JP5661552B2 - Semiconductor light emitting device and manufacturing method thereof - Google Patents

Semiconductor light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP5661552B2
JP5661552B2 JP2011104088A JP2011104088A JP5661552B2 JP 5661552 B2 JP5661552 B2 JP 5661552B2 JP 2011104088 A JP2011104088 A JP 2011104088A JP 2011104088 A JP2011104088 A JP 2011104088A JP 5661552 B2 JP5661552 B2 JP 5661552B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
phosphor
glass
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104088A
Other languages
Japanese (ja)
Other versions
JP2012146942A (en
Inventor
健二 今津
健二 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Electronics Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Electronics Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2011104088A priority Critical patent/JP5661552B2/en
Publication of JP2012146942A publication Critical patent/JP2012146942A/en
Application granted granted Critical
Publication of JP5661552B2 publication Critical patent/JP5661552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/19Manufacturing methods of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/20Structure, shape, material or disposition of high density interconnect preforms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73267Layer and HDI connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Description

本発明は、半導体発光素子の周囲に蛍光体が偏在した半導体発光装置及びその製造方法に関する。   The present invention relates to a semiconductor light emitting device in which phosphors are unevenly distributed around a semiconductor light emitting element and a method for manufacturing the same.

半導体発光素子(以後とくに断らない限りLED素子と呼ぶ)をパッケージ化するとき、LED素子の周囲の直近に蛍光体を偏在させ方位角にともなって変化する色ムラを低減させる半導体発光装置(以後とくに断らない限りLED装置と呼ぶ)がある。   When a semiconductor light emitting device (hereinafter referred to as an LED device unless otherwise specified) is packaged, a semiconductor light emitting device (particularly hereinafter referred to as “light emitting device”) that reduces the unevenness of color that varies with the azimuth by causing the phosphor to be unevenly distributed in the immediate vicinity of the LED device. Unless otherwise specified, it is called an LED device).

このLED装置の製造方法としては、回路基板にLED素子を実装してから電気泳動法、電着法、スプレイ法等で蛍光体をLED素子に付着するものが知られている。電気泳動法はLED素子の光出射面や側面に蛍光体付着用の電極を設けなければならず煩瑣である。またLED装置は発光色を一定にするため蛍光体の量を精度良く制御しなければならないが、電気泳動法、電着法、スプレイ法は蛍光体が電界や慣性により空間を移動するため蛍光体粒子径のバラツキを狭い範囲に収めなければならない。もっと手軽な製造方法としては蛍光体粒子径への制限が少ない機械的加工を採用するものがある(例えば特許文献1)。   As a manufacturing method of this LED device, there is known a method in which a phosphor is attached to an LED element by an electrophoresis method, an electrodeposition method, a spray method or the like after the LED element is mounted on a circuit board. The electrophoresis method is troublesome because an electrode for attaching a phosphor must be provided on the light emitting surface and side surface of the LED element. In addition, the LED device must control the amount of the phosphor with high precision in order to make the emission color constant, but the electrophoresis method, electrodeposition method, and spray method are phosphors because the phosphor moves in space due to an electric field or inertia. The particle size variation must be within a narrow range. As a simpler manufacturing method, there is a method that employs mechanical processing with less restriction on the phosphor particle diameter (for example, Patent Document 1).

特許文献1の図1の一部を図11に示し、LED素子の構造と加工例を説明する。図11において、(g)は発光ダイオード1(LED素子)の断面図、(b),(c),(d),(f)が加工工程の説明図である。(g)に示すように発光ダイオード1は、サファイア基板10の上面と側面に蛍光体層14が形成されている。サファイア基板10の下面は電極面15となっており、発光層19、p電極7とn電極8がある。(b)の工程では切削具21で複数の発光ダイオードが配列されているウェハー状態のサファイア基板10に溝12を形成する。(c)の工程ではウェハー上面に蛍光体ペースト13を塗布しスキージ26で平坦化する。(d)の工程では目的の厚みとするため研磨具22で蛍光体層14を研磨する。(f)の工程ではダイシングテープ24上にウェハーを置き切断具25で溝の中央を切断する。以上の工程で周囲に蛍光体層14を備えた発光ダイオード1が個片化される。   A part of FIG. 1 of Patent Document 1 is shown in FIG. In FIG. 11, (g) is a sectional view of the light emitting diode 1 (LED element), and (b), (c), (d), and (f) are explanatory views of the processing steps. As shown in (g), the light emitting diode 1 has a phosphor layer 14 formed on the upper surface and side surfaces of the sapphire substrate 10. The lower surface of the sapphire substrate 10 is an electrode surface 15, and there are a light emitting layer 19, a p-electrode 7 and an n-electrode 8. In the step (b), the grooves 12 are formed on the sapphire substrate 10 in a wafer state in which a plurality of light emitting diodes are arranged by the cutting tool 21. In the step (c), the phosphor paste 13 is applied to the upper surface of the wafer and flattened by the squeegee 26. In the step (d), the phosphor layer 14 is polished with the polishing tool 22 in order to obtain a target thickness. In the step (f), a wafer is placed on the dicing tape 24 and the center of the groove is cut by the cutting tool 25. Through the above steps, the light-emitting diode 1 having the phosphor layer 14 around is separated.

特許文献1の方法など自分自身の周りに蛍光体を偏在させるようにしたLED素子(発光ダイオード1)は、ふつう樹脂やセラミック、金属からなる回路基板上にフリップチップ実装され、回路基板上面とともに樹脂で封止されることが多い。   The LED element (light-emitting diode 1) in which phosphors are unevenly distributed around itself such as the method of Patent Document 1 is usually flip-chip mounted on a circuit board made of resin, ceramic, or metal, and is resin together with the upper surface of the circuit board. It is often sealed with.

簡単にLED素子周りだけに蛍光体を配置させることが可能で、さらに蛍光体とともにLED素子や回路基板上面を樹脂で封止することができる方法が、特許文献2の図1に示されている。特許文献2の図1に示された製造方法は、まず予め凹部4aを形成しておいたシート4の凹部4aに、蛍光体6を混合した樹脂5aを所定量注入する。次に実装基板1(回路基板)にフリップチップ実装したLEDチップ2(LED素子)を樹脂5aに浸潤し、最後に接着材8で実装基板とシート4を接着している。   FIG. 1 of Patent Document 2 shows a method in which the phosphor can be easily arranged only around the LED element, and the LED element and the circuit board upper surface can be sealed with resin together with the phosphor. . In the manufacturing method shown in FIG. 1 of Patent Document 2, first, a predetermined amount of resin 5a mixed with phosphor 6 is injected into the recess 4a of the sheet 4 in which the recess 4a has been formed in advance. Next, the LED chip 2 (LED element) flip-chip mounted on the mounting substrate 1 (circuit substrate) is infiltrated into the resin 5 a, and finally the mounting substrate and the sheet 4 are bonded with the adhesive 8.

しかしながら樹脂による封止は、樹脂が水蒸気など気体成分を通し易いため、反応し易い蛍光体が使えないという課題がある。これに対しLED素子周りに蛍光体を偏在させながら、蛍光体の長期信頼性を高める手法として、蛍光体やLED素子をガラスで封止する発光装置(LED装置)が特許文献3の図10に示されている。特許文献3の図10に示された発光装置1は、基板3上にフリップチップ実装したLED素子2の周囲を蛍光体層15がとり囲み、基板2上面とともに蛍光体層15をガラス封止部6で封止している。こ
の発光素子1は、周囲に蛍光体層6を備え、基板3上にフリップチップ実装されたLED素子2を基板3ごとガラスのホットプレス加工により封止したものである。
However, sealing with a resin has a problem that a phosphor that easily reacts cannot be used because the resin easily passes a gas component such as water vapor. On the other hand, as a technique for improving the long-term reliability of the phosphor while unevenly distributing the phosphor around the LED element, a light emitting device (LED device) that seals the phosphor and the LED element with glass is shown in FIG. It is shown. In the light-emitting device 1 shown in FIG. 10 of Patent Document 3, the phosphor layer 15 surrounds the LED element 2 flip-chip mounted on the substrate 3, and the phosphor layer 15 together with the upper surface of the substrate 2 is sealed with the glass. 6 is sealed. The light-emitting element 1 includes a phosphor layer 6 around the LED element 2 that is flip-chip mounted on the substrate 3 and is sealed together with the substrate 3 by glass hot pressing.

