JP5691709B2 - Water purification method and water purification device - Google Patents

Water purification method and water purification device Download PDF

Info

Publication number
JP5691709B2
JP5691709B2 JP2011062881A JP2011062881A JP5691709B2 JP 5691709 B2 JP5691709 B2 JP 5691709B2 JP 2011062881 A JP2011062881 A JP 2011062881A JP 2011062881 A JP2011062881 A JP 2011062881A JP 5691709 B2 JP5691709 B2 JP 5691709B2
Authority
JP
Japan
Prior art keywords
water
injection rate
flocculant
absorbance
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011062881A
Other languages
Japanese (ja)
Other versions
JP2012196628A (en
JP2012196628A5 (en
Inventor
崇史 山本
崇史 山本
浩二 鹿島田
浩二 鹿島田
吉英 貝谷
吉英 貝谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2011062881A priority Critical patent/JP5691709B2/en
Publication of JP2012196628A publication Critical patent/JP2012196628A/en
Publication of JP2012196628A5 publication Critical patent/JP2012196628A5/ja
Application granted granted Critical
Publication of JP5691709B2 publication Critical patent/JP5691709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

本発明は、原水の浄水処理方法及び浄水処理装置に関するものである。   The present invention relates to a raw water purification method and a water purification apparatus.

多くの浄水場では、凝集沈殿、砂ろ過による浄水処理方法が採用されているが、一般的に凝集沈殿における凝集剤注入率の決定方法は、(1)運転管理員が原水を採水し、ジャーテストを実施し決定する、あるいは(2)原水濁度を工業計器で連続的に測定し、その測定結果に基づき注入率を決定するなどが挙げられる。しかし、(1)の方法では、注入率決定までの操作が煩雑で時間を要し、(2)の方法では、降雨などの高濁度でかつ有機物が増加した場合、有機物の除去が不十分となる場合があり、結果的に所望の処理水質が安定して得られないなどの懸念がある。   In many water purification plants, water purification methods using coagulation sedimentation and sand filtration are adopted. Generally, the method for determining the coagulant injection rate in coagulation sedimentation is as follows: (1) The operation manager collects the raw water, Jar test is performed and determined, or (2) raw water turbidity is continuously measured with an industrial instrument, and the injection rate is determined based on the measurement result. However, in the method (1), the operation up to the determination of the injection rate is complicated and requires time, and in the method (2), when the organic matter increases due to high turbidity such as rainfall, the removal of the organic matter is insufficient. As a result, there is a concern that the desired treated water quality cannot be stably obtained.

また、近年、浄水場において、砂ろ過の代わりに膜ろ過を採用する事例が増えているが、膜ろ過は砂ろ過よりも高い除濁性能を有し、種々の凝集剤注入率の制御方法が発案されている。
例えば、特許文献1は、指標として紫外線吸光度または色度を用いてフミン質濃度を測定し、膜処理装置10から排出されるろ過水のフミン質濃度に基づき凝集剤を前記原水に注入し、原水に溶存するフミン質の監視と除去により分離膜の負担を軽減する方法を提案している。
また、特許文献2は、膜ろ過される原水への凝集剤の注入量を、原水の色度/濁度の値に基づいて制御する方法を提案している。
更に、特許文献3は、濾過膜を具備した濾過手段と、この濾過手段の上流側に設けた凝集剤注入手段及び活性炭注入手段とを備えた浄水設備を運転するに際し、前記濾過手段を通過後の処理水中の有機物濃度が所定値以上のとき、前記活性炭注入手段による注入を開始させる方法により、凝集剤と活性炭との重複注入を少なくし、水質を維持しつつ運転コストを低減することができる旨を開示している。
In recent years, in water treatment plants, there are increasing cases of adopting membrane filtration instead of sand filtration. Membrane filtration has higher turbidity than sand filtration, and there are various methods for controlling the flocculant injection rate. It has been invented.
For example, Patent Document 1 measures the humic substance concentration using ultraviolet absorbance or chromaticity as an index, and injects a flocculant into the raw water based on the humic substance concentration of filtrate discharged from the membrane treatment device 10. We propose a method to reduce the burden on the separation membrane by monitoring and removing the humic substances dissolved in the water.
Patent Document 2 proposes a method of controlling the amount of the flocculant injected into the raw water to be membrane filtered based on the chromaticity / turbidity value of the raw water.
Further, in Patent Document 3, when operating a water purification facility provided with a filtering means provided with a filtering membrane and a flocculant injecting means and an activated carbon injecting means provided on the upstream side of the filtering means, after passing through the filtering means, When the concentration of organic substances in the treated water is equal to or higher than a predetermined value, the method of starting the injection by the activated carbon injection means can reduce the duplicate injection of the flocculant and the activated carbon and reduce the operating cost while maintaining the water quality. To the effect.

原水の状態が、降雨などにより激しく変動した場合、従来技術では、十分に対処しきれない懸念があり、更に改善が要望されている。   When the state of raw water fluctuates violently due to rainfall or the like, there is a concern that the conventional technology cannot fully cope with it, and further improvement is desired.

特開2008−126223号公報JP 2008-126223 A 特許第3830085号公報Japanese Patent No. 3830085 特開2007−117947号公報JP 2007-117947 A 特開2006−320794号公報JP 2006-320794 A 特開2012−170848号公報JP 2012-170848 A

原水の状態が、降雨などにより激しく変動した場合、原水に注入される凝集剤が濁度成分の集塊化に消費されるため、注入すべき凝集剤量を正確に把握することが困難となるという問題があった。
また、測定波長390nmの紫外線吸光度測定値は、水質変動に対する変動幅が小さいために、凝集剤注入率を正確に制御することが困難になる場合があるという問題もあった。
When the state of the raw water changes drastically due to rainfall, etc., the flocculant injected into the raw water is consumed for agglomeration of turbidity components, making it difficult to accurately grasp the amount of flocculant to be injected. There was a problem.
Further, the ultraviolet absorbance measurement value at a measurement wavelength of 390 nm has a problem that it may be difficult to accurately control the flocculant injection rate because the fluctuation range with respect to the water quality fluctuation is small.

本発明はかかる問題点に鑑みてなされたもので、その目的は、原水性状が大きく変化しても安定した品質の浄水が得られる、浄水処理方法及び浄水処理装置を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a water purification treatment method and a water purification treatment apparatus that can obtain purified water with stable quality even if the raw water quality changes greatly.

