JP5751525B2 - 燃料電池発電装置の制御方法および燃料電池発電装置を備えた車両 - Google Patents

燃料電池発電装置の制御方法および燃料電池発電装置を備えた車両 Download PDF

Info

Publication number
JP5751525B2
JP5751525B2 JP2013555397A JP2013555397A JP5751525B2 JP 5751525 B2 JP5751525 B2 JP 5751525B2 JP 2013555397 A JP2013555397 A JP 2013555397A JP 2013555397 A JP2013555397 A JP 2013555397A JP 5751525 B2 JP5751525 B2 JP 5751525B2
Authority
JP
Japan
Prior art keywords
fuel cell
power
voltage
threshold
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013555397A
Other languages
English (en)
Other versions
JP2014513509A (ja
Inventor
ライザー,カール,エー.
Original Assignee
バラード パワー システムズ インコーポレイテッド
バラード パワー システムズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バラード パワー システムズ インコーポレイテッド, バラード パワー システムズ インコーポレイテッド filed Critical バラード パワー システムズ インコーポレイテッド
Publication of JP2014513509A publication Critical patent/JP2014513509A/ja
Application granted granted Critical
Publication of JP5751525B2 publication Critical patent/JP5751525B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/04873Voltage of the individual fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04626Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04634Other electric variables, e.g. resistance or impedance
    • H01M8/04656Other electric variables, e.g. resistance or impedance of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