特許第3978514号公報 (図1)Japanese Patent No. 3978514 (FIG. 1) 特開2008−60166号公報 (図1)JP 2008-60166 (FIG. 1) 特許第4637160号公報 (図10)Japanese Patent No. 4737160 (FIG. 10)

特許文献2の図1で示されたLED装置は、樹脂封止であるため長期的な信頼性を欠くという課題があるばかりでなく、凹部4aに注入しなければならない樹脂5aを正確に決めなくてはならない。つまり、LED素子やその突起電極の厚さがばらつくため、LED素子毎に注入量を制御する必要がある。しかしながら特許文献2にはこの課題に関する記載がない。またこれらの課題はないとしても、特許文献3の図10に示されたLED装置は予めLED素子の周辺部に蛍光体を偏在させておかなければならい点が課題となる。なお特許文献3の図10に対する説明の中にはどのようにして蛍光体を偏在させたか記載がない。いずれにしろ予めLED素子の周りに蛍光体を偏在させておくことは煩瑣である。   The LED device shown in FIG. 1 of Patent Document 2 has a problem of lacking long-term reliability because of resin sealing, and does not accurately determine the resin 5a that must be injected into the recess 4a. must not. That is, since the thickness of the LED element and its protruding electrode varies, it is necessary to control the injection amount for each LED element. However, Patent Document 2 does not describe this problem. Further, even if these problems are not present, the LED device shown in FIG. 10 of Patent Document 3 has a problem that the phosphors must be unevenly distributed in the periphery of the LED elements in advance. In addition, in the description with respect to FIG. 10 of Patent Document 3, there is no description of how the phosphors are unevenly distributed. In any case, it is troublesome to preliminarily distribute the phosphor around the LED element.

そこで本発明は、これらの課題に鑑みて為されたものであり、半導体発光素子の周りだけに蛍光体を備える構造を維持したまま、長寿命化が可能で製造し易い半導体発光装置及びその製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of these problems, and a semiconductor light-emitting device that can have a long life and is easy to manufacture while maintaining a structure including a phosphor only around the semiconductor light-emitting element, and its manufacture It aims to provide a method.

上記課題を解決するため本発明の半導体発光装置は、
透明基板上に半導体層を備える半導体発光素子の周囲直近に蛍光体が偏在し、該蛍光体とともに前記半導体発光素子が封止される半導体発光装置において、
凹部を有するガラスと、
前記半導体層に突起電極が接続し、前記凹部の底部及び側部との間に間隙を有するように配置された半導体発光素子と、
前記間隙に充填された蛍光体と、
前記ガラスの底面とともに前記間隙から露出する前記蛍光体を被覆するガスバリア層とを備え
前記ガラスの底面に金属反射層を備え、前記ガスバリア層が前記金属反射層を被覆することを特徴とする。
In order to solve the above problems, a semiconductor light-emitting device of the present invention includes:
In a semiconductor light emitting device in which a phosphor is unevenly distributed near the periphery of a semiconductor light emitting element including a semiconductor layer on a transparent substrate, and the semiconductor light emitting element is sealed together with the phosphor,
Glass having a recess,
A semiconductor light emitting element disposed so that a protruding electrode is connected to the semiconductor layer, and a gap is provided between a bottom and a side of the recess;
A phosphor filled in the gap;
A gas barrier layer covering the phosphor exposed from the gap together with the bottom surface of the glass ,
A metal reflective layer is provided on the bottom surface of the glass, and the gas barrier layer covers the metal reflective layer .

前記蛍光体がスペーサを含有していることが好ましい。   It is preferable that the phosphor contains a spacer.

前記金属反射層がスリットで分割されていても良い。   The metal reflective layer may be divided by slits.

前記突起電極と接続し、メッキ法により形成した接続電極を設けると良い。   A connection electrode formed by a plating method may be provided in connection with the protruding electrode.

上記課題を解決するため本発明の半導体発光装置の製造方法は、透明基板上に半導体層を備える半導体発光素子の周囲直近に蛍光体が偏在し、該蛍光体とともに前記半導体発光素子が封止される半導体発光装置の製造方法において、
突起電極を備える半導体発光素子と大判のガラスを準備する準備工程と、
該ガラスに複数の凹部を形成する凹部形成工程と、
該凹部に硬化前の蛍光体を滴下する蛍光体滴下工程と、
該凹部の底部と側部に間隙を有するように前記半導体発光素子を配置する半導体発光素子配置工程と、
前記ガラスの底面とともに前記間隙から露出する前記蛍光体をガスバリア層で被覆するガスバリア層形成工程と
前記ガラスを個別の前記半導体発光装置に個片化する個片化工程とを備え
前記準備工程において準備する前記ガラスが底面に金属反射層を備えていることを特徴とする。
In order to solve the above problems, in the method for manufacturing a semiconductor light emitting device of the present invention, a phosphor is unevenly distributed near the periphery of a semiconductor light emitting element having a semiconductor layer on a transparent substrate, and the semiconductor light emitting element is sealed together with the phosphor. In a method for manufacturing a semiconductor light emitting device,
A preparation step of preparing a semiconductor light emitting device including a protruding electrode and a large glass,
A recess forming step of forming a plurality of recesses in the glass;
A phosphor dropping step of dropping a phosphor before curing into the recess;
A semiconductor light emitting element disposing step of disposing the semiconductor light emitting element so as to have a gap between the bottom and the side of the recess;
A gas barrier layer forming step of covering the phosphor exposed from the gap together with a bottom surface of the glass with a gas barrier layer; and a singulation step of dividing the glass into individual semiconductor light emitting devices ,
The glass prepared in the preparation step includes a metal reflection layer on a bottom surface .

前記凹部形成工程においてエッチング法により底部が平坦な凹部を形成しても良い。   In the recess forming step, a recess having a flat bottom may be formed by an etching method.

前記ガスバリア層から露出した前記突起電極に接続する接続電極を電解メッキ法で形成しても良い。
A connection electrode connected to the protruding electrode exposed from the gas barrier layer may be formed by electrolytic plating.

本発明の半導体発光装置において蛍光体の大部分は、ガス透過性が著しく低いガラスと半導体発光素子により外気から遮断されている。またガラスと半導体発光素子の間隙から露出する蛍光体層はガスバリア層が被覆する。このようにして蛍光体が外気から遮断されるため超寿命化が達成される。また凹部の深さ、半導体発光素子の厚さなどさまざまな変動要因により、間隙における蛍光体の高さがばらついても、このガスバリア層が蛍光体露出部を被覆するので、この間隙に充填される蛍光体の量に対する許容値が広くなり、長寿命化とともに製造の容易化が達成される。以上のように本発明の半導体発光装置は、半導体発光素子の周りに蛍光体を備える構造を維持したまま、長寿命化が可能で製造し易い構造になる。   In the semiconductor light emitting device of the present invention, most of the phosphor is shielded from the outside air by glass and a semiconductor light emitting element having extremely low gas permeability. The phosphor layer exposed from the gap between the glass and the semiconductor light emitting device is covered with a gas barrier layer. In this way, the phosphor is cut off from the outside air, so that a long life is achieved. In addition, even if the height of the phosphor in the gap varies due to various factors such as the depth of the recess and the thickness of the semiconductor light emitting element, the gas barrier layer covers the phosphor exposed portion, so that the gap is filled. The allowable value with respect to the amount of the phosphor is widened, and the manufacturing is facilitated along with the longer life. As described above, the semiconductor light-emitting device of the present invention has a structure that can extend the life and is easy to manufacture while maintaining the structure including the phosphor around the semiconductor light-emitting element.