本発明は、以下のとおりである。
1)原水に所定の凝集剤注入率で凝集剤を注入して凝集処理水を生成し、該凝集処理水を膜ろ過して浄水を得る浄水処理方法であって、
前記原水の紫外線吸光度(A )、前記凝集処理水の紫外線吸光度(A )及び濁度を測定し、
前記凝集処理水の紫外線吸光度(A)が、該凝集処理水の予め設定された紫外線吸光度目標値(A)以上の場合(A >A 、原水の紫外線吸光度(A)及び濁度の測定した情報から前記凝集剤注入率を増加する様に制御し、
前記紫外線吸光度目標値(A )以下の場合(A <A )、原水の紫外線吸光度(A )及び濁度の測定した情報から前記凝集剤注入率を減少する様に制御し、
原水性状が変動しても安定して清澄な浄水を得ることを特徴とする浄水処理方法。
2)原水に所定の凝集剤注入率で凝集剤を注入して凝集処理水を生成し、該凝集処理水を膜ろ過して浄水を得る浄水処理方法であって、
前記原水の紫外線吸光度(A)及び濁度を測定し、
め設定されている紫外線吸光度目標値(A)から、紫外線吸光度除去率ΔA
[紫外線吸光度除去率ΔA=100×(A−A)/A]を求め、
前記紫外線吸光度除去率ΔAと凝集剤注入率とによる関係式と、
前記原水の濁度が上昇した場合、前記測定された原水の濁度と凝集剤注入率補正値とによる関係式と、から補正された凝集剤注入率を求め、
前記凝集剤注入率と、前記補正値により補正された凝集剤注入率とに基づいて、前記凝集処理水の紫外線吸光度(A )が、前記予め設定された紫外線吸光度目標値(A )以下となるように制御し、原水性状が変動しても安定して清澄な浄水を得ることを特徴とする浄水処理方法。
3)前記凝集剤注入率は、
下記の関係式(1)と関係式(2)の凝集剤注入率の合算により決定することを特徴とする上記1)又は2)の浄水処理方法。
・紫外線吸光度除去率ΔA[ΔA=100×(A −A )/A ]−凝集剤注入率の関係式(1)
・前記濁度−凝集剤注入率の補正値の関係式(2)
4)前記凝集処理水の紫外線吸光度(Aが、該凝集処理水の予め設定された紫外線吸光度目標値(A以上の場合、(A >A )、前記凝集処理水への粉末活性炭の注入を行うことを特徴とする上記1〜3のいずれか1項の浄水処理方法。
5)前記粉末活性炭注入率は、予め設定されている紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式(3)から決定することを特徴とする上記4)の浄水処理方法。
6)前記紫外線吸光度目標値(A)は、0.25未満であることを特徴とする上記1)〜5)のいずれか1項の浄水処理方法。
7)前記紫外線吸光度(A)は、波長260nmにて測定されることを特徴とする上記1)〜6)のいずれか1項の浄水処理方法。
8)原水に所定の凝集剤注入率により凝集剤を注入する凝集剤注入装置と、前記凝集剤の注入により凝集処理水を生成する凝集処理装置と、前記凝集処理水を膜ろ過して浄水を得る膜ろ過装置と、を含む、浄水処理装置であって、
前記原水及び凝集処理水の紫外線吸光度(A )、(A )を測定し、測定した情報を得る紫外線吸光度測定装置と、
前記原水の濁度を測定し、測定した情報を得る濁度測定装置と、
前記凝集処理水の紫外線吸光度( と予め設定された紫外線吸光度目標値(A)とが一致(A=A)するように、前記原水の紫外線吸光度(A)及び前記濁度の測定した情報から前記凝集剤注入率を調整制御する制御部を有し、
原水性状が変動しても安定して清澄な浄水を得ることを特徴とする浄水処理装置。
9)原水に所定の凝集剤注入率により凝集剤を注入する凝集剤注入装置と、前記凝集剤の注入により凝集処理水を生成する凝集処理装置と、前記凝集処理水を膜ろ過して浄水を得る膜ろ過装置と、を含む、浄水処理装置であって、
前記原水の紫外線吸光度(A)、及び前記凝集処理水の紫外線吸光度(A)を測定する紫外吸光度測定装置と、
前記原水の濁度を測定する濁度測定装置と、
前記原水の紫外線吸光度(Aと、予め設定されている紫外線吸光度目標値(A )とにより紫外線吸光度除去率ΔAを算出し、予め定められた紫外線吸光度除去率−凝集剤注入率の関係式(1)と、前記原水濁度−濁度による凝集剤注入率の補正値の関係式(2)と、に基づいて、前記原水の濁度に応じて補正された前記凝集剤注入率を求め、前記凝集剤注入装置の凝集剤注入率を制御する制御部と、
を有し、
前記制御部により、原水性状が変動しても凝集剤注入率を制御し、安定して清澄な浄水を得ることを特徴とする浄水処理装置。
10)前記制御部は、前記凝集処理水の紫外線吸光度(Aと予め設定された紫外線吸光度目標値(A)が、
>Aの場合、凝集剤注入率を増加させる様に制御し、
<Aの場合、凝集剤注入率を減少させる様に制御することを特徴とする上記8)又は9)の浄水処理装置。
11)前記凝集処理水に粉末活性炭を注入する粉末活性炭注入装置を有し、
記制御部は、前記凝集処理水の紫外線吸光度(Aと予め設定された紫外線吸光度目標値(Aにより、紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式から粉末活性炭注入率を決定し、
>A の場合、前記凝集処理水へ粉末活性炭を注入する様に前記粉末活性炭注入装置の制御を行うことを特徴とする上記8)〜10)のいずれか1項の浄水処理装置。
The present invention is as follows.
1) A water purification method for injecting a coagulant into raw water at a predetermined coagulant injection rate to generate coagulated water, and subjecting the coagulated water to membrane filtration to obtain purified water,
Measure the ultraviolet absorbance (A G ) of the raw water, the ultraviolet absorbance (A S ) and turbidity of the flocculated water ,
UV absorbance of the aggregation treatment water (A S) is preset UV absorbance target value of aggregated treated water (A M) For the following (A S> A M), the raw water ultraviolet absorbance (A G) And controlling the flocculant injection rate to increase from the measured information of turbidity,
When the UV absorbance target value (A M ) or less (A S <A M ), control is performed so as to decrease the flocculant injection rate from the measured information of the UV absorbance (A G ) and turbidity of raw water ,
A purified water treatment method characterized by stably obtaining clear purified water even when the raw aqueous state changes.
2) A purified water treatment method for injecting a flocculant into raw water at a predetermined flocculant injection rate to generate agglomerated treated water, and subjecting the agglomerated treated water to membrane filtration to obtain purified water,
And measuring the ultraviolet absorbance of the raw water (A G)beauty turbidity,
UV absorbance target value which is pre-Me set from (A M), UV absorbance removal rate ΔA
[Ultraviolet light absorbance removal rate ΔA = 100 × (A G −A M ) / A G ]
A relationship by a coagulant injection rate and the ultraviolet absorbance removal rate .DELTA.A,
When the turbidity of the raw water is increased, a corrected coagulant injection rate is obtained from the relational expression based on the measured turbidity of the raw water and the coagulant injection rate correction value,
Based on the flocculant injection rate and the flocculant injection rate corrected by the correction value, the ultraviolet absorbance (A S ) of the flocculated water is equal to or less than the preset ultraviolet absorbance target value (A M ). A purified water treatment method characterized in that the purified water is stably obtained even if the raw water state changes .
3) The flocculant injection rate is
The water purification method according to 1) or 2) above, which is determined by adding together the flocculant injection rates of the following relational expression (1) and relational expression (2) .
UV light absorption removal rate ΔA [ΔA = 100 × (A G −A M ) / A G ] −relational expression of flocculant injection rate (1)
-Relational expression of correction value of turbidity-flocculating agent injection rate (2)
4) Ultraviolet absorption of the aggregation treatment water (A S) is preset UV absorbance target value of aggregated treated water (A M) case above, (A S> A M) , to the aggregation treatment water The water purification method according to any one of 1 ) to 3 ) above, wherein powdered activated carbon is injected.
5) the powdered activated carbon injection rate, water purification UV absorbance removal amount set in advance (A S -A M) and the 4 to be characterized to determine the relationship between the powdered activated carbon injection rate (3)) Processing method.
6) The water purification method according to any one of 1) to 5) above, wherein the ultraviolet absorbance target value (A M ) is less than 0.25.
7) The water purification method according to any one of 1) to 6) above, wherein the ultraviolet absorbance (A S ) is measured at a wavelength of 260 nm.
8) A flocculant injection device for injecting a flocculant into raw water at a predetermined flocculant injection rate, an agglomeration treatment device for generating agglomeration treated water by injecting the flocculant, and filtering the purified water by membrane filtration A water purification device comprising a membrane filtration device to obtain,
An ultraviolet absorbance measuring device for measuring the ultraviolet absorbance (A G ) and (A S ) of the raw water and the agglomerated treated water and obtaining the measured information;
A turbidity measuring device for measuring the turbidity of the raw water and obtaining the measured information;
Wherein as the ultraviolet absorbance of the aggregation treatment water (A S) and the pre-Me-set UV absorbance target value and (A M) matches (A S = A M), the ultraviolet absorbance of the raw water (A G) and the Having a control unit for adjusting and controlling the flocculant injection rate from the measured turbidity information,
A water purification apparatus characterized by stably obtaining clear purified water even if the raw aqueous state changes.
9) A flocculant injecting device for injecting a flocculant into raw water at a predetermined flocculant injection rate, an aggregating device for generating agglomerated water by injecting the flocculant, and filtering the purified water by membrane filtration A water purification device comprising a membrane filtration device to obtain,
And the ultraviolet absorbance of the raw water (A G), and the aggregation treatment water UV absorbance (A S) ultraviolet absorbance measuring device that measure the,
A turbidity measuring device for measuring the turbidity of the raw water;
The UV absorbance removal rate ΔA is calculated from the UV absorbance (A G ) of the raw water and a preset UV absorbance target value (A M ), and a predetermined UV absorbance removal rate−aggregating agent injection rate is calculated. Based on the relational expression (1) and the relational expression (2) of the correction value of the flocculant injection rate due to the raw water turbidity-turbidity, the flocculant injection rate corrected according to the turbidity of the raw water the calculated, and a control unit for controlling the coagulant injection rate of the coagulant injection device,
Have
The water purification apparatus characterized by controlling the coagulant | flocculant injection rate even if raw | natural water state fluctuates by the said control part, and obtaining a clear purified water stably.
10) wherein the control unit, the ultraviolet absorbance of the aggregation treatment water (A S) and the pre-Me-set UV absorbance target value (A M) is,
If A S > A M , control to increase the coagulant injection rate,
In the case of A S <A M , the water purification apparatus according to 8) or 9), which is controlled so as to reduce the flocculant injection rate.
11) having a powdered activated carbon injection device for injecting powdered activated carbon into the flocculated water;
Before SL control unit, by ultraviolet absorbance of the aggregation treatment water (A S) and the pre-Me-set UV absorbance target value (A M), and UV absorbance removal amount (A S -A M) and powdered activated carbon injection rate The powder activated carbon injection rate is determined from the relational expression of
In the case of A S > A M , the water purification apparatus according to any one of 8) to 10) above , wherein the powdered activated carbon injection device is controlled so as to inject powdered activated carbon into the coagulated water .

