における処理の概要について説明する。
スポット漏水推定部115は、幹線上の節点の仮想的な漏水量を、エリア係数の比率に従って、配水ブロック133内の実際の漏水がある節点に戻す(再配置する)ことで、個々の漏水の位置と漏水量を推定する。このように、先ず幹線上の節点の仮想的な漏水量を推定し、次に個々の漏水の位置と漏水量を求めるという二段階の方法には、個々の漏水を推定する上で、次のようなメリットがある。
第一に、配水ブロック133内において、個々の漏水が存在している様子をある程度推定できるというメリットがある。例えば、他のエリアよりも明らかに漏水量が多いエリアがある場合、そのエリア内に、特に漏水量の大きな漏水があるか、あるいは漏水が多数存在する可能性が高い。従って、そのエリアを重点的に探索することで、効率的に多くの漏水を推定できる。例えば、図6において、L1の漏水は、主にN1に仮想的な漏水となって表れる。同様に、L2とL3の漏水はN3に、L4の漏水はN4に主に表れる。よって、L1〜L4の漏水量が同じくらいであるなら、N3の仮想的な漏水量が多くなり、N2の仮想的な漏水量は少なくなる。
第二に、配水ブロック133内に複数の漏水がある場合に、それらの漏水を分離して推定しやすいというメリットがある。例えば、図6において、L1の圧力は、L1の漏水量のみで決まるのではなく、L2〜L4の漏水量にも影響を受ける。なぜなら、L1の漏水だけでなく、L2〜L4の漏水分の流量が配水ブロック133に流入しており、L1の圧力を下げるからである。同様に、L2〜L4の圧力それぞれも、それ以外の節点の漏水量の影響を受ける。つまり、複数の漏水は、互いに影響を与え合うという性質がある。L1〜L4の漏水量を同時に決めることができればよいが、探索空間の次元が漏水の数に応じて増えるので、計算量が急激に増大し、計算不能になる。また、実際には、漏水量だけでなく、漏水位置も同時に決める必要があるので、その点でも計算量は増大する。
本発明では、幹線上の節点に仮想的な漏水を想定することによって、L1の漏水量を推定する際に、L2〜L4の漏水の影響を最小限にすることができる。なぜなら、配水ブロックの入口からL1に至る流量は、実際の漏水位置がL2〜L4にあろうが、幹線上のN2〜N4にあろうが、ほとんど変わらないからである。流量が変わらないのは、配水ブロックの入口からL2〜L4に至る流量の大部分は、幹線上のN2〜N4を経由するためである。このことは、L2〜L4のそれぞれを推定する場合も同様に当てはまる。
次に、図7に示すフローチャートに沿って、スポット漏水推定部115の具体的な処理の流れについて説明する。
幹線上のリモートセンサを設置した節点群をNm(m=1〜e)とし、Nm(m=1〜e)の仮想的な漏水量を表す変数をQm(m=1〜e)とする。また、Nm(m=1〜e)も含めて、配水ブロック133全体の、リモートセンサを設置した節点群をNs(s=1〜g)とする。また、配水ブロック133の節点をNi(i=1〜n)で表し、Niの放出係数を表す変数をCi(i=1〜n)とする。また、節点Niに関するエリア係数をKim(i=1〜n、m=1〜e)で表す。
先ず、ステップS401では、Niの放出係数を表す変数Ciの初期化を行う。具体的には、Ci(i=1〜n)をゼロにする。次に、ステップS402に進む。
ステップS402では、配水ブロック133の節点のうちの一つとしてNiを選び、Niの放出係数を仮決めし、変数Ciに代入する。次に、ステップS403に進む。
ステップS403では、Niの放出係数をCiに設定して、管網計算を行い、Ns(s=1〜g)の圧力と、Niの圧力を推定する。次に、ステップS404に進む。
ステップS404では、Ns(s=1〜g)のそれぞれについて、管網計算で推定した圧力値と、リモートセンサで計測した圧力値の差を算出する。更に、その幾何平均値を計算し、圧力差dとする。次に、ステップS405に進む。
ステップS405では、圧力差dを、予め設定されているしきい値と比較する。圧力差dがしきい値以上(ステップS405:YES)の場合は、ステップS402に戻り、Ciに別の値を代入して処理をやり直す。ただし、節点Niに関するステップS402からステップS405における処理回数が予め定められた指定回数以上の場合は、Ciに別の値を代入して処理をやり直すのではなく、Ciをゼロにリセットし、節点Ni以外の別の節点を選び直して処理をやり直す。一方、圧力差dがしきい値未満(ステップS405:NO)の場合は、ステップS406に進む。
ステップS406では、Qm(m=1〜e)の値を更新する。具体的には、Niの放出係数Ciに、管網計算で推定したNiの圧力値の平方根をかけ、Niのエリア係数Kimをかけ、それぞれのQmから引いた値を代入する。放出係数CiにNiの圧力値の平方根をかけた値は、Niの漏水量の推定値である。Niの漏水は、エリア係数の比率で幹線上の節点Nm(m=1〜e)に表れることから、Niの漏水量の推定値にエリア係数Kimをかけた値は、幹線上のそれぞれの節点Nm(m=1〜e)に表れる仮想的な漏水量である。これをQmから引くことにより、Niの漏水の分を、幹線上の節点の仮想的な漏水量Qm(m=1〜e)から除くことになる。次に、ステップS407に進む。