本発明の半導体発光装置の製造方法は、突起電極を有する半導体発光素子とともに大判ガラスを準備し、凹部形成工程、蛍光体滴下工程、半導体発光素子配置工程、及びガスバリア層形成工程を含む途中工程を大判ガラスで進め、最後に大判ガラスを個片化し個別の半導体発光装置を得る集合工法である。この工程により前述の構造の半導体発光装置が得られるため、本発明の半導体発光装置の製造方法は、半導体発光素子の周りに蛍光体を備える構造でありながら、ガラス及びガスバリア層による封止で長寿命化が達成され、集合工法により効率よく製造できるとともにガスバリア層が蛍光体滴下量の許容範囲を大きくし製造を容易にする。   The method for manufacturing a semiconductor light emitting device of the present invention comprises preparing a large glass together with a semiconductor light emitting element having a protruding electrode, and performing intermediate steps including a recess forming step, a phosphor dropping step, a semiconductor light emitting element arranging step, and a gas barrier layer forming step. This is an assembly method that proceeds with large glass, and finally separates the large glass into individual semiconductor light emitting devices. Since the semiconductor light-emitting device having the above-described structure is obtained by this process, the method for manufacturing a semiconductor light-emitting device according to the present invention has a structure in which a phosphor is provided around the semiconductor light-emitting element and is long by sealing with glass and a gas barrier layer. Life extension is achieved, and the gas barrier layer can be manufactured efficiently by the assembly method, and the gas barrier layer increases the allowable range of the amount of phosphor to be dropped to facilitate manufacturing.

本発明の第1実施形態におけるLED装置の断面図。The sectional view of the LED device in a 1st embodiment of the present invention. 図1のLED装置の底面図。The bottom view of the LED apparatus of FIG. 図1のLED装置を製造するための工程説明図。Process explanatory drawing for manufacturing the LED device of FIG. 図1のLED装置を製造するための工程説明図。Process explanatory drawing for manufacturing the LED device of FIG. 本発明の第2実施形態におけるLED装置の断面図。Sectional drawing of the LED apparatus in 2nd Embodiment of this invention. 本発明の第3実施形態におけるLED装置の断面図。Sectional drawing of the LED apparatus in 3rd Embodiment of this invention. 本発明の第4実施形態におけるLED装置の断面図。Sectional drawing of the LED apparatus in 4th Embodiment of this invention. 図7のLED装置の底面図。The bottom view of the LED apparatus of FIG. 図7のLED装置を製造するための工程説明図。Process explanatory drawing for manufacturing the LED device of FIG. 図7のLED装置を製造するための工程説明図。Process explanatory drawing for manufacturing the LED device of FIG. 従来のLED素子の断面図とその製造方法の説明図。Sectional drawing of the conventional LED element, and explanatory drawing of the manufacturing method.

以下、添付図1〜10を参照しながら本発明の好適な実施形態について詳細に説明する。なお図面において、同一または相当要素には同一の符号を付し、重複する説明は省略する。また説明のため部材の縮尺は適宜変更している。さらに特許請求の範囲に記載した発明特定事項との関係をカッコ内に記載している。
(第1実施形態)
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to FIGS. In the drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted. For the sake of explanation, the scale of the members is changed as appropriate. Furthermore, the relationship with the invention specific matter described in the claims is described in parentheses.
(First embodiment)

図1は本発明の第1実施形態におけるLED装置30(半導体発光装置)の断面図である。ガラス31の下面には箱形の凹部31aがあり、凹部31a内に蛍光体32とLED素子36が配置されている。凹部31aの上部(底部)及び側部とLED素子36との間には間隙があり、この間隙に蛍光体32が充填されている。上部の間隙と側部の間隙の厚さは概ね等しい。なおLED素子36は、サファイア基板33(透明基板)の下に半導体層34を備え、半導体層34の下面にアノード用及びカソード用のバンプ電極35(突起電極)が付着している。   FIG. 1 is a cross-sectional view of an LED device 30 (semiconductor light emitting device) in the first embodiment of the present invention. A box-shaped recess 31a is provided on the lower surface of the glass 31, and the phosphor 32 and the LED element 36 are disposed in the recess 31a. There are gaps between the top (bottom) and sides of the recess 31a and the LED element 36, and the gaps are filled with the phosphor 32. The thickness of the top gap and the side gap are approximately equal. The LED element 36 includes a semiconductor layer 34 under a sapphire substrate 33 (transparent substrate), and anode and cathode bump electrodes 35 (projection electrodes) are attached to the lower surface of the semiconductor layer 34.

ガラス31の下面、ガラス31下面及びLED素子36から露出する蛍光体32、及びバンプ電極35が占める領域以外のLED素子36下面は、ガスバリア層37で被覆されている。さらにガスバリア層37の下面には白色反射部材38がある。白色反射部材38の下面とバンプ電極35の下面は高さが一致している。白色反射部材38及びバンプ電極35の下面にはアノード及びカソードとして機能する接続電極39が形成されている。なお図1ではガラス31の底面と蛍光体32の底面の高さも一致させているが、それぞれの高さが多少ずれてもガスバリア層は凹凸に沿って形成され蛍光体32の底面を封止できるので問題ない(以下同様)。   The lower surface of the glass 31, the lower surface of the glass 31, the phosphor 32 exposed from the LED element 36, and the lower surface of the LED element 36 other than the area occupied by the bump electrodes 35 are covered with a gas barrier layer 37. Further, a white reflecting member 38 is provided on the lower surface of the gas barrier layer 37. The lower surface of the white reflecting member 38 and the lower surface of the bump electrode 35 have the same height. Connection electrodes 39 functioning as an anode and a cathode are formed on the lower surfaces of the white reflecting member 38 and the bump electrode 35. In FIG. 1, the height of the bottom surface of the glass 31 and the bottom surface of the phosphor 32 are also made to coincide with each other. However, even if the respective heights are slightly shifted, the gas barrier layer is formed along the unevenness and the bottom surface of the phosphor 32 can be sealed. So there is no problem (the same applies below).

またLED素子36は、サファイア基板33に半導体層34を備えるLED素子36の周りに蛍光体32が偏在し、蛍光体32とともにLED素子36がガラス31、ガスバリア層37及び白色反射部材38で封止されている。   Further, in the LED element 36, the phosphor 32 is unevenly distributed around the LED element 36 including the semiconductor layer 34 on the sapphire substrate 33, and the LED element 36 is sealed with the glass 31, the gas barrier layer 37 and the white reflecting member 38 together with the phosphor 32. Has been.

蛍光体32は、珪酸塩系(又は窒化物系)の緑色蛍光粒子及び窒化物系の赤色蛍粒子に加えビーズスペーサを含み、シリコーン樹脂をバインダとしている。なお凹部31aの底部における蛍光体32の厚みは70〜100μmでビーズスペーサの直径で決まる。半導体層34から出射した青色光と、この青色光で励起された蛍光体32による緑色光及び赤色光とが混色し白色光が得られる。蛍光体32がLED素子36の周囲に偏在すると出射方向(方位角)によって変化する色ムラ(白色光の色度変化)が軽減する。シリコーン樹脂の代わりにオルガノポリシロキサンなど焼結するとガラス質になるバインダを使っても良い。このバインダは無機質であるため耐光性が良好なためLED装置30の長寿命化にとって好ましい。   The phosphor 32 includes bead spacers in addition to silicate-based (or nitride-based) green fluorescent particles and nitride-based red fluorescent particles, and uses a silicone resin as a binder. In addition, the thickness of the fluorescent substance 32 in the bottom part of the recessed part 31a is 70-100 micrometers, and is decided by the diameter of a bead spacer. The blue light emitted from the semiconductor layer 34 and the green light and red light by the phosphor 32 excited by the blue light are mixed to obtain white light. When the phosphor 32 is unevenly distributed around the LED element 36, color unevenness (change in chromaticity of white light) that changes depending on the emission direction (azimuth angle) is reduced. Instead of silicone resin, a binder that becomes vitreous when sintered, such as organopolysiloxane, may be used. Since this binder is inorganic, its light resistance is good, which is preferable for extending the life of the LED device 30.