本発明は、紫外線吸光度目標値(A)を予備的な試験や経験則などから予め設定し、凝集処理水の紫外線吸光度(A)が、該A以下となるように、原水の紫外線吸光度(A)及び濁度の情報から凝集剤注入率を制御することが、従来では見られない重要な技術思想である。
本発明は、原水の状態が、降雨などにより激しく変動した場合、凝集剤が濁度成分の集塊化等に消費される結果、凝集剤注入率が不正確になることに着目し、該消費量を補完するように制御するものである。
In the present invention, the ultraviolet absorbance target value (A M ) is set in advance from preliminary tests, empirical rules, and the like, so that the ultraviolet absorbance (A S ) of the agglomerated treated water is equal to or lower than the A M. Controlling the flocculant injection rate from information on absorbance (A G ) and turbidity is an important technical idea that has not been seen in the past.
The present invention focuses on the fact that the flocculant injection rate becomes inaccurate as a result of flocculation being consumed for agglomeration of turbidity components when the state of raw water fluctuates drastically due to rainfall, etc. It controls to complement the quantity.

本発明は、原水の状態が、降雨などにより激しく変動した場合にも柔軟かつ正確に凝集剤注入率を見出すことができ、種々の原水性状に対して安定して清澄な浄水を提供することができる。また、本発明は、種々の原水性状に対して、凝集剤、更には粉末活性炭の最適な注入率を用いることができるので、コストの低減に寄与することができる。更に、本発明は、膜ろ過装置の膜の目詰まりが低減し、膜の機能維持が長時間化し、メンテナンスも容易である。   The present invention can find a flocculant injection rate flexibly and accurately even when the state of raw water fluctuates violently due to rainfall or the like, and provides stable and clear purified water for various raw water conditions. it can. Moreover, since this invention can use the optimal injection rate of a flocculant and also powdered activated carbon with respect to various raw | natural raw water forms, it can contribute to reduction of cost. Furthermore, according to the present invention, the clogging of the membrane of the membrane filtration device is reduced, the function of the membrane is maintained for a long time, and the maintenance is easy.

本発明の実施の形態に係る、紫外線吸光度除去率と凝集剤注入率の関係式(1)を示すグラフである。It is a graph which shows the relational expression (1) of the ultraviolet-ray-absorbance removal rate and flocculant injection rate based on embodiment of this invention. 本発明の実施の形態に係る、原水濁度と濁度による凝集剤注入率の補正値の関係式(2)を示すグラフである。It is a graph which shows the relational expression (2) of the correction value of the flocculant injection rate by raw | natural water turbidity and turbidity based on embodiment of this invention. 本発明の実施の形態に係る、紫外線吸光度除去量と粉末活性炭注入率との関係式(3)を示すグラフである。It is a graph which shows the relational expression (3) of the ultraviolet-ray light absorbency removal amount and powder activated carbon injection | pouring rate based on embodiment of this invention. 本発明の実施の形態に係る、浄水処理装置の一例を説明する図である。It is a figure explaining an example of the water purification processing apparatus based on embodiment of this invention.