ステップS407では、Qm(m=1〜e)の合計値を、予め設定されたしきい値と比較する。合計値がしきい値以下(ステップS407:YES)の場合、または、ステップS402からステップS407における処理回数が予め定められた指定回数以上(ステップS407:YES)の場合、処理を終了する。一方、合計値がしきい値より大きい、且つ処理回数が予め定められた指定回数未満(ステップS407:NO)の場合、ステップS402に戻り、処理をやり直す。
以上が、スポット漏水推定部115の具体的な処理の流れである。なお、ステップ402においてNiを選ぶ際は、漏水量が多いエリア内の節点を優先的に選ぶことが望ましい。また、ステップS402からステップS405でCiの値を求める処理は、山登り法等のアルゴリズムを用いて処理を高速化することが望ましい。
なお、上述した処理は、個々の漏水をより正確に推定するために、複数時刻について行うことが望ましい。具体的には、複数時刻のQm(m=1〜e)を計算しておき、ステップS403で複数時刻の管網計算を行い、ステップS404で圧力差dの複数時刻の平均値を計算し、ステップS406で複数時刻のQm(m=1〜e)を更新することが望ましい。
図8は、幹線漏水推定部113、エリア形成部111、及びスポット漏水推定部115の推定結果等を、入出力部116で出力した画面の一例である。画面の左側は、配水ブロック133、リモートセンサの配置、及び推定した個々の漏水の位置等を表示している。また、画面の右側上部は、配水ブロック133のエリア毎の近似的な漏水量を示すグラフ、画面の右側中央部は、エリア毎の近似的な漏水量と時間推移との関係を示すグラフ、画面の右側下部は、個々のエリアの漏水の位置と漏水量を示すテーブルを表示している。なお、個々のエリアの漏水の位置は、図8に示すX軸、Y軸に対応する位置(X,Y)で示している。
図8から、エリア1(#1)では、位置(0.5,1)に4.0の漏水があり、エリア2(#2)では、位置(2.5,4)に1.5の漏水があり、エリア3(#3)では、位置(0.5,5)に6.0の漏水があり、エリア4(#4)では、位置(3.5,6)に5.0の漏水があると推定された。
このように、配水ブロック133内の個々の漏水を特定することにより、漏水調査に要する時間を短縮することができる。
(実施形態2)
次に、本発明の実施形態2に係る漏水検知装置について図面を参照して説明する。本発明の実施形態2に係る漏水検知装置の幹線漏水推定部における処理を模式的に示す図である。
図9に示すように、実施形態2に係る漏水検知装置の、実施形態1に係る漏水検知装置と異なる主な点は、幹線の圧力を計測するリモートセンサ142〜145の代わりに、幹線の流量を計測するリモートセンサ242、243、...を設置し、支線の圧力を計測するリモートセンサ146〜153の代わりに、支線の流量を計測するリモートセンサ(図示せず)を設置した点、及びリモートセンサを設置した節点群Fm(m=1〜e−1)の、節点と節点の中間の節点Nm(m=1〜e)について、仮想的な漏水量を推定する点である。また、幹線上の節点Nmの仮想的な漏水量を推定する際の基準は、N(m+1)の圧力値の差ではなく、節点群Fmの流量値の差を用いる。なお、実施形態2のその他の構成及び処理等は、実施形態1と同様である。
図10は、実施形態2に係る漏水検知装置の幹線漏水推定部における処理を示すフローチャートである。前述したように、実施形態2に係る漏水検知装置の、実施形態1に係る漏水検知装置と異なる主な点は、幹線漏水推定部113における処理の一部である。したがって、図10に示すフローチャートに沿って、幹線漏水推定部113における具体的な処理について説明する。
図10に示すように、幹線漏水推定部113における実施形態1と異なる処理は、ステップS1006とステップS1007である。即ち、実施形態2では、図2に示すステップS201〜S205と同じ処理を行った後、ステップS1006に進む。ステップS1006では、リモートセンサを設置した節点群Fm(m=1〜e−1)の流量差を算出する。次に、ステップS1007に進む。
ステップS1007では、ステップS1006とステップS1007である。ステップ1007は、ステップS1006で算出した流量差と予め設定されているしきい値とを比較する。次に、ステップS208に進む。その後、実施形態1と同様の処理を行う。
(実施形態3)
次に、本発明の実施形態2に係る漏水検知装置について図面を参照して説明する。図11は、本発明の実施形態3に係る漏水検知装置の幹線漏水推定部における処理を示すフローチャートである。