LED素子36のサファイア基板33は厚さが80〜120μmであるが、さらに薄くすればサファイア基板33の側面から出射する光が減り、上方へ向かう光が増える。半導体層34は厚さが7μm程度であり、p型半導体層とn型半導体層を含む青色発光ダイオードである。半導体層34の下面にはp型半導体層及びn型半導体層の露出部があり、それぞれの露出部にバンプ電極35が形成され、バンプ電極35はアノード及びカソード電極となる。バンプ電極35は電解メッキ法で形成し、厚さが10〜30μm程度になる。なおn型半導体層の露出部だけにn側のバンプ電極35を形成するのではなく、層間絶縁膜と金属配線を追加し、p型半導体層上にもn側のバンプ電極35を積層させるようにすると、p側及びn側のバンプ電極形状を決めるときに自由度が増すためLED装置30の電極設計が楽になる。   The sapphire substrate 33 of the LED element 36 has a thickness of 80 to 120 μm. However, if the sapphire substrate 33 is further thinned, the light emitted from the side surface of the sapphire substrate 33 is reduced, and the upward light is increased. The semiconductor layer 34 is a blue light emitting diode having a thickness of about 7 μm and including a p-type semiconductor layer and an n-type semiconductor layer. The lower surface of the semiconductor layer 34 has exposed portions of the p-type semiconductor layer and the n-type semiconductor layer, and bump electrodes 35 are formed on the exposed portions, and the bump electrodes 35 serve as an anode and a cathode electrode. The bump electrode 35 is formed by electrolytic plating and has a thickness of about 10 to 30 μm. Instead of forming the n-side bump electrode 35 only on the exposed portion of the n-type semiconductor layer, an interlayer insulating film and a metal wiring are added, and the n-side bump electrode 35 is laminated on the p-type semiconductor layer. Then, since the degree of freedom increases when determining the p-side and n-side bump electrode shapes, the electrode design of the LED device 30 becomes easy.

ガスバリア層37は厚さが100〜300nmのSiO2膜である。SiO2等の無機
膜は数10nmで高いガスバリア性を示すため、蛍光体32の下端から侵入しようとする水分等を強く阻止する。白色反射部材38は、二酸化チタン等の反射性微粒子、前述のシリコーン樹脂やオルガノポリシロキサンなどのバインダ、溶媒及び触媒とを混練したペーストを150℃程度で焼結したものである。白色反射部材38は下方に向かう光を上方に反射させることでLED装置30の発光効率を改善している。なお高度な長寿命化が不要な場合はガスバリア層37を無くすこともできる。また接続電極39はメッキ用共通電極であるTiW層と、電解メッキ法で作成したCu層、Ni層及びAu層とを有し、総厚が10μm程度である。
The gas barrier layer 37 is a SiO2 film having a thickness of 100 to 300 nm. Inorganic films such as SiO 2 exhibit high gas barrier properties at several tens of nanometers, and therefore strongly prevent moisture and the like from entering from the lower end of the phosphor 32. The white reflecting member 38 is obtained by sintering a paste obtained by kneading reflective fine particles such as titanium dioxide, a binder such as the aforementioned silicone resin or organopolysiloxane, a solvent, and a catalyst at about 150 ° C. The white reflecting member 38 improves the light emission efficiency of the LED device 30 by reflecting the downward light upward. Note that the gas barrier layer 37 can be eliminated when a high life extension is not required. The connection electrode 39 includes a TiW layer that is a common electrode for plating, a Cu layer, an Ni layer, and an Au layer formed by electrolytic plating, and has a total thickness of about 10 μm.

図2によりLED装置30の電極面(底面)を説明する。図2は蛍光体32の形状を説明するために描いたLED装置30の電極面の底面図である。底面の構造を説明するため接続電極39は点線で示し、ガスバリア層37,白色反射部材38は省略した。ガラス31は長方形の凹部31aを備え、その内側に蛍光体32がある。蛍光体32はLED素子36を枠上に取り囲んでいる。LED素子36の下面には2個のバンプ電極35があり、バンプ電極35以外の領域から半導体層34がみえる。蛍光体32の厚さは前述と同様に70〜100μm程度であるが、この値は凹部31aの外形やLED素子36の配置精度により決まる。なおLED素子36の横方向に出射する光線が利用しづらいことと、方位角の大きな領域では色ズレに対する許容量が大きいことから、図1におけるLED素子36の上部における蛍光体32の厚さに比べ、LED素子36の側部の蛍光体32は厚さがばらついても実害は少ない。   The electrode surface (bottom surface) of the LED device 30 will be described with reference to FIG. FIG. 2 is a bottom view of the electrode surface of the LED device 30 drawn to explain the shape of the phosphor 32. In order to explain the structure of the bottom surface, the connection electrode 39 is indicated by a dotted line, and the gas barrier layer 37 and the white reflecting member 38 are omitted. The glass 31 includes a rectangular recess 31a, and a phosphor 32 is provided on the inside thereof. The phosphor 32 surrounds the LED element 36 on the frame. There are two bump electrodes 35 on the lower surface of the LED element 36, and the semiconductor layer 34 can be seen from a region other than the bump electrodes 35. The thickness of the phosphor 32 is about 70 to 100 μm as described above, but this value is determined by the outer shape of the recess 31 a and the arrangement accuracy of the LED elements 36. Since the light emitted in the lateral direction of the LED element 36 is difficult to use and the tolerance for color misregistration is large in a region with a large azimuth angle, the thickness of the phosphor 32 at the upper part of the LED element 36 in FIG. In comparison, the phosphor 32 on the side of the LED element 36 is less harmful even if the thickness varies.

図3及び図4により図1のLED装置30の製造方法を説明する。図3及び図4はLED装置30を製造するための工程説明図である。(a)はバンプ電極35を備えるLED素子36と大判のガラス31を準備する準備工程を示している。なお(a)ではLED素子36について図示していない。   A method for manufacturing the LED device 30 of FIG. 1 will be described with reference to FIGS. 3 and 4 are process explanatory views for manufacturing the LED device 30. (A) has shown the preparatory process which prepares the LED element 36 provided with the bump electrode 35, and the large sized glass 31. FIG. Note that the LED element 36 is not shown in FIG.

(b)は、ガラス31に底部が平坦な複数の凹部31aをエッチング法で形成する凹部形成工程を示している。エッチング液にはフッ化アンモニウムを使用し、凹部31aを形成しない領域をマスクして凹部31aをエッチングで形成する。なお凹部31aを形成するのにマスクを用いたサンドブラスト法も適用できるが、この場合は底部が平坦でなく湾曲する。   (B) has shown the recessed part formation process which forms the several recessed part 31a whose bottom part is flat in the glass 31 by an etching method. Ammonium fluoride is used as an etchant, and the recess 31a is formed by etching using a region where the recess 31a is not formed as a mask. Note that a sandblast method using a mask can also be applied to form the recess 31a, but in this case, the bottom is not flat but curved.

(c)は、凹部31aに硬化前の蛍光体32を滴下する蛍光体滴下工程を示している。ディスペンサを使い各凹部31aに適量の蛍光体32を滴下していく。硬化前の蛍光体32は溶媒を含みペースト状であり、流動性及びタック性をもっている。滴下後、蛍光体32の流動性を調整するため加熱して仮硬化しても良い。   (C) has shown the fluorescent substance dripping process of dripping the fluorescent substance 32 before hardening to the recessed part 31a. An appropriate amount of phosphor 32 is dropped into each recess 31a using a dispenser. The phosphor 32 before curing is in a paste form containing a solvent and has fluidity and tackiness. After dripping, in order to adjust the fluidity of the phosphor 32, it may be heated and temporarily cured.

(d)は、凹部31aの底部と側部に間隙を有するようにLED素子36を配置する半導体発光素子配置工程を示している。LED素子36のバンプ電極35を上側にしてソーターにより各凹部31aにLED素子36を一個ずつ配置する。また予め図示していない粘着シート上にLED素子36を凹部31aのピッチで配列し、この粘着シートをガラス31に重ね一括してLED素子を凹部31aに配置しても良い。いずれにしてもLED素子36を配置するとき、蛍光体32に含まれるビーズスペーサによりLED素子36のサファイア基板33面とガラス31との間隙は所望の値に設定される。   (D) shows a semiconductor light emitting element arrangement step in which the LED elements 36 are arranged so as to have a gap between the bottom and the side of the recess 31a. One LED element 36 is arranged in each recess 31a by a sorter with the bump electrode 35 of the LED element 36 facing upward. Alternatively, the LED elements 36 may be arranged on the adhesive sheet (not shown) at the pitch of the concave portions 31a, and the LED elements may be arranged in the concave portions 31a by overlapping the adhesive sheets on the glass 31. In any case, when the LED element 36 is disposed, the gap between the surface of the sapphire substrate 33 of the LED element 36 and the glass 31 is set to a desired value by the bead spacer included in the phosphor 32.

