JP2017079232A - Heat conduction sheet and manufacturing method thereof - Google Patents

Heat conduction sheet and manufacturing method thereof Download PDF

Info

Publication number
JP2017079232A
JP2017079232A JP2015205616A JP2015205616A JP2017079232A JP 2017079232 A JP2017079232 A JP 2017079232A JP 2015205616 A JP2015205616 A JP 2015205616A JP 2015205616 A JP2015205616 A JP 2015205616A JP 2017079232 A JP2017079232 A JP 2017079232A
Authority
JP
Japan
Prior art keywords
sheet
heat
heat conductive
hardness
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015205616A
Other languages
Japanese (ja)
Inventor
中山 雅文
Masafumi Nakayama
雅文 中山
典裕 河村
Norihiro Kawamura
典裕 河村
蝦名 広
Hiroshi Ebina
広 蝦名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015205616A priority Critical patent/JP2017079232A/en
Publication of JP2017079232A publication Critical patent/JP2017079232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat conduction sheet superior in thermal conductivity in a thickness direction which has small contact thermal resistance while preventing heat conduction particles from dropping off from an edge face of the heat conduction sheet.SOLUTION: A sheet-like thermal conductor 11 is formed of a resin mixed with heat conduction particles 11a of crushed pyrolytic graphite sheet. The heat conduction particles 11a are oriented to a thickness direction of the sheet-like thermal conductor 11 and only the end face thereof is formed with a protection layer 12. The hardness of the protection layer 12 is set to be higher than the hardness of the sheet-like thermal conductor 11 so that heat can be conducted more efficiently.SELECTED DRAWING: Figure 1

Description

本発明は、各種電子機器に用いられる厚さ方向の熱伝導性に優れた熱伝導シートおよびその製造方法に関するものである。   The present invention relates to a heat conductive sheet having excellent heat conductivity in the thickness direction used for various electronic devices and a method for producing the same.

近年電子機器の高性能化に伴い、機器内部で発生する熱量が大きくなり、熱対策が重要となってきている。このため例えばグラファイトシートのような熱伝導シートが用いられる場合が多い。しかしながらグラファイトシートは面方向には非常に大きな熱伝導率を有するため、面方向に熱を拡散する目的には向いているが、厚さ方向の熱伝導率はあまり大きくないため、厚さ方向に熱を伝導する目的には向いていない。そのため、グラファイト粉末を樹脂に混合し、グラファイト粉末を厚さ方向に配向させることにより、所定の厚さを有し、厚さ方向の熱伝導率に優れた熱伝導シートを得ることが提案されている。   In recent years, with the increase in performance of electronic equipment, the amount of heat generated inside the equipment has increased, and heat countermeasures have become important. For this reason, for example, a heat conductive sheet such as a graphite sheet is often used. However, the graphite sheet has a very large thermal conductivity in the plane direction, so it is suitable for the purpose of diffusing heat in the plane direction, but the thermal conductivity in the thickness direction is not so large, It is not suitable for the purpose of conducting heat. Therefore, it has been proposed to obtain a heat conductive sheet having a predetermined thickness and excellent thermal conductivity in the thickness direction by mixing the graphite powder with resin and orienting the graphite powder in the thickness direction. Yes.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2002−363421号公報JP 2002-363421 A

しかしながら、グラファイト粉末が厚さ方向に配向していると、熱伝導シートの端部からグラファイト粉末が離脱しやすくなってくる。これに対して、グラファイト粉末は電気伝導性があるため、離脱しない構造が求められている。   However, when the graphite powder is oriented in the thickness direction, the graphite powder is easily detached from the end of the heat conductive sheet. On the other hand, since graphite powder has electrical conductivity, a structure that does not leave is required.

本発明は上記課題を解決するために、熱分解グラファイトシートを粉砕した熱伝導粒子と樹脂とを混合し、前記熱伝導粒子を厚さ方向に配向させたシート状熱伝導体の端面のみに、保護層を設けたものである。   In order to solve the above problems, the present invention mixes heat conductive particles obtained by pulverizing a pyrolytic graphite sheet and a resin, and only on the end face of the sheet-like heat conductor in which the heat conductive particles are oriented in the thickness direction. A protective layer is provided.