以下、本発明を詳細に説明する。
本発明は、Aが、A以下となるように、原水のA及び濁度の情報から凝集剤注入率を制御することができる。
、A、及びAの紫外線吸光度は、夫々が同一の波長である必要があるが、特定の波長によらない。また、A、及びA並びに濁度の測定は、通常、常時連続測定であるが、気象条件等が一定の場合等、場合により断続測定でもよく、特に、濁度の測定は、断続測定でよい場合がある。
本発明において、濁度は、透過光散乱方式、レーザー散乱光方式等により測定した値が採用される。
本発明は、基本的には 以下である場合は、凝集剤注入率を増加することは回避されるとともに現状を維持するか、又は凝集剤注入率が低減されるように制御される。可能な限り、A=Aとなるように制御することが、凝集剤の有効使用量を最大限に発揮させるため、好ましい。
本発明は、基本的には上記 が上記 を上回る場合は、濁度が増加している傾向が高く、上記 が上記 以下となるように濁度の測定値等を勘案して凝集剤注入率を増加し、制御される。この場合、本発明の浄水処理方法において、粉末活性炭の注入を併用してもよい。粉末活性炭の注入は、凝集処理水への注入が好ましい。
例えば、本発明において、前記凝集剤注入率を増加させるための制御方法としては、図1、図2に示す様に、予め設定されている紫外線吸光度除去率ΔA[ΔA=100×(A−A)/A]と凝集剤注入率の関係式(1)(図1)、及び予め設定されている濁度と凝集剤注入率の補正値の関係式(2)(図2)から、凝集剤注入率を決定することが挙げられる。
具体的には、関係式(1)の凝集剤注入率に関係式(2)の凝集剤注入率補正値を合算することが挙げられる。これら関係式は、予備試験、経験則等から事前に設定されるものであり、運転管理員の判断で任意に変更可能なものである。
また、上記の凝集剤注入率にて、本発明の浄水処理方法を実施した結果、A>Aの場合のみ、凝集処理水への粉末活性炭の注入を行うことが粉末活性炭の有効利用上好ましい。この場合、粉末活性炭注入率は、図3に示す様に、予め設定されている紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式(3)から決定することが好ましい。この関係式は、予備試験、経験則等から事前に設定されるものであり、運転管理員の判断で任意に変更可能なものである。
尚、関係式(1)、(2)、(3)は、夫々、図1、図2、図3に示す特性図を示す。
Hereinafter, the present invention will be described in detail.
The present invention is, A S is to be equal to or less than A M, it is possible to control the coagulant injection rate from A G and turbidity information of the raw water.
The UV absorbances of A M , A S , and A G need to be the same wavelength, but do not depend on a specific wavelength. The measurement of A S, and A G and turbidity is usually a constant continuous measurement, or when the weather conditions are constant, optionally may be intermittent measurements, in particular, the measurement of turbidity, intermittent measurement May be good.
In the present invention, the turbidity employs a value measured by a transmitted light scattering method, a laser scattered light method, or the like.
The present invention, when basically A S is not more than A M, controlled to either maintain the status quo with it is avoided to increase the coagulant injection rate, or coagulant injection rate is reduced Is done. As much as possible, it is preferable to control so that A M = A S in order to maximize the effective use amount of the flocculant.
The present invention, when basically the above A S exceeds the A M, more likely that the turbidity is increasing, the A S is the measured value or the like of the turbidity to be equal to or less than the A M In consideration, the coagulant injection rate is increased and controlled. In this case, injection of powdered activated carbon may be used in combination in the water purification treatment method of the present invention. The powdered activated carbon is preferably injected into the agglomerated water.
For example, in the present invention, as a control method for increasing the flocculant injection rate, as shown in FIG. 1 and FIG. 2, a preset UV absorbance removal rate ΔA [ΔA = 100 × (A G − From A M ) / A G ] and the coagulant injection rate relational expression (1) (FIG. 1), and the preset relational expression of turbidity and coagulant injection rate correction value (2) (FIG. 2) And determining the injection rate of the flocculant.
Specifically, the flocculant injection rate correction value of the relational expression (2) is added to the flocculant injection ratio of the relational expression (1). These relational expressions are set in advance from preliminary tests, rules of thumb, etc., and can be arbitrarily changed at the discretion of the operation manager.
Further, in the above coagulant injection rate, water treatment method result of the of the present invention, A S> For A M only, effective utilization of doing the injection of powdered activated carbon into the coagulation treatment water powdered activated carbon preferable. In this case, as shown in FIG. 3, the powder activated carbon injection rate is preferably determined from the relational expression (3) between the preset UV absorbance removal amount (A S -A M ) and the powder activated carbon injection rate. . This relational expression is set in advance from preliminary tests, empirical rules, and the like, and can be arbitrarily changed at the discretion of the operation manager.
Relational expressions (1), (2), and (3) show the characteristic diagrams shown in FIGS. 1, 2, and 3, respectively.

本発明において、A、A、及びAの紫外線吸光度の波長は、原水の性状及びその変動状態に応じて予備試験、経験則等から事前に設定されるが、上述のように夫々が同一の波長である必要があるが、特定の波長によらない。例えば、測定波長390nm、260nm等が挙げられる。降雨等による原水の260nm測定値の上昇幅は、390nm測定値に比べて大きく、濁度の上昇幅と相関することを本発明者は見出している。
本発明は、図1に示す上記紫外線吸光度除去率ΔA[ΔA=100×(A−A)/A]の情報からの凝集剤注入率に、図2に示す関係式(2)の濁度情報による凝集剤注入率の補正値を加えることにより、凝集剤注入率を制御することができる。
の値は、適宜設定されるが、通常、0.25未満であり、0.1未満であることが好ましい。
In the present invention, A M, the wavelength of the ultraviolet absorbance of A S, and A G are preliminary testing depending on the nature and variation state of the raw water, but is set in advance from empirical rule or the like, it is respectively as described above It must be the same wavelength, but it does not depend on a specific wavelength. For example, measurement wavelength 390nm, 260nm etc. are mentioned. The inventor has found that the increase in the 260 nm measurement value of the raw water due to rainfall or the like is larger than the 390 nm measurement value and correlates with the increase in turbidity.
The present invention relates to the flocculant injection rate from the information of the ultraviolet absorbance removal rate ΔA [ΔA = 100 × (A G −A M ) / A G ] shown in FIG. 1, and the relational expression (2) shown in FIG. By adding a correction value of the flocculant injection rate based on the turbidity information, the flocculant injection rate can be controlled.
The value of A M is appropriately set, usually less than 0.25, preferably less than 0.1.

本発明の実施の形態に係る、浄水処理装置の一例を図4を用いて説明する。
本発明の浄水処理装置100は、上記本発明の方法を実施できるものであれば、制限されない。本発明の装置としては、具体的には、原水に凝集剤を注入するための凝集剤注入装置10、凝集剤注入装置10からの凝集剤によりフロックを含む凝集処理水を生成する凝集処理装置20、及び前記凝集処理水を膜ろ過して浄水を得る膜ろ過装置30を含み、A、A を測定するとともにA を設定するために用いる紫外線吸光度測定装置40(2つは同一でも別個でもよい)、及び濁度測定装置50並びにそれらの情報を処理して、前記凝集剤注入装置の凝集剤注入率を制御する制御部60を含むものが挙げられる。
凝集剤注入装置10は、制御部60と情報の交換が可能なように連絡され、制御部60の凝集剤注入率の情報を受けて凝集剤を凝集処理装置20に注入する制御装置、駆動装置、凝集剤受容・注入装置等を具備する。
また、凝集処理装置20は、単なる槽(攪拌混和により凝集フロックを形成する槽と凝集フロックを分離する槽に分け、清澄水をオーバーフローで得る等)でも、凝集フロックを分離する装置(例えば、遠心装置、スクリーン装置等)を具備していてもよい。
An example of the water purification apparatus according to the embodiment of the present invention will be described with reference to FIG.
The water purification apparatus 100 of the present invention is not limited as long as the method of the present invention can be performed. Specifically, as the apparatus of the present invention, a flocculant injecting apparatus 10 for injecting a flocculant into raw water, and an aggregating apparatus 20 for generating agglomerated water containing flocs by the flocculant from the flocculant injecting apparatus 10. , and includes a membrane filtration device 30 to obtain a purified water the coagulation process water by membrane filtration, a G, two UV absorbance measurement device 40 (used to configure the a M with measuring the a S are separately be the same Or a turbidity measuring device 50 and a control unit 60 that processes the information and controls the flocculant injection rate of the flocculant injection device.
The flocculant injection device 10 is in communication with the control unit 60 so that information can be exchanged, and receives the information on the flocculant injection rate of the control unit 60 and injects the flocculant into the coagulation processing device 20. And a coagulant receiving / injecting device.
In addition, the flocculation treatment apparatus 20 is a device (for example, a centrifuge) that separates the flocculated flocs even in a simple tank (divided into a tank that forms the flocculated flocs by stirring and mixing and a tank that separates the flocculated flocs and obtains clear water by overflow). Devices, screen devices, etc.).