(e)は、蛍光体32を硬化させる硬化工程を示している。約150℃で焼成し蛍光体32に含まれるバインダを硬化させる。なお他の工程の熱処理で蛍光体32を硬化させられる場合は本工程を省略できる。   (E) has shown the hardening process which hardens the fluorescent substance 32. FIG. The binder contained in the phosphor 32 is cured by baking at about 150 ° C. Note that this step can be omitted when the phosphor 32 is cured by heat treatment in other steps.

(f)は、ガスバリア層37を形成するガスバリア層形成工程を示している。スパッタ
法によりガラス31の上面全体にSiO2膜を形成する。このときバンプ電極35上にもSiO2膜が形成されるが、後述するように研磨で除去する。
(F) shows a gas barrier layer forming step for forming the gas barrier layer 37. A SiO2 film is formed on the entire upper surface of the glass 31 by sputtering. At this time, an SiO2 film is also formed on the bump electrode 35, but is removed by polishing as will be described later.

(g)は、硬化前の白色反射部材38の塗布工程を示している。バンプ電極35の上面が埋まる程度に白色反射部材38をガラス31上に配置しスキージで平坦化する。その後150℃程度で焼成しバインダを硬化させる。   (G) has shown the application | coating process of the white reflective member 38 before hardening. The white reflecting member 38 is disposed on the glass 31 so that the upper surface of the bump electrode 35 is filled, and is flattened with a squeegee. Thereafter, the binder is cured by baking at about 150 ° C.

(h)は、白色反射部材38の研磨工程を示している。研磨材や刃で白色反射部材38の表面を削りバンプ電極35の上面を露出させる。このとき前述のSiO2膜も除去する。   (H) shows the polishing step of the white reflecting member 38. The surface of the white reflecting member 38 is shaved with an abrasive or a blade to expose the upper surface of the bump electrode 35. At this time, the aforementioned SiO2 film is also removed.

(i)は、接続電極39を形成する接続電極形成工程を示している。先ず白色反射部材38及びバンプ電極35上面全体にスパッタ法でTiW等からなるメッキ用共通電極を形成する。次にホトリソグラフィ法により、接続電極39を形成する領域が開口したメッキ用マスクを形成する。続いて電解メッキ法で開口部にCu層を形成し、その後Ni層とAu層を形成する。メッキ用マスクを除去したら最後に接続電極39をマスクとして接続電極39間のメッキ用共通電極をエッチングする。以上のようにして白色反射部材38上にバンプ電極35と接続する接続電極39が形成される。   (I) shows a connection electrode forming step for forming the connection electrode 39. First, a common electrode for plating made of TiW or the like is formed on the entire upper surfaces of the white reflecting member 38 and the bump electrode 35 by sputtering. Next, a plating mask having an opening in which the connection electrode 39 is to be formed is formed by photolithography. Subsequently, a Cu layer is formed in the opening by electrolytic plating, and then a Ni layer and an Au layer are formed. After the plating mask is removed, the plating common electrode between the connection electrodes 39 is finally etched using the connection electrode 39 as a mask. As described above, the connection electrode 39 connected to the bump electrode 35 is formed on the white reflective member 38.

(j)は、大判のガラス31をLED装置30に個片化する個片化工程を示している。ダイシング装置を使って、ガスバリア層37、白色反射部材38ごとガラス31を切断し単個のLED装置30を分離する。   (J) shows the singulation process for dividing the large glass 31 into the LED device 30. Using a dicing device, the glass 31 together with the gas barrier layer 37 and the white reflecting member 38 is cut to separate the single LED device 30.

本実施形態のLED装置30はリードフレームや回路基板を備えていない。しかしながらガラス31が硬質であるため実装に際し充分な強度を確保することができる。本実施形態の製造方法においてはLED素子36とガラス31の間隙を所望の値に設定するためにビーズスペーサを使っていた。しかしながらスペーサを使わず、LED素子36の加圧量を調整してLED素子36とガラス31の間隙を調整しても良い。この場合、加圧したまま蛍光体32を硬化させると良い。またLED装置30は白色反射部材38を備えていたが、白色反射部材38の代わりに透明樹脂層を形成し、接続電極39の反射を利用してもよい。この場合はメッキ用共通電極を高反射アルミとするのが好ましい。
(第2実施形態)
The LED device 30 of this embodiment does not include a lead frame or a circuit board. However, since the glass 31 is hard, sufficient strength can be ensured during mounting. In the manufacturing method of the present embodiment, a bead spacer is used to set the gap between the LED element 36 and the glass 31 to a desired value. However, the gap between the LED element 36 and the glass 31 may be adjusted by adjusting the amount of pressure applied to the LED element 36 without using a spacer. In this case, the phosphor 32 is preferably cured while being pressurized. The LED device 30 includes the white reflecting member 38, but a transparent resin layer may be formed in place of the white reflecting member 38 and the reflection of the connection electrode 39 may be used. In this case, the common electrode for plating is preferably made of highly reflective aluminum.
(Second Embodiment)

図5により本発明の第2実施形態におけるLED装置40を説明する。図5はLED装置40の断面図である。LED装置40は、第1実施形態におけるLED装置30から接続電極39を取り除いた状態のものを、回路基板47にフリップチップ実装したものである。ガラス31と回路基板47の外郭は等しい。   The LED device 40 according to the second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view of the LED device 40. The LED device 40 is obtained by flip-chip mounting the circuit device 47 with the connection electrode 39 removed from the LED device 30 in the first embodiment. The outline of the glass 31 and the circuit board 47 are equal.

回路基板47は板材43、上電極44、下電極46及びスルーホール45を備え、上下の電極44,46はスルーホール45で接続している。板材43は、厚さが数100μmで、熱伝導性を考慮して樹脂、セラミック、金属から選ぶ。上下の電極44,46は、例えば20μm程度の銅箔上にニッケル層と金層を積層したものである。板材43が樹脂の場合、スルーホール45は熱伝導性をよくするため内部を金属ペーストで埋めておくと良い。   The circuit board 47 includes a plate material 43, an upper electrode 44, a lower electrode 46, and a through hole 45, and the upper and lower electrodes 44, 46 are connected through the through hole 45. The plate material 43 has a thickness of several hundreds of micrometers and is selected from resin, ceramic, and metal in consideration of thermal conductivity. The upper and lower electrodes 44 and 46 are formed by laminating a nickel layer and a gold layer on a copper foil of about 20 μm, for example. When the plate member 43 is resin, the through hole 45 is preferably filled with a metal paste in order to improve thermal conductivity.

バンプ電極35と上電極44とは接合用金属42で接続している。接合用金属42は、半田でも良いが、本実施形態ではAuSn共晶合金とした。AuSn共晶接合は、融点を300℃前後に設定できるため、LED装置40をマザーボードに実装するとき、260℃程度のリフロー温度が掛かっても接合部が固体であり続けられるので有利である。   The bump electrode 35 and the upper electrode 44 are connected by a bonding metal 42. The bonding metal 42 may be solder, but in the present embodiment, an AuSn eutectic alloy is used. Since AuSn eutectic bonding can set the melting point around 300 ° C., it is advantageous that when the LED device 40 is mounted on the mother board, the bonding portion remains solid even when a reflow temperature of about 260 ° C. is applied.