実施形態3に係る漏水検知装置の、実施形態1に係る漏水検知装置と異なる主な点は、幹線の圧力を計測するリモートセンサと、幹線の流量を計測するリモートセンサの両方を設置する点、支線の圧力を計測するリモートセンサと、支線の流量を計測するリモートセンサの両方を設置する点、及び幹線上の節点Nm(m=1〜e)に設置したリモートセンサで圧力を計測し、かつNm(m=1〜e)の中間の節点Fm(m=1〜e−1)に設置したリモートセンサで流量を計測する点である。
即ち、幹線上の節点Nmの仮想的な漏水量を推定する際の基準として、N(m+1)の圧力値の差と、Fmの流量値の差を併用する。具体的には、例えば、圧力を計測するリモートセンサの計測精度と流量を計測するリモートセンサの計測精度の比率で重み付け平均値を算出し、予め設定されているしきい値と比較する。なお、実施形態3のその他の構成及び処理等は、実施形態1または実施形態2と同様である。
図11は、本発明の実施形態3に係る幹線漏水推定部113における処理の流れを示すフローチャートである。幹線漏水推定部113における実施形態1または実施形態2と異なる処理は、ステップS1106、ステップS1107及びステップ1108である。即ち、実施形態3では、図2に示すステップS201〜S205と同じ処理を行った後、ステップS1006に進む。ステップS1106では、節点N(m+1)の圧力差を計算する。次に、ステップS1107に進む。
ステップS1107では、節点Fmの流量差を計算する。次に、ステップS1108に進む。
ステップS1108では、ステップS1106で計算した圧力差と、ステップS1107で計算した流量差から重み付け平均値を計算し、予め設定されているしきい値と比較する。次に、ステップS208に進む。その後、実施形態1または実施形態2と同様の処理を行う。
なお、上述した実施形態1〜実施形態3において、配水ブロック133に設置したリモートセンサは常に最新の値を計測し、データ収集部114はそのデータを収集し、幹線漏水推定部113は、幹線上の節点の仮想的な漏水量を繰り返し推定することで、配水ブロック133の漏水分布を常に監視できるようにし、幹線上の節点の仮想的な漏水量が、予め設定されているしきい値以上に急増した場合、警告等を発することが望ましい。具体的には、例えば、画面等に警告メッセージを表示する、警告音を発する、配水ブロックの状態を監視する担当者等が保有する携帯端末に対してショートメールを送る等である。このようにすることで、配水ブロック133内の漏水分布を常に推定し、漏水量が急増した歳には警告を発することで、漏水修理までの時間を短縮することができる。
また、本発明の別の実施形態としては、例えば、図12に示すように、配水ブロック133の幹線から分岐する管路にバルブ300、301、302...を設置し、幹線上の節点の仮想的な漏水量が、予め設定されているしきい値以上に急増した場合に、漏水量が急増した幹線上の節点から分岐する管路のバルブ(図12ではバルブ300)を閉止するという構成でもよい。このようにバルブを閉止することで、漏水量を効果的に削減することができる。
さらにまた、本発明に係る漏水検知装置102は、一般的なコンピュータシステムに限定されるものではなく、一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよいし、クラウドコンピューティング等により、複数の機器で構成しても良いし、その他の情報機器により同様の機能を実現してもよい。
また、配水設備101は、例えば、配水池131と配水ブロック133の間にポンプを含む構成であってもよいし、配水池131から配水ブロック133に直接配水されるのではなく、他の配水ブロックを経由して配水される構成であってもよい。
さらにまた、上述した図において情報のやりとり等を表す線は、説明上必要と考えられるものを示しており、製品上必ずしも全てのものを示しているとは限らない。実際にはほとんど全ての構成が相互に接続されていると考えてもよい。
100…配水監視システム、101…配水設備、102…漏水検知装置、111…エリア形成部、112…管網計算部、113…幹線漏水推定部、114…データ収集部、115…スポット漏水推定部、116…入出力部、131…配水池、132…配水管網、133、134…配水ブロック、135…連通管、141〜153…リモートセンサ、300…バルブ

Claims (5)

  1. 水源に接続され且つ配水管網を構成する配水ブロックの状態を監視する漏水検知装置であって、
    前記配水ブロックの節点の水需要を記憶する水需要データベースと、
    前記配水ブロックの節点と管路に関する情報を記憶する管網データベースと、
    前記水源と配水ブロックとの間に位置し両者を連通させる連通管の流量値と、前記配水ブロックの幹線上の複数の節点の圧力値とを収集するデータ収集部と、
    前記水需要データベースに記憶されている情報と前記管網データベースに記憶されている情報とに基づき、前記配水ブロック全体の節点の圧力値、及び前記管路の流量値を推定する管網計算部と、