本発明に用いる膜ろ過装置は、膜モジュールの種類や形状に特に限定されるものではないが、槽浸漬型膜ろ過装置の方が好ましい。従来のケーシング型膜モジュールを用いた装置では、除去すべき成分(濁質)が膜面に堆積し易く、膜の流路閉塞が生じ、膜ろ過装置の運転ができない状態になる事もある。
槽浸漬型膜ろ過装置は、槽内に膜モジュールを設置した構造を有し、モジュールの周囲に障害物がないものが好ましく、数千〜1万mg/L程度の濁質の蓄積が可能なタイプが、本発明の方法により膜の洗浄等の機能回復処理までの時間を、更に長期化できるので好ましい。本発明の膜ろ過装置では、原水の回収率は、99.7%以下である。
Although the membrane filtration apparatus used for this invention is not specifically limited by the kind and shape of a membrane module, The tank immersion type membrane filtration apparatus is more preferable. In the apparatus using the conventional casing type membrane module, the component (turbidity) to be removed tends to be deposited on the membrane surface, the membrane flow path is blocked, and the membrane filtration device may not be operated.
The tank submerged membrane filtration device has a structure in which a membrane module is installed in the tank, and preferably has no obstacle around the module, and can accumulate turbidity of about several thousand to 10,000 mg / L. The type is preferable because the time until the function recovery treatment such as membrane cleaning can be further prolonged by the method of the present invention. In the membrane filtration device of the present invention, the raw water recovery rate is 99.7% or less.

本発明は、凝集剤の原水への注入は、原水、そのままのものでも、所望の前処理を施したものであってもよい。前処理としては、マンガン、鉄、等を除く処理が挙げられる。A、A、及び濁度は、通常、前処理前の原水そのものを用いるが、前処理後であって、凝集処理前のものを用いてもよいし、両者を用いてもよい。
また、本発明は、粉末活性炭を原水へ注入することができるが、注入される原水は、そのままのものでも、所望の前処理を施した水であってもよい。前処理としては、マンガン、鉄、等を除く処理、凝集処理等が挙げられる。粉末活性炭の注入位置は、好ましくは、上述のように、凝集処理された水であり、好ましくはフロックが除去された水である。
本発明において、 が測定される凝集処理水は、フロックが除去されていた方が好ましい。
粉末活性炭注入装置70は、制御部60と、更に所望により凝集剤注入装置10と上記情報の交換が可能なように連絡される。粉末活性炭注入装置70としては、上記凝集剤注入装置10と同様な構成が採用できる。
粉末活性炭は、フロックが除去された凝集処理水に注入されることが好ましいが、膜ろ過装置30に直接、注入しても凝集処理装置20と膜ろ過装置30を連絡する経路に注入してもよい。本発明は、粉末活性炭を膜ろ過装置30に注入した場合、その滞留時間を長期化することできるという効果もある。
In the present invention, the flocculant may be injected into the raw water as it is, or it may be subjected to a desired pretreatment. Examples of the pretreatment include a treatment excluding manganese, iron and the like. As for A G , A S , and turbidity, the raw water itself before the pretreatment is usually used, but after the pretreatment and before the aggregation treatment may be used, or both may be used.
Moreover, although this invention can inject | pour powdered activated carbon into raw | natural water, the raw | natural water injected may be as it is or the water which performed the desired pretreatment. Examples of the pretreatment include a treatment excluding manganese, iron, etc., and an agglomeration treatment. The injection position of the powdered activated carbon is preferably water that has been agglomerated as described above, and preferably water from which floc has been removed.
In the present invention, the aggregation treatment water A S is measured, it is preferable that flocks had been removed.
The powdered activated carbon injection device 70 is communicated with the control unit 60 so that the information can be exchanged with the flocculant injection device 10 as required. As the powdered activated carbon injection device 70 , the same configuration as that of the flocculant injection device 10 can be adopted.
Powdered activated carbon is preferably injected into the aggregation treatment water flocs have been removed, directly to the membrane filtration apparatus 30, it is injected and injected into the path of contact aggregation processor 20 and the membrane filtration device 30 Good. The present invention also has an effect that, when powdered activated carbon is injected into the membrane filtration device 30 , the residence time can be prolonged.

制御部は、ΔAと凝集剤注入率の関係式、及び濁度と凝集剤注入率の補正値の関係式、並びに紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式の少なくとも何れかが、記憶されており、A、A、及び濁度の情報と前記関係式を比較し、凝集剤注入装置及び粉末活性炭注入装置の各々の注入率を制御することが好ましい。
上記関係式は、運転管理員の判断で任意に変更可能であり、上記記憶されたものをパソコン等で書き換え、置き換え等をすることができる。
The control unit includes a relational expression between ΔA and the flocculant injection rate, a relational expression between the turbidity and the correction value of the flocculant injection ratio, and a relational expression between the ultraviolet light absorption removal amount (A S −A M ) and the powdered activated carbon injection rate. Is preferably stored, and it is preferable to control the injection rate of each of the flocculant injection device and the powdered activated carbon injection device by comparing the relational expression with the information of A G , A S , and turbidity. .
The relational expression can be arbitrarily changed at the discretion of the operation manager, and the stored one can be rewritten and replaced by a personal computer or the like.

以下、本発明の好ましい態様を原水の前処理として除マンガン処理を施す処理を例に具体的に説明するが、本発明はこの態様に制限されず、上述の種々の態様が適用可能である。
原水は、上向流除マンガン装置、急速混和槽と凝集処理水受槽からなる凝集処理装置、粉末活性炭注入装置、槽浸漬型膜ろ過装置の順番に処理が施される。
原水は、次亜塩素酸ナトリウムを注入した後、原水供給ポンプで上向流除マンガン装置に供給され、溶解性マンガンを酸化・不溶化する。次亜塩素酸ナトリウムは、上向流除マンガン装置を通水した処理水の残留塩素として0.5mg/L程度検出するように注入する。なお、上向流除マンガン装置は、後段に膜ろ過装置があるので、除濁の必要性がないため、設置面積を狭く、処理水量を大きくできる利点がある。
上向流除マンガン装置にて処理された処理水は、自然流下により上向流除マンガン装置から流出し、凝集剤、更には所望によりpH調整剤等が注入され、急速混和層に供給される。
凝集剤には、ポリ塩化アルミニウム、塩化第二鉄等、水道用水に供するものであればいずれでもよい。
pH調整剤は、凝集処理時のpHを調整するものであって、一般的には凝集処理時のpHを酸性側にした方が、有機物、色度の除去性が向上するが、浄水処理設備として目標とする水質によっては、注入してもしなくとも良い。なお、注入する場合、使用する薬液は、硫酸、塩酸、苛性ソーダ等、水道用水に供することができるものであればいずれでも良い。急速混和槽から流出した処理水は、凝集処理水受槽にて一時的に貯留した後、槽浸漬型膜ろ過装置にポンプにより供給される。凝集処理水受槽と槽浸漬型膜ろ過装置の配管途中には、粉末活性炭注入装置が設けられ、運転管理者が設定する凝集処理後の紫外線吸光度目標値に応じて粉末活性炭が注入される。
Hereinafter, although the preferable aspect of this invention is concretely demonstrated to the example which performs the process which removes manganese as a pre-processing of raw | natural water, this invention is not restrict | limited to this aspect and the above-mentioned various aspects are applicable.
The raw water is treated in the order of an upward flow manganese removal device, a flocculation treatment device comprising a rapid mixing tank and a flocculation treatment water receiving tank, a powdered activated carbon injection device, and a bath immersion membrane filtration device.
The raw water is injected with sodium hypochlorite and then supplied to the upward flow manganese removal device with the raw water supply pump to oxidize and insolubilize the soluble manganese. Sodium hypochlorite is injected so as to detect about 0.5 mg / L as residual chlorine in the treated water that has passed through the upward flow manganese removal system. In addition, since there exists a membrane filtration apparatus in a back | latter stage, since an upflow manganese removal apparatus does not need a turbidity, there exists an advantage which can reduce an installation area and can enlarge the amount of treated water.
The treated water treated in the upward flow removal manganese apparatus flows out of the upward flow removal manganese apparatus by natural flow, and is supplied with a flocculant and, if desired, a pH adjuster and the like, and is supplied to the rapid mixing layer. .
Any flocculant may be used as long as it is used for tap water, such as polyaluminum chloride and ferric chloride.
The pH adjuster adjusts the pH during the agglomeration treatment, and in general, when the pH during the agglomeration treatment is set to the acidic side, the removal of organic matter and chromaticity is improved. Depending on the target water quality, it may or may not be injected. In addition, when injecting, any chemical solution may be used as long as it can be used for tap water, such as sulfuric acid, hydrochloric acid, and caustic soda. The treated water that has flowed out of the rapid mixing tank is temporarily stored in the coagulated treated water receiving tank, and then supplied to the tank-immersed membrane filtration device by a pump. A powdered activated carbon injection device is provided in the middle of the piping between the agglomeration treated water receiving tank and the tank submerged membrane filtration device, and powdered activated carbon is injected according to the target value of the UV absorbance after the aggregation treatment set by the operation manager.