上記構成により、熱伝導シートの端面から熱伝導粒子が離脱することを防ぐことができる。一方熱伝導粒子は厚さ方向に配向しているため、熱伝導シートの表面および裏面から熱伝導粒子が離脱することはなく、表面および裏面に保護層を設けないことにより、熱抵抗を小さくすることができるという効果を得ることができる。   With the above configuration, it is possible to prevent the thermally conductive particles from separating from the end face of the thermally conductive sheet. On the other hand, since the heat conductive particles are oriented in the thickness direction, the heat conductive particles are not detached from the front and back surfaces of the heat conductive sheet, and the thermal resistance is reduced by not providing a protective layer on the front and back surfaces. The effect that it is possible can be acquired.

本発明の一実施の形態における熱伝導シートの断面図Sectional drawing of the heat conductive sheet in one embodiment of this invention 本発明の一実施の形態における熱伝導シートの製造方法を説明する図The figure explaining the manufacturing method of the heat conductive sheet in one embodiment of this invention

以下、本発明の一実施の形態における熱伝導シートについて、図面を参照しながら説明する。   Hereinafter, the heat conductive sheet in one embodiment of the present invention is explained, referring to drawings.

図1は本発明の一実施の形態における熱伝導シートの断面図であって、シート状熱伝導体11の端面のみに、シリコーンからなる保護層12を形成している。シート状熱伝導体11は、熱分解グラファイトシートを粉砕した熱伝導粒子11aと樹脂とを混合し、熱伝導粒子11aを厚さ方向に配向させたものであり、厚さ(図1のT1)は約2.5mmとなっている。熱伝導粒子11aを厚さ方向に配向させる方法としては、磁場をかけながら成形する、あるいはシート成形によって面方向に配向させたシートを重ねて一体化し、垂直に切断するという方法等によって実現することができる。このように熱伝導粒子11aを厚さ方向に配向させることにより、厚み方向の熱伝導性に優れたシート状熱伝導体11を得ることができる。このシート状熱伝導体11の硬さは、ASTM D2240で規定されるタイプE硬度で約25となっている。このようにシート状熱伝導体11をやわらかくすることにより、発熱部品、あるいは放熱部品との間の接触熱抵抗を小さくすることができ、効率的に熱を伝達することができる。   FIG. 1 is a cross-sectional view of a heat conductive sheet according to an embodiment of the present invention, in which a protective layer 12 made of silicone is formed only on the end face of a sheet-like heat conductor 11. The sheet-like heat conductor 11 is obtained by mixing heat conductive particles 11a obtained by pulverizing a pyrolytic graphite sheet and a resin, and orienting the heat conductive particles 11a in the thickness direction, and has a thickness (T1 in FIG. 1). Is about 2.5 mm. The method of orienting the heat conductive particles 11a in the thickness direction is realized by a method of forming while applying a magnetic field, or stacking and integrating sheets oriented in the plane direction by sheet forming, and cutting vertically. Can do. Thus, by orienting the heat conductive particles 11a in the thickness direction, the sheet-shaped heat conductor 11 having excellent heat conductivity in the thickness direction can be obtained. The hardness of the sheet-like heat conductor 11 is about 25 in the type E hardness defined by ASTM D2240. Thus, by making the sheet-like heat conductor 11 soft, the contact thermal resistance between the heat-generating component or the heat-dissipating component can be reduced, and heat can be transmitted efficiently.