    前記連通管の流量値と前記水需要データベースに記憶されている情報とに基づき前記配水ブロック全体の漏水量を推定し、前記配水ブロック全体の漏水量と、前記データ収集部で収集した幹線上の複数の節点の圧力値と、前記管網計算部が推定した幹線上の複数の節点の圧力値に基づき、幹線上の複数の節点の仮想的な漏水量を推定する幹線漏水推定部と、
    前記配水ブロック内の節点に漏水量を仮定し、前記管網計算部により各節点の圧力と前記連通管の流量値を推定し、該推定した推定値を前記幹線漏水推定部で利用する収集値の代わりに用いて前記幹線漏水推定部により幹線上の複数の節点の仮想的な漏水量を推定し、該仮想的な漏水量の推定値に基づいて前記漏水量が仮定された節点に関するエリア番号を算出し、配水ブロック上の各節点がどのエリア番号に属するかを判定し、前記配水ブロック内を複数のエリアに仮想的に分割するエリア形成部と、
    を備え
    前記幹線漏水推定部により推定された幹線上の複数節点の仮想的な漏水量を、その節点を含むエリアの漏水量とすることを特徴とする漏水検知装置。
  2. 水源に接続され且つ配水管網を構成する配水ブロックの状態を監視する漏水検知装置であって、
    前記配水ブロックの節点の水需要を記憶する水需要データベースと、
    前記配水ブロックの節点と管路に関する情報を記憶する管網データベースと、
    前記水源と配水ブロックとの間に位置し両者を連通させる連通管の流量値と、前記配水ブロックの幹線上の複数の管路の流量値と、前記配水ブロックの幹線上の複数の節点の圧力値とを収集するデータ収集部と、
    前記水需要データベースに記憶されている情報と前記管網データベースに記憶されている情報とに基づき、前記配水ブロック全体の節点の圧力値、及び前記管路の流量値を推定する管網計算部と、
    前記連通管の流量値と前記水需要データベースに記憶されている情報とに基づき前記配水ブロック全体の漏水量を推定し、前記配水ブロック全体の漏水量と、前記データ収集部で収集した幹線上の複数の管路の流量値と、前記データ収集部で収集した幹線上の複数の節点の圧力値と、前記管網計算部が推定した幹線上の複数の管路の流量値と、前記管網計算部が推定した幹線上の複数の節点の圧力値に基づき、幹線上の複数の節点の仮想的な漏水量を推定する幹線漏水推定部と、
    前記配水ブロック内の節点に漏水量を仮定し、前記管網計算部により各節点の圧力と各管路の流量値と前記連通管の流量値を推定し、該推定した推定値を前記幹線漏水推定部で利用する収集値の代わりに用いて前記幹線漏水推定部により幹線上の複数の節点の仮想的な漏水量を推定し、該仮想的な漏水量の推定値に基づいて前記漏水量が仮定された節点に関するエリア番号を算出し、配水ブロック上の各節点がどのエリア番号に属するかを判定し、前記配水ブロック内を複数のエリアに仮想的に分割するエリア形成部と、
    を備え
    前記幹線漏水推定部により推定された幹線上の複数節点の仮想的な漏水量を、その節点を含むエリアの漏水量とすることを特徴とする漏水検知装置。
  3. 前記配水ブロックは、前記幹線と、当該幹線から分岐した支線とを有し
    前記節点は、前記幹線及び支線に設けられ、
    前記データ収集部は、前記配水ブロックの支線上の複数の節点の圧力値をさらに収集し、
    前記幹線漏水推定部は、前記配水ブロック全体の漏水量と、前記データ収集部で収集した幹線上の複数の節点の圧力値と、前記データ収集部で収集した支線上の複数の節点の圧力値と、前記管網計算部が推定した幹線上の複数の節点の圧力値と、前記管網計算部が推定した支線上の複数の節点の圧力値とに基づき、幹線上及び支線上の複数の節点の仮想的な漏水量を推定することを特徴とする請求項記載の漏水検知装置。
  4. 前記配水ブロックは、前記幹線と、当該幹線から分岐した支線とを有し、
    前記節点は、前記幹線及び支線に設けられ、
    前記データ収集部は、前記配水ブロックの支線上の複数の管路流量値をさらに収集し、
    前記幹線漏水推定部は、前記配水ブロック全体の漏水量と、前記データ収集部で収集した幹線上の複数の管路流量値と、前記データ収集部で収集した支線上の複数の管路流量値と、前記管網計算部が推定した幹線上の複数の管路流量値と、前記管網計算部が推定した支線上の複数の管路流量値とに基づき、幹線上及び支線上の複数の節点の仮想的な漏水量を推定することを特徴とする請求項記載の漏水検知装置。
  5. エリアデータベースと、
    スポット漏水推定部をさらに備え、
    前記エリア形成部は、前記エリア番号及びエリア係数を前記エリアデータベースに記憶し、
    前記データ収集部は、前記配水ブロックの幹線以外の節点の圧力値をさらに収集し、
    前記スポット漏水推定部は、前記幹線漏水推定部が推定した幹線上の複数の節点の仮想的な漏水量と、前記エリアデータベースに記憶したエリア係数と、前記データ収集部が収集した幹線以外の節点の圧力値と、前記管網計算部が推定した管網全体の節点の圧力値に基づき、前記配水ブロック内の個々の漏水の位置と漏水量を推定することを特徴とする請求項1または請求項2に記載の漏水検知装置。
