JP5652203B2 - Organic piezoelectric material and ultrasonic probe - Google Patents

Organic piezoelectric material and ultrasonic probe Download PDF

Info

Publication number
JP5652203B2
JP5652203B2 JP2010511930A JP2010511930A JP5652203B2 JP 5652203 B2 JP5652203 B2 JP 5652203B2 JP 2010511930 A JP2010511930 A JP 2010511930A JP 2010511930 A JP2010511930 A JP 2010511930A JP 5652203 B2 JP5652203 B2 JP 5652203B2
Authority
JP
Japan
Prior art keywords
general formula
ultrasonic
piezoelectric material
organic piezoelectric
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010511930A
Other languages
Japanese (ja)
Other versions
JPWO2009139257A1 (en
Inventor
理枝 藤澤
理枝 藤澤
福坂 潔
潔 福坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2010511930A priority Critical patent/JP5652203B2/en
Publication of JPWO2009139257A1 publication Critical patent/JPWO2009139257A1/en
Application granted granted Critical
Publication of JP5652203B2 publication Critical patent/JP5652203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7685Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing two or more non-condensed aromatic rings directly linked to each other
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、縮環構造を有するポリマーを含有する有機圧電材料に関する。詳しくは、例えば、マイクロホン、スピーカー用の振動板等の音響機器、各種圧力センサー等の測定機器、超音波探蝕子、遺伝子やタンパク等の変異を高感度に検出する振動センサー等、機械刺激を電気エネルギーに変換するために用いることができる圧電性を持つ有機圧電材料に関する。 The present invention relates to organic piezoelectric material you containing a polymer having a condensed ring structure. Specifically, for example, acoustic devices such as microphones and diaphragms for speakers, measuring devices such as various pressure sensors, ultrasonic probe, vibration sensors that detect mutations such as genes and proteins with high sensitivity, etc. The present invention relates to an organic piezoelectric material having piezoelectricity that can be used to convert electrical energy.

圧焦電体としては、水晶、LiNbO、LiTaO、KNbOなどの単結晶、ZnO、AlNなどの薄膜、Pb(Zr,Ti)O系などの焼結体を分極処理した、いわゆる無機圧電材料が広く利用されている。しかしながら、これら無機材質の圧電材料は、弾性スティフネスが高く、機械的損失係数が高い、密度が高く誘電率も高いなどの特徴を持っている。As the pyroelectric material, a so-called inorganic material in which a single crystal such as quartz, LiNbO 3 , LiTaO 3 , KNbO 3 , a thin film such as ZnO or AlN, or a sintered body such as Pb (Zr, Ti) O 3 is subjected to polarization treatment. Piezoelectric materials are widely used. However, these inorganic piezoelectric materials have characteristics such as high elastic stiffness, high mechanical loss coefficient, high density and high dielectric constant.

一方でポリフッ化ビニリデン(以下「PVDF」と略す。)、ポリシアノビニリデン(以下「PVDCN」と略す。)等の有機圧電材料も開発されている(特許文献1参照)。この有機圧電材料は、薄膜化、大面積化等の加工性に優れ、任意の形状、形態の物が作ることができ、弾性率が低い、誘電率が低い等の特徴を持つため、センサーとしての使用を考えたときに、高感度な検出を可能とする特徴を持っている。一方で有機圧電材料は、耐熱性が低く高い温度ではその圧焦電特性を失うほか、弾性スティフネスなどの物性も大きく減じるため使用できる温度域に限界があった。   Meanwhile, organic piezoelectric materials such as polyvinylidene fluoride (hereinafter abbreviated as “PVDF”) and polycyanovinylidene (hereinafter abbreviated as “PVDCN”) have also been developed (see Patent Document 1). This organic piezoelectric material is excellent in workability such as thin film and large area, can be made in any shape and shape, and has features such as low elastic modulus and low dielectric constant, so it can be used as a sensor. When considering the use of, it has a feature that enables highly sensitive detection. On the other hand, organic piezoelectric materials have low heat resistance and lose their pyroelectric properties at high temperatures, and the physical properties such as elastic stiffness are greatly reduced.

このような限界に対して、ウレア結合から構成されるポリウレア樹脂組成物は、ウレア結合の双極子モーメントが大きく、樹脂としての温度特性に優れるため、有機圧電材料として種々の検討が行われてきた。例えば、4,4′−ジフェニルメタンジイソシアネート(MDI)のようなジイソシアネート化合物と4,4′−ジアミノジフェニルメタン(MDA)のようなジアミン化合物を同時に蒸発させてポリ尿素膜を形成する、いわゆる蒸着重合法が開示されている(特許文献2及び特許文献3参照)。しかしながら、これらに記載されている蒸着重合法で作製するポリウレア樹脂組成物は、生成するオリゴマー又は高分子量体の分子量が不均一であるため、分極処理を施しながら高分子量化を行った場合、配向が十分でない状態でポリウレア樹脂組成物が形成される。このため、ウレア結合の双極子モーメントを十分に活用できず、有機圧電材料としては、更なる改善が求められていた。   In contrast to these limitations, polyurea resin compositions composed of urea bonds have a large dipole moment of urea bonds and are excellent in temperature characteristics as resins. Therefore, various studies have been made as organic piezoelectric materials. . For example, there is a so-called vapor deposition polymerization method in which a polyisocyanate film is formed by simultaneously evaporating a diisocyanate compound such as 4,4′-diphenylmethane diisocyanate (MDI) and a diamine compound such as 4,4′-diaminodiphenylmethane (MDA). (See Patent Document 2 and Patent Document 3). However, the polyurea resin composition prepared by the vapor deposition polymerization method described in these documents has a non-uniform molecular weight of the oligomer or high molecular weight product. In this state, the polyurea resin composition is formed. For this reason, the dipole moment of the urea bond cannot be fully utilized, and further improvement has been demanded as an organic piezoelectric material.

一方、溶液重合において配向性の高いポリウレア樹脂組成物を製造する方法に関する報告はこれまでにほとんどなく、分子量が制御可能であり、かつ、配向性の高いポリウレアを製造する技術は知られていない。   On the other hand, there have been few reports on a method for producing a polyurea resin composition having high orientation in solution polymerization, and a technique for producing a polyurea having a controllable molecular weight and high orientation is not known.

特開平6−216422号公報JP-A-6-216422 特開平2−284485号公報JP-A-2-284485 特開平5−311399号公報Japanese Patent Laid-Open No. 5-31399

本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、圧電特性に優れ、機械刺激を電気エネルギーに変換することができる圧電性を持つ有機圧電材料として、特に、配向性が高く、かつ熱的に安定な有機圧電材料を提供することにある。   The present invention has been made in view of the above-described problems and situations, and the problem to be solved is as an organic piezoelectric material having piezoelectricity that is excellent in piezoelectric characteristics and capable of converting mechanical stimulation into electrical energy, and particularly oriented. It is an object to provide an organic piezoelectric material having high performance and being thermally stable.

本発明に係る上記課題は、下記の手段により解決される。   The above-mentioned problem according to the present invention is solved by the following means.

1.下記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
一般式(1)
−X−A−
〔一般式(1)において、Xがウレア基、ウレタン基から選ばれる1つの基もしくはそれら2つ以上の組み合わせからなる2価の連結基を表し、Aは少なくとも一つの芳香族環を含む縮合環を表す(ただし、フラーレン及びフラーレン誘導体を除く)。〕
1. An organic piezoelectric material comprising a polymer containing at least one repeating unit represented by the following general formula (1).
General formula (1)
-X-A-
[In General Formula (1), X represents a divalent linking group composed of one group selected from a urea group and a urethane group or a combination of two or more thereof, and A represents a condensed ring containing at least one aromatic ring. (However, fullerene and fullerene derivatives are excluded) . ]

2.前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーの重量平均分子量が1,000〜500,000であり、
前記一般式(1)において、Aが、ナフタレン、アントラセン、フェナントレン、フルオレン、トリフェニレン、ナフタセン、インドール、ベンゾフラン、ベンゾチオフェン、イソベンゾフラン、キノリジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キノキサゾリン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、チアントレン、クロメン、キサンテン、フェノキサチイン、フェノチアジン、フェナジン、ピレン、クリセン、ペリレン、ペンタセン、ピセン、キナゾリン、ジベンゾフラン、インドリジン、プリン、プテリジンのいずれかで表されることを特徴とする前記1に記載の有機圧電材料。
.下記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
一般式(1)
−X−A−
〔一般式(1)において、Xは2価の連結基を表し、Aは3つの芳香族環を含む3つの環からなる縮合環を表す。〕
2. The weight average molecular weight of the polymer containing at least one repeating unit represented by the general formula (1) is 1,000 to 500,000,
In the general formula (1), A is naphthalene, anthracene, phenanthrene, fluorene, triphenylene, naphthacene, indole, benzofuran, benzothiophene, isobenzofuran, quinolidine, quinoline, phthalazine, naphthyridine, quinoxaline, quinoxazoline, carbazole, phenanthridine. , Acridine, phenanthroline, thianthrene, chromene, xanthene, phenoxathiin, phenothiazine, phenazine, pyrene, chrysene, perylene, pentacene, picene, quinazoline, dibenzofuran, indolizine, purine, pteridine 2. The organic piezoelectric material according to 1 above.
3 . An organic piezoelectric material comprising a polymer containing at least one repeating unit represented by the following general formula (1).
General formula (1)
-X-A-
In [Formula (1), X represents a divalent linking group, A represents a fused ring consisting of three rings containing three aromatic rings. ]

.前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーの重量平均分子量が1,000〜500,000であることを特徴とする前記に記載の有機圧電材料。 4 . 4. The organic piezoelectric material as described in 3 above, wherein the polymer comprising at least one repeating unit represented by the general formula (1) has a weight average molecular weight of 1,000 to 500,000.

.超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、前記1からの何れか1項に記載の有機圧電材料を用いた超音波振動子を超音波受信用振動子として具備したことを特徴とする超音波探触子。 5 . An ultrasonic probe including an ultrasonic transmission transducer and an ultrasonic reception transducer, wherein the ultrasonic transducer using the organic piezoelectric material according to any one of 1 to 4 is ultrasonicated. An ultrasonic probe comprising a receiving transducer.

本発明により、配向性が高く、かつ熱的に安定な、圧電特性に優れた有機圧電材料を提供することができた。   According to the present invention, an organic piezoelectric material having high orientation and being thermally stable and excellent in piezoelectric characteristics can be provided.

超音波医用画像診断装置の主要部の構成を示す概念図Conceptual diagram showing the configuration of the main part of an ultrasonic medical diagnostic imaging apparatus

次に、本発明を実施するための最良の形態について説明するが、本発明はこれにより限定されるものではない。   Next, the best mode for carrying out the present invention will be described, but the present invention is not limited thereto.

本発明は、一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを使用することで、圧電性に優れ、従来の課題を改善した有機圧電材料を提供できる。また、一般式(2)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする本発明の樹脂組成物は、配向性が高く、圧電性に優れるだけではなく、熱的にも安定であることから、汎用性の高い樹脂として有効に利用できる。   The present invention can provide an organic piezoelectric material having excellent piezoelectricity and improved conventional problems by using a polymer containing at least one repeating unit represented by the general formula (1). In addition, the resin composition of the present invention, which contains a polymer containing at least one repeating unit represented by the general formula (2), has not only high orientation and excellent piezoelectricity, but also heat In terms of stability, it can be effectively used as a highly versatile resin.

〈一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマー〉
前記一般式(1)において、Xは2価の連結基を表す。
<Polymer containing at least one repeating unit represented by formula (1)>
In the general formula (1), X represents a divalent linking group.

Xの具体例としては、アルキレン基、フェニレン基、アミノ基、スルホニル基、ウレア基、ウレタン基、エステル基、アミド基、スルホンアミド基、カ−ボネ−ト基、エ−テル基、チオエ−テル基、カルボニル基などを挙げることができ、これらの連結基は更に組み合わせて複合基を形成してもよい。また、Xで表される連結基はn個連結して(X)nを形成してもよい。このときnは1〜4の整数である。   Specific examples of X include alkylene group, phenylene group, amino group, sulfonyl group, urea group, urethane group, ester group, amide group, sulfonamide group, carbonate group, ether group, thioether. Groups, carbonyl groups and the like, and these linking groups may be further combined to form a composite group. In addition, n linking groups represented by X may be linked to form (X) n. At this time, n is an integer of 1 to 4.

Xとして好ましくは、ウレア基、ウレタン基、エステル基、アミド基、スルホンアミド基、カ−ボネ−ト基、エ−テル基、チオエ−テル基、カルボニル基から選ばれる1つの基もしくはそれら2つ以上の組み合わせからなる2価の連結基であり、より好ましくは、ウレア基、ウレタン基、エステル基、アミド基、エ−テル基、更に好ましくは、ウレア基、ウレタン基、アミド基である。   X is preferably one group selected from a urea group, a urethane group, an ester group, an amide group, a sulfonamide group, a carbonate group, an ether group, a thioether group, and a carbonyl group, or two of them. It is a divalent linking group comprising the above combination, more preferably a urea group, a urethane group, an ester group, an amide group, an ether group, and still more preferably a urea group, a urethane group, or an amide group.

以下に、Xで表される基の具体例を挙げるが、本発明はこれらに限定されない。   Specific examples of the group represented by X are given below, but the present invention is not limited thereto.

前記一般式(1)において、Aは縮合環を表す。   In the general formula (1), A represents a condensed ring.

縮合環とは、環の構成原子の内2個以上の原子が他の環と共有して結合している炭素環や複素環などにより形成された環式構造のことを言う。   A fused ring refers to a cyclic structure formed by a carbocycle, a heterocycle, or the like in which two or more of the atoms constituting the ring are bonded together with another ring.

Aで表される縮合環として、好ましくは、一つの芳香族環を含む縮合環であり、より好ましくは、芳香族環、複素環、脂肪族環からなる群より選ばれた3つの環からなる縮合環である。   The condensed ring represented by A is preferably a condensed ring containing one aromatic ring, more preferably three rings selected from the group consisting of an aromatic ring, a heterocyclic ring and an aliphatic ring. It is a condensed ring.

具体例としては、ナフタレン、アントラセン、フェナントレン、フルオレン、トリフェニレン、ナフタセン、インドール、ベンゾフラン、ベンゾチオフェン、イソベンゾフラン、キノリジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キノキサゾリン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、チアントレン、クロメン、キサンテン、フェノキサチイン、フェノチアジン、フェナジン、ピレン、クリセン、ペリレン、ペンタセン、ピセン、キナゾリン、ジベンゾフラン、インドリジン、プリン、プテリジン、ビシクロヘキサンなどが挙げられるが、これらに限定されるものではない。   Specific examples include naphthalene, anthracene, phenanthrene, fluorene, triphenylene, naphthacene, indole, benzofuran, benzothiophene, isobenzofuran, quinolidine, quinoline, phthalazine, naphthyridine, quinoxaline, quinoxazoline, carbazole, phenanthridine, acridine, phenanthroline, thianthrene. , Chromene, xanthene, phenoxathiin, phenothiazine, phenazine, pyrene, chrysene, perylene, pentacene, picene, quinazoline, dibenzofuran, indolizine, purine, pteridine, bicyclohexane, etc., but are not limited thereto. .

以上述べた縮環構造上には、さらに当業界で周知の置換基を有していても良い。   The condensed ring structure described above may further have a substituent well known in the art.

Aで表される縮合環として好ましくは、ナフタレン、アントラセン、フェナントレン、フルオレン、トリフェニレン、インドール、ベンゾフラン、ベンゾチオフェン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェノチアジン、ジベンゾフランであり、より好ましくはアントラセン、フェナントレン、フルオレン、カルバゾール、フェナントリジン、アクリジン、更に好ましくは、アントラセン、フェナントレン、フルオレン、アクリジンである。   The condensed ring represented by A is preferably naphthalene, anthracene, phenanthrene, fluorene, triphenylene, indole, benzofuran, benzothiophene, carbazole, phenanthridine, acridine, phenanthroline, phenothiazine, dibenzofuran, and more preferably anthracene, phenanthrene. Fluorene, carbazole, phenanthridine, acridine, and more preferably anthracene, phenanthrene, fluorene, and acridine.

以下に、Aで表される縮合環の具体例を挙げるが、本発明はこれらに限定されない。   Specific examples of the condensed ring represented by A are given below, but the present invention is not limited to these.

前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーは、公知の手法により合成することができる。例えば、特開昭61−203130明細書、特開2002−265553明細書、特開2003−238648明細書、特開2005−231064明細書又は、第5版実験化学講座26巻高分子化学;123ページ〜124ページ(丸善)などに記載の方法を参照して合成することができる。   The polymer containing at least one repeating unit represented by the general formula (1) can be synthesized by a known method. For example, JP-A-61-203130, JP-A-2002-265553, JP-A-2003-238648, JP-A-2005-231064 or 5th edition Experimental Chemistry Course Vol. 26 Polymer Chemistry; page 123 ˜124 pages (Maruzen) and the like can be synthesized by referring to the method.

以下に一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーの具体例を挙げるが、本発明はこれらに限定されない。   Specific examples of the polymer containing at least one repeating unit represented by the general formula (1) are given below, but the present invention is not limited to these.

〈有機圧電材料〉
本発明の有機圧電材料は、一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有する樹脂組成物を用いて膜を形成することにより、或いは、樹脂組成物の膜に対して更に分極処理を施すことにより、有機圧電体膜を形成することができる。
<Organic piezoelectric material>
The organic piezoelectric material of the present invention is formed by forming a film using a resin composition containing a polymer containing at least one repeating unit represented by the general formula (1), or on the resin composition film. On the other hand, an organic piezoelectric film can be formed by further performing a polarization treatment.

有機圧電体膜は、当該圧電体膜に応力が加わると、それに比例して当該圧電体膜の両端面に反対符号の電荷が現れる、すなわち電気分極という現象を生じ、逆に該圧電材料を伝場に入れる(電界を加える)ことで、それに比例した歪みを生じるという性質(圧電性能)を有する。特に本発明の有機圧電材料よりなる有機圧電体膜にあっては、高分子の主鎖や側鎖の双極子モーメントの配向凍結による分極により大きな圧電効果が生じる。   In the organic piezoelectric film, when a stress is applied to the piezoelectric film, charges of opposite signs appear in proportion to both ends of the piezoelectric film, that is, an electric polarization phenomenon occurs, and conversely, the piezoelectric material is transmitted. It has the property (piezoelectric performance) that a distortion proportional to the occurrence of the electric field (applying an electric field) is generated. In particular, in the organic piezoelectric film made of the organic piezoelectric material of the present invention, a large piezoelectric effect is generated by polarization due to orientation freezing of the dipole moment of the polymer main chain or side chain.

(有機圧電体膜の形成方法)
有機圧電体膜の形成は、塗布によって膜を形成する方法が好ましい。塗布方法として、例えば、スピンコート法、ソルベントキャスト法、メルトキャスト法、ロールコート法、フローコート法、プリント法、ディップコート法、バーコート法等が挙げられる。
(Method of forming organic piezoelectric film)
The organic piezoelectric film is preferably formed by coating. Examples of the coating method include spin coating, solvent casting, melt casting, roll coating, flow coating, printing, dip coating, and bar coating.

塗布により膜を形成する方法では、重合した樹脂組成物を用いても良く、ポリウレア及びマクロモノマーを塗布した後、加熱による重合を行っても良い。   In the method of forming a film by coating, a polymerized resin composition may be used, or after applying polyurea and a macromonomer, polymerization by heating may be performed.

塗布により基板上に形成された膜は、加熱又は減圧条件下で溶媒を完全に留去されても良く、ポリウレア及びマクロモノマーを塗布した場合は、所定量の溶媒を除去した後、更に温度を変化させて、溶媒の留去と重合を同時に行っても良い。   In the film formed on the substrate by coating, the solvent may be completely distilled off under heating or reduced pressure conditions. When polyurea and macromonomer are applied, the temperature is further increased after removing a predetermined amount of the solvent. The solvent may be distilled off and polymerization may be performed simultaneously.

又、本発明においては、形成された膜に後述する分極処理を行う方法が好ましく、ポリウレア及びマクロモノマーを塗布した場合には、重合後に分極処理を行っても良く、重合と同時に分極処理を行っても良い。特に好ましくは、加熱による重合と分極処理を同時に行う方法である。   In the present invention, a method of performing polarization treatment described later on the formed film is preferable. When polyurea and macromonomer are applied, the polarization treatment may be performed after polymerization, or the polarization treatment is performed simultaneously with polymerization. May be. Particularly preferred is a method in which polymerization by heating and polarization treatment are performed simultaneously.

加熱による重合と分極処理を同時に行う場合の温度は、−50〜250℃であることが好ましく、より好ましくは−50〜200℃である。前述の温度範囲で、温度変化させる方法も好ましい。   The temperature when the polymerization by heating and the polarization treatment are simultaneously performed is preferably -50 to 250 ° C, more preferably -50 to 200 ° C. A method of changing the temperature in the above temperature range is also preferable.

(分極処理)
本発明に係る分極処理における分極処理方法としては、従来公知の種々の方法が適用され得る。
(Polarization treatment)
As a polarization processing method in the polarization processing according to the present invention, various conventionally known methods can be applied.

例えば、コロナ放電処理法による場合には、コロナ放電処理は、市販の高電圧電源と電極からなる装置を使用して処理することができる。   For example, in the case of the corona discharge treatment method, the corona discharge treatment can be performed by using a commercially available device comprising a high voltage power source and electrodes.

放電条件は、機器や処理環境により異なるので適宜条件を選択することが好ましいが、高電圧電源の電圧としては−1〜−20kV、電流としては1〜80mA、電極間距離としては、1〜10cmが好ましく、印加電圧は、0.5〜2.0MV/mであることが好ましい。   Since the discharge conditions vary depending on the equipment and processing environment, it is preferable to select the conditions as appropriate. However, the voltage of the high voltage power source is −1 to −20 kV, the current is 1 to 80 mA, and the distance between the electrodes is 1 to 10 cm. The applied voltage is preferably 0.5 to 2.0 MV / m.

電極としては、従来から用いられている針状電極、線状電極(ワイヤー電極)、網状電極が好ましいが、本発明ではこれらに限定されるものではない。   As the electrodes, needle-like electrodes, linear electrodes (wire electrodes), and mesh-like electrodes that have been conventionally used are preferable, but the invention is not limited thereto.

またコロナ放電中に加熱を行うので、本発明により作製した基板が接触している電極の下部に絶縁体を介して、ヒーターを設置する必要がある。   In addition, since heating is performed during corona discharge, it is necessary to install a heater via an insulator under the electrode in contact with the substrate manufactured according to the present invention.

なお、本発明において前記原料溶液の溶媒が残留している状態で、分極処理としてコロナ放電処理をする場合には、引火爆発などの危険性を避けるために溶媒の揮発成分が除去されるように十分換気しながら行うことが安全上必要である。   In the present invention, when the corona discharge treatment is performed as the polarization treatment in the state where the solvent of the raw material solution remains, the volatile components of the solvent are removed in order to avoid the danger of flammable explosion. It is necessary for safety to carry out with sufficient ventilation.

(基板)
基板としては、本発明の有機圧電体膜の用途・使用方法等により基板の選択は異なる。ポリイミド、ポリアミド、ポリイミドアミド、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート樹脂、シクロオレフィンポリマーのようなプラスチック板又はフィルムでもよいし、これらの素材の表面をアルミニウム、金、銅、マグネシウム、珪素等で覆ったものでもよい。またアルミニウム、金、銅、マグネシウム、珪素単体、希土類のハロゲン化物の単結晶の板又はフィルムでもかまわない。
(substrate)
As the substrate, the selection of the substrate differs depending on the application and use method of the organic piezoelectric film of the present invention. It may be a plastic plate or film such as polyimide, polyamide, polyimide amide, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate resin, cycloolefin polymer. The surface may be covered with aluminum, gold, copper, magnesium, silicon or the like. Alternatively, a single crystal plate or film of aluminum, gold, copper, magnesium, silicon alone, or a rare earth halide may be used.

更に複層圧電素子の上に形成してもよい。圧電素子を積層する複層の使用方法においては、セラミック圧電素子の上に本発明の有機圧電体膜を電極を介して、重畳層する方法がある。セラミック圧電素子としては、PZTが使用されているが、近年は鉛を含まないものが推奨されている。PZTは、Pb(Zr1−XTi)O(0.47≦X≦1)の式の範囲以内であることが好ましく、脱鉛としては、天然又は人工の水晶、ニオブ酸リチウム(LiNbO)、ニオブサンタンタル酸カリウム[K(Ta,Nb)O]、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)、又はチタン酸ストロンチウム(SrTiO)等である。各種セラミック材料はその使用性能において組成を適宜選択することができる。Further, it may be formed on a multilayer piezoelectric element. In a method of using a multilayer in which piezoelectric elements are laminated, there is a method in which the organic piezoelectric film of the present invention is superposed on a ceramic piezoelectric element via an electrode. PZT is used as the ceramic piezoelectric element, but in recent years, one containing no lead has been recommended. PZT is preferably within the range of the formula of Pb (Zr 1-X Ti X ) O 3 (0.47 ≦ X ≦ 1). As deleading, natural or artificial quartz, lithium niobate (LiNbO 3 ), potassium niobium tantalate [K (Ta, Nb) O 3 ], barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3 ), or strontium titanate (SrTiO 3 ). The composition of various ceramic materials can be selected as appropriate in terms of performance.

〈超音波振動子〉
本発明に係る超音波振動子は、本発明の有機圧電材料を用いて形成した有機圧電体膜を用いたことを特徴とする。当該超音波振動子は、超音波送信用振動子と超音波送信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)に用いられる超音波受信用振動子とすることが好ましい。
<Ultrasonic transducer>
The ultrasonic transducer according to the present invention is characterized by using an organic piezoelectric film formed using the organic piezoelectric material of the present invention. The ultrasonic transducer is preferably an ultrasonic receiving transducer used in an ultrasonic medical diagnostic imaging device probe including an ultrasonic transmitting transducer and an ultrasonic transmitting transducer. .

なお、一般に、超音波振動子は膜状の圧電材料からなる層(又は膜)(「圧電膜」、「圧電体膜」、又は「圧電体層」ともいう。)を挟んで一対の電極を配設して構成され、複数の振動子を例えば1次元配列して超音波探触子が構成される。   In general, an ultrasonic vibrator has a pair of electrodes sandwiched between layers (or films) made of a film-like piezoelectric material (also referred to as “piezoelectric film”, “piezoelectric film”, or “piezoelectric layer”). An ultrasonic probe is configured by arranging a plurality of transducers, for example, one-dimensionally.

そして、複数の振動子が配列された長軸方向の所定数の振動子を口径として設定し、その口径に属する複数の振動子を駆動して被検体内の計測部位に超音波ビームを収束させて照射すると共に、その口径に属する複数の振動子により被検体から発する超音波の反射エコー等を受信して電気信号に変換する機能を有している。   Then, a predetermined number of transducers in the major axis direction in which a plurality of transducers are arranged is set as the aperture, and the plurality of transducers belonging to the aperture are driven to converge the ultrasonic beam on the measurement site in the subject. And has a function of receiving reflected echoes of ultrasonic waves emitted from the subject by a plurality of transducers belonging to the aperture and converting them into electrical signals.

以下、本発明に係る超音波受信用振動子と超音波送信用振動子それぞれについて詳細に説明する。   Hereinafter, each of the ultrasonic wave receiving transducer and the ultrasonic wave transmitting transducer according to the present invention will be described in detail.

〈超音波受信用振動子〉
本発明に係る超音波受信用振動子は、超音波医用画像診断装置用探触子に用いられる振動子であって、それを構成する圧電材料として、本発明の有機圧電材料を用いて形成した有機圧電体膜を用いたことを特徴とする。
<Ultrasound receiving transducer>
An ultrasonic receiving transducer according to the present invention is a transducer used in a probe for an ultrasonic medical image diagnostic apparatus, and is formed using the organic piezoelectric material of the present invention as a piezoelectric material constituting the transducer. An organic piezoelectric film is used.

なお、超音波受信用振動子に用いる有機圧電材料ないし有機圧電体膜は、厚み共振周波数における比誘電率が10〜50であることが好ましい。比誘電率の調整は、当該有機圧電材料を構成する化合物が有する前記置換基RのCF基、CN基のような極性官能基の数量、組成、重合度等の調整、及び上記の分極処理によって行うことができる。The organic piezoelectric material or the organic piezoelectric film used for the ultrasonic receiving vibrator preferably has a relative dielectric constant of 10 to 50 at the thickness resonance frequency. The adjustment of the relative dielectric constant is carried out by adjusting the number, composition, polymerization degree, etc. of polar functional groups such as CF 3 groups and CN groups of the substituent R contained in the compound constituting the organic piezoelectric material, and the polarization treatment described above Can be done by.

〈超音波送信用振動子〉
本発明に係る超音波送信用振動子は、上記受信用振動子との関係で適切な比誘電率を有する圧電体材料により構成されることが好ましい。また、耐熱性・耐電圧性に優れた圧電材料を用いることが好ましい。
<Transmitter for ultrasonic transmission>
The ultrasonic transmission vibrator according to the present invention is preferably made of a piezoelectric material having an appropriate relative dielectric constant in relation to the reception vibrator. Moreover, it is preferable to use a piezoelectric material excellent in heat resistance and voltage resistance.

超音波送信用振動子構成用材料としては、公知の種々の有機圧電材料及び無機圧電材料を用いることができる。   Various known organic piezoelectric materials and inorganic piezoelectric materials can be used as the ultrasonic transmitting vibrator constituent material.

有機圧電材料としては、上記超音波受信用振動子構成用有機圧電材料と同様の高分子材料を用いることできる。   As the organic piezoelectric material, a polymer material similar to the above-described organic piezoelectric material for constituting an ultrasonic receiving vibrator can be used.

無機材料としては、水晶、ニオブ酸リチウム(LiNbO)、ニオブ酸タンタル酸カリウム[K(Ta,Nb)O]、チタン酸バリウム(BaTiO)、タンタル酸リチウム(LiTaO)、又はチタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)、チタン酸バリウムストロンチウム(BST)等を用いることができる。尚、PZTはPb(Zr1−nTi)O(0.47≦n≦1)が好ましい。Inorganic materials include quartz, lithium niobate (LiNbO 3 ), potassium tantalate niobate [K (Ta, Nb) O 3 ], barium titanate (BaTiO 3 ), lithium tantalate (LiTaO 3 ), or titanate Lead zirconate (PZT), strontium titanate (SrTiO 3 ), barium strontium titanate (BST), or the like can be used. PZT is preferably Pb (Zr 1-n Ti n ) O 3 (0.47 ≦ n ≦ 1).

〈電極〉
本発明に係る圧電(体)振動子は、圧電体膜(層)の両面上又は片面上に電極を形成し、その圧電体膜を分極処理することによって作製されるものである。当該電極は、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、スズ(Sn)などを主体とした電極材料を用いて形成する。
<electrode>
The piezoelectric (body) vibrator according to the present invention is manufactured by forming electrodes on both surfaces or one surface of a piezoelectric film (layer) and polarizing the piezoelectric film. The electrode is formed using an electrode material mainly composed of gold (Au), platinum (Pt), silver (Ag), palladium (Pd), copper (Cu), nickel (Ni), tin (Sn), or the like. .

電極の形成に際しては、まず、チタン(Ti)やクロム(Cr)などの下地金属をスパッタ法により0.02〜1.0μmの厚さに形成した後、上記金属元素を主体とする金属及びそれらの合金からなる金属材料、さらには必要に応じ一部絶縁材料をスパッタ法、その他の適当な方法で1〜10μmの厚さに形成する。これらの電極形成はスパッタ法以外でも微粉末の金属粉末と低融点ガラスを混合した導電ペーストをスクリーン印刷やディッピング法、溶射法で形成することもできる。   In forming the electrodes, first, a base metal such as titanium (Ti) or chromium (Cr) is formed to a thickness of 0.02 to 1.0 μm by sputtering, and then the metal mainly composed of the above metal elements and those A metal material made of the above alloy, and further, if necessary, a part of insulating material is formed to a thickness of 1 to 10 μm by sputtering or other suitable methods. In addition to sputtering, these electrodes can be formed by screen printing, dipping, or thermal spraying using a conductive paste in which fine metal powder and low-melting glass are mixed.

さらに、圧電体膜の両面に形成した電極間に、所定の電圧を供給し、圧電体膜を分極することで圧電素子が得られる。   Furthermore, a piezoelectric element is obtained by supplying a predetermined voltage between the electrodes formed on both surfaces of the piezoelectric film to polarize the piezoelectric film.

(超音波探触子)
本発明に係る超音波探触子は、超音波送信用振動子と超音波受信用振動子を具備する超音波画像診断装置用探触子(プローブ)であり、受信用振動子として、本発明に係る上記超音波受信用振動子を用いることを特徴とする。
(Ultrasonic probe)
The ultrasonic probe according to the present invention is a probe for an ultrasonic diagnostic imaging apparatus including an ultrasonic transmission transducer and an ultrasonic reception transducer. The ultrasonic receiving vibrator according to the above is used.

本発明においては、超音波の送受信の両方をひとつの振動子で担ってもよいが、より好ましくは、送信用と受信用で振動子は分けて探触子内に構成される。   In the present invention, both transmission and reception of ultrasonic waves may be performed by a single transducer, but more preferably, the transducers are configured separately for transmission and reception in the probe.

送信用振動子を構成する圧電材料としては、従来公知のセラミックス無機圧電材料でも、有機圧電材料でもよい。   The piezoelectric material constituting the transmitting vibrator may be a conventionally known ceramic inorganic piezoelectric material or an organic piezoelectric material.

本発明に係る超音波探触子においては、送信用振動子の上もしくは並列に本発明の超音波受信用振動子を配置することができる。   In the ultrasonic probe according to the present invention, the ultrasonic receiving transducer of the present invention can be arranged on or in parallel with the transmitting transducer.

より好ましい実施形態としては、超音波送信用振動子の上に本発明の超音波受信用振動子を積層する構造が良く、その際には、本発明の超音波受信用振動子は他の高分子材料(支持体として上記の比誘電率が比較的低い高分子(樹脂)フィルム、例えば、ポリエステルフィルム)の上に添合した形で送信用振動子の上に積層してもよい。その際の受信用振動子と他の高分子材料と合わせた膜厚は、探触子の設計上好ましい受信周波数帯域に合わせることが好ましい。実用的な超音波医用画像診断装置および生体情報収集に現実的な周波数帯から鑑みると、その膜厚は、40〜150μmであることが好ましい。   As a more preferred embodiment, the structure for laminating the ultrasonic receiving transducer of the present invention on the ultrasonic transmitting transducer is good, and in this case, the ultrasonic receiving transducer of the present invention is another high-frequency transducer. You may laminate | stack on the vibrator | oscillator for transmission in the form joined together on the molecular material (The polymer (resin) film, for example, polyester film) whose relative dielectric constant is comparatively low as a support body. In this case, it is preferable that the film thickness of the receiving vibrator and the other polymer material be matched to a preferable receiving frequency band in terms of probe design. Considering a practical ultrasonic medical diagnostic imaging apparatus and biological information collection from a practical frequency band, the film thickness is preferably 40 to 150 μm.

なお、当該探触子には、バッキング層、音響整合層、音響レンズなどを設けても良い。また、多数の圧電材料を有する振動子を2次元に並べた探触子とすることもできる。複数の2次元配列した探触子を順次走査して、画像化するスキャナーとして構成させることもできる。   The probe may be provided with a backing layer, an acoustic matching layer, an acoustic lens, and the like. Also, a probe in which vibrators having a large number of piezoelectric materials are two-dimensionally arranged can be used. A plurality of two-dimensionally arranged probes can be sequentially scanned to form a scanner.

(超音波医用画像診断装置)
本発明に係る上記超音波探触子は、種々の態様の超音波診断装置に用いることができる。例えば、図1に示すような超音波医用画像診断装置において好適に使用することができる。
(Ultrasonic medical diagnostic imaging equipment)
The ultrasonic probe according to the present invention can be used for various types of ultrasonic diagnostic apparatuses. For example, it can be suitably used in an ultrasonic medical image diagnostic apparatus as shown in FIG.

図1は、本発明の実施形態の超音波医用画像診断装置の主要部の構成を示す概念図である。この超音波医用画像診断装置は、患者などの被検体に対して超音波を送信し、被検体で反射した超音波をエコー信号として受信する圧電体振動子が配列されている超音波探触子(プローブ)を備えている。また当該超音波探触子に電気信号を供給して超音波を発生させるとともに、当該超音波探触子の各圧電体振動子が受信したエコー信号を受信する送受信回路と、送受信回路の送受信制御を行う送受信制御回路を備えている。   FIG. 1 is a conceptual diagram showing a configuration of a main part of an ultrasonic medical image diagnostic apparatus according to an embodiment of the present invention. This ultrasonic medical diagnostic imaging apparatus transmits an ultrasonic wave to a subject such as a patient, and an ultrasonic probe in which piezoelectric vibrators that receive ultrasonic waves reflected by the subject as echo signals are arranged. (Probe). In addition, an electric signal is supplied to the ultrasonic probe to generate an ultrasonic wave, and a transmission / reception circuit that receives an echo signal received by each piezoelectric vibrator of the ultrasonic probe, and transmission / reception control of the transmission / reception circuit A transmission / reception control circuit is provided.

更に、送受信回路が受信したエコー信号を被検体の超音波画像データに変換する画像データ変換回路を備えている。また当該画像データ変換回路によって変換された超音波画像データでモニタを制御して表示する表示制御回路と、超音波医用画像診断装置全体の制御を行う制御回路を備えている。   Furthermore, an image data conversion circuit that converts echo signals received by the transmission / reception circuit into ultrasonic image data of the subject is provided. Further, a display control circuit for controlling and displaying the monitor with the ultrasonic image data converted by the image data conversion circuit and a control circuit for controlling the entire ultrasonic medical image diagnostic apparatus are provided.

制御回路には、送受信制御回路、画像データ変換回路、表示制御回路が接続されており、制御回路はこれら各部の動作を制御している。そして、超音波探触子の各圧電体振動子に電気信号を印加して被検体に対して超音波を送信し、被検体内部で音響インピーダンスの不整合によって生じる反射波を超音波探触子で受信する。   A transmission / reception control circuit, an image data conversion circuit, and a display control circuit are connected to the control circuit, and the control circuit controls operations of these units. Then, an electrical signal is applied to each piezoelectric vibrator of the ultrasonic probe to transmit an ultrasonic wave to the subject, and the reflected wave caused by acoustic impedance mismatch inside the subject is detected by the ultrasonic probe. Receive at.

なお、上記送受信回路が「電気信号を発生する手段」に相当し、画像データ変換回路が「画像処理手段」に相当する。   The transmission / reception circuit corresponds to “means for generating an electrical signal”, and the image data conversion circuit corresponds to “image processing means”.

上記のような超音波診断装置によれば、本発明の圧電特性及び耐熱性に優れかつ高周波・広帯域に適した超音波受信用振動子の特徴を生かして、従来技術と比較して画質とその再現・安定性が向上した超音波像を得ることができる。   According to the ultrasonic diagnostic apparatus as described above, by utilizing the characteristics of the ultrasonic wave receiving vibrator excellent in piezoelectric characteristics and heat resistance of the present invention and suitable for high frequency and wide band, the image quality and its An ultrasonic image with improved reproduction and stability can be obtained.

〈一般式(2)で表される繰り返し単位を少なくとも1種類以上含むポリマー〉
次に、一般式(2)で表される繰り返し単位を少なくとも1種類以上含むポリマーについて、説明する。前記一般式(2)において、Xはウレア基、ウレタン基、エステル基、アミド基から選ばれる1つの基もしくはそれら2つ以上の組み合わせからなる2価の連結基を表し、Aは3つ以上環からなる縮合環を表す。
<Polymer containing at least one repeating unit represented by formula (2)>
Next, the polymer containing at least one repeating unit represented by the general formula (2) will be described. In the general formula (2), X 2 represents one group selected from a urea group, a urethane group, an ester group, and an amide group or a divalent linking group composed of a combination of two or more thereof, and A 2 represents three groups. A condensed ring composed of the above rings is represented.

で表される縮合環の具体例としては、前記一般式(1)におけるAで表される縮合環の具体例として挙げた例のうち、3つ以上の環からなる縮合環が挙げられる。Aとして好ましくは、アントラセン、フェナントレン、フルオレン、トリフェニレン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、フェノチアジンである。Specific examples of the condensed ring represented by A 2 include a condensed ring composed of three or more rings among the examples given as specific examples of the condensed ring represented by A in the general formula (1). . A 2 is preferably anthracene, phenanthrene, fluorene, triphenylene, carbazole, phenanthridine, acridine, phenanthroline, or phenothiazine.

一般式(2)で表される繰り返し単位を少なくとも1種類以上含むポリマーの具体例としては、前記例示化合物のP−1、P−2、P−7〜P−10,P−12〜P−16、P−18〜P−20、P−22、P−26〜P−31、P−34〜P−38、P−40、P−41、P−43〜P−51、P−54、P−59、P−60等が挙げられる。   Specific examples of the polymer containing at least one repeating unit represented by the general formula (2) include P-1, P-2, P-7 to P-10, and P-12 to P- 16, P-18 to P-20, P-22, P-26 to P-31, P-34 to P-38, P-40, P-41, P-43 to P-51, P-54, P-59, P-60, etc. are mentioned.

本発明における一般式(2)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする樹脂組成物の用途としては、圧電ポリマー又は焦電ポリマーが使用されてきた分野に使用でき、特に限定するものではないが、例えば、圧電性、加工性、製膜性等の特性を生かし、音響分野、超音波分野、医療・産業分野に利用される。具体的には、スピーカー、超音波トランスデューサ、赤外線センサなどに使用できる。   The resin composition characterized by containing a polymer containing at least one repeating unit represented by the general formula (2) in the present invention is used in a field where a piezoelectric polymer or pyroelectric polymer has been used. Although it can be used and is not particularly limited, for example, it is utilized in the acoustic field, ultrasonic field, medical / industrial field, taking advantage of characteristics such as piezoelectricity, workability, and film forming property. Specifically, it can be used for speakers, ultrasonic transducers, infrared sensors, and the like.

以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these.

(合成例1:P−1(ポリウレア)の合成)
300mlの4口フラスコに、2,7−ジアミノフルオレン(3.0g,15.3mmol)、ピリジン100mlを入れ、かき混ぜた。炭酸アンモニウム(1.2g,15.3mmol)、トリフェニルホスフィン(8.0g,30.6mmol)を加え、70℃に加熱した。ここにヘキサクロロエタン(7.2g,30.6mmol)を添加し、70℃で3時間かき混ぜた。室温まで冷却した後、メタノール300ml中に注入し、析出したポリマーをろ別後、水、希塩酸、酢酸エチルで洗浄後、乾燥した(収率92%)。分子量は32,000であった。
(Synthesis Example 1: Synthesis of P-1 (polyurea))
In a 300 ml four-necked flask, 2,7-diaminofluorene (3.0 g, 15.3 mmol) and 100 ml of pyridine were added and stirred. Ammonium carbonate (1.2 g, 15.3 mmol) and triphenylphosphine (8.0 g, 30.6 mmol) were added and heated to 70 ° C. Hexachloroethane (7.2 g, 30.6 mmol) was added thereto, and the mixture was stirred at 70 ° C. for 3 hours. After cooling to room temperature, it was poured into 300 ml of methanol, and the precipitated polymer was filtered off, washed with water, dilute hydrochloric acid and ethyl acetate, and dried (yield 92%). The molecular weight was 32,000.

(合成例2:P−2(ポリウレタン)の合成)
300mlの4口フラスコに、1,5−ペンタンジオール(2.7g,30mmol)、クロロベンゼン100mlを入れて溶解させた。溶液を加熱、還流させ、ここに2,7−ジイソシアネートフルオレン(7.4g,30mmol)のクロロベンゼン溶液(50ml)を滴下した。滴下終了後、還流下で1時間かき混ぜた後、室温まで冷却した。析出したポリマーをろ別し、メタノールで洗浄後、乾燥させた(収率86%)。分子量は25,000であった。
(Synthesis Example 2: Synthesis of P-2 (polyurethane))
1,5-pentanediol (2.7 g, 30 mmol) and 100 ml of chlorobenzene were dissolved in a 300 ml four-necked flask. The solution was heated to reflux, and a chlorobenzene solution (50 ml) of 2,7-diisocyanate fluorene (7.4 g, 30 mmol) was added dropwise thereto. After completion of the dropwise addition, the mixture was stirred for 1 hour under reflux and then cooled to room temperature. The precipitated polymer was filtered off, washed with methanol and dried (yield 86%). The molecular weight was 25,000.

(合成例3:P−3(ポリアミド)の合成)
500mlの4口フラスコに、ビス(4−アミノフェニル)エーテル(1.0g,5.0mmol)、ナフタレン−2,7−ジカルボン酸(1.1g,5.0mmol)、亜リン酸トリフェニル(3.1g,5.0mmol)、塩化リチウム(0.5g)、NMP(N−メチルピロリドン)(10ml)、ピリジン(2.5ml)を入れた。窒素下、100℃で3時間かき混ぜた。溶液をメタノール(350ml)に注入し、ポリマーをろ別し、減圧乾燥した(収率88%)。分子量は18,000であった。
(Synthesis Example 3: Synthesis of P-3 (polyamide))
In a 500 ml four-necked flask, bis (4-aminophenyl) ether (1.0 g, 5.0 mmol), naphthalene-2,7-dicarboxylic acid (1.1 g, 5.0 mmol), triphenyl phosphite (3 0.1 g, 5.0 mmol), lithium chloride (0.5 g), NMP (N-methylpyrrolidone) (10 ml), and pyridine (2.5 ml) were added. The mixture was stirred at 100 ° C. for 3 hours under nitrogen. The solution was poured into methanol (350 ml), the polymer was filtered off and dried under reduced pressure (88% yield). The molecular weight was 18,000.

その他の本発明のポリマーも同様の方法を用いて合成することができる。   Other polymers of the present invention can be synthesized using the same method.

〔樹脂組成物膜の作製〕
(樹脂組成物膜−1〜10の作製)
あらかじめ表面にアルミ蒸着を行った25μmのポリイミドフィルムに、一般式(1)で表されるポリマーを、乾燥膜厚が7μmになるように塗布し、乾燥した。次に、上記ポリマーの膜が形成された基板の表面にアルミ電極を蒸着で取り付けた後、高圧電源装置HARB−20R60(松定プレシジョン(株)製)を用いて、100MV/mの電場を印加しながら200℃まで5℃/minの速度で昇温させ、200℃で15分間保持した後に、電圧を印加したまま室温まで徐冷してポーリング処理を施し、本発明の樹脂組成物膜−1〜10を作製した。
[Preparation of resin composition film]
(Production of Resin Composition Films-1 to 10)
The polymer represented by the general formula (1) was applied to a 25 μm polyimide film on which aluminum had been deposited in advance so that the dry film thickness was 7 μm and dried. Next, an aluminum electrode is attached by vapor deposition to the surface of the substrate on which the polymer film is formed, and then an electric field of 100 MV / m is applied using a high voltage power supply device HARB-20R60 (manufactured by Matsusada Precision Co., Ltd.). Then, the temperature was raised to 200 ° C. at a rate of 5 ° C./min, held at 200 ° C. for 15 minutes, then slowly cooled to room temperature while applying a voltage, and subjected to poling treatment, and the resin composition film-1 of the present invention To 10 were produced.

(比較樹脂組成物膜−A〜Cの作製)
実施例4において、一般式(1)で表されるポリマーの代わりに下記比較ポリマーA〜Cを用いた以外は同様の方法で、比較樹脂組成物膜A〜Cを作製した。
(Preparation of Comparative Resin Composition Film-A to C)
Comparative resin composition films A to C were produced in the same manner as in Example 4 except that the following comparative polymers A to C were used instead of the polymer represented by the general formula (1).

〔樹脂組成物膜の評価〕
得られた樹脂組成物膜について、共振法により室温及び100℃まで加熱した状態で圧電特性の評価を行った。圧電特性は、インピーダンスアナライザー(Agilent社製のプレシジョンインピ−ダンスアナライザ4294A)を用いて測定した。
[Evaluation of resin composition film]
The obtained resin composition film was evaluated for piezoelectric characteristics while being heated to room temperature and 100 ° C. by a resonance method. The piezoelectric characteristics were measured using an impedance analyzer (Precision Impedance Analyzer 4294A manufactured by Agilent).

その評価結果を表1に示す。なお圧電特性は、比較−C(PVDF膜)について室温で測定した時の値を100%とした相対値として示す。   The evaluation results are shown in Table 1. In addition, a piezoelectric characteristic is shown as a relative value with respect to Comparative-C (PVDF film) measured at room temperature as 100%.

表1に示した結果から明らかなように、本発明のポリマーにより形成された有機圧電体膜の圧電特性は、比較例に比べ優れていることが分かる。   As is clear from the results shown in Table 1, it can be seen that the piezoelectric characteristics of the organic piezoelectric film formed of the polymer of the present invention are superior to those of the comparative example.

〔超音波探触子の作製と評価〕
〈送信用圧電材料の作製〉
成分原料であるCaCO、La、BiとTiO、及び副成分原料であるMnOを準備し、成分原料については、成分の最終組成が(Ca0.97La0.03)Bi4.01Ti15となるように秤量した。次に、純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて8時間混合し、十分に乾燥を行い、混合粉体を得た。得られた混合粉体を、仮成形し、空気中、800℃で2時間仮焼を行い仮焼物を作製した。次に、得られた仮焼物に純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて微粉砕を行い、乾燥することにより圧電セラミックス原料粉末を作製した。微粉砕においては、微粉砕を行う時間および粉砕条件を変えることにより、それぞれ粒子径100nmの圧電セラミックス原料粉末を得た。それぞれ粒子径の異なる各圧電セラミックス原料粉末にバインダーとして純水を6質量%添加し、プレス成形して、厚み100μmの板状仮成形体とし、この板状仮成形体を真空パックした後、235MPaの圧力でプレスにより成形した。次に、上記の成形体を焼成した。最終焼結体の厚さは20μmの焼結体を得た。なお、焼成温度は、それぞれ1100℃であった。1.5×Ec(MV/m)以上の電界を1分間印加して分極処理を施した。Ec(抗電界強度)は、D−Eヒステリシスにより求めた。
[Production and evaluation of ultrasonic probe]
<Production of piezoelectric material for transmission>
Component raw materials CaCO 3 , La 2 O 3 , Bi 2 O 3 and TiO 2 , and subcomponent raw materials MnO are prepared, and for the component raw materials, the final composition of the components is (Ca 0.97 La 0.03 ) Weighed to be Bi 4.01 Ti 4 O 15 . Next, pure water was added, mixed in a ball mill containing zirconia media in pure water for 8 hours, and sufficiently dried to obtain a mixed powder. The obtained mixed powder was temporarily molded and calcined in air at 800 ° C. for 2 hours to prepare a calcined product. Next, pure water was added to the obtained calcined material, finely pulverized in a ball mill containing zirconia media in pure water, and dried to prepare a piezoelectric ceramic raw material powder. In the fine pulverization, the piezoelectric ceramic raw material powder having a particle diameter of 100 nm was obtained by changing the pulverization time and pulverization conditions. 6% by mass of pure water as a binder is added to each piezoelectric ceramic raw material powder having a different particle diameter, press-molded to form a plate-shaped temporary molded body having a thickness of 100 μm, and this plate-shaped temporary molded body is vacuum-packed and then 235 MPa. It shape | molded by the press with the pressure of. Next, the molded body was fired. The final sintered body had a thickness of 20 μm. The firing temperature was 1100 ° C. An electric field of 1.5 × Ec (MV / m) or more was applied for 1 minute to perform polarization treatment. Ec (coercive electric field strength) was determined by DE hysteresis.

〈受信用積層振動子の作製〉
前記実施例1において作製した有機圧電体膜と厚さ50μmのポリエステルフィルムをエポキシ系接着剤にて貼り合わせた積層振動子を作製した。その後、上記と同様に分極処理をした。
<Production of laminated resonator for reception>
A laminated vibrator was produced in which the organic piezoelectric film produced in Example 1 and a polyester film having a thickness of 50 μm were bonded together with an epoxy adhesive. Thereafter, polarization treatment was performed in the same manner as described above.

次に、常法に従って、上記の送信用圧電材料の上に受信用積層振動子を積層し、かつバッキング層と音響整合層を設置し超音波探触子を試作した。   Next, according to a conventional method, an ultrasonic probe was prototyped by laminating a laminated receiver for reception on the above-described piezoelectric material for transmission and installing a backing layer and an acoustic matching layer.

なお、比較例として、上記受信用積層振動子の代わりに、比較樹脂組成物膜−Aを用い、上記超音波探触子と同様の探触子を作製した。   As a comparative example, a probe similar to the above-described ultrasonic probe was produced using the comparative resin composition film-A instead of the above-described laminated resonator for reception.

次いで、上記2種の超音波探触子について受信感度と絶縁破壊強度の測定をして評価した。   Next, the above two types of ultrasonic probes were evaluated by measuring the reception sensitivity and the dielectric breakdown strength.

なお、受信感度については、5MHzの基本周波数fを発信させ、受信2次高調波fとして10MHz、3次高調波として15MHz、4次高調波として20MHzの受信相対感度を求めた。受信相対感度は、ソノーラメディカルシステム社(Sonora Medical System,Inc:2021Miller Drive Longmont,Colorado(0501 USA))の音響強度測定システムModel805(1〜50MHz)を使用した。Incidentally, the reception sensitivity is originating the fundamental frequency f 1 of 5 MHz, to determine the received relative sensitivity of 20MHz as 15 MHz, 4 harmonics as received second harmonic wave f 2 as 10 MHz, 3 harmonic. For the relative sensitivity of reception, a sound intensity measurement system Model 805 (1 to 50 MHz) manufactured by Sonora Medical System, Inc. (2021 Miller Drive Longmont, Colorado (0501 USA)) was used.

絶縁破壊強度の測定は、負荷電力Pを5倍にして、10時間試験した後、負荷電力を基準に戻して、相対受信感度を評価した。感度の低下が負荷試験前の1%以内のときを良、1%を超え10%未満を可、10%以上を不良として評価した。   The dielectric breakdown strength was measured by multiplying the load power P by 5 times, testing for 10 hours, and then returning the load power to the reference to evaluate the relative reception sensitivity. The sensitivity was evaluated as good when the decrease in sensitivity was within 1% before the load test, more than 1% and less than 10%, and 10% or more as bad.

上記評価において、本発明に係る受信用圧電(体)積層振動子を具備した超音波探触子は、比較例に対して約1.3倍の相対受信感度を有しており、かつ絶縁破壊強度は良好であることを確認した。すなわち、本発明の超音波受信用振動子は、図1に示したような超音波医用画像診断装置に用いる探触子にも好適に使用できることが確認された。   In the above evaluation, the ultrasonic probe including the receiving piezoelectric (body) laminated vibrator according to the present invention has a relative receiving sensitivity about 1.3 times that of the comparative example, and has a dielectric breakdown. It was confirmed that the strength was good. That is, it was confirmed that the ultrasonic wave receiving transducer of the present invention can be suitably used for a probe used in an ultrasonic medical image diagnostic apparatus as shown in FIG.

1 受信用圧電材料(膜)
2 支持体
3 送信用圧電材料(膜)
4 バッキング層
5 電極
6 音響レンズ
1 Receiving piezoelectric material (film)
2 Support 3 Piezoelectric material for transmission (film)
4 Backing layer 5 Electrode 6 Acoustic lens

Claims (5)

下記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
一般式(1)
−X−A−
〔一般式(1)において、Xがウレア基、ウレタン基から選ばれる1つの基もしくはそれら2つ以上の組み合わせからなる2価の連結基を表し、Aは少なくとも一つの芳香族環を含む縮合環を表す(ただし、フラーレン及びフラーレン誘導体を除く)。〕
An organic piezoelectric material comprising a polymer containing at least one repeating unit represented by the following general formula (1).
General formula (1)
-X-A-
[In General Formula (1), X represents a divalent linking group composed of one group selected from a urea group and a urethane group or a combination of two or more thereof, and A represents a condensed ring containing at least one aromatic ring. (However, fullerene and fullerene derivatives are excluded) . ]
前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーの重量平均分子量が1,000〜500,000であり、The weight average molecular weight of the polymer containing at least one repeating unit represented by the general formula (1) is 1,000 to 500,000,
前記一般式(1)において、Aが、ナフタレン、アントラセン、フェナントレン、フルオレン、トリフェニレン、ナフタセン、インドール、ベンゾフラン、ベンゾチオフェン、イソベンゾフラン、キノリジン、キノリン、フタラジン、ナフチリジン、キノキサリン、キノキサゾリン、カルバゾール、フェナントリジン、アクリジン、フェナントロリン、チアントレン、クロメン、キサンテン、フェノキサチイン、フェノチアジン、フェナジン、ピレン、クリセン、ペリレン、ペンタセン、ピセン、キナゾリン、ジベンゾフラン、インドリジン、プリン、プテリジンのいずれかで表されることを特徴とする請求項1に記載の有機圧電材料。In the general formula (1), A is naphthalene, anthracene, phenanthrene, fluorene, triphenylene, naphthacene, indole, benzofuran, benzothiophene, isobenzofuran, quinolidine, quinoline, phthalazine, naphthyridine, quinoxaline, quinoxazoline, carbazole, phenanthridine. , Acridine, phenanthroline, thianthrene, chromene, xanthene, phenoxathiin, phenothiazine, phenazine, pyrene, chrysene, perylene, pentacene, picene, quinazoline, dibenzofuran, indolizine, purine, pteridine The organic piezoelectric material according to claim 1.
下記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーを含有することを特徴とする有機圧電材料。
一般式(1)
−X−A−
〔一般式(1)において、Xは2価の連結基を表し、Aは3つの芳香族環を含む3つの環からなる縮合環を表す。〕
An organic piezoelectric material comprising a polymer containing at least one repeating unit represented by the following general formula (1).
General formula (1)
-X-A-
In [Formula (1), X represents a divalent linking group, A represents a fused ring consisting of three rings containing three aromatic rings. ]
前記一般式(1)で表される繰り返し単位を少なくとも1種類以上含むポリマーの重量平均分子量が1,000〜500,000であることを特徴とする請求項に記載の有機圧電材料。 4. The organic piezoelectric material according to claim 3 , wherein the polymer including at least one type of repeating unit represented by the general formula (1) has a weight average molecular weight of 1,000 to 500,000. 超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、請求項1からの何れか1項に記載の有機圧電材料を用いた超音波振動子を超音波受信用振動子として具備したことを特徴とする超音波探触子。 An ultrasonic probe comprising an ultrasonic transmission transducer and an ultrasonic reception transducer, wherein the ultrasonic transducer using the organic piezoelectric material according to any one of claims 1 to 4 is used. An ultrasonic probe comprising a transducer for receiving a sound wave.
JP2010511930A 2008-05-15 2009-04-15 Organic piezoelectric material and ultrasonic probe Active JP5652203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010511930A JP5652203B2 (en) 2008-05-15 2009-04-15 Organic piezoelectric material and ultrasonic probe

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008128277 2008-05-15
JP2008128277 2008-05-15
JP2010511930A JP5652203B2 (en) 2008-05-15 2009-04-15 Organic piezoelectric material and ultrasonic probe
PCT/JP2009/057572 WO2009139257A1 (en) 2008-05-15 2009-04-15 Organic piezoelectric material, ultrasonic probe, and resin composition

Publications (2)

Publication Number Publication Date
JPWO2009139257A1 JPWO2009139257A1 (en) 2011-09-15
JP5652203B2 true JP5652203B2 (en) 2015-01-14

Family

ID=41318630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010511930A Active JP5652203B2 (en) 2008-05-15 2009-04-15 Organic piezoelectric material and ultrasonic probe

Country Status (2)

Country Link
JP (1) JP5652203B2 (en)
WO (1) WO2009139257A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6618035B2 (en) * 2015-03-09 2019-12-11 株式会社リコー Element and power generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05282938A (en) * 1992-02-28 1993-10-29 Idemitsu Kosan Co Ltd Manufacture of metal stored fullerene and the like
JPH09309962A (en) * 1996-05-23 1997-12-02 Toray Ind Inc Polyamide molding and sound-insulating and vibration-damping material made by using the same
JP2003282983A (en) * 2002-03-25 2003-10-03 Nitta Ind Corp Polyurethane elastomer piezoelectric element, pressure- sensitive sensor and contact sensor
JP2004307828A (en) * 2003-03-27 2004-11-04 Sumitomo Chem Co Ltd Coating liquid for forming insulation film, production method for insulation film and insulation film
JP2004315408A (en) * 2003-04-15 2004-11-11 Masahiko Masuno Fullerene whisker and method for producing the same
JP2005072042A (en) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd Piezoelectric conversion composite material and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782528B2 (en) * 1989-04-26 1998-08-06 日本真空技術株式会社 Method of forming organic piezoelectric pyroelectric film
JP3345730B2 (en) * 1994-02-28 2002-11-18 ニッタ株式会社 Polyurethane elastomer actuator
JP4691366B2 (en) * 2005-02-18 2011-06-01 株式会社アルバック Method for forming organic piezoelectric pyroelectric film
JP5083213B2 (en) * 2006-07-10 2012-11-28 コニカミノルタエムジー株式会社 Method for forming piezoelectric synthetic resin film
JP4797843B2 (en) * 2006-07-11 2011-10-19 コニカミノルタエムジー株式会社 Method for forming piezoelectric synthetic resin film
WO2008015917A1 (en) * 2006-08-02 2008-02-07 Konica Minolta Medical & Graphic, Inc. Ultrasonic probe, and ultrasonic probe manufacturing method
JP2008042611A (en) * 2006-08-08 2008-02-21 Konica Minolta Medical & Graphic Inc Method for manufacturing ultrasonic probe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05282938A (en) * 1992-02-28 1993-10-29 Idemitsu Kosan Co Ltd Manufacture of metal stored fullerene and the like
JPH09309962A (en) * 1996-05-23 1997-12-02 Toray Ind Inc Polyamide molding and sound-insulating and vibration-damping material made by using the same
JP2003282983A (en) * 2002-03-25 2003-10-03 Nitta Ind Corp Polyurethane elastomer piezoelectric element, pressure- sensitive sensor and contact sensor
JP2004307828A (en) * 2003-03-27 2004-11-04 Sumitomo Chem Co Ltd Coating liquid for forming insulation film, production method for insulation film and insulation film
JP2004315408A (en) * 2003-04-15 2004-11-11 Masahiko Masuno Fullerene whisker and method for producing the same
JP2005072042A (en) * 2003-08-25 2005-03-17 Fuji Photo Film Co Ltd Piezoelectric conversion composite material and manufacturing method thereof

Also Published As

Publication number Publication date
WO2009139257A1 (en) 2009-11-19
JPWO2009139257A1 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5637133B2 (en) Organic piezoelectric material, ultrasonic transducer, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP5500173B2 (en) Piezoelectric body, ultrasonic transducer, medical ultrasonic diagnostic apparatus and nondestructive ultrasonic inspection apparatus
JP5633509B2 (en) Organic piezoelectric material, ultrasonic probe, and ultrasonic image detection apparatus
WO2008015917A1 (en) Ultrasonic probe, and ultrasonic probe manufacturing method
JP5392090B2 (en) Ultrasonic wave receiving vibrator, manufacturing method thereof, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP5315925B2 (en) Organic piezoelectric material, organic piezoelectric film manufacturing method, ultrasonic transducer and ultrasonic probe using the same
JP5407871B2 (en) Organic piezoelectric material, manufacturing method thereof, ultrasonic transducer and ultrasonic probe using the same
JP5652203B2 (en) Organic piezoelectric material and ultrasonic probe
JP2008188415A (en) Piezoelectric element, manufacturing method for it, and ultrasonic probe equipped with the piezoelectric element
JP5115348B2 (en) Organic piezoelectric material, method for producing organic piezoelectric film, ultrasonic transducer, and ultrasonic probe
JP5493856B2 (en) Organic piezoelectric film, method for forming the same, ultrasonic transducer using the same, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
JP2010123845A (en) Organic piezoelectric substance, organic piezoelectric material, ultrasonic vibrator, and ultrasonic probe
JP2010165770A (en) Organic piezoelectric element, organic piezoelectric material, ultrasonic vibrator and ultrasonic probe
JP2009155372A (en) Organic polymer material, organic composite material, organic piezoelectric material, organic piezoelectric film, ultrasonic vibrator, ultrasound probe, and ultrasonic medical diagnostic imaging equipment
WO2010001634A1 (en) Organic piezoelectric material, ultrasonic vibrator, and ultrasonic image diagnosis apparatus for medical application
WO2010018760A1 (en) Organic piezoelectric material, method for manufacturing organic piezoelectric material film, ultrasonic oscillator, and ultrasonic probe
JP5338681B2 (en) Organic piezoelectric material, manufacturing method thereof, ultrasonic transducer and ultrasonic probe using the same
JP2010219484A (en) Organic piezoelectric material, ultrasonic vibrator, ultrasonic probe, and ultrasonic medical image diagnosis device
JP5459216B2 (en) Organic piezoelectric materials, ultrasonic transducers and ultrasonic probes
JP5459215B2 (en) Organic piezoelectric materials, ultrasonic transducers and ultrasonic probes
JP2010138339A (en) Thiourea group-containing organic polymer, organic piezoelectric material containing compound containing urea group or thiourea group, and ultrasonic wave probe
JP2010116457A (en) Organic piezoelectric material, method for manufacturing organic piezoelectric substance film, as well as organic piezoelectric substance film and ultrasonic vibrator and ultrasonic probe using the same
JP2009263473A (en) Organic piezoelectric material, ultrasonic probe using the same, ultrasonic probe, and ultrasonic medical diagnostic imaging apparatus
WO2010029783A1 (en) Organic piezoelectric material, organic piezoelectric film, ultrasound transducer, method for manufacturing ultrasound transducer, ultrasound probe and ultrasound medical imaging device
WO2010001633A1 (en) Organic piezoelectric material, process for producing the organic piezoelectric material, ultrasonic vibrator, and ultrasonic image diagnosis apparatus for medical application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5652203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150