保護層12は、シート状熱伝導体11の端面のみに形成され、その厚さ(端面からの距離、図1のT2)は約1.5mmとなっている。保護層12はシート状熱伝導体11の端面全体に形成されている。ここで厚さT2は、その最大の厚さを意味する。ここで保護層12の硬さは、ASTM D2240で規定されるタイプE硬度で約50となっている。このように保護層12の硬さを、シート状熱伝導体11の硬さよりも高いものとしている。そのため、シート状熱伝導体11を発熱部品、あるいは放熱部品に押し付けたとき、シート状熱伝導体11は面方向に広がろうとするが、保護層12の硬さを、シート状熱伝導体11の硬さより高くしているため、シート状熱伝導体11の面方向への広がりを抑制することができ、接触熱抵抗を小さくすることができる。特にこのシート状熱伝導体11は、熱分解グラファイトシートを粉砕した熱伝導粒子11aと樹脂とを混合し、熱伝導粒子11aを厚さ方向に配向させているが、面方向に広がった場合、配向に乱れが生じやすい。これに対して、本実施の形態では、シート状熱伝導体11の面方向への広がりを抑制することができ、厚さ方向への熱伝導性を良好な状態に保つことができる。   The protective layer 12 is formed only on the end face of the sheet-like heat conductor 11, and its thickness (distance from the end face, T2 in FIG. 1) is about 1.5 mm. The protective layer 12 is formed on the entire end surface of the sheet-like heat conductor 11. Here, the thickness T2 means the maximum thickness. Here, the hardness of the protective layer 12 is approximately 50 in the type E hardness defined by ASTM D2240. Thus, the hardness of the protective layer 12 is higher than the hardness of the sheet-like heat conductor 11. Therefore, when the sheet-like heat conductor 11 is pressed against the heat-generating component or the heat-dissipating component, the sheet-like heat conductor 11 tends to spread in the surface direction, but the hardness of the protective layer 12 is reduced to the sheet-like heat conductor 11. Therefore, the sheet-like heat conductor 11 can be prevented from spreading in the surface direction, and the contact thermal resistance can be reduced. In particular, the sheet-like heat conductor 11 is obtained by mixing the heat conductive particles 11a obtained by pulverizing the pyrolytic graphite sheet and the resin and orienting the heat conductive particles 11a in the thickness direction. The orientation is likely to be disturbed. On the other hand, in this Embodiment, the spread to the surface direction of the sheet-like heat conductor 11 can be suppressed, and the heat conductivity to the thickness direction can be maintained in a favorable state.

さらにこの効果を得るためには、保護層12の厚さを、シート状熱伝導体11の厚さの1/4以上、3/4以下とすることが望ましい。保護層12の厚さがシート状熱伝導体11の厚さの1/4より小さいと、面方向への広がりを抑制する効果が小さくなる。一方保護層12の厚さがシート状熱伝導体11の厚さの3/4より大きくなると、熱伝導率に優れた領域が小さくなるので、望ましくない。   Furthermore, in order to obtain this effect, it is desirable that the thickness of the protective layer 12 is ¼ or more and ¾ or less of the thickness of the sheet-like heat conductor 11. When the thickness of the protective layer 12 is smaller than ¼ of the thickness of the sheet-like heat conductor 11, the effect of suppressing the spread in the surface direction becomes small. On the other hand, when the thickness of the protective layer 12 is greater than 3/4 of the thickness of the sheet-like heat conductor 11, the region with excellent thermal conductivity is reduced, which is not desirable.

また、熱伝導シートに絶縁性が求められる場合、図1のように、シート状熱伝導体11の表面または裏面に絶縁性樹脂からなる絶縁シート13を設けても良い。この絶縁シート13は、シリコーンを用いても良いが、保護層12とは異なる材料で、その硬度はASTM D2240で規定されるタイプE硬度で約15と、シート状熱伝導体11の硬度よりも低いものを用いている。このようにすることにより、発熱部品、あるいは放熱部品との間の接触熱抵抗を小さくすることができ、効率的に熱を伝達することができる。   Moreover, when insulation is calculated | required in a heat conductive sheet, you may provide the insulating sheet 13 which consists of insulating resin on the surface or back surface of the sheet-like heat conductor 11, as shown in FIG. Silicone may be used for this insulating sheet 13, but it is a material different from that of the protective layer 12, and its hardness is about 15 as the type E hardness defined by ASTM D2240, which is higher than the hardness of the sheet-like heat conductor 11. A low one is used. By doing in this way, the contact thermal resistance between heat-generating components or heat-radiating components can be reduced, and heat can be transmitted efficiently.