JP2012043205A 2012-02-29 2012-02-29 漏水検知装置 Active JP5756767B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012043205A JP5756767B2 (ja) 2012-02-29 2012-02-29 漏水検知装置
SG2013007851A SG193083A1 (en) 2012-02-29 2013-01-31 Leak detection device
CN201310042147.2A CN103292966B (zh) 2012-02-29 2013-02-01 漏水检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043205A JP5756767B2 (ja) 2012-02-29 2012-02-29 漏水検知装置

Publications (2)

Publication Number Publication Date
JP2013178207A JP2013178207A (ja) 2013-09-09
JP5756767B2 true JP5756767B2 (ja) 2015-07-29

Family

ID=49094210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043205A Active JP5756767B2 (ja) 2012-02-29 2012-02-29 漏水検知装置

Country Status (3)

Country Link
JP (1) JP5756767B2 (ja)
CN (1) CN103292966B (ja)
SG (1) SG193083A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457908B2 (en) 2009-06-11 2013-06-04 University Of Washington Sensing events affecting liquid flow in a liquid distribution system
JP6273125B2 (ja) * 2013-11-12 2018-01-31 株式会社日立製作所 漏水調査計画立案装置、漏水調査計画立案システム、及び漏水調査計画立案方法
JP6370594B2 (ja) * 2014-04-25 2018-08-08 株式会社東芝 漏水量推定装置、および漏水量推定プログラム
WO2015189921A1 (ja) * 2014-06-11 2015-12-17 株式会社日立製作所 漏水対策支援装置および方法
FR3024260B1 (fr) * 2014-07-25 2016-07-29 Suez Environnement Procede pour detecter des anomalies dans un reseau de distribution, en particulier d'eau potable
JP6250176B2 (ja) * 2014-08-20 2017-12-20 三菱電機株式会社 プラント系統情報作成装置
JP6318053B2 (ja) * 2014-09-03 2018-04-25 株式会社日立製作所 漏水分布推定装置
DK178462B1 (en) * 2014-09-04 2016-03-29 Aarhus Vand As A mobile waterworks, a method for locating leaks in a pipe network and use of a mobile waterworks
CN106197876A (zh) * 2015-04-30 2016-12-07 中国三冶集团有限公司 一种地热漏点检测方法及检测装置
CN105157934A (zh) * 2015-09-23 2015-12-16 安徽恒源煤电股份有限公司祁东煤矿 一种束管监测正压排水及负压检漏***
JP6625851B2 (ja) * 2015-09-25 2019-12-25 株式会社東芝 漏水診断装置、漏水診断方法及びコンピュータプログラム
US10352814B2 (en) 2015-11-10 2019-07-16 Phyn Llc Water leak detection using pressure sensing
EP3267173B1 (en) 2016-07-08 2021-10-06 SUEZ Groupe Improved method and system for estimating water flows at the boundaries of a sub-network of a water distribution network