凝集剤の注入率の決定は、上向流除マンガン装置への原水供給配管上に紫外線吸光度計を設置し、原水の紫外線吸光度(A)を連続測定し、制御部において、この値と運転管理者が設定する凝集処理後の紫外線吸光度目標値(A)を比較することで、紫外線吸光度除去率ΔA[ΔA=100×(A−A)/A]を算出する。図1に示す紫外線吸光度除去率と凝集剤注入率の関係式(1)を予め設定しておき、前記の凝集処理によって得られる紫外線吸光度除去率から、凝集剤注入率を導き出す。
ただし、降雨等によって原水濁度が上昇した場合には、図2に示す原水濁度と濁度による凝集剤注入率補正の関係式(2)に基づき、原水濁度に応じて前記の導出された凝集剤注入率に対して注入率の補正・加算がなされる。
すなわち、図1に示す紫外線吸光度除去率と凝集剤注入率の関係式において、低濁度時には通常時の一例として図示される関係式にて凝集剤が注入されるのに対し、高濁度時の一例として図示される関係式に基づき凝集剤が注入されるようになる。
なお、図1の高濁度時の一例として図示される関係式(1)は、図2の関係式(2)で補正されたものである。
The injection rate of the flocculant is determined by installing an ultraviolet absorbance meter on the raw water supply pipe to the upward flow manganese removal equipment, and continuously measuring the ultraviolet absorbance (A G ) of the raw water, and this value and operation are performed in the control unit. By comparing the ultraviolet absorbance target value (A M ) after the aggregation treatment set by the administrator, the ultraviolet absorbance removal rate ΔA [ΔA = 100 × (A G −A M ) / A G ] is calculated. A relational expression (1) between the ultraviolet light absorption removal rate and the flocculant injection rate shown in FIG. 1 is set in advance, and the flocculant injection rate is derived from the ultraviolet light absorption removal rate obtained by the agglomeration process.
However, when the raw water turbidity rises due to rainfall or the like, the above-mentioned derivation is made according to the raw water turbidity based on the relational expression (2) for correcting the flocculant injection rate by the raw water turbidity and turbidity shown in FIG. The injection rate is corrected and added to the flocculant injection rate.
That is, in the relational expression between the ultraviolet light absorption removal rate and the flocculant injection rate shown in FIG. 1, the flocculant is injected according to the relational expression shown as an example of the normal time at low turbidity, whereas at high turbidity. As an example, the flocculant is injected based on the relational expression shown in the figure.
The relational expression (1) illustrated as an example at the time of high turbidity in FIG. 1 is corrected by the relational expression (2) in FIG.

しかし、上記手順に則り導出された凝集剤注入率において、得られる凝集処理水の紫外線吸光度(A)が、運転管理者が設定する凝集処理後の紫外線吸光度目標値(A)に到達しない場合のみ、即ち、A>Aの場合のみ粉末活性炭の注入を行う。この粉末活性炭注入率は、図3に示すような予め設定されている紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式(3)から決定される。
なお、紫外線吸光度(A)、(A)、及び(A)は、波長260nmを採用した。また、濁度は、透過光散乱方式により測定した。
However, at the flocculant injection rate derived according to the above procedure, the ultraviolet absorbance (A S ) of the obtained agglomerated water does not reach the target UV absorbance value (A M ) after the aggregation treatment set by the operation manager. Only in the case, i.e., when A S > A M , powdered activated carbon is injected. The powdered activated carbon injection rate is determined from the UV absorbance removal amount that is set in advance as shown in FIG. 3 relational expression between (A S -A M) and powdered activated carbon injection rate (3).
In addition, the wavelength 260nm was employ | adopted for ultraviolet-ray light absorbency (A G ), (A S ), and (A M ). The turbidity was measured by a transmitted light scattering method.

以下、本発明の実施例を説明する。なお、本発明はこの実施例により何等制限されるものではない。   Examples of the present invention will be described below. In addition, this invention is not restrict | limited at all by this Example.

実施例1
上記図1〜3を採用した上記好ましい態様の浄水処理方法及び装置を適用し、処理水の経日変化を観察した。測定は、2011年1月26日(水)〜28日(金)まで、毎日9:00頃1回実施した。結果を表1に示す。
Example 1
The water purification method and apparatus of the said preferable aspect which employ | adopted the said FIGS. 1-3 were applied, and the daily change of treated water was observed. The measurement was carried out once every day at around 9:00 from January 26 (Wed) to 28 (Fri), 2011. The results are shown in Table 1.

Figure 0005691709
Figure 0005691709

比較例1
上記図1〜3を採用した浄水処理方法及び装置を適用することなく、処理水の経日変化を観察した。測定は、2010年3月12日(金)〜16日(火)まで、毎日9:00頃1回実施した。なお、期間中は浄水場の運転条件(凝集剤、活性炭注入率)を参考に、注入率(12日、14〜16日では凝集剤40mg/L、活性炭0mg/L、13日では凝集剤71mg/L、粉末活性炭19mg/L;期間中固定)を決定した。結果を表2に示す。
Comparative Example 1
The change with time of the treated water was observed without applying the water purification method and apparatus adopting FIGS. The measurement was carried out once every day at around 9:00 from March 12 (Friday) to 16 (Tuesday), 2010. In addition, during the period, referring to the operating conditions of the water purification plant (flocculating agent, activated carbon injection rate), the injection rate (coagulant 40 mg / L on the 12th and 14-16 days, 0 mg / L activated carbon, 71 mg on the 13th. / L, powdered activated carbon 19 mg / L; fixed during the period). The results are shown in Table 2.

Figure 0005691709
Figure 0005691709

上表より、本発明の方法及び装置を用いると、原水水質の変動に対して安定した処理が実施できることが理解される。   From the above table, it is understood that stable treatment can be carried out against fluctuations in raw water quality by using the method and apparatus of the present invention.

Claims (10)

原水に所定の凝集剤注入率で凝集剤を注入して凝集処理水を生成し、該凝集処理水を膜
ろ過して浄水を得る浄水処理方法であって、
前記原水の紫外線吸光度(A及び濁度、並びに、前記凝集処理水の紫外線吸光度(A )を測定し、
前記凝集処理水の紫外線吸光度(Aと、予め設定されている紫外線吸光度目標値(A )とにより紫外線吸光度除去率ΔA[紫外線吸光度除去率ΔA=100×(A −A )/A ]を算出し、
予め定められた紫外線吸光度除去率ΔA−凝集剤注入率の関係式(1)と、前記原水濁度−凝集剤注入率補正値の関係式(2)と、に基づいて、前記原水の濁度に応じて補正された前記凝集剤注入率を求め、
前記凝集剤の注入率が、前記補正された凝集剤注入率となるように制御し
原水性状が変動しても安定して清澄な浄水を得ることを特徴とする浄水処理方法。
A water purification method for obtaining a purified water by injecting a flocculant into raw water at a predetermined flocculant injection rate to produce agglomerated treated water, and subjecting the agglomerated treated water to membrane filtration,
Measure the ultraviolet absorbance (A G ) and turbidity of the raw water, and the ultraviolet absorbance (A S ) of the flocculated water,
UV absorbance of the aggregation treatment water and (A S), previously have been set ultraviolet absorbance target value (A M) and by UV absorbance removal rate .DELTA.A [UV absorbance removal rate ΔA = 100 × (A G -A M) / A G ]
The turbidity of the raw water based on a predetermined relational expression (1) of UV absorbance removal rate ΔA-coagulant injection rate and a relational expression (2) of the raw water turbidity-coagulant injection rate correction value. The flocculant injection rate corrected according to
Controlling the injection rate of the flocculant to be the corrected flocculant injection rate ,
A purified water treatment method characterized by stably obtaining clear purified water even when the raw aqueous state changes.
原水に所定の凝集剤注入率で凝集剤を注入して凝集処理水を生成し、該凝集処理水を膜ろ過して浄水を得る浄水処理方法であって、
前記原水の紫外線吸光度(A)及び濁度、並びに、前記凝集処理水の紫外線吸光度(A を測定し、
予め設定されている紫外線吸光度目標値(A)から、紫外線吸光度除去率ΔA[紫外線吸光度除去率ΔA=100×(A−A)/A]を求め、
前記紫外線吸光度除去率ΔAと凝集剤注入率とによる関係式と、前記測定された原水の濁度と凝集剤注入率補正値とによる関係式と、から補正された凝集剤注入率を求め、
前記補正された凝集剤注入率に基づいて、凝集剤の注入率を制御し、
前記凝集剤の注入率を制御した結果、前記凝集処理水の紫外線吸光度(A)が、前記予め設定された紫外線吸光度目標値(Aより高い場合(A >A )、前記凝集処理水への粉末活性炭の注入を行い、
原水性状が変動しても安定して清澄な浄水を得ることを特徴とする浄水処理方法。
A water purification method for obtaining a purified water by injecting a flocculant into raw water at a predetermined flocculant injection rate to produce agglomerated treated water, and subjecting the agglomerated treated water to membrane filtration,
Measure the ultraviolet absorbance (A G ) and turbidity of the raw water, and the ultraviolet absorbance (A S ) of the flocculated water ,
From the preset UV absorbance target value (A M ), the UV absorbance removal rate ΔA [UV absorbance removal rate ΔA = 100 × (A G −A M ) / A G ] is obtained,
The calculated and ultraviolet absorbance removal rate ΔA and relationship by a coagulant injection rate, the with the measured raw water turbidity and relationship by a coagulant injection rate correction value, a corrected coagulant injection rate from
Based on the auxiliary Tadashisa the coagulant injection rate to control the injection rate of flocculant,
As a result of controlling the injection rate of the flocculant, when the ultraviolet absorbance (A S ) of the flocculated water is higher than the preset ultraviolet absorbance target value (A M ) (A S > A M ), the aggregation Inject powdered activated carbon into the treated water,
A purified water treatment method characterized by stably obtaining clear purified water even when the raw aqueous state changes.
前記補正された凝集剤注入率は、
下記の関係式(1)の凝集剤注入率と、関係式(2)の凝集剤注入率補正値との合算により決定することを特徴とする請求項1又は2記載の浄水処理方法。
・紫外線吸光度除去率ΔA[ΔA=100×(A−A)/A]−凝集剤注入率の関係式(1)
・前記原水濁度−凝集剤注入率補正値の関係式(2)
The corrected flocculant injection rate is:
The water purification method according to claim 1 or 2, wherein the water purification treatment method is determined by adding together the coagulant injection rate of the following relational expression (1) and the coagulant injection rate correction value of the relational expression (2).
UV light absorption removal rate ΔA [ΔA = 100 × (A G −A M ) / A G ] −relational expression of flocculant injection rate (1)
- the raw water turbidity - coagulant injection Ritsuho positive relationship (2)
前記凝集処理水の紫外線吸光度(A)が、該凝集処理水の予め設定された紫外線吸光度目標値(Aより高い場合、(A>A)、前記凝集処理水への粉末活性炭の注入を行うことを特徴とする請求項1記載の浄水処理方法。 When the ultraviolet absorbance (A S ) of the agglomerated treated water is higher than the preset ultraviolet absorbance target value (A M ) of the agglomerated treated water, (A S > A M ), powder activated carbon to the agglomerated treated water The water purification method according to claim 1, wherein water is injected. 前記粉末活性炭の注入は、予め設定されている紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式(3)から、粉末活性炭注入率を決定することを特徴とする請求項2又は4記載の浄水処理方法。 Wherein said injection of powdered activated carbon, to the UV absorbance removal amount set in advance the relational expression between (A S -A M) and powdered activated carbon injection rate (3), and determining a powdered activated carbon injection rate Item 5. A water purification method according to item 2 or 4 . 前記紫外線吸光度目標値(A)は、0.25未満であることを特徴とする請求項1〜5のいずれか1項に記載の浄水処理方法。 The ultraviolet absorbance target value (A M) is water purification treatment method according to any one of claims 1 to 5, and less than 0.25. 前記紫外線吸光度(A)は、波長260nmにて測定されることを特徴とする請求項1〜6のいずれか1項に記載の浄水処理方法。 The ultraviolet absorbance (A S) is water purification treatment method according to any one of claims 1 to 6, characterized in that it is measured at a wavelength 260 nm. 原水に所定の凝集剤注入率により凝集剤を注入する凝集剤注入装置と、前記凝集剤の注入により凝集処理水を生成する凝集処理装置と、前記凝集処理水を膜ろ過して浄水を得る膜ろ過装置と、を含む、浄水処理装置であって、
前記原水の紫外線吸光度(A)、及び前記凝集処理水の紫外線吸光度(A)を測定する紫外吸光度測定装置と、
前記原水の濁度を測定する濁度測定装置と、
前記原水の紫外線吸光度(A)と、予め設定されている紫外線吸光度目標値(A)とにより紫外線吸光度除去率ΔA[紫外線吸光度除去率ΔA=100×(A −A )/A を算出し、予め定められた紫外線吸光度除去率ΔA−凝集剤注入率の関係式(1)と、前記原水濁度−凝集剤注入率補正値の関係式(2)と、に基づいて、前記原水の濁度に応じて補正された凝集剤注入率を求め、前記凝集剤注入装置の凝集剤注入率が前記補正された凝集剤注入率となるように制御する制御部と、
を有し、
前記制御部により、原水性状が変動しても凝集剤注入率を制御し、安定して清澄な浄水を得ることを特徴とする浄水処理装置。
A flocculant injection device for injecting a flocculant into raw water at a predetermined flocculant injection rate; a flocculant treatment device for generating agglomerated treated water by injecting the flocculant; and a membrane for obtaining purified water by membrane filtration of the agglomerated treated water A water purification device including a filtration device,
An ultraviolet absorbance measuring device for measuring the ultraviolet absorbance (A G ) of the raw water and the ultraviolet absorbance (A S ) of the agglomerated treated water;
A turbidity measuring device for measuring the turbidity of the raw water;
The UV absorbance removal rate ΔA [UV absorbance removal rate ΔA = 100 × (A G −A M ) / A G based on the UV absorbance (A G ) of the raw water and a preset UV absorbance target value (A M ). ] , And based on a predetermined relational expression (1) of UV absorbance removal rate ΔA -flocculating agent injection rate and the raw water turbidity- flocculating agent injection rate correction value (2), It obtains a corrected coagulation Atsumarizai injection rate according to the turbidity of the raw water, and a control unit for infusion rate of flocculant of the coagulant injection unit is controlled to be the corrected coagulant injection rate,
Have
The water purification apparatus characterized by controlling the injection | pouring rate of a coagulant | flocculant even if raw | natural water state fluctuates by the said control part, and obtaining clear purified water stably.
前記制御部は、前記凝集剤の注入率が、前記補正された凝集剤注入率となるように、前記凝集処理水の紫外線吸光度(A)と予め設定された紫外線吸光度目標値(A)が、
>Aの場合、凝集剤注入率を増加させる様に制御し、
<Aの場合、凝集剤注入率を減少させる様に制御することを特徴とする請求項8記載の浄水処理装置。
The control unit is configured to set an ultraviolet absorbance (A S ) of the flocculated water and a preset ultraviolet absorbance target value (A M ) so that the injection rate of the flocculant becomes the corrected flocculant injection rate. But,
When A S > A M , control to increase the injection rate of the flocculant,
For A S <A M, water treatment apparatus according to claim 8, wherein the controller controls so as to reduce the injection rate of the coagulant.
前記凝集処理水に粉末活性炭を注入する粉末活性炭注入装置を有し、
前記制御部は、前記凝集処理水の紫外線吸光度(A)と予め設定された紫外線吸光度目標値(A)により、紫外線吸光度除去量(A−A)と粉末活性炭注入率との関係式から粉末活性炭注入率を決定し、
>Aの場合、前記凝集処理水へ粉末活性炭を注入する様に前記粉末活性炭注入装置の制御を行うことを特徴とする請求項8又は9記載の浄水処理装置。
Having a powdered activated carbon injection device for injecting powdered activated carbon into the agglomerated treated water;
The control unit uses the ultraviolet absorbance (A S ) of the agglomerated water and a preset ultraviolet absorbance target value (A M ) to determine the relationship between the ultraviolet absorbance removal amount (A S -A M ) and the powdered activated carbon injection rate. Determine the powder activated carbon injection rate from the formula,
For A S> A M, water treatment apparatus according to claim 8, wherein performing the control of the powdered activated carbon injection device so as to inject the powdered activated carbon to the coagulation treatment water.
JP2011062881A 2011-03-22 2011-03-22 Water purification method and water purification device Active JP5691709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011062881A JP5691709B2 (en) 2011-03-22 2011-03-22 Water purification method and water purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062881A JP5691709B2 (en) 2011-03-22 2011-03-22 Water purification method and water purification device

Publications (3)

Publication Number Publication Date
JP2012196628A JP2012196628A (en) 2012-10-18
JP2012196628A5 JP2012196628A5 (en) 2013-08-01
JP5691709B2 true JP5691709B2 (en) 2015-04-01

Family

ID=47179396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062881A Active JP5691709B2 (en) 2011-03-22 2011-03-22 Water purification method and water purification device

Country Status (1)

Country Link
JP (1) JP5691709B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016006419A1 (en) * 2014-07-07 2017-04-27 水ing株式会社 Aggregation method and apparatus
JP6739913B2 (en) * 2015-09-09 2020-08-12 株式会社東芝 Aggregation-precipitation control device, aggregation-precipitation control method and computer program
CN105439335B (en) * 2015-12-21 2018-07-31 广东水清环保科技有限公司 A kind of electroless copper plating waste water copper removal treatment process and its system
JP6812198B2 (en) * 2016-10-21 2021-01-13 株式会社日立製作所 Water treatment equipment and water treatment method
WO2018198714A1 (en) * 2017-04-24 2018-11-01 メタウォーター株式会社 Method for removing soluble manganese
FR3106131B1 (en) * 2020-01-10 2022-07-01 Suez Groupe Method for defining and regulating a dose of coagulant for coagulation treatment of raw water
JP7003165B2 (en) * 2020-01-15 2022-01-20 株式会社東芝 Coagulation treatment system, coagulation treatment method, computer program and coagulation treatment control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885512B2 (en) * 2005-10-31 2012-02-29 株式会社日立製作所 Water purification equipment and operation method thereof
WO2010053051A1 (en) * 2008-11-04 2010-05-14 栗田工業株式会社 Filtration apparatus and water treatment equipment

Also Published As

Publication number Publication date
JP2012196628A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5691709B2 (en) Water purification method and water purification device
JP5840456B2 (en) Chemical injection control method and chemical injection control device
JP5208061B2 (en) Flocculant injection control system
JP2012196628A5 (en)
JP2002166265A (en) Water treatment control system using fluorometric analyzer
JP5401087B2 (en) Flocculant injection control method
JP6633342B2 (en) Coagulant injection support device and control method
JP2010513009A (en) Optimized management method of membrane filtration unit and apparatus for realizing the management method
JP2016172213A (en) Timing adjustment method and timing adjustment device
JP2008194559A (en) Apparatus for controlling injection of flocculant
JP2016043327A (en) Water treatment system, control device, and water treatment method
KR101334693B1 (en) Sensor and regression model based method of determining for injection amount of a coagulant, and purified-water treatment system using the same
JP5258714B2 (en) Water treatment method and water treatment apparatus
JP5210948B2 (en) Chemical injection control method for water purification plant
WO2022009481A1 (en) Apparatus and method for controlling injection of coagulant in water treatment plant
JP2019162583A (en) Water treatment system and water treatment method
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP2012223690A (en) Contaminant treatment method for water purification plant
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant
KR101144580B1 (en) Apparatus and method for membrane filtration with automatic coagulating control using screaming current
JP6610158B2 (en) Method and apparatus for producing pure water
JP2018161632A (en) Water treatment apparatus and water treatment method
JP7496786B2 (en) Water purification method and water purification device
JPH0321239B2 (en)
JP2017000916A (en) Monitoring control apparatus and water treatment system comprising the same, and water treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141106

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R150 Certificate of patent or registration of utility model

Ref document number: 5691709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250