起動時、シャットダウン時、電力減少の過渡時およびアイドリング時に、高分子電解質膜燃料電池発電装置は、選択的に、電気エネルギを貯蔵するか、電圧制限装置でこのエネルギを放散させるか、カソード空気を切り換えるか、またはこれらの組み合わせを利用する。
電池の高電圧条件時(例えば、約0.87ボルト)で生じる、陽子交換型高分子電解質膜(PEM)燃料電池の無定形カーボン触媒支持部および金属触媒の腐食が、燃料電池の性能の恒久的な低下を生じさせることが知られている。シャットダウン時には、不活性ガスによるパージが用いられなければ、空気が、燃料電池のアノード流れ場およびカソード流れ場の双方をゆっくりと均一に満たす。起動時には、水素が、アノード流れ場へと供給され、これにより、アノード流れ場の入口を主に水素にし、アノード流れ場の出口を主に空気にする。これにより、アノードの空気リッチ領域の反対側のカソードの電位が、標準の水素電極に対して1.4〜1.8ボルトの電位へと増加する。この電位によって、カーボン基触媒支持部が腐食し、電池性能が低下する。
50,000〜100,000回の起動/シャットダウンサイクルを経験し得る自動車の用途では、これが破滅的な性能の損失を生じさせる。これまでは、この問題についての解決策は、不活性ガス、例えば、窒素を用いてアノード流れ場をパージすることによって燃料電池スタックを安定化させることと、シャットダウンプロセス時および起動プロセス時に、燃料電池スタックを横切る補助的な負荷を維持することを有している。より最近の解決策は、スタック(燃料および空気)および関連した配管の全体を通して水素リッチガスを維持することを要求している。
自動車の用途では、不活性ガスの利用可能性が非常に複雑であり、パージするために不活性ガスを用いる装置が非常に高価なものとなる。また、水素リッチガスの維持が、設計の複雑さを要求することになる。また、補助的な負荷を用いると、補助的な負荷によって生じる熱を放散させる必要がある。
自動車の用途では、高分子電解質膜燃料電池発電装置は、一般に、要求の非常に広い範囲を有しており、非常に低い要求への変動が、開回路電圧条件を生じさせる。開回路電圧条件では、比較的高いカソード電圧によって、カソード触媒の腐食が生じ、これにより、性能が極端に低下する。このような燃料電池では電力要求が突然に増加するので、カソードへの反応空気流が、この要求を満たすように利用可能とされていなければならず、したがって、空気ポンプが、より高い電力要求の迅速な回復に適応するために、要求が低いときに動作し続けなければならない。
米国特許出願公開第2006/0068249A1号明細書では、燃料電池スタックの起動およびシャットダウン時または他の電力減少の過渡時に、燃料電池スタック内での反応物の消費によって生成される見せかけのエネルギは、電気エネルギの形態で引き出され、燃料電池発電装置に関連したエネルギ貯蔵装置に貯蔵される。ブースト構成およびバック構成が開示されており、ブースト構成は、エネルギ貯蔵装置にエネルギを貯蔵することが望ましい電圧よりも燃料電池スタックの電圧が低いときに有効であり、バック構成は、エネルギがエネルギ貯蔵システムに貯蔵される電圧よりもスタックの電圧が大きいときに有効である。
米国特許出願公開第2009/0098427A1号明細書では、ブロワによって供給される反応空気が、1つの電池につき0.87ボルトよりも大きいような高いカソード電圧条件を生じさせ得る低い電力要求に応答して、大気へと迅速に切り換えられる。ブロワは、低い出力電力要求時に必要なレベルよりも高いレベルで動作し、したがって、出力電力要求の急速な増加に応答する準備ができている。
出力電力要求が急速に低下し、スタック内に残っている酸素つまり流れ場内の残余の酸素および触媒に吸収された残余の酸素を消費するプロセスで生成された電力を放散させるときはいつでも、任意選択的かつ補助的な負荷が、通常の負荷と並列に接続され得る。補助的な負荷は、低い要求時に大気へと切り換えられるブロワからの空気によって冷却され得る。
ある自動車の用途、例えば、例として、小荷物輸送および乗客用市内バスでは、アイドル条件へと電力要求が低下することが多い。一般のバスのルートでは、バスは、一日に1回または2回のみ出発するが、1200回の停止/発進サイクルを経験することになり、バスが減速する場合には、要求がアイドル条件へと進み、その後、バスは、完全な電力要求に回復する。したがって、燃料電池スタックの異なる条件で適切な形式で電池電圧を制御することが必要である。
燃料チャネルが空気で部分的に満たされている場合に、スタックへの燃料が移動するかまたは止まるときに、起動またはシャットダウンによる損失が生じると判断されてきた。燃料電池スタックがシャットダウンされたときに、空気がチャネルへと急激に通流し、燃料が起動時にチャネルへと供給されたときに、チャネルは、燃料で部分的に満たされる。これは、アノードおよびカソードの双方の側のチャネル内に空気を有する電池領域に、局所的な電圧の反転が生じ、これにより、高い局所的な電圧と、付随するひどい腐食を生じさせる。これらの電圧は、約1.20ボルトに達し得る。
しかし、停止および発進の電力サイクルにより生じる電池電圧は0.90〜0.95の電圧領域にあり、これは、起動時およびシャットダウン時の損失よりも非常に低い損失を生じさせる。しかし、シャットダウンおよび起動が所定の日に1回または2回のみであるのに対し、停止および発進は、一日に1200サイクルも生じるので、停止および発進により受ける損傷は、寿命を非常に制限する。
ここでは、起動およびシャットダウンは、停止および発進とは別にして取り扱われなければならない。通常の動作時の燃料電池発電装置の電力要求が、燃料電池の電圧が閾値レベル以上に増加する点に減少するときには、空気は、電池電圧を減少させる動作点へと、生成された出力電力を制限するように、燃料電池のカソードから即座に切り換えられる。出力電圧は、上記動作点から閾レベル以下のレベルに達し得る。切換バルブが、閾レベル以下に電池電圧を維持しつつ、補助的な周辺機器(BOP)装置の負荷の電力を生成するのに必要な量に、「ブリード空気」と呼ばれるカソード空気流の量を制限する。
周辺機器(BOP)装置の負荷に加えて、貯蔵装置が閾充電状態(SOC)よりも小さい場合には、エネルギ貯蔵システムは、該システムがアイドル状態に置かれたときに、過渡から生じる変化時に対し安全と思われる電圧レベル以下に電池電圧を維持するために、付加的な電力を十分に消費するように指令される。この電圧は、1つの電池につき約0.87ボルトとすることができる。
他の点では、スタックは、二次装置、例えば、電圧制限負荷(VLD)に接続され、該二次装置は、閾レベル以下に電池電圧を制限するように十分な電力を放散させつつ、補助的な(寄生的な)周辺機器装置の作動を許容するように構成されている。
他の変更が、発明を実施するための形態に照らして、さらに明らかになるであろう。
本発明が実施される、空気切換装置および空冷式電圧制限負荷を有した燃料電池発電装置の概略的なブロック図である。 本発明の実施を補助する簡潔かつ例示的な監視制御プログラムのフローチャートである。 停止および発進動作中の電池電圧を制御するための簡潔かつ例示的なプログラムのフローチャートである。 本明細書の形式を実施するときに、燃料電池発電装置をシャットダウンするように用いることができる簡潔かつ例示的なプログラムのフローチャートである。 本発明を実施するときに燃料電池発電装置を起動するように用いることができる簡潔かつ例示的なプログラムのフローチャートである。
図1では、車両150が、燃料電池スタック151を備えており、該燃料電池スタック151は、連続した複数の燃料電池を備えており、該燃料電池の各々は、アノード17とカソード19との間に陽子交換膜16を有している。図1には、1つの燃料電池12のみが示されている。燃料電池スタック151の正端子および負端子における電気出力部が、スイッチ158を介して一対のライン155,156によって電気またはハイブリッド車両推進システム159に接続されている。
水循環システムが、ベント部165を有したリザーバ164と、圧力制御トリムバルブ166と、水通路84,86,88,89と、システム内を循環する水を冷却するように選択的に作動可能なラジエータ168およびファン169と、水ポンプ170とを備えている。入口173における大気が、ポンプ、例えば、ブロワ174または圧縮機等によって、二方向切換バルブ172を介してカソード19の酸化剤反応ガス流れ場へと供給され、そして、圧力調整バルブ175を介して排気部176へと提供される。水素が、供給源179から、圧力調整バルブとされ得る流れ調整バルブ180を介して、アノード17の燃料反応ガス流れ場へと供給され、そして、パージバルブ181を介して排気部182へと提供される。燃料リサイクルループが、ポンプ183を備えている。