CN106125606A (zh) * 2016-07-14 2016-11-16 宁波顺源电子科技有限公司 一种防漏水保护***
US10094095B2 (en) * 2016-11-04 2018-10-09 Phyn, Llc System and method for leak characterization after shutoff of pressurization source
US11280696B2 (en) * 2017-01-10 2022-03-22 Sensus Spectrum Llc Method and apparatus for model-based leak detection of a pipe network
CN107329462A (zh) * 2017-06-30 2017-11-07 合肥贺财工程项目管理有限公司 一种工程项目车间排水监控***
CN109827080A (zh) * 2019-04-10 2019-05-31 中国石油大学(华东) 一种终端管网漏点分段式粗定位装置和定位方法
CN112944101B (zh) * 2021-02-02 2022-07-29 中国水电基础局有限公司 一种配水管网修复用装置以及修复方法
CN113324701B (zh) * 2021-04-13 2022-08-30 北京中大科慧科技发展有限公司 一种用于数据中心的机房漏水检测方法
CN116293480B (zh) * 2023-03-15 2023-09-12 东莞先知大数据有限公司 一种暗管检测方法、装置、电子设备和存储介质
CN116880249B (zh) * 2023-06-08 2024-04-02 淮北矿业(集团)有限责任公司物业分公司 安消一体化风险感知预警防控管理平台

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5289370A (en) * 1976-01-21 1977-07-26 Hitachi Ltd Water-leaking position detecting apparatus
US4712182A (en) * 1983-03-09 1987-12-08 Hitachi, Ltd. Method of estimating fracture point of pipe line network
JP3543426B2 (ja) * 1995-07-06 2004-07-14 株式会社日立製作所 管路網管理方法およびシステム
JPH09217900A (ja) * 1995-12-06 1997-08-19 Hitachi Ltd 流体輸送管網制御システム及び方法
JP3430041B2 (ja) * 1998-11-20 2003-07-28 沖電気工業株式会社 可搬型漏水位置探知装置による漏水位置の探知方法
JP2003279392A (ja) * 2002-03-25 2003-10-02 Susumu Hirowatari 圧力管路または管網で生じた異常流量の発生位置を推定する方法
JP4314038B2 (ja) * 2002-11-08 2009-08-12 エネジン株式会社 流体搬送管網中の異常箇所を推定する方法
US6970808B2 (en) * 2004-04-29 2005-11-29 Kingsley E. Abhulimen Realtime computer assisted leak detection/location reporting and inventory loss monitoring system of pipeline network systems
CN1261744C (zh) * 2004-05-31 2006-06-28 天津大学 基于压力信号检测油气管道泄漏的方法
US20090007968A1 (en) * 2004-12-23 2009-01-08 Endress + Hauser Pipe network, with a hierarchical structure, for supplying water or gas and/or for removing industrial water, process for detecting a leak in such a pipe network and process for determining, with the aid of a computer, the operating life theoretically remaining for a renewable power source for at least one flowmeter in such a pipe network
JP4612696B2 (ja) * 2008-02-13 2011-01-12 株式会社東芝 配水管路の漏水診断装置及び漏水診断方法