LED装置40は白色反射部材38と回路基板47の間に樹脂層41が充填されている。この樹脂層41は水分などの侵入を防いでいる。樹脂層41を形成するため、個片化したガラス31(LED素子36等を含む)を、回路基板47が連結した大判の集合基板に実装し、そのあと集合基板とガラス31間に樹脂を充填する。また樹脂層41の代わりにガラス31の周辺部でAuSn共晶合金を使って回路基板47とガラス31(白色反射部材38は除去しておく)を接合しても良い。この場合は大判のガラス31(LED素子36等を含む)と集合基板を直接貼りあわせ、バンプ電極35とともにガラス31も共晶接合する。そして最後にLED装置40に個片化すると良い。
(第3実施形態)
In the LED device 40, a resin layer 41 is filled between the white reflecting member 38 and the circuit board 47. This resin layer 41 prevents entry of moisture and the like. In order to form the resin layer 41, the separated glass 31 (including the LED elements 36 and the like) is mounted on a large aggregate substrate connected to the circuit board 47, and then the resin is filled between the aggregate substrate and the glass 31. To do. Further, instead of the resin layer 41, the circuit board 47 and the glass 31 (the white reflecting member 38 is removed) may be bonded using AuSn eutectic alloy at the periphery of the glass 31. In this case, the large glass 31 (including the LED element 36 and the like) and the aggregate substrate are directly bonded together, and the glass 31 is also eutectic bonded together with the bump electrodes 35. Finally, the LED device 40 is preferably separated into individual pieces.
(Third embodiment)

図6により本発明の第3実施形態におけるLED装置50を説明する。図6はLED装置50の断面図である。LED装置50は、第1実施形態におけるLED装置30に対しガラス51の左右両端に切りかき部31bを追加したものである。切りかき部31bは、LED装置50の周辺部全体に形成されており、平面的には枠状になっている。切りかき部31bはガスバリア層57と白色反射部材58を備え、この白色反射部材58でLED素子36及び蛍光体32から横方向に発した光線を上方に向けLED装置50の発光効率を向上させている。   The LED device 50 according to the third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view of the LED device 50. The LED device 50 is obtained by adding notches 31b to the left and right ends of the glass 51 with respect to the LED device 30 in the first embodiment. The notch 31b is formed on the entire periphery of the LED device 50, and has a frame shape in plan view. The cut-out portion 31b includes a gas barrier layer 57 and a white reflecting member 58. With the white reflecting member 58, the light emitted from the LED element 36 and the phosphor 32 in the lateral direction is directed upward to improve the luminous efficiency of the LED device 50. Yes.

切りかき部31bは、図3に示した蛍光体の硬化工程の後、サンドブラスト法でガラス51に網目状の凹部を形成する。その後、図3、4の(f)〜(j)の工程を進めるとLED装置50が得られる。
(第4実施形態)
The notch 31b forms a mesh-like recess in the glass 51 by the sand blasting method after the phosphor curing step shown in FIG. Thereafter, when the steps (f) to (j) in FIGS. 3 and 4 are advanced, the LED device 50 is obtained.
(Fourth embodiment)

図1,5,6で示した第1〜3実施形態におけるLED装置30,40,50は、ガラス31,51の底部に白色反射部材38,58を備えていた。反射部材としては白色反射部材に限られず金属反射層であっても良い。金属反射層を備えるLED装置として図7〜10を用いて本発明の第4実施形態を説明する。なおLED36は図1,5,6で示したものと共通である。   The LED devices 30, 40, 50 in the first to third embodiments shown in FIGS. 1, 5, 6 have white reflecting members 38, 58 at the bottoms of the glasses 31, 51. The reflective member is not limited to a white reflective member, and may be a metal reflective layer. 4th Embodiment of this invention is described using FIGS. 7-10 as an LED apparatus provided with a metallic reflective layer. The LED 36 is the same as that shown in FIGS.

図7は第4実施形態におけるLED装置60(半導体発光装置)の断面図である。ガラス61の下面には箱形の凹部61aがあり、凹部61a内に蛍光体62とLED素子36が配置されている。なお本実施形態では、図1等に比べ凹部61が深く掘られており、LED素子36も深く浸潤させているためLED素子36の底面はバンプ電極35の占める領域を除いて蛍光体62で覆われている。凹部61aの上部及び側部とLED素子36との間には間隙があり、この間隙に蛍光体62が充填されている。上部の間隙と側部の間隙の厚さは概ね等しい。   FIG. 7 is a cross-sectional view of an LED device 60 (semiconductor light emitting device) in the fourth embodiment. A box-shaped recess 61a is provided on the lower surface of the glass 61, and the phosphor 62 and the LED element 36 are disposed in the recess 61a. In the present embodiment, the recess 61 is deeper than that in FIG. 1 and the like, and the LED element 36 is also deeply infiltrated, so that the bottom surface of the LED element 36 is covered with the phosphor 62 except for the area occupied by the bump electrode 35. It has been broken. There are gaps between the upper and side portions of the recess 61 a and the LED element 36, and the gap 62 is filled with the phosphor 62. The thickness of the top gap and the side gap are approximately equal.

ガラス61の下面には金属反射層68が形成されている。金属反射層68は、反射率からAgが好ましく、Alであっても良い。また金属反射層68、ガラス31の下面、及び蛍光体62の下面は、ガスバリア層67で被覆されている。ガスバリア層67の下面にはバンプ電極35と接続し、アノード及びカソードとして機能する接続電極69が形成されている。   A metal reflection layer 68 is formed on the lower surface of the glass 61. The metal reflection layer 68 is preferably Ag from the reflectance, and may be Al. The metal reflection layer 68, the lower surface of the glass 31, and the lower surface of the phosphor 62 are covered with a gas barrier layer 67. A connection electrode 69 that is connected to the bump electrode 35 and functions as an anode and a cathode is formed on the lower surface of the gas barrier layer 67.

以上のようにして本実施形態におけるLED装置60では、LED素子36の周りにのみ蛍光体62が存在し、ガラス61とガスバリア層67が蛍光体62を封止している。またガスバリア層67はガラス61の底面に形成された金属反射層68も被覆し、金属反射層68の硫化や酸化を防いでいる。   As described above, in the LED device 60 in the present embodiment, the phosphor 62 exists only around the LED element 36, and the glass 61 and the gas barrier layer 67 seal the phosphor 62. The gas barrier layer 67 also covers a metal reflective layer 68 formed on the bottom surface of the glass 61 to prevent the metal reflective layer 68 from being sulfided or oxidized.

蛍光体62、ガスバリア層67及び接続電極69の材質は、第1〜3実施形態における蛍光体32、ガスバリア層37,57及び接続電極39と同等である。金属反射層68は
白色反射部材38,58と同様に下方に向かう光を上方に反射させることでLED装置60の発光効率を改善している。
The materials of the phosphor 62, the gas barrier layer 67, and the connection electrode 69 are the same as those of the phosphor 32, the gas barrier layers 37, 57, and the connection electrode 39 in the first to third embodiments. The metal reflection layer 68 improves the light emission efficiency of the LED device 60 by reflecting downward light upward in the same manner as the white reflection members 38 and 58.

図8によりLED装置60の電極面(底面)を説明する。図8は、説明のため接続電極69を剥がしとった状態で図7に示したLED装置60を底面側から眺めた底面図である。なお接続電極69は点線で示した。ガラス61の内側にはスリット68で2分割された金属反射層68がある。このスリット68aは、接続電極69と金属反射層68とが短絡しても、接続電極69同士は短絡しないようにしているものである。中央部にある長方形の領域は、バンプ電極35を除いた部分が蛍光体62である。   The electrode surface (bottom surface) of the LED device 60 will be described with reference to FIG. FIG. 8 is a bottom view of the LED device 60 shown in FIG. 7 as viewed from the bottom side with the connection electrode 69 removed for explanation. The connection electrode 69 is indicated by a dotted line. Inside the glass 61 is a metal reflective layer 68 divided into two by a slit 68. The slits 68a prevent the connection electrodes 69 from being short-circuited even if the connection electrode 69 and the metal reflection layer 68 are short-circuited. In the rectangular region in the center, the portion excluding the bump electrode 35 is the phosphor 62.

図9及び図10により図7のLED装置60の製造方法を説明する。図9及び図10はLED装置60を製造するための工程説明図である。なお滴下など重力を使う工程なので、図7とは上下倒置して描いている。   A method for manufacturing the LED device 60 of FIG. 7 will be described with reference to FIGS. 9 and 10 are process explanatory views for manufacturing the LED device 60. Since it is a process using gravity such as dripping, it is drawn upside down from FIG.

(a)で示した準備工程では、(e)で示すバンプ電極35を備えたLED素子36とともに大判のガラス61を準備する。   In the preparatory step shown in (a), a large glass 61 is prepared together with the LED element 36 provided with the bump electrode 35 shown in (e).

(b)は、ガラス61の上面に金属反射層68を形成する工程を示している。金属反射層68は、マスクを使ってスパッタ法により形成する。   (B) shows a step of forming the metal reflective layer 68 on the upper surface of the glass 61. The metal reflection layer 68 is formed by sputtering using a mask.

(c)はガラス61に凹部61aを形成する凹部形成工程を示している。凹部61a以外を被覆し、エッチングにより凹部61aを形成する。   (C) shows the recessed part formation process which forms the recessed part 61a in the glass 61. FIG. Except for the recess 61a, the recess 61a is formed by etching.

(d)は、凹部61aに硬化前の蛍光体62を滴下する蛍光体滴下工程、(e)は、凹部61aの底部と側部に間隙を有するようにLED素子36を配置する半導体発光素子配置工程を示し、図3(c),(d)に対応する。なお半導体発光素子配置工程や後述するガスバリア層形成工程における熱処理で蛍光体62が硬化するので、図3(e)の硬化工程に相当する工程は図示していない。   (D) is a phosphor dropping step of dropping the uncured phosphor 62 into the recess 61a, and (e) is a semiconductor light emitting device arrangement in which the LED elements 36 are arranged so as to have a gap between the bottom and the side of the recess 61a. A process is shown and it corresponds to Drawing 3 (c) and (d). Since the phosphor 62 is cured by heat treatment in the semiconductor light emitting element arranging step and the gas barrier layer forming step described later, a step corresponding to the curing step in FIG.

(f)と(g)はガスバリア層形成工程を示している。まずスパッタ法でガラス上部全体にSiO2膜を形成する(f)。このときバンプ電極35上にもSiO2膜ができる。次にバンプ電極35の上面を削り表面を露出させる(g)。なおガスバリア層67が100nm程度であるのに対し、バンプ電極は10〜30μmあるが、見易いように同じ厚さで図示している。   (F) and (g) show the gas barrier layer forming step. First, a SiO2 film is formed over the entire upper portion of the glass by sputtering (f). At this time, an SiO 2 film is also formed on the bump electrode 35. Next, the upper surface of the bump electrode 35 is shaved to expose the surface (g). Although the gas barrier layer 67 is about 100 nm, the bump electrode is 10 to 30 μm, but the same thickness is shown for easy viewing.

(h),(i)は、接続電極69を形成する接続電極形成工程、及び大判のガラス61をLED装置60に個片化する個片化工程を示している。この工程は、図4(i)、(j)で示したものと同等である。   (H), (i) has shown the connection electrode formation process which forms the connection electrode 69, and the individualization process which separates the large-sized glass 61 into the LED device 60. FIG. This step is equivalent to that shown in FIGS. 4 (i) and (j).

30,40,50,60…LED装置(半導体発光装置)、
31,51,61…ガラス、
31a,61a…凹部、
31b…切りかき部、
32,62…蛍光体、
33…サファイア基板、
34…半導体層、
35…バンプ電極、
36…LED素子(半導体発光素子)、
37,57,67…ガスバリア層、
38,58…白色反射部材、
39,69…接続電極、
41…樹脂層、
42…接合用金属、
43…板材、
44…上電極、
45…スルーホール、
46…下電極、
47…回路基板、
68…金属反射層、
68…スリット。
30, 40, 50, 60 ... LED device (semiconductor light emitting device),
31, 51, 61 ... Glass,
31a, 61a ... concave portion,
31b ... a scraping part,
32, 62 ... phosphor,
33 ... sapphire substrate,
34 ... semiconductor layer,
35 ... Bump electrode,
36 ... LED element (semiconductor light emitting element),
37, 57, 67 ... gas barrier layer,
38, 58 ... white reflective member,
39, 69 ... connection electrodes,
41 ... resin layer,
42. Metal for joining,
43 ... Plate material,
44 ... Upper electrode,
45 ... through hole,
46 ... lower electrode,
47. Circuit board,
68 ... Metal reflective layer,
68 ... Slit.

Claims (7)

透明基板上に半導体層を備える半導体発光素子の周囲直近に蛍光体が偏在し、該蛍光体とともに前記半導体発光素子が封止される半導体発光装置において、
凹部を有するガラスと、
前記半導体層に突起電極が接続し、前記凹部の底部及び側部との間に間隙を有するように配置された半導体発光素子と、
前記間隙に充填された蛍光体と、
前記ガラスの底面とともに前記間隙から露出する前記蛍光体を被覆するガスバリア層とを備え
前記ガラスの底面に金属反射層を備え、前記ガスバリア層が前記金属反射層を被覆することを特徴とする半導体発光装置。
In a semiconductor light emitting device in which a phosphor is unevenly distributed near the periphery of a semiconductor light emitting element including a semiconductor layer on a transparent substrate, and the semiconductor light emitting element is sealed together with the phosphor,
Glass having a recess,
A semiconductor light emitting element disposed so that a protruding electrode is connected to the semiconductor layer, and a gap is provided between a bottom and a side of the recess;
A phosphor filled in the gap;
A gas barrier layer covering the phosphor exposed from the gap together with the bottom surface of the glass ,
A semiconductor light emitting device comprising a metal reflective layer on a bottom surface of the glass, wherein the gas barrier layer covers the metal reflective layer .
前記蛍光体がスペーサを含有していることを特徴とする請求項1に記載の半導体発光装置。   2. The semiconductor light emitting device according to claim 1, wherein the phosphor contains a spacer. 前記金属反射層がスリットで分割されていることを特徴とする請求項1又は2に記載の半導体発光装置。 The semiconductor light emitting device according to claim 1 or 2, wherein the metal reflective layer is divided by the slit. 前記突起電極と接続し、メッキ法により形成した接続電極を設けることを特徴とする請求項1からのいずれか一項に記載の半導体発光装置。 Wherein connected to the protruding electrodes, the semiconductor light-emitting device according to any one of claims 1 to 3, characterized in that providing a connection electrode formed by plating. 透明基板上に半導体層を備える半導体発光素子の周囲直近に蛍光体が偏在し、該蛍光体とともに前記半導体発光素子が封止される半導体発光装置の製造方法において、
突起電極を備える半導体発光素子と大判のガラスを準備する準備工程と、
該ガラスに複数の凹部を形成する凹部形成工程と、
該凹部に硬化前の蛍光体を滴下する蛍光体滴下工程と、
該凹部の底部と側部に間隙を有するように前記半導体発光素子を配置する半導体発光素子配置工程と、
前記ガラスの底面とともに前記間隙から露出する前記蛍光体をガスバリア層で被覆するガスバリア層形成工程と
前記ガラスを個別の前記半導体発光装置に個片化する個片化工程とを備え
前記準備工程において準備する前記ガラスが底面に金属反射層を備えていることを特徴
とする半導体発光装置の製造方法。
In a method for manufacturing a semiconductor light emitting device, in which a phosphor is unevenly distributed near the periphery of a semiconductor light emitting element including a semiconductor layer on a transparent substrate, and the semiconductor light emitting element is sealed together with the phosphor,
A preparation step of preparing a semiconductor light emitting device including a protruding electrode and a large glass,
A recess forming step of forming a plurality of recesses in the glass;
A phosphor dropping step of dropping a phosphor before curing into the recess;
A semiconductor light emitting element disposing step of disposing the semiconductor light emitting element so as to have a gap between the bottom and the side of the recess;
A gas barrier layer forming step of covering the phosphor exposed from the gap together with a bottom surface of the glass with a gas barrier layer; and a singulation step of dividing the glass into individual semiconductor light emitting devices ,
The method for manufacturing a semiconductor light emitting device, wherein the glass prepared in the preparation step has a metal reflection layer on a bottom surface .
前記凹部形成工程においてエッチング法により底部が平坦な凹部を形成することを特徴とする請求項に記載の半導体発光装置の製造方法。 6. The method of manufacturing a semiconductor light emitting device according to claim 5 , wherein in the recess forming step, a recess having a flat bottom is formed by an etching method. 前記ガスバリア層から露出した前記突起電極に接続する接続電極を電解メッキ法で形成することを特徴とする請求項5又は6に記載の半導体発光装置の製造方法。 7. The method of manufacturing a semiconductor light emitting device according to claim 5 , wherein a connection electrode connected to the protruding electrode exposed from the gas barrier layer is formed by an electrolytic plating method.
JP2011104088A 2010-12-24 2011-05-09 Semiconductor light emitting device and manufacturing method thereof Active JP5661552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104088A JP5661552B2 (en) 2010-12-24 2011-05-09 Semiconductor light emitting device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010287351 2010-12-24
JP2010287351 2010-12-24
JP2011104088A JP5661552B2 (en) 2010-12-24 2011-05-09 Semiconductor light emitting device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012146942A JP2012146942A (en) 2012-08-02
JP5661552B2 true JP5661552B2 (en) 2015-01-28

Family

ID=46790183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104088A Active JP5661552B2 (en) 2010-12-24 2011-05-09 Semiconductor light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5661552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876149B2 (en) 2015-08-28 2018-01-23 Samsung Electronics Co., Ltd. Semiconductor light emitting device package and light source module using same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210720B2 (en) * 2013-05-02 2017-10-11 シチズン電子株式会社 LED package
JP6398611B2 (en) 2013-11-07 2018-10-03 日亜化学工業株式会社 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR102175343B1 (en) * 2014-06-05 2020-11-06 엘지이노텍 주식회사 Light emitting device package
CN104900784B (en) * 2015-05-22 2017-12-05 厦门多彩光电子科技有限公司 The manufacture method of LED encapsulation structure
JP6217705B2 (en) 2015-07-28 2017-10-25 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6649726B2 (en) * 2015-09-11 2020-02-19 三星電子株式会社Samsung Electronics Co.,Ltd. Semiconductor light emitting device and method of manufacturing the same
JP6451579B2 (en) * 2015-09-30 2019-01-16 日亜化学工業株式会社 Light emitting device
US10199533B2 (en) 2015-12-21 2019-02-05 Nichia Corporation Method of manufacturing light emitting device
JP6848245B2 (en) 2016-07-27 2021-03-24 日亜化学工業株式会社 Light emitting device
CN108598070B (en) * 2018-06-25 2023-07-18 江苏罗化新材料有限公司 Dual-chip-level LED packaging structure and manufacturing method thereof
CN110794614B (en) 2018-08-03 2022-10-25 日亚化学工业株式会社 Light emitting module
JP6717400B2 (en) 2018-08-03 2020-07-01 日亜化学工業株式会社 Light emitting module
JP7057503B2 (en) * 2018-08-16 2022-04-20 日亜化学工業株式会社 Light emitting module and its manufacturing method
JP6729646B2 (en) 2018-08-21 2020-07-22 日亜化学工業株式会社 Light emitting device
US20220278257A1 (en) * 2018-12-27 2022-09-01 Denka Company Limited Phosphor substrate, light emitting substrate, and lighting device
JP7007591B2 (en) * 2018-12-28 2022-02-10 日亜化学工業株式会社 Luminous module
JP6717421B1 (en) * 2018-12-28 2020-07-01 日亜化学工業株式会社 Light emitting module
US11073654B2 (en) 2018-12-28 2021-07-27 Nichia Corporation Light emitting module with recesses in light guide plate
JP7108205B2 (en) * 2020-06-30 2022-07-28 日亜化学工業株式会社 light emitting device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078267B2 (en) * 1998-11-12 2000-08-21 ティーディーケイ株式会社 Organic EL display device and manufacturing method thereof
JP2004079467A (en) * 2002-08-22 2004-03-11 Nippon Sheet Glass Co Ltd Sealing plate for el element, and mother glass substrate for forming multiple sealing plate
JP4637160B2 (en) * 2003-03-10 2011-02-23 豊田合成株式会社 Method for manufacturing solid element device
JP2005139039A (en) * 2003-11-07 2005-06-02 Nippon Kaken Kk Processing method of glass sheet, cap for sealing organic el display unit and glass chip
JP2006107836A (en) * 2004-10-01 2006-04-20 Fuji Electric Holdings Co Ltd Color conversion filter, its manufacturing method, and organic el display using it
KR20070102481A (en) * 2004-10-13 2007-10-18 마쯔시다덴기산교 가부시키가이샤 Luminescent light source, method for manufacturing the same, and light-emitting apparatus
JP4727297B2 (en) * 2005-05-19 2011-07-20 三菱電機株式会社 Semiconductor light emitting device
JP2007067116A (en) * 2005-08-30 2007-03-15 Toshiba Lighting & Technology Corp Light-emitting device
JP5219331B2 (en) * 2005-09-13 2013-06-26 株式会社住田光学ガラス Method for manufacturing solid element device
JP2007109915A (en) * 2005-10-14 2007-04-26 Stanley Electric Co Ltd Light emitting diode
JP2007156184A (en) * 2005-12-06 2007-06-21 Sekisui Chem Co Ltd Sealing agent for liquid crystal display element, vertically conducting material and liquid crystal display element
JP5103831B2 (en) * 2006-08-29 2012-12-19 日亜化学工業株式会社 Semiconductor manufacturing method
JP5630948B2 (en) * 2007-07-04 2014-11-26 日亜化学工業株式会社 Light emitting device
JP2009224536A (en) * 2008-03-17 2009-10-01 Citizen Holdings Co Ltd Led device and method of manufacturing the same
JP2010010469A (en) * 2008-06-27 2010-01-14 Toshiba Corp Aluminum nitride substrate for carrying light emitting element, and light emitting device
US8482191B2 (en) * 2008-08-11 2013-07-09 Osram Gesellschaft Mit Beschraenkter Haftung Conversion LED
JP2010135488A (en) * 2008-12-03 2010-06-17 Toshiba Corp Light-emitting device, and method of manufacturing the same
JP2010177375A (en) * 2009-01-28 2010-08-12 Citizen Electronics Co Ltd Light-emitting device and manufacturing method of the same
JP2010192624A (en) * 2009-02-17 2010-09-02 Showa Denko Kk Light emitting device and light emitting module
JP2011238802A (en) * 2010-05-11 2011-11-24 Panasonic Corp Light-emitting module and illuminating device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9876149B2 (en) 2015-08-28 2018-01-23 Samsung Electronics Co., Ltd. Semiconductor light emitting device package and light source module using same

Also Published As

Publication number Publication date
JP2012146942A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5661552B2 (en) Semiconductor light emitting device and manufacturing method thereof
US9917236B2 (en) Light emitting device and method for producing the same
US9269873B2 (en) Semiconductor light emitting device and method for manufacturing same
JP2012138454A (en) Semiconductor light-emitting device and manufacturing method of the same
US9337405B2 (en) Light emitting device and method for manufacturing the same
JP6711369B2 (en) Light emitting device and method for manufacturing light emitting device
US7687823B2 (en) Light-emitting apparatus and method of producing the same
JP5508244B2 (en) Manufacturing method of semiconductor light emitting device
JP6587161B2 (en) Light emitting device
US10461227B2 (en) Method for manufacturing light emitting device, and light emitting device
US9041020B2 (en) Electrolytically coated optoelectronic semiconductor component and method for producing an optoelectronic semiconductor component
JP2009059883A (en) Light emitting device
JP5699838B2 (en) Method for manufacturing light emitting device
JP2012199411A (en) Light emitting device
JP2012069645A (en) Semiconductor light-emitting device and manufacturing method therefor
TWI738203B (en) Light emitting device
JP2013033890A (en) Light emitting device
JP2006080312A (en) Light emitting device and its manufacturing method
JP2012094578A (en) Manufacturing method of semiconductor light emitting device
JP2012164902A (en) Method of manufacturing semiconductor light-emitting device
US20150200336A1 (en) Wafer level contact pad standoffs with integrated reflector
JP2012015437A (en) Semiconductor light-emitting device
JP6547661B2 (en) Light emitting device
JP6582827B2 (en) Substrate, light emitting device, and method of manufacturing light emitting device
US11233184B2 (en) Light-emitting device and method for manufacturing the same

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20130531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141203

R150 Certificate of patent or registration of utility model

Ref document number: 5661552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250