コントローラ185は、電流検出部186によって決定される負荷電流と、ライン155,156間の電圧とに応答する。また、コントローラ185は、ライン187に供給されるスタックの温度を備えることもできる。コントローラは、ライン190によってバルブ180を制御し、ライン191によってバルブ172を制御し、さらに、図1に示した他のバルブ166,175,181、スイッチ158、ポンプ170,174を制御する。
コントローラ185は、車両推進システム159からのライン193〜195,223でスタート信号、速度信号、要求信号およびオフ制御信号に応答し、これにより、燃料電池がいつ動作を開始すべきかと、車両推進システムによって要求される電力量とを示す。スタート信号が車両推進システム159からライン193を介してコントローラ185へと送られるときは常に、コントローラからの信号によって、バルブ180,181およびポンプ183は、アノード17の流れ場へと燃料反応ガスを適切に供給するように作動し、バルブ172,175およびポンプ174は、カソード19の流れ場へと大気を適切に供給するように作動する。簡潔かつ例示的な起動ルーチン303が、図4について後述される。
十分な量の燃料および空気が電池に均一に供給されたときには、適切な電圧が、コントローラ185によってライン155,156上で検出される。このとき、コントローラは、車両推進システム159に燃料電池スタック151を接続するようにスイッチ158を閉じることができる。
起動時およびシャットダウン時には、貯蔵コントローラ200が、燃料電池スタック内に貯蔵されたエネルギをエネルギ貯蔵システム201に利用することにより、このエネルギを放散することができる。本実施例では、エネルギ貯蔵システム201は、車両推進システム159のバッテリである。他の実施例では、エネルギ貯蔵システム201は、他のバッテリとすることができ、コンデンサ、フライホイール、または他のエネルギ貯蔵装置とすることもできる。電流の充電状態が適切であるならば、エネルギ貯蔵機器200,201は、高い要求時または低い要求時に、それぞれ、電力を供給または吸収することを補助する。
二方向切換バルブ172が、ポンプ174からカソード19の酸化剤反応ガス流れ場へと、空気を供給しないか、もしくは、空気の一部または全部を供給するように調整される。例えば、車両が減速する、停止する、または下り坂で移動するときに燃料電池が開回路の電圧に近づく点へと負荷の要求が低下するときには、ライン191上のコントローラからの信号によって、バルブ172は、空気の一部または全部を大気へと迅速に切り換えるように調整される。要求が低いときには、空気ポンプは、スタックが、増加した要求に迅速に応答することができるように、燃料電池に必要な流れを超過した空気の流速で作動され得る。計量バルブ172を有した本発明の所定の実施例では、コントローラは、切換バルブ172が、適切に釣り合った量の空気を大気へと切り換えるように、負荷の逆関数としてライン191に信号を供給することができる。
空気を排気するように切換バルブ172を用いることによって、ポンプ174は、作動し続けることができ、カソードへと流れる空気の量は、少量の残余の空気のみがカソード流れ場内および電極構造体内に残るように、迅速に減少する。ある実施例では、ポンプ174の速度は、低負荷時に減速されることがあり、または停止されることさえある。
上述した装置は、二次装置、例えば、電力放散電圧制限負荷220と組み合わせて用いられており、電力放散電圧制限負荷220は、ライン222上の信号に応答して、コントローラによってスイッチ221を介して燃料電池出力ライン155,156に接続される。本実施例では、空気が切換バルブ172へと通流し該切換バルブ172を通して排気部へと通流するときに、電圧制限負荷220は、ポンプ174からの空気流によって冷却される。これにより、カソード内の残余の酸素からより多くのエネルギが放散することができる。電圧制限負荷220は、通常の動作中に、電圧制限負荷220前後の圧力降下が生じないように、切換バルブ172の下流側に配置される。電圧制限負荷220前後の圧力降下のために、空気がバルブ172によって切り換えられるときに、本実施例は、カソードへの空気流の急速な変化がより少ないことを必要とする。電圧制限負荷は、抵抗型負荷以外の二次装置を備えてもよい。
電圧制限負荷220の物理的な配置は、この電圧制限負荷220が大気によっても冷却されるような配置であることが好ましい。また、補助的な負荷が、ポンプ174とバルブ172との間に接続可能とされ得る。
本発明は、固定して、および他の形式の燃料電池発電装置でも用いられ得る。
本明細書の形式を用いるためには、制御図が有利である。本明細書における例示的な実施例の開示は、本発明を図示する全体の広範な機能的ステップおよび関係の代表的なものであるが、この発明を用いる燃料電池発電装置の動作のための適切な詳細部を完備している必要はない。しかし、明らかになるように、他の普通の詳細部が一般的であり、本技術分野で周知である。後述される例示的なルーチンが、関連したパラメータにおける変化のタイミングに応じて、繰り返しの形式で処理される。市内バスでは、本明細書のルーチンは、適切な制御を用いて、1秒間に1〜3回だけ実行され得る。開示したこれらのルーチンでは、フラッグが、1つの状態から他の状態へとプログラムを進行するように用いられる。上記フラッグは、上記他の状態へと置かれるフラッグのモードが開示される前に時々説明される。しかし、全体を通して、フラッグ全てが完全に説明されている。
図2では、簡潔かつ例示的な監視ルーチン224が、入口点225を通して入力される。第1のテスト227が、起動フラッグが既に設定されたかを決定する。発電装置がシャットダウンされた、動作している、またはシャットダウンしているプロセスにある場合には、発電装置が起動プロセスになく、テスト227の結果は負である。同様に、テスト230が、シャットダウンフラッグが設定されたかを決定し、該シャットダウンフラッグは、シャットダウン手順が実行されていることを示す。シャットダウンフラッグが設定されていないことを想定すると、テスト232が、動作フラッグが設定されたかを決定する。
本明細書で停止および発進の様式についての説明に到達することを容易にするために、燃料電池発電装置150が完全に動作可能であり、動作していることを仮定する。テスト232の肯定的な結果がテスト233に到達し、このテスト233が、ライン223(図1)上のオフ信号が車両推進システム159から受けられたかを決定するように、動作フラッグは設定された。オフ信号は、車両が、例えば、イグニションキー式オフスイッチの同等物によってオフにされたことを示す。車両が動作したままである場合には、テスト233の否定的な結果が、図3に示した電圧制限ルーチン236に到達する。
図3では、電圧制限ルーチンが、入口点238を通して実施される。第1のテスト240が、アイドルフラッグが設定されたかどうかを決定する。車両が通常の速度で移動していることを想定すると、アイドルフラッグは設定されておらず、そして、テスト240の否定的な結果がテスト241へと到達し、テスト241が、平均的または例示的な燃料電池電圧が閾電池電圧よりも大きいかを決定する。これは、過渡等を考慮して、腐食を防止するのに十分に低くされた安全な電池電圧、例えば、約0.87ボルト、または本明細書の形式を利用する燃料電池発電装置に適切となるように決定された他の電圧を示す電圧である。車両が通常通りに移動していることを想定すると、電池電圧は過大ではなく、そして、テスト241の否定的な結果が、戻り点242へと到達し、戻り点242によって、コントローラのプログラミングが他のルーチンへと戻る。
時間が経つにつれて、車両は、停止点に近づき、要求を減少させることになる。要求が、例えばアイドル状態で、かなり低くなるときには、テスト241は、電池電圧が閾値に達したときに正になり、この正は、電池電圧が過大になっていることを示す。これは、ステップ243を生じさせ、該ステップ243は、テスト240で試験されるアイドルフラッグを設定する。十分な電力の生成を維持し、燃料電池の電圧が閾電圧よりも低いままとなるように、ステップ244が、必要な空気(「ブリード空気」)以外の空気全てを切換バルブが切り換える位置へと、切換バルブを設定する。そして、アイドルタイマが、ステップ245で開始される。