さらにシート状熱伝導体の大きさを発熱部品の大きさよりも大きくし、シート状熱伝導体のみが発熱部品に当接されるようにすることが望ましい。このようにすることによりシート状熱伝導体と発熱部品との間の接触熱抵抗を小さくすることができる。   Furthermore, it is desirable to make the size of the sheet-like heat conductor larger than the size of the heat generating component so that only the sheet-like heat conductor is in contact with the heat generating component. By doing in this way, the contact thermal resistance between a sheet-like heat conductor and a heat-emitting component can be made small.

次に本発明の一実施の形態における熱伝導シートの製造方法について説明する。   Next, the manufacturing method of the heat conductive sheet in one embodiment of this invention is demonstrated.

まず熱分解グラファイトシートを粉砕した熱伝導粒子と樹脂とを混合し、熱伝導粒子を厚さ方向に配向させて図2aのように、厚さ約2.5mmのシート状熱伝導体11を得る。熱伝導粒子11aを厚さ方向に配向させる方法としては磁場をかけながら成形する、あるいはシート成形によって面方向に配向させたシートを重ねて一体化し、垂直に切断するという方法等によって実現することができる。またこのシート状熱伝導体11の硬さは、ASTM D2240で規定されるタイプE硬度で約25となっている。このようにすることにより、シート状熱伝導体11は接触熱抵抗が小さく、厚さ方向の熱伝導に優れたものとなる。   First, heat conductive particles obtained by pulverizing the pyrolytic graphite sheet are mixed with a resin, and the heat conductive particles are oriented in the thickness direction to obtain a sheet-like heat conductor 11 having a thickness of about 2.5 mm as shown in FIG. 2a. . As a method of orienting the heat conductive particles 11a in the thickness direction, it can be realized by a method of forming while applying a magnetic field, or stacking and integrating sheets oriented in the plane direction by sheet forming, and cutting vertically. it can. Further, the hardness of the sheet-like heat conductor 11 is about 25 in the type E hardness defined by ASTM D2240. By doing in this way, the sheet-like heat conductor 11 has a small contact thermal resistance and is excellent in heat conduction in the thickness direction.

次に図2bのようにシート状熱伝導体11を所定の治具14に固定する。固定する方法としては、静電吸着、微粘着シート等を用いることができる。   Next, the sheet-like heat conductor 11 is fixed to a predetermined jig 14 as shown in FIG. As a fixing method, electrostatic adsorption, a slightly adhesive sheet, or the like can be used.

次に図2cのように、シート状熱伝導体11に格子状の切欠き部15を形成する。この方法としては、金型により打ち抜き、格子状に形成された部分を剥離することにより、切欠き部15を形成することができる。この切欠き部15の幅は約3mmとなっている。   Next, as shown in FIG. 2 c, lattice-shaped notches 15 are formed in the sheet-like heat conductor 11. As this method, the notch 15 can be formed by punching with a mold and peeling off the portion formed in a lattice shape. The width of the notch 15 is about 3 mm.

次に図2dのように、切欠き部15にシリコーンポリマー16を流し込み硬化させる。この硬化したシリコーンポリマー16が保護層12となる。シリコーンポリマー16が硬化した後の硬度は、ASTM D2240で規定されるタイプE硬度で約50となっている。   Next, as shown in FIG. 2d, the silicone polymer 16 is poured into the notch 15 and cured. This cured silicone polymer 16 becomes the protective layer 12. The hardness after the silicone polymer 16 is cured is approximately 50 in the type E hardness defined by ASTM D2240.