JP5329871B2 (ja) * 2008-08-25 2013-10-30 株式会社東芝 漏水節点推定装置
US20100212748A1 (en) * 2009-02-20 2010-08-26 John Andrew Davidoff System and method for detecting and preventing fluid leaks
JP2011191064A (ja) * 2010-03-11 2011-09-29 Toshiba Corp 配水ブロック運用システムおよび方法

Also Published As

Publication number Publication date
CN103292966A (zh) 2013-09-11
SG193083A1 (en) 2013-09-30
CN103292966B (zh) 2016-06-15
JP2013178207A (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5756767B2 (ja) 漏水検知装置
JP5329871B2 (ja) 漏水節点推定装置
US10663933B2 (en) Systems and methods for subnetwork hydraulic modeling
CN109791637B (zh) 用于布水***的基于模型的控制的方法和装置
JP2015094665A (ja) 漏水調査計画立案装置、漏水調査計画立案システム、及び漏水調査計画立案方法
JP6318053B2 (ja) 漏水分布推定装置
KR101105192B1 (ko) 관망해석에 의한 상수도 누수혐의구간 선정방법 및 그 기능을 탑재한 상수도 통합관리운영시스템
JP6181301B2 (ja) 漏水対策支援装置および方法
JP6625851B2 (ja) 漏水診断装置、漏水診断方法及びコンピュータプログラム
Islam et al. Economic analysis of leakage in the Bangkok water distribution system
US8175859B1 (en) Efficient method for pressure dependent water distribution analysis
JP2014145603A (ja) 漏水推定装置及びシステム及び方法
CN111022932A (zh) 一种供水管网的传感器布点***及方法
Adachi et al. Estimating area leakage in water networks based on hydraulic model and asset information
EP3605050B1 (en) Pipe diagnosis device, asset management device and pipe diagnosis method.
JP7482486B2 (ja) 管水路の異常検知システム、推定装置、学習モデル生成装置、管水路の異常検知装置、管水路の異常検知方法、推定方法、及び学習モデル生成方法
Okeya et al. Locating pipe bursts in a district metered area via online hydraulic modelling
JP4901371B2 (ja) 管路の圧力損失を表す係数の値の推定方法
JP2016130670A (ja) センサ配置位置選択装置、漏水量推定装置、漏水診断システム、漏水診断方法及びコンピュータプログラム
García et al. Minimization of water losses in WDS through the optimal location of valves and turbines: A comparison between methodologies
KR20130108911A (ko) 루프형 상수관망내 압력 계측기의 최적 위치 조합 설정방법 및 그 저장매체
Ferreira et al. Leak detection and location in a real water distribution network using a model-based technique
JP6018970B2 (ja) 配水制御装置および方法
JP6442374B2 (ja) 漏水対策支援装置
Bakogiannis et al. Modeling Of District Metered Areas With Relatively High Leakage Rate. The Case Study Of Kalipoli’s DMA

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5756767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150