例として、75キロワットの通常の最大電力を有した燃料電池発電装置を備えてなる市内バスを考える。約0.87ボルトの安全な電圧を維持するために、燃料電池は、約2.8キロワットを生成しなければいけない。例えば、このような燃料電池発電装置では、例えば、冷媒ポンプ170、空気ブロワ174、燃料リサイクルポンプ183、コントローラ185および周辺機器の他の電力調整・制御装置のための補助的かつ寄生的な電力要求は、約1.5キロワットである。これは、低いレベルに電池電圧を維持するように生成される電力が、補助的な機器によって消費される電力を約1.3キロワットだけ超過するようになることを意味する。この超過した電力は、ある形式で、貯蔵されるか、または放散されなければならない。
切換バルブが適切な位置に開かれた後に、テスト246は、バッテリがより多くのエネルギを貯蔵することができるかを見るために、バッテリの充電状態、例えば、90%よりも小さい充電状態を確認する。充電状態が90%よりも小さい場合には、ステップ247が、電池電圧を0.87ボルトに維持するために、十分に生成された電力を貯蔵するようにエネルギ貯蔵システムに指令する。そして、ルーチンは、戻り点242を通して他のプログラミングへと戻る。
図2の監視ルーチン224が図3の電圧制限ルーチン236に到達し、アイドルフラッグがステップ243において設定された後続の経路では、テスト240の肯定的な結果がテスト248に到達し、テスト248は、ライン195(図1)上の信号によって示される要求が、車両が加速されたことを示すある要求閾値よりも大きいかを決定する。要求閾値よりも大きくない場合には、車両はアイドリングしたままである。テスト248の否定的な結果が、再びテスト246に到達する。充電状態が貯蔵閾値に到達していない、例えば充電状態が90%よりも低いままである場合には、ステップ247は、上述したように燃料電池の電圧を0.87ボルトに維持するために、エネルギ貯蔵システムが取るいかなるエネルギを貯蔵するようにエネルギ貯蔵システムに指令し続ける。
最終的には、貯蔵装置は、90%の充電に到達にすることがあり、そして、テスト246の否定的な結果が、テスト248へと到達し、該テスト248は、アイドルタイマが時間切れになったかを決定する。アイドル状態が開始されたときに、このアイドルタイマは、ステップ245において設定された。アイドルタイマは、問題となっている車両が一般に受ける義務の形式に応じて調節可能な値に設定され得る。例えば、繁華街の市内バスでは、運転手がランチスタンドで停止するかまたは一杯のコーヒーを買う状況に適応するために、時間閾値は2分と同じ低さ、または6分または7分以上と同じ高さとされ得る。この時間は、交通が規制された交差点や、乗客が入ったり出ていく停留所で一般に直面する時間よりも長い。一方、車両がパッケージ輸送用車両である場合には、時間閾値は、市内バスで生じ得る時間よりも長くなり得る。
アイドルタイマによって示される時間が時間閾値を超過しなかった場合には、テスト249の否定的な結果がステップ251に到達し、該ステップ251は、スイッチ221を閉じることによってスタックに電圧制限負荷220(図1)を接続する。これにより、超過したエネルギが、貯蔵されるのではなく、放散される。例示的な実施例では、0.87ボルトでの1.3キロワットの放散について、この負荷は、約0.54ミリオームである。これにより、周辺機器の補助的かつ寄生的な装置によって利用されないほぼ正確な量の電力が確実に放散される。一方、時間閾値に達した場合には、テスト249の肯定的な結果がステップ252に到達し、該ステップ252は、切換バルブが最大量の空気を切り換えるように切換バルブを設定する。最大量の空気は、空気全てとすることができ、または空気全てよりも少ないものとすることができる。しかし、これは、種々の動作パラメータ全てと、ブロワ速度がステップ253において減少されたかどうかとに応じて、燃料電池スタック内の空気を不足させるのに十分であるべきである。前述したように、ブロワ速度は、車両がアイドル状態から加速するときに空気の急速な供給を補助するために、通常の動作速度に維持され得る。一方、ブロワ速度は、多少減少されてもよく、または、ブロワは、いかなる理由、例えば、貯蔵されたエネルギを保存することのために必要であると分かった場合には、オフにされてもよい。任意選択的に、状況によって一方または他方を単独で用いることが許容されている場合には、ステップ252のように最大の空気を切り換えることおよびステップ253のようにブロワ速度を減少させることの双方を必要としない。そして、ステップ255が、貯蔵システム内の貯蔵されたエネルギから動作するように周辺機器を接続し、これは、電圧が安全な閾値よりも低くなるように燃料電池を十分に不足状態にするのに必要である。
ステップ247が実行された後に充電状態が90%を超過している場合でさえ、テスト246は、電力が貯蔵される代わりに、電圧制限負荷が電力を吸収するように、(1秒以内に)次の経路で実行を切り換えることができる。この柔軟性は、貯蔵を最大限に利用し、浪費的なエネルギの放散を最小限にすることができ、このエネルギの放散は、必要なエネルギの放散のみとなる。
監視ルーチンおよび電圧制限ルーチンを通した後続の経路では、車両は、最終的には移動し始め、ライン195(図1)上の要求は、閾値を超過し、テスト248が肯定的になり、そして、ステップ257に到達し、該ステップ257は、スタックに空気全てを導くよう切換バルブを設定する。ステップ259が、電池電圧を制御するためのエネルギの貯蔵を停止するようにエネルギ貯蔵システムに指令し、そして、エネルギ貯蔵システムの制御が、貯蔵コントローラ200(図1)の他のルーチンへと戻る。ステップ261が、電圧制限負荷220(図1)を非接続状態にするようにスイッチ221(図1)を開く。(ステップ259または291は、害を及ぼすことなく冗長性がある。)そして、ステップ264が、アイドルフラッグをリセットし、プログラミングが、戻り点242を通して他のルーチンに戻る。
図2の監視ルーチン224を通した後続の経路では、動作フラッグが設定されたままで、図3の電圧制限ルーチンに到達しているが、電圧制限ルーチンを通したこの経路では、アイドルフラッグがステップ264でリセットされたので、テスト240は否定的であるため、テスト241に到達し、該テスト241は、電池電圧が閾値よりも大きいか見る。一般の場合には、増加しているまたは通常の要求のときには、電池電圧は、過大ではなく、そして、テスト241の否定的な結果によって、プログラミングが、単に、戻り点242を通して他のルーチンへと戻る。
これは、アイドル条件を形成するために、図3について上述した取り交わしを生じさせる次の停止まで継続する。車両の停止の全てにおいて、電力システムがアイドルへと進み、そして、アイドルから加速している間に、監視ルーチン224は、動作条件に置かれたまま、電圧制限ルーチン236に到達し、電圧およびアイドル時間は、試験され続け、動作は、上述した条件に応答する。
したがって、停止および起動の場合には、システムは、常に、電池電圧を迅速に減少させるように空気を切り換え、その後、可能であれば、超過した電力を貯蔵するか、または貯蔵が可能でなければ電力を放散させ、もしくは長いアイドル期間中にスタック内の空気を不足状態にする。「超過した電力」は、システムが周辺機器の補助的かつ寄生的な電力を作用させるのに用いることができる電力を超過した安全なレベルに電池電圧を維持するように、スタックによって生成された電力の量として定義される。
最終的に、一日の終わりが来て、推進システムの作業者が、オフ信号がライン223(図1)に供給されるように(例えば、イグニションキーと同等物をオフにすることによって)指示を提供する。図2の監視ルーチン224を通した後続の経路が、テスト233の肯定的な結果に達する。これは、ステップ266に到達し、該ステップ266は、動作フラッグをリセットし、ステップ267が、シャットダウンフラッグを設定し、そして、図4のシャットダウンルーチン268へと進む。