次に切欠き部15のほぼ中央部のシリコーンで切断して個片化することにより、図2eの熱伝導シートを得る。   Next, it cut | disconnects with the silicon | silicone of the substantially center part of the notch part 15, and the heat conductive sheet of FIG.

なお、シート状熱伝導体11の少なくとも表面または裏面に、保護層とは異なる硬度の絶縁シートを設ける場合は、治具14に固定する前に、シート状熱伝導体11に絶縁シートを貼り合わせておくことが望ましい。このようにすることにより、工程を簡略化することができる。   When an insulating sheet having a hardness different from that of the protective layer is provided on at least the front surface or the back surface of the sheet-like heat conductor 11, the insulating sheet is bonded to the sheet-like heat conductor 11 before being fixed to the jig 14. It is desirable to keep it. By doing in this way, a process can be simplified.

本発明に係る熱伝導シートは、熱伝導シートの端面から熱伝導粒子が離脱することを防ぐことができ、かつ接触熱抵抗が小さく、厚さ方向の熱伝導性に優れた熱伝導シートが得られるものであり、産業上有用である。   The heat conductive sheet according to the present invention can prevent the heat conductive particles from detaching from the end face of the heat conductive sheet, has a low contact thermal resistance, and is excellent in heat conductivity in the thickness direction. And is industrially useful.

11 シート状熱伝導体
11a 熱伝導粒子
12 保護層
13 絶縁シート
14 治具
15 切欠き部
16 シリコーンポリマー
DESCRIPTION OF SYMBOLS 11 Sheet-like heat conductor 11a Thermal conductive particle 12 Protective layer 13 Insulating sheet 14 Jig 15 Notch 16 Silicone polymer

Claims (5)

熱分解グラファイトシートを粉砕した熱伝導粒子と樹脂とを混合し、前記熱伝導粒子を厚さ方向に配向させたシート状熱伝導体の端面のみに、保護層を設けてなる熱伝導シート。 A heat conductive sheet obtained by mixing a heat conductive particle obtained by pulverizing a pyrolytic graphite sheet and a resin, and providing a protective layer only on an end surface of the sheet-like heat conductor in which the heat conductive particles are oriented in the thickness direction. 前記シート状熱伝導体の少なくとも表面または裏面に、前記保護層とは異なる硬度の絶縁シートを設けてなる請求項1記載の熱伝導シート。 The heat conductive sheet according to claim 1, wherein an insulating sheet having a hardness different from that of the protective layer is provided on at least a front surface or a back surface of the sheet-like heat conductor. 前記保護層の硬度を、前記シート状熱伝導体の硬度よりも高いものとしたことを特徴とする請求項1記載の熱伝導シート。 The heat conductive sheet according to claim 1, wherein the hardness of the protective layer is higher than the hardness of the sheet-like heat conductor. 前記保護層の厚さを、前記シート状熱伝導体の厚さの1/4以上、3/4以下としたことを特徴とする請求項1記載の熱伝導シート。 The heat conductive sheet according to claim 1, wherein the thickness of the protective layer is set to ¼ or more and ¾ or less of the thickness of the sheet-like heat conductor. 熱分解グラファイトシートを粉砕した熱伝導粒子と樹脂とを混合し、前記熱伝導粒子を厚さ方向に配向させたシートを形成する工程と、前記シートを所定の治具に固定する工程と、前記シートに格子状の切欠き部を形成する工程と、前記切欠き部にシリコーンポリマーを流し込み硬化させる工程と、前記シリコーンポリマーが硬化したシリコーンの部分で切断することにより個別の熱伝導シートを得る工程とを備えた熱伝導シートの製造方法。 Mixing a thermally conductive particle obtained by pulverizing a pyrolytic graphite sheet and a resin, forming a sheet in which the thermally conductive particle is oriented in a thickness direction, fixing the sheet to a predetermined jig, A step of forming a grid-like cutout in the sheet, a step of pouring and curing a silicone polymer into the cutout, and a step of obtaining individual heat conductive sheets by cutting at the silicone portion where the silicone polymer is cured The manufacturing method of the heat conductive sheet provided with.
JP2015205616A 2015-10-19 2015-10-19 Heat conduction sheet and manufacturing method thereof Pending JP2017079232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015205616A JP2017079232A (en) 2015-10-19 2015-10-19 Heat conduction sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015205616A JP2017079232A (en) 2015-10-19 2015-10-19 Heat conduction sheet and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2017079232A true JP2017079232A (en) 2017-04-27

