JP5258714B2 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP5258714B2
JP5258714B2 JP2009212019A JP2009212019A JP5258714B2 JP 5258714 B2 JP5258714 B2 JP 5258714B2 JP 2009212019 A JP2009212019 A JP 2009212019A JP 2009212019 A JP2009212019 A JP 2009212019A JP 5258714 B2 JP5258714 B2 JP 5258714B2
Authority
JP
Japan
Prior art keywords
chemical substance
flocculant
raw water
amount
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009212019A
Other languages
Japanese (ja)
Other versions
JP2011056478A (en
Inventor
未知子 青木
基治 野口
秀樹 小園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2009212019A priority Critical patent/JP5258714B2/en
Publication of JP2011056478A publication Critical patent/JP2011056478A/en
Application granted granted Critical
Publication of JP5258714B2 publication Critical patent/JP5258714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、処理対象となる原水中に化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを含む水処理方法に関する。   The present invention includes a chemical substance addition process for adding a chemical substance to the raw water to be treated, and a coagulation process for injecting a flocculant into the raw water after the chemical substance addition process to aggregate the solid content in the raw water. The present invention relates to a water treatment method including

水処理には、その工程の1つとして、原水(処理対象水)に凝集剤を注入して原水中の固形分を凝集させる凝集処理が含まれる。従来、この凝集処理における凝集剤の注入量は、処理システムに流入する原水の濁度に基づいて制御するのが一般的である(特許文献1及び2参照)。なお、凝集処理には沈殿処理(+砂ろ過)を伴うのが通常であり、その場合の凝集処理は、凝集によって形成されたフロックを良好に沈殿させることを目標としていた。   One of the processes in the water treatment includes a flocculation treatment in which a flocculant is injected into the raw water (treatment target water) to agglomerate solids in the raw water. Conventionally, the amount of flocculant injected in this flocculation process is generally controlled based on the turbidity of raw water flowing into the treatment system (see Patent Documents 1 and 2). The agglomeration process is usually accompanied by a precipitation process (+ sand filtration). In this case, the agglomeration process is aimed at precipitating the flocs formed by the agglomeration well.

近年、凝集処理の対象は、河川水や工場排水だけでなく、無機成分が少なく、かつ有機物が多く含まれる下水の二次処理水など多様化している。また、凝集処理後、必ずしも沈殿処理を行わず、凝集物(懸濁物)を除去する方式(膜ろ過処理など)が用いられつつある。沈殿処理を行わず、例えば膜ろ過処理により凝集物(懸濁物)の除去を行う場合には、原水中の微細固形物が膜に詰まって膜の透過抵抗が増大するのを抑制するため、凝集処理において、原水中の微細固形物を十分に凝集させておくことが重要である。   In recent years, not only river water and factory effluent but also sewage secondary treatment water that contains few inorganic components and contains a large amount of organic substances has been diversified. In addition, a method of removing aggregates (suspension) (such as membrane filtration process) is being used without necessarily performing a precipitation process after the aggregation process. For example, when removing aggregates (suspension) by membrane filtration without carrying out precipitation treatment, fine solids in raw water are prevented from clogging the membrane and increasing the permeation resistance of the membrane. In the flocculation process, it is important that the fine solids in the raw water are sufficiently flocculated.

ところで、凝集剤の注入量を、処理対象である原水の濁度に基づいて制御する従来の方法においては、原水の濁度が低い、若しくは濁度変化が小さいため制御ができない場合がある。また、濁度が同一であっても、濁度として計測される物質の中の無機物と有機物との比が異なっていたり、濁度として計測されない物質(溶解性の有機物など)が含まれていたりすると、必要とされる凝集剤の量が異なる場合があるため、原水の濁度に基づいて凝集剤の注入量を制御する方法では、凝集剤の過不足が生じることが有る。   By the way, in the conventional method of controlling the injection amount of the flocculant based on the turbidity of the raw water to be treated, the turbidity of the raw water is low or the turbidity change is small, so there are cases where it cannot be controlled. In addition, even if the turbidity is the same, the ratio of the inorganic substance to the organic substance in the substance measured as turbidity is different, or substances that are not measured as turbidity (such as soluble organic substances) are included. Then, since the amount of the flocculant required may differ, in the method of controlling the injection amount of the flocculant based on the turbidity of raw water, the flocculant may be excessive or insufficient.

また、凝集剤の注入量を、原水中の有機物量に基づいて制御することも行われており、その際、有機物量の指標としてはE260(波長260nmの紫外線の吸光度)やTOC(総有機炭素量)などが用いられているが、これらの指標を用いる場合、有機物量の測定作業が繁雑で、迅速かつ連続的な測定を行うことが困難である。また、これらの指標は、凝集すべき有機物の総量を表してはおらず、更に無機成分については考慮されていないため、やはりそれらの値に基づいて凝集剤の注入量を過不足なく適切に制御することは困難である。   In addition, the amount of the flocculant injected is controlled based on the amount of organic matter in the raw water. In this case, E260 (absorbance of ultraviolet light having a wavelength of 260 nm) or TOC (total organic carbon) is used as an indicator of the amount of organic matter. However, when these indicators are used, the work of measuring the amount of organic substances is complicated, and it is difficult to perform quick and continuous measurement. In addition, these indicators do not represent the total amount of organic matter to be aggregated, and further, inorganic components are not taken into account, and accordingly, the injection amount of the flocculant is appropriately controlled based on those values without excess or deficiency. It is difficult.

特開2007−61800号公報JP 2007-61800 A 特開2007−185610号公報JP 2007-185610 A

本発明は、このような従来の事情に鑑みてなされたものであり、その目的とするところは、凝集処理における凝集剤の注入量を、原水中に含まれる凝集すべき成分の量に対して過不足なく適切に制御できるような水処理方法及び水処理装置を提供することにある。   This invention is made | formed in view of such a conventional situation, The place made into the objective is the amount of injection | pouring of the coagulant | flocculant in a coagulation process with respect to the quantity of the component which should be aggregated contained in raw | natural water. It is an object of the present invention to provide a water treatment method and a water treatment apparatus that can be appropriately controlled without excess or deficiency.

上記目的を達成するため、本発明によれば、以下の水処理方法及び水処理装置が提供される。   In order to achieve the above object, according to the present invention, the following water treatment method and water treatment apparatus are provided.

[1] 処理対象となる原水中にオゾン、次亜塩素酸ナトリウム及び二酸化塩素からなる群より選択される何れか1種の化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを含む水処理方法であって、前記処理対象となる原水は、前記化学物質により酸化され、その酸化後に前記凝集剤により凝集される成分を含むものであり、前記凝集剤の注入量を、前記化学物質添加後の残留化学物質濃度を一定制御した場合における前記化学物質の必要添加量に比例するように制御する水処理方法。 [1] A chemical substance addition process for adding any one chemical substance selected from the group consisting of ozone, sodium hypochlorite, and chlorine dioxide to the raw water to be treated, and after the chemical substance addition process A water treatment method comprising injecting a flocculant into raw water to agglomerate solids in the raw water, wherein the raw water to be treated is oxidized by the chemical substance, and after the oxidation, the agglomeration The amount of the flocculant injected is controlled so as to be proportional to the required amount of the chemical substance when the concentration of the residual chemical substance after the chemical substance addition is controlled to be constant. Water treatment method.

] 処理対象となる原水中にオゾン、次亜塩素酸ナトリウム及び二酸化塩素からなる群より選択される何れか1種の化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを行う水処理装置であって、前記処理対象となる原水は、前記化学物質により酸化され、その酸化後に前記凝集剤により凝集される成分を含むものであり、前記凝集剤の注入量を、前記化学物質添加後の残留化学物質濃度を一定制御した場合における前記化学物質の必要添加量に比例するように制御する水処理装置。 [ 2 ] A chemical substance addition process for adding any one chemical substance selected from the group consisting of ozone, sodium hypochlorite and chlorine dioxide to the raw water to be treated, and after the chemical substance addition process A water treatment apparatus that performs a flocculation process for injecting a flocculant into raw water to agglomerate solids in the raw water, wherein the raw water to be treated is oxidized by the chemical substance, and after the oxidation, The amount of the flocculant injected is controlled so as to be proportional to the required amount of the chemical substance when the concentration of the residual chemical substance after the chemical substance addition is controlled to be constant. Water treatment equipment.

本発明によれば、凝集処理における凝集剤の注入量を制御するための指標(基準)として、化学物質添加処理における化学物質要求量(化学物質添加後の水質を一定制御した場合における化学物質の必要添加量)を用いたことにより、凝集剤を、原水中に含まれる凝集すべき成分の量に対して過不足なく注入することができ、その結果、凝集処理後段のプロセス(膜ろ過処理など)の効率及び処理水の水質を向上させることができるとともに、凝集剤の過剰な注入を防ぐことでその注入量を減少させ、水処理のランニングコストを低減させることができる。   According to the present invention, as an index (standard) for controlling the injection amount of the flocculant in the agglomeration treatment, the required amount of the chemical substance in the chemical substance addition treatment (the chemical substance in the case where the water quality after the chemical substance addition is controlled constant) By using the necessary addition amount), the flocculant can be injected without excess or deficiency with respect to the amount of the components to be aggregated contained in the raw water, and as a result, the process after the aggregation treatment (membrane filtration treatment, etc.) ) And the quality of the treated water can be improved, and the injection amount of the flocculant can be prevented to reduce the injection amount, thereby reducing the running cost of the water treatment.

本発明の水処理装置の構成の一例を示すフロー図である。It is a flowchart which shows an example of a structure of the water treatment apparatus of this invention. 本発明の水処理装置の構成の他の一例を示すフロー図である。It is a flowchart which shows another example of a structure of the water treatment apparatus of this invention. 図1の水処理装置で、オゾン接触槽の出口の残留溶存オゾン濃度を一定になるよう制御した場合における、オゾン発生装置からのオゾンガス発生濃度、原水の総有機物炭素濃度及び濁度を示したグラフである。Graph showing the ozone gas generation concentration from the ozone generator, the total organic carbon concentration of raw water and the turbidity when the residual dissolved ozone concentration at the outlet of the ozone contact tank is controlled to be constant in the water treatment device of FIG. It is. オゾン発生装置からのオゾンガス発生濃度に応じて凝集剤の注入量を比例制御する方法の一例を示すグラフである。It is a graph which shows an example of the method of proportionally controlling the injection quantity of the coagulant | flocculant according to the ozone gas generation density | concentration from an ozone generator. オゾン発生装置からのオゾンガス発生濃度に応じて凝集剤の注入量を多段制御する方法の一例を示すグラフである。It is a graph which shows an example of the method of carrying out multistage control of the injection quantity of the coagulant | flocculant according to the ozone gas generation density | concentration from an ozone generator. 図4に示した比例制御により、オゾン発生装置からのオゾンガス発生濃度に応じて凝集剤の注入量を制御した場合における、オゾンガス発生濃度と凝集剤の注入量との時間変化を示すグラフである。It is a graph which shows the time change of the ozone gas generation | occurrence | production density | concentration and the injection amount of a coagulant | flocculant when the injection amount of the coagulant | flocculant is controlled according to the ozone gas generation concentration from an ozone generator by the proportional control shown in FIG. オゾン発生装置からのオゾン発生濃度に応じて凝集剤の注入量を比例制御した場合における、凝集剤の注入量と、原水の濁度と、凝集処理後段の膜ろ過処理における膜差圧との時間変化を示すグラフである。Time of the flocculant injection amount, the turbidity of raw water, and the membrane differential pressure in the membrane filtration process after the flocculant treatment when the flocculant injection amount is proportionally controlled according to the ozone generation concentration from the ozone generator It is a graph which shows a change. 原水の濁度に応じて凝集剤の注入量を比例制御した場合における、凝集剤の注入量と、原水の濁度と、凝集処理後段の膜ろ過処理における膜差圧との時間変化を示すグラフである。A graph showing the change over time of the flocculant injection amount, the turbidity of the raw water, and the membrane differential pressure in the membrane filtration process after the flocculation process when the injection amount of the flocculant is proportionally controlled according to the turbidity of the raw water It is. オゾン発生装置からのオゾン発生濃度に応じて凝集剤の注入量を制御した場合と、原水の濁度に応じて凝集剤の注入量を制御した場合とにおける、膜ろ過処理後の処理水中に含まれる総有機炭素濃度の時間変化を示すグラフである。Included in treated water after membrane filtration treatment when the amount of flocculant injected is controlled according to the ozone generation concentration from the ozone generator and when the amount of flocculant injected is controlled according to the turbidity of raw water It is a graph which shows the time change of the total organic carbon concentration.

以下、本発明を具体的な実施形態に基づき説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。   Hereinafter, the present invention will be described based on specific embodiments, but the present invention should not be construed as being limited thereto, and based on the knowledge of those skilled in the art without departing from the scope of the present invention. Various changes, modifications, and improvements can be added.

本発明の水処理方法は、処理対象となる原水中に化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを含む。   The water treatment method of the present invention includes a chemical substance addition treatment for adding a chemical substance to raw water to be treated, and a flocculant is injected into the raw water after the chemical substance addition treatment to agglomerate solids in the raw water. Coagulation treatment.

化学物質添加処理において、処理対象となる原水中に添加する化学物質としては、オゾン、次亜塩素酸ナトリウム、二酸化塩素等が好適なものとして挙げられ、これらの化学物質は、原水中に含まれる成分を酸化する酸化剤として用いられる。   In the chemical substance addition treatment, ozone, sodium hypochlorite, chlorine dioxide and the like are preferable as chemical substances added to the raw water to be treated, and these chemical substances are contained in the raw water. Used as an oxidizing agent to oxidize components.

凝集処理は、化学物質添加処理後の原水中に凝集剤を注入して原水中の固形分を凝集させる処理であり、本発明は、この凝集処理における凝集剤の注入量を、前記化学物質添加後の水質を一定制御した場合における前記化学物質の必要添加量(以下、この必要添加量のことを「化学物質要求量」と称する。)に応じて制御することを、その主要な特徴とする。ここで、「水質」とは、前記化学物質の添加により変化する水の性質であって、例えば、前記化学物質の添加後に消費されず残留する化学物質の濃度(例えば、残留溶存オゾン濃度や残留塩素濃度)、色度、濁度、吸光度などを指す。   The agglomeration treatment is a treatment for injecting a flocculant into the raw water after the chemical substance addition treatment to agglomerate solids in the raw water, and the present invention determines the injection amount of the flocculant in the agglomeration treatment by adding the chemical substance. Its main feature is that it is controlled according to the required amount of chemical substance added (hereinafter referred to as “chemical substance required amount”) when the water quality is controlled at a later stage. . Here, the “water quality” is the property of water that changes due to the addition of the chemical substance. For example, the concentration of the chemical substance that is not consumed after the chemical substance is added (for example, residual dissolved ozone concentration or residual Chlorine concentration), chromaticity, turbidity, absorbance, etc.

凝集処理において、化学物質添加処理後の原水中に注入する凝集剤としては、PAC(ポリ塩化アルミニウム)、硫酸バンド、塩化第二鉄、PSI(ポリシリカ鉄)等が好適なものとして挙げられる。   In the agglomeration treatment, PAC (polyaluminum chloride), sulfate band, ferric chloride, PSI (polysilica iron) and the like are preferable as the aggregating agent to be injected into the raw water after the chemical substance addition treatment.

本発明において、凝集剤の注入量を制御するための指標(基準)として用いられる、化学物質要求量は、当該化学物質によって酸化される原水中の有機物や無機物の量及び質(種類)によって複合的に変化する。このため、化学物質要求量は、濁度や総有機炭素量などで表される原水中の一部の水質を表した指標と異なり、処理水の水質負荷(被処理物質)の総量を示す代替指標となり得る。したがって、化学物質要求量に基づいて凝集剤の注入量を制御することにより、凝集剤を、原水中に含まれる凝集すべき成分の量に対して過不足なく注入することができる。   In the present invention, the required amount of chemical substance used as an index (standard) for controlling the injection amount of the flocculant is compounded according to the quantity and quality (type) of organic and inorganic substances in raw water oxidized by the chemical substance. Changes. Therefore, the chemical substance requirement is an alternative to the total amount of the treated water quality load (substance to be treated), unlike the indicator of the quality of some of the raw water expressed by turbidity and total organic carbon. Can be an indicator. Therefore, by controlling the injection amount of the flocculant based on the required amount of the chemical substance, the flocculant can be injected without excess or deficiency with respect to the amount of the component to be aggregated contained in the raw water.

なお、凝集処理後の原水は、膜ろ過処理等の後段のプロセスにより凝集物(懸濁物)が分離される。膜ろ過処理を行う場合、分離膜としては、MF膜やUF膜が好適に使用できる。分離膜の材質は、高分子膜であってもセラミック膜であっても良い。また、分離膜の形状は、一般的なモノリス型の他、チューブラー膜、ハニカム膜、中空糸膜、平膜等、任意の形状のものを使用できる。   The raw water after the coagulation treatment is separated into aggregates (suspensions) by a subsequent process such as membrane filtration. When performing a membrane filtration treatment, an MF membrane or a UF membrane can be suitably used as the separation membrane. The material of the separation membrane may be a polymer membrane or a ceramic membrane. In addition to the general monolith type, the separation membrane may have any shape such as a tubular membrane, a honeycomb membrane, a hollow fiber membrane, and a flat membrane.

本発明の水処理装置は、本発明の水処理方法を実施するために使用されるものである。この水処理装置は、処理対象となる原水中に化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを行うものであり、前記凝集剤の注入量を、前記化学物質添加後の水質を一定制御した場合における前記化学物質の必要添加量に応じて制御することを、その主要な特徴とする。   The water treatment apparatus of the present invention is used for carrying out the water treatment method of the present invention. This water treatment device includes a chemical substance addition process for adding a chemical substance to the raw water to be treated, and an agglomeration that injects a flocculant into the raw water after the chemical substance addition process to agglomerate solids in the raw water The main feature is that the injection amount of the flocculant is controlled according to the required addition amount of the chemical substance when the water quality after the chemical substance addition is controlled to be constant. .

図1は、本発明の水処理装置の構成の一例を示すフロー図である。この水処理装置100は、オゾン接触槽1、pH調整槽2、凝集混和槽3、膜ろ過装置4、及び処理水槽5を備える。処理対象である原水は、原水供給ポンプ6によりオゾン接触槽1に圧送される。オゾン接触槽1では、オゾン発生装置7より発生したオゾンガスがディフューザー8より散気され、原水中に溶解させられる。所定時間オゾンと接触した原水は、オゾン接触槽1から越流し、pH調整槽2でpH調整剤を添加された後、凝集剤混和槽3へと送水される。凝集剤混和槽3にはpH計15が設けられており、pH調整剤は、このpH計15にて計測されるpHが所定の値になるようにpH調整剤供給ポンプ16によりpH調整槽2に添加される。凝集剤混和槽3では、凝集剤貯留槽9から、凝集剤注入ポンプ10を介して凝集剤が添加され、撹拌スクリュー17により混和された後、膜ろ過供給ポンプ11を介して膜ろ過装置4へと圧送される。膜ろ過装置4で膜ろ過処理された水は、処理水槽5に貯留された後、処理水として送水される。   FIG. 1 is a flowchart showing an example of the configuration of the water treatment apparatus of the present invention. The water treatment apparatus 100 includes an ozone contact tank 1, a pH adjustment tank 2, an agglomeration mixing tank 3, a membrane filtration device 4, and a treated water tank 5. The raw water to be treated is pumped to the ozone contact tank 1 by the raw water supply pump 6. In the ozone contact tank 1, the ozone gas generated from the ozone generator 7 is diffused from the diffuser 8 and dissolved in the raw water. The raw water that has been in contact with ozone for a predetermined time overflows from the ozone contact tank 1, is added with a pH adjusting agent in the pH adjusting tank 2, and then is fed to the flocculant mixing tank 3. The flocculant mixing tank 3 is provided with a pH meter 15, and the pH adjuster 2 is adjusted by the pH adjuster supply pump 16 so that the pH measured by the pH meter 15 becomes a predetermined value. To be added. In the coagulant mixing tank 3, the coagulant is added from the coagulant storage tank 9 through the coagulant injection pump 10, mixed with the stirring screw 17, and then to the membrane filtration device 4 through the membrane filtration supply pump 11. And pumped. The water subjected to membrane filtration by the membrane filtration device 4 is stored in the treated water tank 5 and then sent as treated water.

本実施例における、化学物質要求量としては、オゾン発生装置7より発生したオゾンガス濃度が使用される。オゾン発生装置7より発生したオゾンガスは、オゾン接触槽1へ注入される。オゾンガス発生濃度は、溶存オゾン濃度計12で計測される残留溶存オゾン濃度が一定の範囲(例えば0.3〜1.0mg/L)になるよう制御する。溶存オゾン濃度計12で計測された残留溶存オゾン濃度の情報は制御部13に送られる。制御部13は、溶存オゾン濃度計12で計測された残留溶存オゾン濃度が制御値(例えば0.3〜1.0mg/L)より低い場合は、オゾン発生装置7の出力を上げ、残留溶存オゾン濃度が制御値より高い場合は、オゾン発生装置7の出力を下げるよう指令を出すための演算処理装置である。オゾン発生装置7で発生させたオゾンガスは、オゾンガス濃度計14にて濃度が計測される。オゾンガス濃度計14にて計測されたオゾンガス濃度の情報は、制御部13に送られ、制御部13は、そのオゾンガス濃度に基づいて凝集剤注入ポンプ10の出力を制御する。   As the chemical substance requirement amount in this embodiment, the ozone gas concentration generated from the ozone generator 7 is used. Ozone gas generated from the ozone generator 7 is injected into the ozone contact tank 1. The ozone gas generation concentration is controlled so that the residual dissolved ozone concentration measured by the dissolved ozone concentration meter 12 falls within a certain range (for example, 0.3 to 1.0 mg / L). Information on the residual dissolved ozone concentration measured by the dissolved ozone concentration meter 12 is sent to the control unit 13. When the residual dissolved ozone concentration measured by the dissolved ozone concentration meter 12 is lower than the control value (for example, 0.3 to 1.0 mg / L), the control unit 13 increases the output of the ozone generator 7 and the residual dissolved ozone. When the concentration is higher than the control value, it is an arithmetic processing unit for issuing a command to reduce the output of the ozone generator 7. The concentration of the ozone gas generated by the ozone generator 7 is measured by the ozone gas concentration meter 14. Information on the ozone gas concentration measured by the ozone gas concentration meter 14 is sent to the control unit 13, and the control unit 13 controls the output of the flocculant injection pump 10 based on the ozone gas concentration.

図3は、前記水処理装置で、オゾン接触槽1の出口の残留溶存オゾン濃度を一定になるよう制御した場合における、オゾン発生装置7からのオゾンガス発生濃度、原水の総有機物炭素濃度及び濁度を示したグラフである。なお、このグラフにおいて、左側縦軸の数値は、総有機物炭素濃度(mg/L)と濁度(度)との両方に共有される。このグラフから、残留溶存オゾン濃度を一定になるよう制御した場合に必要となるオゾンの添加量(オゾンガスの発生濃度)は、濁度や総有機炭素濃度の変動のみに依存していないことがわかる。   FIG. 3 shows the ozone concentration generated from the ozone generator 7, the total organic carbon concentration and the turbidity of the raw water when the water treatment apparatus controls the residual dissolved ozone concentration at the outlet of the ozone contact tank 1 to be constant. It is the graph which showed. In this graph, the numerical value on the left vertical axis is shared by both the total organic carbon concentration (mg / L) and the turbidity (degree). From this graph, it can be seen that the amount of ozone added (ozone gas generation concentration) required when the residual dissolved ozone concentration is controlled to be constant does not depend only on fluctuations in turbidity or total organic carbon concentration. .

オゾンは、総有機炭素や濁度として計測される成分の全部若しくは一部に消費される。総有機炭素で計測される成分では、有機物の形態(高分子、低分子など)によってオゾンの消費量が変わり、濁度として計測される濁質は、有機性と無機性のものがあり、存在する濁質の質と量によってオゾンの消費量は異なる。このため、同じ総有機物炭素濃度や濁度であっても、原水中の含有成分によってオゾンの消費量は異なるものとなる。また、オゾンを消費する物質は、総有機炭素や濁度として計測される成分だけではない。残留溶存オゾン濃度一定制御下において、オゾン発生装置7からのオゾンガス発生濃度(オゾン接触槽1へのオゾンガス注入量)は、原水中に含まれる、オゾンを消費する成分(オゾンにより酸化される成分)の総量に対応して変動する。このため、オゾン発生濃度は、処理水の水質負荷(被処理物質)の総量を示す代替指標となり得る。このオゾンガス発生濃度に基づいて凝集剤の注入量を制御することにより、凝集剤を、原水中に含まれる凝集すべき成分の量に対して過不足なく注入することができる。   Ozone is consumed by all or part of the components measured as total organic carbon and turbidity. Among the components measured in total organic carbon, ozone consumption varies depending on the form of organic matter (polymer, low molecule, etc.), and turbidity measured as turbidity can be organic or inorganic. The amount of ozone consumed varies depending on the quality and amount of suspended matter. For this reason, even if it is the same total organic carbon density | concentration and turbidity, the consumption of ozone changes with the components contained in raw | natural water. In addition, substances that consume ozone are not limited to components measured as total organic carbon or turbidity. Under the constant control of the residual dissolved ozone concentration, the ozone gas generation concentration from the ozone generator 7 (the amount of ozone gas injected into the ozone contact tank 1) is the component that consumes ozone contained in the raw water (component that is oxidized by ozone). It fluctuates corresponding to the total amount. Therefore, the ozone generation concentration can be an alternative index indicating the total amount of treated water quality load (substance to be treated). By controlling the injection amount of the flocculant based on the ozone gas generation concentration, the flocculant can be injected without excess or deficiency with respect to the amount of the component to be aggregated contained in the raw water.

図4及び図5は、オゾンガス発生濃度(化学物質要求量)に応じて凝集剤の注入量を制御する方法の例を示すグラフである。本発明においては、図4に示すように、凝集剤の注入量を、化学物質要求量に比例するように制御(比例制御)しても良いし、図5に示すように、凝集剤の注入量を、化学物質要求量に応じて段階的に変化するように制御(多段制御)しても良い。   4 and 5 are graphs showing an example of a method for controlling the injection amount of the flocculant according to the ozone gas generation concentration (chemical substance requirement amount). In the present invention, as shown in FIG. 4, the injection amount of the flocculant may be controlled (proportional control) so as to be proportional to the chemical substance requirement amount, or as shown in FIG. The amount may be controlled (multistage control) so as to change stepwise according to the chemical substance requirement.

図6は、図4のように、凝集剤の注入量をオゾンガス発生濃度(化学物質要求量)に応じて比例制御した場合における、化学物質要求量と凝集剤の注入量との時間変化を示すグラフである。また、図7は、凝集剤の注入量をオゾンガス発生濃度(化学物質要求量)に応じて比例制御した場合における、凝集剤の注入量と、原水の濁度と、凝集処理後段の膜ろ過処理における膜差圧との時間変化を示すグラフであり、図8は、原水の濁度に応じて比例制御した場合における、凝集剤の注入量と、原水の濁度と、凝集処理後段の膜ろ過処理における膜差圧との時間変化を示すグラフである。なお、図7及び図8のグラフにおいて、左側縦軸の数値は、凝集剤注入量(mg/L)と膜差圧(kPa)との両方に共有される。   FIG. 6 shows the change over time in the required amount of chemical substance and the injected amount of flocculant when the amount of flocculant injected is proportionally controlled according to the ozone gas generation concentration (chemical substance required amount) as shown in FIG. It is a graph. FIG. 7 shows the amount of flocculant injected, the turbidity of raw water, and the membrane filtration treatment after the flocculant treatment when the amount of flocculant injected is proportionally controlled according to the ozone gas generation concentration (chemical substance requirement amount). FIG. 8 is a graph showing a change with time in the membrane differential pressure in FIG. 8, and FIG. 8 shows the amount of the flocculant injected, the turbidity of the raw water, and the membrane filtration after the flocculation treatment when proportional control is performed according to the turbidity of the raw water. It is a graph which shows the time change with the film | membrane differential pressure | voltage in a process. 7 and 8, the numerical value on the left vertical axis is shared by both the flocculant injection amount (mg / L) and the membrane differential pressure (kPa).

膜差圧は、膜ろ過処理に用いられる分離膜の目詰まりの程度によりその値が変動し、膜差圧の値が上昇するほど膜の目詰まりが進行して運転が困難になる。図7に示すように、凝集剤の注入量を化学物質要求量に応じて比例制御した場合、膜差圧はほとんど上昇することなく安定運転が可能である。これは、原水中に含まれる凝集すべき成分の量に対して適切な量の凝集剤の注入されたため、目詰まりの原因となる微細固形物が膜ろ過処理の前に十分に凝集されて、分離膜の目詰まりが抑制されためである。   The value of the membrane differential pressure varies depending on the degree of clogging of the separation membrane used in the membrane filtration treatment, and as the value of the membrane differential pressure increases, clogging of the membrane proceeds and operation becomes difficult. As shown in FIG. 7, when the amount of flocculant injected is proportionally controlled according to the chemical substance requirement, stable operation is possible with almost no increase in the membrane differential pressure. This is because an appropriate amount of the flocculant was injected relative to the amount of the component to be aggregated contained in the raw water, so that the fine solid matter causing clogging was sufficiently aggregated before the membrane filtration treatment, This is because clogging of the separation membrane is suppressed.

一方、図8に示すように、凝集剤の注入量を原水の濁度に応じて比例制御した場合、図中に星印で示した濁度が低い時には、それに対応して凝集剤の注入量を低下させる。最初の濁度低下時(左側の星印)には、それに対応して凝集剤の注入量を低下させても膜差圧の上昇が見られないため、凝集剤の注入量は十分であると考えられる。一方、2度目の濁度低下時(右側の星印)には、濁度低下に対応して凝集剤の注入量を低下させると、膜差圧が大きく上昇している。この膜差圧の上昇は、凝集剤の注入量が不足して、微細固形物が十分に凝集されず、分離膜の目詰まりを引き起こしたことを意味する。すなわち、最初の濁度低下時と2度目の濁度低下時とでは、濁度の値はほぼ同一であるが、前者においては凝集剤の注入量が十分であるのに対し、後者では凝集剤の注入量が不足しており、このことから、同じ濁度においても、必要な凝集剤の注入量が異なる場合があり、凝集剤の注入量を原水の濁度に基づいて制御する方法では、適切な量の凝集剤の注入ができないことがわかる。   On the other hand, as shown in FIG. 8, when the injection amount of the flocculant is proportionally controlled in accordance with the turbidity of the raw water, when the turbidity indicated by an asterisk in the figure is low, the injection amount of the flocculant correspondingly Reduce. When the turbidity drops for the first time (the star on the left), there is no increase in membrane differential pressure even if the injection amount of the flocculant is correspondingly reduced. Therefore, the injection amount of the flocculant is sufficient. Conceivable. On the other hand, when the turbidity is lowered for the second time (the star on the right side), if the injection amount of the flocculant is reduced corresponding to the turbidity reduction, the membrane differential pressure is greatly increased. This increase in the membrane differential pressure means that the injection amount of the flocculant was insufficient, and the fine solids were not sufficiently aggregated, causing clogging of the separation membrane. That is, the turbidity value is almost the same when the first turbidity is lowered and when the turbidity is lowered for the second time. In the former, the injection amount of the flocculant is sufficient, whereas in the latter, the flocculant is injected. From this, there is a case where the required amount of flocculant injected is different even at the same turbidity, and in the method of controlling the amount of flocculant injected based on the turbidity of raw water, It can be seen that an appropriate amount of flocculant cannot be injected.

また、凝集剤の注入量を平均値で比較すると、図7に示すように、凝集剤の注入量を化学物質要求量に応じて比例制御した場合では15.5mg/Lであったのに対し、図8に示すように、凝集剤の注入量を原水の濁度に応じて比例制御した場合では18.9mg/Lであった。このことから、凝集剤の注入量を、化学物質要求量に応じて制御した場合には、原水の濁度に応じて制御した場合に比べて、凝集剤の過剰な注入が生じにくく、その結果、凝集剤の注入量を低減できることがわかる。   Moreover, when the injection amount of the flocculant was compared with the average value, as shown in FIG. 7, it was 15.5 mg / L when the injection amount of the flocculant was proportionally controlled according to the chemical substance requirement amount. As shown in FIG. 8, it was 18.9 mg / L when the amount of the flocculant injected was proportionally controlled according to the turbidity of the raw water. From this, when the injection amount of the flocculant is controlled according to the required amount of the chemical substance, compared with the case where it is controlled according to the turbidity of the raw water, the excessive injection of the flocculant is less likely to occur. It can be seen that the amount of the flocculant injected can be reduced.

図9は、オゾンガス発生濃度(化学物質要求量)に応じて凝集剤の注入量を制御した場合と、原水の濁度に応じて凝集剤の注入量を制御した場合とにおける、膜ろ過処理後の処理水中に含まれる総有機炭素濃度の時間変化を示すグラフである。このグラフより、濁度に応じて凝集剤の注入量を制御した場合には、処理水の水質が安定せず、急激な水質の悪化(総有機炭素濃度の増大)が生じることがあるが、化学物質要求量に応じて凝集剤の注入量を制御した場合には、そのような急激な水質の悪化は発生せず、安定した水質を維持しながら装置の運転ができることがわかる。   FIG. 9 shows the results after the membrane filtration treatment in the case where the injection amount of the flocculant is controlled according to the ozone gas generation concentration (chemical substance requirement amount) and in the case where the injection amount of the flocculant is controlled according to the turbidity of the raw water. It is a graph which shows the time change of the total organic carbon concentration contained in the treated water. From this graph, when the amount of the flocculant injected is controlled according to the turbidity, the quality of the treated water is not stable, and a sudden deterioration of the water quality (increased total organic carbon concentration) may occur. It can be seen that when the injection amount of the flocculant is controlled in accordance with the chemical substance requirement, such a rapid deterioration of water quality does not occur, and the apparatus can be operated while maintaining a stable water quality.

なお、以上説明してきた実施形態においては、化学物質添加処理の際の化学物質としてオゾンを用い、凝集処理における凝集剤の注入量を制御するための指標(基準)として、オゾンガス発生濃度(オゾンガス注入率)を用いているが、化学物質添加処理に用いる化学物質は、オゾンに限定されるものではなく、他の化学物質、例えば次亜塩素酸ナトリウムや二酸化塩素であっても良い。   In the embodiment described above, ozone is used as the chemical substance in the chemical substance addition process, and the ozone gas generation concentration (ozone gas injection) is used as an index (reference) for controlling the injection amount of the coagulant in the coagulation process. However, the chemical substance used for the chemical substance addition treatment is not limited to ozone, and may be another chemical substance such as sodium hypochlorite or chlorine dioxide.

図2は、化学物質添加処理の際の化学物質として次亜塩素酸ナトリウムを用い、次亜塩素酸ナトリウム添加後の残留次亜塩素酸ナトリウム濃度を一定制御した場合における前記次亜塩素酸ナトリウムの添加量に応じて、凝集剤の注入量を制御する場合に使用可能な水処理装置の一例である。   FIG. 2 shows the sodium hypochlorite concentration when sodium hypochlorite is used as the chemical substance in the chemical substance addition treatment, and the residual sodium hypochlorite concentration after the sodium hypochlorite addition is controlled to be constant. It is an example of the water treatment apparatus which can be used when controlling the injection amount of the flocculant according to the addition amount.

この水処理装置200は、次亜塩素酸ナトリウム添加槽21、pH調整槽2、凝集混和槽3、膜ろ過装置4、及び処理水槽5を備える。処理対象である原水は、原水供給ポンプ6により次亜塩素酸ナトリウム添加槽21に圧送される。次亜塩素酸ナトリウム添加槽21では、次亜塩素酸ナトリウム注入装置27より送られた次亜塩素酸ナトリウムが、原水に添加される。次亜塩素酸ナトリウムが添加された原水は、亜塩素酸ナトリウム添加槽21から越流し、pH調整槽2でpH調整剤を添加された後、凝集剤混和槽3へと送水される。凝集剤混和槽3にはpH計15が設けられており、pH調整剤は、このpH計15にて計測されるpHが所定の値になるようにpH調整剤供給ポンプ16によりpH調整槽2に添加される。凝集剤混和槽3では、凝集剤貯留槽9から、凝集剤注入ポンプ10を介して凝集剤が添加され、撹拌スクリュー17により混和された後、膜ろ過供給ポンプ11を介して膜ろ過装置4へと圧送される。膜ろ過装置4で膜ろ過処理された水は、処理水槽5に貯留された後、処理水として送水される。   The water treatment apparatus 200 includes a sodium hypochlorite addition tank 21, a pH adjustment tank 2, an agglomeration mixing tank 3, a membrane filtration apparatus 4, and a treatment water tank 5. The raw water to be treated is pumped to the sodium hypochlorite addition tank 21 by the raw water supply pump 6. In the sodium hypochlorite addition tank 21, sodium hypochlorite sent from the sodium hypochlorite injection device 27 is added to the raw water. The raw water to which sodium hypochlorite has been added overflows from the sodium chlorite addition tank 21, is added with a pH adjuster in the pH adjustment tank 2, and is then sent to the flocculant mixing tank 3. The flocculant mixing tank 3 is provided with a pH meter 15, and the pH adjuster 2 is adjusted by the pH adjuster supply pump 16 so that the pH measured by the pH meter 15 becomes a predetermined value. To be added. In the coagulant mixing tank 3, the coagulant is added from the coagulant storage tank 9 through the coagulant injection pump 10, mixed with the stirring screw 17, and then to the membrane filtration device 4 through the membrane filtration supply pump 11. And pumped. The water subjected to membrane filtration by the membrane filtration device 4 is stored in the treated water tank 5 and then sent as treated water.

次亜塩素酸ナトリウム添加槽21への次亜塩素酸ナトリウムの添加量は、残留塩素濃度計22で計測される残留次亜塩素酸ナトリウム濃度が一定の範囲になるよう制御する。残留塩素濃度計22で計測された残留次亜塩素酸ナトリウム濃度の情報は制御部23に送られ、制御部23は、残留次亜塩素酸ナトリウム濃度が制御値より低い場合は、次亜塩素酸ナトリウム注入装置27からの注入量を増加させ、残留次亜塩素酸ナトリウム濃度が制御値より高い場合は、次亜塩素酸ナトリウム注入装置27からの注入量を減少させるよう指令を出す。次亜塩素酸ナトリウム注入装置27から次亜塩素酸ナトリウム添加槽21に注入される次亜塩素酸ナトリウムの添加量は、流量計24にて計測される。流量計24にて計測された次亜塩素酸ナトリウムの添加量の情報は、制御部23に送られ、制御部23は、その添加量に基づいて凝集剤注入ポンプ10の出力を制御する。   The amount of sodium hypochlorite added to the sodium hypochlorite addition tank 21 is controlled so that the residual sodium hypochlorite concentration measured by the residual chlorine concentration meter 22 falls within a certain range. Information on the residual sodium hypochlorite concentration measured by the residual chlorine concentration meter 22 is sent to the control unit 23, and the control unit 23, when the residual sodium hypochlorite concentration is lower than the control value, When the injection amount from the sodium injection device 27 is increased and the residual sodium hypochlorite concentration is higher than the control value, a command is issued to decrease the injection amount from the sodium hypochlorite injection device 27. The amount of sodium hypochlorite added to the sodium hypochlorite addition tank 21 from the sodium hypochlorite injection device 27 is measured by the flow meter 24. Information on the amount of sodium hypochlorite added measured by the flow meter 24 is sent to the control unit 23, and the control unit 23 controls the output of the coagulant injection pump 10 based on the amount added.

本実施例においても、凝集剤の注入量は、次亜塩素酸ナトリウム濃度(化学物質要求量)に比例するように制御(比例制御)しても良いし、次亜塩素酸ナトリウム濃度(化学物質要求量)に応じて段階的に変化するように制御(多段制御)しても良い。これら制御における、適正な制御切り替え点の数値(化学物質要求量と凝集剤注入量)は、各水処理装置とその処理原水の性質により定まるものであり、水処理装置を運手しながら、切り替え点の数値を選択してゆけばよい。   Also in this embodiment, the injection amount of the flocculant may be controlled (proportional control) so as to be proportional to the sodium hypochlorite concentration (chemical substance requirement), or the sodium hypochlorite concentration (chemical substance). Control (multi-stage control) may be performed so as to change in a stepwise manner according to (request amount). In these controls, the numerical values of the appropriate control switching points (chemical substance request amount and coagulant injection amount) are determined by the properties of each water treatment device and its raw water, and can be switched while handling the water treatment device. Just select the point value.

残留次亜塩素酸ナトリウム濃度一定制御下において、次亜塩素酸ナトリウム注入装置27から次亜塩素酸ナトリウム添加槽21に注入される次亜塩素酸ナトリウムの添加量は、原水中に含まれる、次亜塩素酸ナトリウムを消費する成分の総量に対応して変動する。このため、次亜塩素酸ナトリム添加量は、処理水の水質負荷(被処理物質)の総量を示す代替指標となり得る。この次亜塩素酸ナトリウムの添加量に基づいて凝集剤の注入量を制御することにより、凝集剤を、原水中に含まれる凝集すべき成分の量に対して過不足なく注入することができる。   The amount of sodium hypochlorite added to the sodium hypochlorite addition tank 21 from the sodium hypochlorite injection device 27 under the constant control of the residual sodium hypochlorite concentration is contained in the raw water. It fluctuates corresponding to the total amount of ingredients that consume sodium chlorite. For this reason, the amount of sodium hypochlorite added can be an alternative index indicating the total amount of treated water quality load (substance to be treated). By controlling the injection amount of the flocculant based on the added amount of sodium hypochlorite, the flocculant can be injected without excess or deficiency with respect to the amount of components to be aggregated contained in the raw water.

本発明は、河川水、工場排水、下水の二次処理水等の水処理方法として好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a water treatment method for river water, factory wastewater, sewage secondary treatment water, and the like.

1:オゾン接触槽、2:pH調整槽、3:凝集混和槽、4:膜ろ過装置、5:処理水槽、6:原水供給ポンプ、7:オゾン発生装置、8:ディフューザー、9:凝集剤貯留槽、10:凝集剤注入ポンプ、11:膜ろ過供給ポンプ、12:溶存オゾン濃度計、13:制御部、14:オゾンガス濃度計、15:pH計、16:pH調整剤供給ポンプ、17:撹拌スクリュー、21:次亜塩素酸ナトリウム添加槽、22:残留塩素濃度計、23:制御部、24:流量計、27:次亜塩素酸ナトリウム注入装置、100:水処理装置、200:水処理装置。 1: ozone contact tank, 2: pH adjustment tank, 3: coagulation mixing tank, 4: membrane filtration device, 5: treated water tank, 6: raw water supply pump, 7: ozone generator, 8: diffuser, 9: coagulant storage Tank: 10: flocculant injection pump, 11: membrane filtration supply pump, 12: dissolved ozone concentration meter, 13: control unit, 14: ozone gas concentration meter, 15: pH meter, 16: pH adjusting agent supply pump, 17: stirring Screw: 21: Sodium hypochlorite addition tank, 22: Residual chlorine concentration meter, 23: Control unit, 24: Flow meter, 27: Sodium hypochlorite injection device, 100: Water treatment device, 200: Water treatment device .

Claims (2)

処理対象となる原水中にオゾン、次亜塩素酸ナトリウム及び二酸化塩素からなる群より選択される何れか1種の化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを含む水処理方法であって、
前記処理対象となる原水は、前記化学物質により酸化され、その酸化後に前記凝集剤により凝集される成分を含むものであり、
前記凝集剤の注入量を、前記化学物質添加後の残留化学物質濃度を一定制御した場合における前記化学物質の必要添加量に比例するように制御する水処理方法。
A chemical substance addition treatment for adding any one chemical substance selected from the group consisting of ozone, sodium hypochlorite and chlorine dioxide to the raw water to be treated, and the raw water after the chemical substance addition treatment A water treatment method including a flocculant that injects a flocculant to agglomerate solids in the raw water,
The raw water to be treated includes a component that is oxidized by the chemical substance and is aggregated by the flocculant after the oxidation.
A water treatment method for controlling an injection amount of the flocculant so as to be proportional to a necessary addition amount of the chemical substance when a residual chemical substance concentration after the chemical substance addition is controlled to be constant.
処理対象となる原水中にオゾン、次亜塩素酸ナトリウム及び二酸化塩素からなる群より選択される何れか1種の化学物質を添加する化学物質添加処理と、前記化学物質添加処理後の原水中に凝集剤を注入して前記原水中の固形分を凝集させる凝集処理とを行う水処理装置であって、
前記処理対象となる原水は、前記化学物質により酸化され、その酸化後に前記凝集剤により凝集される成分を含むものであり、
前記凝集剤の注入量を、前記化学物質添加後の残留化学物質濃度を一定制御した場合における前記化学物質の必要添加量に比例するように制御する水処理装置。
A chemical substance addition treatment for adding any one chemical substance selected from the group consisting of ozone, sodium hypochlorite and chlorine dioxide to the raw water to be treated, and the raw water after the chemical substance addition treatment A water treatment device for performing a coagulation treatment for injecting a coagulant and coagulating solids in the raw water,
The raw water to be treated includes a component that is oxidized by the chemical substance and is aggregated by the flocculant after the oxidation.
A water treatment apparatus that controls the injection amount of the flocculant so as to be proportional to the required addition amount of the chemical substance when the concentration of the residual chemical substance after the chemical substance addition is controlled to be constant.
JP2009212019A 2009-09-14 2009-09-14 Water treatment method and water treatment apparatus Active JP5258714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009212019A JP5258714B2 (en) 2009-09-14 2009-09-14 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212019A JP5258714B2 (en) 2009-09-14 2009-09-14 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2011056478A JP2011056478A (en) 2011-03-24
JP5258714B2 true JP5258714B2 (en) 2013-08-07

Family

ID=43944758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212019A Active JP5258714B2 (en) 2009-09-14 2009-09-14 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5258714B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5940410B2 (en) * 2012-08-08 2016-06-29 株式会社Ihiシバウラ Ozone sterilizer
CN102964010B (en) * 2012-12-12 2014-05-28 北京碧水源科技股份有限公司 Method for deeply treating nonbiodegradable sewage
CN104370359B (en) * 2014-11-13 2016-04-27 南京科技职业学院 A kind of method of O3 contacted oxidation pond and advanced treatment refinery water thereof
JP7451275B2 (en) 2020-04-16 2024-03-18 株式会社東芝 Administrator support device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182095A (en) * 1987-01-26 1988-07-27 Toshiba Corp Apparatus for controlling injection of chlorine in water purifying plant
JPH03165892A (en) * 1989-11-22 1991-07-17 Meidensha Corp Controller for preinjection of chlorine in water purifying plant
JPH0768278A (en) * 1993-09-03 1995-03-14 Meidensha Corp Treatment of secondary effluent
JP2002035552A (en) * 2000-07-24 2002-02-05 Nkk Corp Method for treating water and its apparatus
JP2002079062A (en) * 2000-09-05 2002-03-19 Asahi Kasei Corp Method and apparatus for water treatment
JP4170610B2 (en) * 2001-09-06 2008-10-22 株式会社東芝 Water quality control system
ES2554925T3 (en) * 2006-08-01 2015-12-28 Metawater Co., Ltd. Wastewater reuse method
JP4861349B2 (en) * 2008-01-28 2012-01-25 メタウォーター株式会社 Reclaimed water production method
EP2256090B1 (en) * 2008-03-21 2016-08-24 Metawater Co., Ltd. Process for producing recycled water
JP2010094647A (en) * 2008-10-20 2010-04-30 Sumitomo Metal Mining Co Ltd Wastewater treatment system and wastewater treatment method using the same
SG174579A1 (en) * 2009-03-27 2011-10-28 Metawater Co Ltd Process for producing reclaimed water and system for producing reclaimed water
JP2011016100A (en) * 2009-07-10 2011-01-27 Kobelco Eco-Solutions Co Ltd Wastewater treatment method

Also Published As

Publication number Publication date
JP2011056478A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP4874231B2 (en) Water treatment system
JP5258714B2 (en) Water treatment method and water treatment apparatus
JP2012239947A (en) Water treatment method and water treatment apparatus
WO2009116514A1 (en) Process for producing recycled water
JP2012196628A (en) Water purifying method and water purifying device
JP5782931B2 (en) Water treatment method and water treatment apparatus
JP4523731B2 (en) Water treatment equipment
JP2008264723A (en) Method and apparatus for coagulating impurity
JP2003305485A (en) Method for removing manganese and equipment therefor
JP2010158615A (en) Water treating method and water treating system
JP2007319816A (en) Water treatment apparatus and water treatment method
JP6239442B2 (en) Organic wastewater treatment method and treatment apparatus
JP6078345B2 (en) Wastewater treatment method and apparatus
JP4114869B2 (en) Flocculant preparation method and water treatment method using the same
JP3559822B2 (en) Water treatment method and apparatus
JPH1043776A (en) Control system of ozone injecting device
JP2014121690A (en) Flocculated and precipitated activated sludge treatment system and method for operating the same
JP2005270752A (en) Coagulation method and apparatus
CN111847795A (en) System and method for recycling and treating PTA reclaimed water
JP5382355B2 (en) Industrial water filtration method and filtration device
KR100736514B1 (en) A suction pressure/time detector by continuous type for water supply and a treating method of water using the same
KR100736513B1 (en) A suction pressure/time detector by batch type for water supply and a treating method of water using the same
JP6650817B2 (en) Method and apparatus for treating wastewater containing organic oxygen scavenger and suspended matter
JP6610158B2 (en) Method and apparatus for producing pure water
JPH10118411A (en) Method and device for controlling injection of flocculant in water purification plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250