シャットダウンルーチン268が、入口点271を通して図4において実行され、任意選択的な第1のテスト273が、本明細書の形式を用いる構成が任意選択的な空気ブロワリサイクルシステム(一般的であるが、本明細書では図示せず)を有しているかを決定する。空気ブロワリサイクルシステムを有している場合には、テスト273の肯定的な結果が、ステップ276に到達し、該ステップ276は、任意選択的な空気入口バルブ(図示せず)を閉じ、ステップ277が、任意選択的なカソードリサイクルバルブ(図示せず)を開く。つまり、上記のオプションでは、ブロワ174(図1)は、スタックに空気を吹き込むことから、カソード入口へカソード排気を戻すことへと変化する。これは、各燃料電池が、ある条件に置かれることの助けとなり、この条件では、カソードおよびアノードの双方が、それらの中に水素を有しており、この水素が、本技術分野において周知のように、腐食に対して保護を与え、後続の規則的な起動を提供する。
空気ブロワがカソードの循環のために用いられていない場合には、テスト273の否定的な結果が任意選択的なステップ279に到達し、該ステップ279は、空気ブロワ174(図1)をオフにし、ステップ280が、任意選択的なカソードリサイクルブロワ(図示せず)をオンにし、ステップ277が、任意選択的なカソードリサイクルバルブを開く。効果については、同じである。
いずれにしても(または、任意選択的にカソードを循環するためのテスト273が存在しない場合に、入口点271から直接的に)、テスト282が、充電状態が90%よりも小さいかを決定する。充電状態が90%よりも小さい場合には、ステップ285が、スタックから来る電力全てを貯蔵するようにエネルギ貯蔵システム201に指令する。これは、貯蔵された電力量が、図3について説明した本明細書の形式に応じて非常に選択的であるアイドル時に生じるものとは異なる。
充電状態が90%よりも小さくない場合には、ステップ287が、スイッチ221を閉じることにより、電圧制限負荷220(図1)を接続する。シャットダウンの効果は、生成される電力量が急速に減少することであるので、電圧制限負荷が大量の電力を放散させるのに十分である限り、電圧制限負荷の大きさは重要ではない。したがって、起動およびシャットダウンのための電圧制限負荷と同じ電圧制限負荷をアイドルのために用いることが可能である。一方、本明細書の形式の他の実施例では、いくつかの電圧制限負荷が存在し得るものであり、これらの負荷は、プロセスの段階、即ち、起動、シャットダウン(電力開始または電力減少の過渡時)、または関連したアイドルに応じて選択され得る。
ステップ285,287に応じて電力が貯蔵されるか、または放散された後には、テスト290が、アノード燃料のパージがいつ完了するのかを決定する。これは、カソードが入口空気からリサイクル空気へと変化したので、時間の経過によって単に決定されるか、またはアノード出口の水素濃度を検出することによって決定されるか、もしくは他の形式、例えば、生成される電力の電圧を検出することによって決定され得る。これらの方法は一般的であり、本明細書の形式の特定の実施に合うように選択され得る。
燃料電池がアノード燃料の内容物で安定になった後には、ステップ291は、燃料入口を閉じ、ステップ292が、電池電圧を制御するための貯蔵を(おそらく、冗長性をもって)停止するようにエネルギ貯蔵システムに指令する。そして、エネルギ貯蔵システムの制御が貯蔵用コントローラ200(図1)の他のルーチンへと戻る。複数のステップ293が、補助的な電力装置の大部分をオフにし、該補助的な電力装置は、空気ブロワやカソードリサイクルブロワと、燃料リサイクルポンプと、冷媒ポンプと、ラジエータファンと、シャットダウンしている期間に用いられない他の周辺機器装置を有している。シャットダウンフラッグは、ステップ294でリセットされ、プログラミングが、戻り点296を通して他のルーチンに戻る。
図2の監視ルーチン224を通した次の後続の経路では、起動フラッグのテスト227が否定的であり、シャットダウンフラッグのテスト230が否定的であり、動作フラッグのテスト232が否定的であり、そして、テスト297が、スタートフラッグが設定されたかを決定する。スタートフラッグが設定されていなかった場合には、プログラミングが、戻り点299を通して他のタスクへと戻る。そして、燃料電池発電装置は、休止状態になり、起動の指令を待ち、電力を供給する。
車両推進システム150からライン193(図1)に供給されるスタート指令がない限り、監視システムは、テスト227,230,232,297の否定的な結果を通して戻り点299へと機能し、燃料電池発電装置は休止したままである。
最終的には、スタート指令がライン193(図1)上に現れ、そして、後続の経路が、スタートテスト297の肯定的な結果を見つけ、この結果が、ステップ301に到達し、ステップ301は、起動フラッグを設定する。そして、起動ルーチン303が、入口点305を通して図5で実行される。任意選択的に、燃料電池へのいかなる空気漏れが腐食を生じさせないことをより確実にするために、燃料電池発電装置の休止状態中に、カソードリサイクルを維持することができる。空気漏れが腐食を生じさせない場合には、ステップ308がカソードリサイクルをオフにする(リサイクルスイッチを開く、および/またはリサイクルブロワをオフにする)。
連続したステップ310が、空気ブロワを除いて、燃料リサイクルポンプ、冷媒ポンプ、ラジエータファン、周辺機器の他の寄生的かつ補助的な負荷をオンにする。そして、ステップ313において、燃料入口が開かれ、テスト314が、開回路電圧の検出によって、燃料入口を開いてからのおおよその時間によって、アノード排気部の水素濃度を測定することによって、または他の方法によって、水素以外のガス全てがアノードからいつパージされたかを決定する。
アノードが水素で適切に安定化されたときには、ステップ315が、空気ブロワをオンにし、規則的な電力の生成が開始される。初期の低電力の生成が燃料電池の電圧を過度に高く上昇させないようにするために、電力は、前述したように、貯蔵されるか、または放散される。望ましいならば、この例では、充電状態および負荷の測定値が、アイドル状態のものと異なっていてもよい。テスト316が、例えば、充電状態が85%よりも小さいかを決定し、85%よりも小さい場合には、ステップ317が、起動時の腐食に対して安全であると思われる電圧、例えば、0.10ボルト以下に電池電圧を維持するために、十分な電力を貯蔵し、要求するようにエネルギ貯蔵システム201(図1)に指令する。充電状態が過度に高い場合には、テスト316の否定的な結果が、ステップ320に到達し、ステップ320は、スイッチ221(図1)を閉じ、電圧制限負荷220に燃料電池出力部155,156を接続する。
いずれにしても、テスト321が、生成された電圧が車両推進システム159(図1)への適用に適した閾電圧以上であるかを決定する。ルーチンは、電圧が適切になるまでテスト321で循環する。そして、テスト321の肯定的な結果が、ステップ322に到達し、ステップ322は、車両推進システム159に燃料電池を接続するようにスイッチ158(図1)を閉じ、ステップ323が、電圧制限負荷を非接続状態にし、ステップ324が、電池電圧を制御するための貯蔵を停止するようにエネルギ貯蔵システムに指令する。そして、エネルギ貯蔵システムの制御が、貯蔵用コントローラ200(図1)の他のルーチンに戻る。
ステップ326が、起動フラッグをリセットし、ステップ327が、動作フラッグを設定する。そして、プログラムは、戻り点330を通して他のルーチンに戻る。
図2の監視ルーチン224を通した後続の経路では、起動フラッグのテスト227およびシャットダウンフラッグのテスト230は、現在、否定的であるが、動作フラッグのテスト232は、現在、肯定的であり、そして、テスト233に到達し、該テスト233は、燃料電池システムが、ライン223(図1)の信号によってオフにされるように指令されたかを見る。オフ指令が受けられるまで、電圧制限ルーチン236は、アイドル条件が生じたときにこれを扱うように繰り返して実行され、全てが、図3について上述されている。
いかなる使用において望ましくなければ、本明細書のある形式が、1つまたは複数の他の形式を用いることなく利用されてもよい。例えば、貯蔵から周辺機器へ給電しながらスタック内の空気を不足状態にする長いアイドルの特徴を、任意選択的に省略することができる。
本発明の概念の意図を逸脱することなく、本発明の実施例の変更および修正がなされ得るので、本発明を、付記の特許請求の範囲によって要求される以外の発明に限定することを意図していない。