Family

ID=58665518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015205616A Pending JP2017079232A (en) 2015-10-19 2015-10-19 Heat conduction sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2017079232A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047622A (en) * 2018-09-14 2020-03-26 アイシン精機株式会社 Semiconductor device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328213A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Heat-conductive sheet
JP2007044994A (en) * 2005-08-10 2007-02-22 Taika:Kk Graphite composite structure, heat radiation member using the structure, and electronic component using the structure
JP2007222797A (en) * 2006-02-23 2007-09-06 Taika:Kk Heat transferring sheet and its manufacturing method
JP2010010599A (en) * 2008-06-30 2010-01-14 Fuji Polymer Industries Co Ltd Heat diffusion sheet
JP2012109311A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat transfer sheet, production method of heat transfer sheet, and heat radiation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328213A (en) * 2005-05-26 2006-12-07 Matsushita Electric Ind Co Ltd Heat-conductive sheet
JP2007044994A (en) * 2005-08-10 2007-02-22 Taika:Kk Graphite composite structure, heat radiation member using the structure, and electronic component using the structure
JP2007222797A (en) * 2006-02-23 2007-09-06 Taika:Kk Heat transferring sheet and its manufacturing method
JP2010010599A (en) * 2008-06-30 2010-01-14 Fuji Polymer Industries Co Ltd Heat diffusion sheet
JP2012109311A (en) * 2010-11-15 2012-06-07 Hitachi Chem Co Ltd Heat transfer sheet, production method of heat transfer sheet, and heat radiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047622A (en) * 2018-09-14 2020-03-26 アイシン精機株式会社 Semiconductor device and manufacturing method thereof
JP7167574B2 (en) 2018-09-14 2022-11-09 株式会社アイシン Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4265796B2 (en) Heat receiving sheet, electronic device, and method of manufacturing heat receiving sheet
JP6236631B2 (en) Manufacturing method of heat conductive sheet
TW201221041A (en) Heat dissipation apparatus assembly
JP2008066374A (en) Heat radiating substrate, method for manufacturing the same, and power module using the same
JP2012069670A (en) Semiconductor module and manufacturing method therefor
WO2014020704A1 (en) Electric power semiconductor device
WO2014155977A1 (en) Heat dissipating sheet and heat dissipating structural body using same
WO2019184591A1 (en) Heat dissipation device for display panel, manufacturing method thereof, and display device
JP2014067924A (en) Method for manufacturing thermal conductive sheet
JP2006261505A (en) Insulating heat transfer sheet
JP2016072354A (en) Power module
JP2017079232A (en) Heat conduction sheet and manufacturing method thereof
JP2006328213A (en) Heat-conductive sheet
JP2016018813A (en) Heat transport sheet and manufacturing method for the same
JPWO2014155898A1 (en) Insulation sheet and manufacturing method thereof
JP2010245563A (en) Component unit
JP2006332305A (en) Method of manufacturing thermal conductive sheet
JP6357683B2 (en) Heat sink and its manufacturing method
KR20200089431A (en) thermal diffusion member and thermal interface member using a plate type nonmetal thermal diffusion filler thermal diffusion filler
KR20120026980A (en) Thermal interface material for reducing thermal resistance and method of making the same
JP2019150997A (en) Laminate
CN111315108B (en) Circuit board and electrical equipment
JP2014067926A (en) Method for manufacturing thermal conductive sheet
WO2016067377A1 (en) Heat-dissipating structure
WO2016067390A1 (en) Heat-dissipating structure

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180822

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107