Claims (9)

  1. 燃料電池発電装置の制御方法であって、
    a)車両推進システム(159)に電力を供給するように前記燃料電池発電装置を動作するステップと、
    b)前記車両推進システム(159)の通常の動作時に燃料電池電圧を監視するステップと、
    c)前記燃料電池電圧が所定の電池電圧閾値に達したことに応答して、前記燃料電池電圧が前記所定の電池電圧閾値を超過しないようにするのに十分な電力を生成するために必要な量を除いて、反応空気全てを大気へと送給するように切り換えるステップと、
    d)エネルギ貯蔵システム(201)の充電状態が所定の貯蔵閾値に達するまで、前記所定の電池電圧閾値よりも低く電池電圧を維持するのに必要な電力量と、補助的な周辺機器装置(170,174,183,185)によって消費される電力量との間の差に等しい量で、前記エネルギ貯蔵システム(201)に前記燃料電池発電装置の電力出力を貯蔵しつつ、前記ステップc)の後に、前記車両推進システム(159)の要求が要求閾値を超過するまで、前記燃料電池電圧が前記所定の電池電圧閾値を超過しないようにするのに十分な電力を生成するステップと、
    を含み、
    前記ステップd)において、前記エネルギ貯蔵システムの充電状態が前記所定の貯蔵閾値に達した場合に、電圧制限負荷(220)において、前記所定の電池電圧閾値よりも低く電池電圧を維持するのに必要な電力量と、前記補助的な周辺機器装置によって消費される電力量と、の間の差に概ね等しい電力量を放散し、さらに、
    前記ステップd)が、所定の時間閾値を超過する期間の間で継続する場合に、前記燃料電池発電装置内の空気を不足状態にし、前記エネルギ貯蔵システムによって供給される電力を用いて周辺機器を動作することを特徴とする、方法。
  2. 燃料電池発電装置を備えた車両(150)であって、この燃料電池発電装置が、
    周辺機器(170,174,183,185)と、
    複数の燃料電池(12)を備え、該複数の燃料電池(12)の各々が、反応空気流れ場を有したカソード(19)に隣接した膜電極アッセンブリ(16)を有し、電力出力部(155,156)をさらに備えてなる、燃料電池スタック(151)と、
    前記カソードに反応空気を供給する空気ポンプ(174)と、
    前記反応空気流れ場に前記空気ポンプ(174)を接続し、かつ、切り換えられた空気を前記反応空気流れ場に通過させないように、前記空気ポンプ(174)からの空気を選択的に大気へと送給するように切り換えるように構成された切換バルブ(172)と、
    前記燃料電池スタック(151)の前記電力出力部(155,156)に選択的に接続可能な電圧制限負荷(220)と、
    を備え、
    車両(150)が、
    要求信号に応答して前記燃料電池スタック(151)によって選択的に給電されるように構成された車両推進システム(159)と、
    エネルギ貯蔵システム(201)と、
    前記エネルギ貯蔵システム(201)への電気エネルギの貯蔵と、前記エネルギ貯蔵システム(201)からの電気エネルギの取り出しとを選択的に制御する貯蔵用制御手段(200)と、
    前記燃料電池スタック(151)、前記切換バルブ(172)、前記貯蔵用制御手段(200)および前記電圧制限負荷(220)を選択的に制御するコントローラ(185)と、
    をさらに備え、
    前記コントローラ(185)は、動作モードにおいて、動作時に前記車両推進システム(159)によって消費される電力の減少に応答してアイドルモードに入り、該アイドルモードにおいて、前記コントローラ(185)は、a)前記燃料電池の電圧が所定のアイドル閾電池電圧を超過しないようにするのに十分な前記所定のアイドル電力を生成するために前記燃料電池スタック(151)によって必要とされる空気を除いて、空気全てを前記カソード(19)から大気へと送給するように切り換えるように前記切換バルブ(172)を作動し、b)前記燃料電池の電圧が所定のアイドル閾電池電圧を超過しないようにするのに十分な所定のアイドル電力を前記燃料電池スタック(151)によって生成し、c)i)前記エネルギ貯蔵システム(201)の充電状態が所定の充電状態閾値を超過しない限り、前記貯蔵用制御手段(200)によ、前記周辺機器(170,174,183,185)によって消費される電力量を前記所定のアイドル電力が超過する電力量を、前記エネルギ貯蔵システムに貯蔵し、ii)前記エネルギ貯蔵システム(201)の充電状態が所定の充電状態閾値に達した場合に、前記燃料電池スタック(151)によって前記所定のアイドル電力を生成し、前記燃料電池スタック(151)の前記電力出力部(155,156)の間に前記電圧制限負荷を接続し、前記電圧制限負荷は、前記所定のアイドル電力で、前記所定のアイドル電力が前記周辺機器(170,174,183,185)によって消費される電力量を超過するおおよその電力量を放散し、さらに、
    前記アイドルモードの期間が所定の時間閾値を超過した場合に、前記コントローラは、上記i)またはii)を生じさせることを終了し、代わりに、前記燃料電池発電装置内の空気を不足状態にし、前記エネルギ貯蔵システムによって供給される電力を用いて前記周辺機器を動作させることを特徴とする車両(150)。
  3. 前記アイドルモードは、前記車両推進システムの要求が要求閾値を超過するまで継続することを特徴とする請求項に記載の車両(150)。
  4. 前記コントローラ(185)は、前記アイドルモードにおいて、前記車両推進システム(159)の要求が所定の要求閾値を超過したことに応答して、前記切換バルブ(172)によって前記カソード(19)に空気全てを導くことを特徴とする請求項に記載の車両(150)。
  5. 前記コントローラ(185)は、前記アイドルモードにおいて、前記車両推進システム(159)の要求が所定の要求閾値を超過したことに応答して、アイドル電圧を制御するための電力の貯蔵を終了し、前記電圧制限負荷(220)を前記燃料電池スタックから非接続にすることを確実にすることを特徴とする請求項に記載の車両(150)。
  6. 前記コントローラ(185)は、前記車両推進システム(159)からのオフ信号(223)に応答してシャットダウンルーチン(268)を開始し、該シャットダウンルーチン(268)において、前記コントローラ(185)は、iii)前記エネルギ貯蔵システム(201)の充電状態が所定の充電状態閾値を超過しない限り、前記貯蔵用制御手段(200)によって、前記燃料電池(12)の電圧が所定のシャットダウン閾電圧を超過しないように前記エネルギ貯蔵システム(201)に十分な電力を貯蔵し、iv)前記エネルギ貯蔵システム(201)の充電状態が所定の充電状態閾値に達した場合に、前記燃料電池スタック(151)の前記電力出力部(155,156)の間で前記電圧制限負荷(220)を接続することを特徴とする請求項に記載の車両(150)。
  7. 前記所定のシャットダウン閾電圧は、前記所定のアイドル閾電圧よりも高いことを特徴とする請求項に記載の車両(150)。
  8. 前記コントローラ(185)は、前記車両推進システム(159)からのスタート信号(193)に応答して起動ルーチンを開始し、前記起動ルーチンにおいて、前記コントローラ(185)は、v)前記エネルギ貯蔵システムの充電状態が所定の充電状態閾値を超過しない限り、前記燃料電池(12)の電圧が所定の起動閾電圧を超過しないように、前記エネルギ貯蔵システム(201)に十分な電力を貯蔵し、vi)前記エネルギ貯蔵システムの充電状態が所定の充電状態閾値に達した場合に、前記燃料電池スタック(151)の前記電力出力部(155,156)の間で前記電圧制限負荷(220)を接続することを特徴とする請求項に記載の車両(150)。
  9. 前記所定の起動閾電圧は、前記所定のアイドル閾電圧よりも高いことを特徴とする請求項に記載の車両(150)。
JP2013555397A 2011-02-25 2011-02-25 燃料電池発電装置の制御方法および燃料電池発電装置を備えた車両 Expired - Fee Related JP5751525B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/000349 WO2012115605A1 (en) 2011-02-25 2011-02-25 Controlling pem fuel cell voltage during power transitions and idling

Publications (2)

Publication Number Publication Date
JP2014513509A JP2014513509A (ja) 2014-05-29
JP5751525B2 true JP5751525B2 (ja) 2015-07-22

Family

ID=46721137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013555397A Expired - Fee Related JP5751525B2 (ja) 2011-02-25 2011-02-25 燃料電池発電装置の制御方法および燃料電池発電装置を備えた車両

Country Status (6)

Country Link
US (1) US9130205B2 (ja)
EP (1) EP2678895B1 (ja)
JP (1) JP5751525B2 (ja)
KR (1) KR101889579B1 (ja)
CN (1) CN103650224B (ja)
WO (1) WO2012115605A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812379B2 (ja) * 2010-07-02 2015-11-11 スズキ株式会社 燃料電池車両の暖房装置
CN105052035B (zh) * 2012-11-09 2018-10-02 奥迪股份公司 在功率减小过渡期间对燃料电池电压改变的正速率的响应
KR101567695B1 (ko) * 2014-05-21 2015-11-10 현대자동차주식회사 연료전지 차량의 비상시동 방법 및 시스템
KR101856300B1 (ko) 2015-12-09 2018-06-26 현대자동차주식회사 연료전지 차량의 시동 제어방법
KR101846632B1 (ko) 2015-12-10 2018-04-09 현대자동차주식회사 연료전지차량의 스탑모드시 전압 제어방법
JP6423377B2 (ja) * 2016-02-17 2018-11-14 本田技研工業株式会社 燃料電池システムの電力制御方法
JP6200009B2 (ja) * 2016-02-18 2017-09-20 本田技研工業株式会社 燃料電池システムの運転方法
US10523003B2 (en) * 2017-01-30 2019-12-31 Cummins Enterprise Inc. Auxiliary power circuit and method of use
JP7189887B2 (ja) * 2017-04-28 2022-12-14 イーエスエス テック インコーポレーテッド 電池システム及び方法
KR102360162B1 (ko) 2017-06-09 2022-02-09 현대자동차주식회사 연료전지 차량의 운전 제어 장치 및 방법
US11916378B2 (en) 2018-08-30 2024-02-27 Bloom Energy Corporation Power source communication with downstream device by changing output voltage on a power bus
CN109768306A (zh) * 2018-12-24 2019-05-17 武汉理工大学 一种燃料电池电堆可逆电压降快速在线恢复的方法
JP7156005B2 (ja) * 2018-12-25 2022-10-19 トヨタ自動車株式会社 燃料電池システム
US11258294B2 (en) 2019-11-19 2022-02-22 Bloom Energy Corporation Microgrid with power equalizer bus and method of operating same
CN111361459B (zh) * 2020-03-31 2021-09-03 中国汽车技术研究中心有限公司 氢燃料电池汽车功率需求较小时电压控制方法
CN111731156B (zh) * 2020-06-12 2022-07-05 大运汽车股份有限公司 一种氢燃料电池汽车能量控制方法
CN114649552A (zh) * 2020-12-17 2022-06-21 中国科学院长春应用化学研究所 一种燃料电池电力输出控制方法
DE102021125879A1 (de) 2021-05-10 2022-11-10 Schaeffler Technologies AG & Co. KG Luftführungsmodul einer Brennstoffzelle und Verfahren zum Betrieb einer Brennstoffzelle
CN113525179B (zh) * 2021-08-27 2024-01-12 潍柴动力股份有限公司 一种燃料电池的动态响应控制方法
CN113964352B (zh) * 2021-10-29 2023-02-21 北京亿华通科技股份有限公司 一种燃料电池***控制方法及控制装置
CN115832372B (zh) * 2023-02-23 2023-05-12 山东赛克赛斯氢能源有限公司 一种pem电池堆***

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168803A (ja) * 1988-12-22 1990-06-28 Toyota Autom Loom Works Ltd 電気車
JP4267759B2 (ja) * 1999-06-07 2009-05-27 本田技研工業株式会社 改質型燃料電池電源システムにおける余剰水素の処理方法
US6492056B1 (en) * 2000-03-13 2002-12-10 Energy Conversion Devices, Inc. Catalytic hydrogen storage composite material and fuel cell employing same
JP3596468B2 (ja) * 2001-01-04 2004-12-02 日産自動車株式会社 燃料電池車両の制御装置
US6991864B2 (en) 2003-09-23 2006-01-31 Utc Fuel Cells, Llc Storage of fuel cell energy during startup and shutdown
US7041405B2 (en) * 2003-10-07 2006-05-09 Utc Fuel Cells, Llc Fuel cell voltage control
US7473480B2 (en) * 2004-10-19 2009-01-06 General Motors Corporation Low voltage compressor operation for a fuel cell power system
US20060194082A1 (en) * 2005-02-02 2006-08-31 Ultracell Corporation Systems and methods for protecting a fuel cell
JP2009517837A (ja) * 2005-11-29 2009-04-30 ユーティーシー パワー コーポレイション 低い需要に対応して空気を転換させる燃料電池発電装置
JP2007194042A (ja) * 2006-01-18 2007-08-02 Honda Motor Co Ltd 燃料電池車両
US20100068566A1 (en) * 2006-12-21 2010-03-18 Sathya Motupally Method for minimizing membrane electrode degradation in a fuel cell power plant
DE102008005530A1 (de) * 2008-01-22 2009-07-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Verbesserung der Lebensdauer einer Brennstoffzelle bei Betriebsübergängen
JP2009289547A (ja) * 2008-05-28 2009-12-10 Nissan Motor Co Ltd 燃料電池スタック
KR20080072045A (ko) * 2008-06-10 2008-08-05 유티씨 파워 코포레이션 저 수요에 응답하여 공기를 전향시키는 연료 전지 파워플랜트
JP5386183B2 (ja) * 2009-01-27 2014-01-15 本田技研工業株式会社 燃料電池車両
JP4888519B2 (ja) 2009-05-25 2012-02-29 トヨタ自動車株式会社 燃料電池システムおよびその制御方法
US9786934B2 (en) * 2009-07-08 2017-10-10 The United States Of America, As Represented By The Secretary Of The Navy Performance recovery of a fuel cell

Also Published As

Publication number Publication date
KR20140145938A (ko) 2014-12-24
EP2678895A1 (en) 2014-01-01
CN103650224B (zh) 2016-09-21
JP2014513509A (ja) 2014-05-29
CN103650224A (zh) 2014-03-19
US20130320910A1 (en) 2013-12-05
EP2678895B1 (en) 2017-12-27
EP2678895A4 (en) 2016-12-28
KR101889579B1 (ko) 2018-08-17
US9130205B2 (en) 2015-09-08
WO2012115605A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5751525B2 (ja) 燃料電池発電装置の制御方法および燃料電池発電装置を備えた車両
CN106159294B (zh) 控制燃料电池堆的温度的***和方法
US7695839B2 (en) Method for improved power up-transient response in the fuel cell system
US11050072B2 (en) Fuel cell system and operation control method of the same
US20080160370A1 (en) Adaptive Current Controller for a Fuel-Cell System
US8084151B2 (en) Fuel cell system and method therefor
US20090098427A1 (en) Fuel Cell Power Plant Diverting Air in Response to Low Demand
KR20100065208A (ko) 연료전지시스템
WO2009116392A1 (ja) 電源制御装置
WO2008072793A1 (ja) 燃料電池システム及び燃料電池システムの起動方法
JP6013624B2 (ja) 耐久性の向上のための燃料電池電力設備の電力オン停止
JP2009032615A (ja) 燃料電池システムにおけるコンタクタ故障検出方法及びその装置
US8402820B2 (en) Diagnosis concept for valve controlled coolant bypass paths
US20230231164A1 (en) Air tank and variable geometry air handling in hydrogen fuel cells
JP2008103154A (ja) 燃料電池システム
US20110053015A1 (en) Control Method for a Fuel Cell System and Fuel Cell System
JP7272162B2 (ja) 燃料電池車
JP2013134866A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP6167864B2 (ja) 燃料電池システムおよび燃料電池車両、燃料電池システムの制御方法
KR102540935B1 (ko) 연료전지시스템의 운전 제어 방법
JP2018022667A (ja) 燃料電池システム
JP5459627B2 (ja) 燃料電池システム
KR20080072045A (ko) 저 수요에 응답하여 공기를 전향시키는 연료 전지 파워플랜트

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150508

R150 Certificate of patent or registration of utility model

Ref document number: 5751525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees