JP5651913B2 - Conductive resin composition - Google Patents

Conductive resin composition Download PDF

Info

Publication number
JP5651913B2
JP5651913B2 JP2008110143A JP2008110143A JP5651913B2 JP 5651913 B2 JP5651913 B2 JP 5651913B2 JP 2008110143 A JP2008110143 A JP 2008110143A JP 2008110143 A JP2008110143 A JP 2008110143A JP 5651913 B2 JP5651913 B2 JP 5651913B2
Authority
JP
Japan
Prior art keywords
powder
component
resin composition
silver plating
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008110143A
Other languages
Japanese (ja)
Other versions
JP2009256539A (en
Inventor
鈴木 宏則
宏則 鈴木
仁志 真舩
仁志 真舩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THREEBOND FINE CHEMICAL CO.,LTD.
Original Assignee
THREEBOND FINE CHEMICAL CO.,LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THREEBOND FINE CHEMICAL CO.,LTD. filed Critical THREEBOND FINE CHEMICAL CO.,LTD.
Priority to JP2008110143A priority Critical patent/JP5651913B2/en
Priority to PCT/JP2009/057871 priority patent/WO2009131101A1/en
Priority to KR1020107023577A priority patent/KR101505236B1/en
Priority to CN2009801140073A priority patent/CN102015884B/en
Publication of JP2009256539A publication Critical patent/JP2009256539A/en
Application granted granted Critical
Publication of JP5651913B2 publication Critical patent/JP5651913B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • C08K5/1539Cyclic anhydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds

Description

本発明は、高価な銀粉を使用せず、安価なニッケル粉や銀メッキ粉を使用して、耐湿試験およびヒートサイクル試験もしくはヒートショック試験などの、信頼性試験に耐えられるエポキシ樹脂を用いた熱硬化性導電性樹脂組成物に関するものである。   The present invention does not use expensive silver powder, and uses inexpensive nickel powder or silver plating powder, and heat using an epoxy resin that can withstand reliability tests such as moisture resistance test and heat cycle test or heat shock test. The present invention relates to a curable conductive resin composition.

導電性粉体が70〜95質量%、樹脂成分が15〜30質量%という構成の導電性樹脂組成物は、一般的に導電性接着剤と呼ばれ、導電性を発現させるため銀粉などの導電性粉体を高充填する。導電性粉体が高価な場合はコストが高くなり付加価値が低くなる傾向があるため、コストダウンを目的にニッケル粉や各種の銀メッキ粉を使用する事がある。   A conductive resin composition having a conductive powder content of 70 to 95% by mass and a resin component of 15 to 30% by mass is generally referred to as a conductive adhesive and is conductive such as silver powder in order to develop conductivity. High quality powder. When the conductive powder is expensive, the cost tends to be high and the added value tends to be low. Therefore, nickel powder or various silver plating powders may be used for the purpose of cost reduction.

近年は、高信頼性の車載用電子部品の需要が高くなると共に、パソコンや携帯電話の信頼性向上が求められてきている。前記の導電性接着剤は、それらの電子部品関連に使用される事が多くなり、それに伴い信頼性向上も求められている。信頼性を確認する具体的な試験方法としては、高温高湿下(例えば85℃×85%RHなど)に放置する耐湿試験や、低温放置と高温放置(例えば−40℃と80℃との切り替え)を繰り返すヒートサイクル試験もしくはヒートサイクル試験よりも低温・高温の切り替え条件が厳しいヒートショック試験により、導電性接着剤の導電性(抵抗値)、接着力などの変化を確認する。上記コストダウンを目的としたニッケル粉や各種の銀メッキ粉などの導電性粉体は、耐湿試験、ヒートサイクル試験、ヒートショック試験において、水分や熱により粉体表面の酸化が発生して導電性接着剤自体の導電性が劣化するなどの、信頼性が低下する問題が発生する。このような信頼性低下が発生すると、例えばハードディスクドライブに於いては静電気が帯電してヘッドクラッシュが発生したり、光ピックアップに於いてはノイズによりデータ読み取りに不具合が生じる可能性がある。ここで、信頼性とは、耐湿試験ならびにヒートサイクル試験および/またはヒートショック試験に対しての耐性を意味する。   In recent years, the demand for highly reliable in-vehicle electronic components has increased, and improvement in the reliability of personal computers and mobile phones has been demanded. The conductive adhesive is often used in connection with those electronic components, and accordingly, improvement in reliability is also demanded. Specific test methods for confirming reliability include a moisture resistance test that is allowed to stand under high temperature and high humidity (for example, 85 ° C. × 85% RH), and low temperature and high temperature storage (for example, switching between −40 ° C. and 80 ° C.). ) Repeat heat cycle test or heat shock test in which switching conditions between low temperature and high temperature are stricter than heat cycle test, and confirm changes in conductivity (resistance value) and adhesive strength of conductive adhesive. Conductive powders such as nickel powder and various silver plating powders for the purpose of cost reduction are conductive due to oxidation of the powder surface due to moisture and heat in moisture resistance tests, heat cycle tests, and heat shock tests. There arises a problem that the reliability is lowered, for example, the conductivity of the adhesive itself is deteriorated. If such a decrease in reliability occurs, for example, in a hard disk drive, static electricity is charged and a head crash may occur, or in an optical pickup, a problem may occur in reading data due to noise. Here, the reliability means resistance to a moisture resistance test and a heat cycle test and / or a heat shock test.

一般に、ニッケル粉と銀粉をそれぞれ導電性接着剤に添加したときに、銀と比較してニッケルは表面の酸化が進行し易いため、体積抵抗率に違いが出る。銀粉を使用した場合、10−6Ω・mレベルの体積抵抗率が発現するが、ニッケル粉を使用した場合は10−3〜10−4Ω・mレベルと、銀粉を使用した場合と比較して導電性が良くない。導電性接着剤に共通する特徴として、初期の導電性が悪い場合は信頼性試験を行うと導電性の劣化が激しくなる傾向が見られる。 In general, when nickel powder and silver powder are respectively added to the conductive adhesive, the surface resistivity of nickel is more prone to proceed than silver, so that the volume resistivity is different. When silver powder is used, a volume resistivity of 10 −6 Ω · m level is expressed, but when nickel powder is used, it is 10 −3 to 10 −4 Ω · m level, compared with the case where silver powder is used. The conductivity is not good. As a feature common to conductive adhesives, when initial conductivity is poor, a reliability test tends to cause a significant deterioration in conductivity.

ニッケル粉や各種銀メッキ粉は、一般的に酸化防止剤を併用する事が知られている。例えば、特許文献1〜2に示されている様な、高温で樹脂成分を燃焼させる用途の焼結用導電性樹脂組成物の場合は、ニッケルやアルミニウムの酸化防止のために酸化防止剤を使用することは有効であろう。しかしながら、導電性接着剤等に用いる導電性樹脂組成物では、100〜200℃の範囲で硬化させるため、当然のことながら樹脂成分が15〜35質量%程度残る。かかる導電性樹脂組成物では、酸化しやすい金属を使用すると、酸化防止剤を添加してもあまり効果が無く、各種の信頼性試験において信頼性が低下する。特に導電性の劣化は激しく、酸化防止剤を使用しない場合は、例えば特許文献3に示されている様に大幅に樹脂を変性させないと特性の維持が難しいと考えられる。   It is known that nickel powder and various silver plating powders generally use an antioxidant together. For example, in the case of a conductive conductive resin composition for sintering that is used for burning resin components at high temperatures as shown in Patent Documents 1 and 2, an antioxidant is used to prevent oxidation of nickel and aluminum. It would be effective to do. However, since the conductive resin composition used for the conductive adhesive or the like is cured in the range of 100 to 200 ° C., about 15 to 35% by mass of the resin component remains as a matter of course. In such a conductive resin composition, when an easily oxidizable metal is used, even if an antioxidant is added, there is not much effect, and the reliability decreases in various reliability tests. In particular, the deterioration of conductivity is severe, and when an antioxidant is not used, it is considered difficult to maintain characteristics unless the resin is significantly modified as shown in Patent Document 3, for example.

また、コストダウンと信頼性の両立を目的に、各種の無機材料や高酸化性金属の粉体をコア材料にして酸化しにくい金属をメッキする手法も行われている。酸化防止という意味で有力な金属は金メッキ、白金メッキ、銀メッキが現実的である。しかし、金メッキ、白金メッキでは、導電性接着剤の様な導電性粉体を高充填する導電性樹脂組成物のコストダウンには向かない。また、銀メッキを使用しても、銀メッキ層が薄くなると信頼性が極度に低下する。特許文献4に示されている様に、粉体の形状を工夫することで導電性の低下を抑制する試みも行われているが、導電性接着剤では粉体の一次粒子または二次粒子の間に必ず樹脂層が存在するため、粉体表面が微妙に酸化が進行しただけでも、導電性接着剤の硬化物としては導電性劣化が急速に進行する。特にメッキ層が薄い場合は極度にその傾向が見られる。   Also, for the purpose of achieving both cost reduction and reliability, a technique of plating a metal that is difficult to oxidize using various inorganic materials and highly oxidizable metal powders as a core material is also used. Gold plating, platinum plating, and silver plating are realistic as effective metals in terms of oxidation prevention. However, gold plating and platinum plating are not suitable for reducing the cost of a conductive resin composition that is highly filled with conductive powder such as a conductive adhesive. Even when silver plating is used, the reliability is extremely lowered when the silver plating layer is thinned. As shown in Patent Document 4, attempts have been made to suppress the decrease in conductivity by devising the shape of the powder. However, in the case of a conductive adhesive, the primary particles or secondary particles of the powder Since there is always a resin layer between them, even if the powder surface is only slightly oxidized, the conductive deterioration rapidly proceeds as a cured product of the conductive adhesive. In particular, when the plating layer is thin, the tendency is seen extremely.

特開平11−302705号公報JP-A-11-302705 特開2001−338529号公報JP 2001-338529 A 特開平9−255759号公報Japanese Patent Laid-Open No. 9-255759 特開平6−215631号公報JP-A-6-215631

従来の技術では、安価な導電性粉体であるニッケル粉や銀メッキ粉を使用した導電性接着剤は、耐湿試験およびヒートサイクル試験もしくはヒートショック試験などの、信頼性試験において充分な信頼性を確保することが困難であった。そこで、本発明の目的は、安価な導電性粉体を使用しても信頼性試験において充分な信頼性を確保し得て、導電性接着剤等に好適に用い得る導電性樹脂組成物を提供することにある。   In conventional technology, conductive adhesives using nickel powder or silver plating powder, which are inexpensive conductive powders, have sufficient reliability in reliability tests such as moisture resistance tests and heat cycle tests or heat shock tests. It was difficult to secure. Therefore, an object of the present invention is to provide a conductive resin composition that can ensure sufficient reliability in a reliability test even if inexpensive conductive powder is used, and can be suitably used for a conductive adhesive or the like. There is to do.

本発明者らは、上記目的を達成するべく鋭意検討した結果、ニッケル粉や銀メッキ粉などの安価な導電性粉体を使用しても、耐湿試験およびヒートサイクル試験もしくはヒートショック試験における導電性の劣化を抑制し得る、導電性樹脂組成物に関する手法を発見し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that the conductivity in the moisture resistance test and heat cycle test or heat shock test can be achieved even when using inexpensive conductive powder such as nickel powder and silver plating powder. The technique regarding the conductive resin composition which can suppress deterioration of this was discovered, and it came to complete this invention.

本発明の要旨を以下に説明する。
本発明の第1の発明は、(A)〜(D)成分を含み、硬化剤としては(B)成分を、硬化反応する触媒としては(C)成分を含む導電性樹脂組成物であって、アミン系硬化剤を含まず、かつアミン系硬化促進剤を含まない、導電性樹脂組成物である。
(A)成分:エポキシ化合物
(B)成分:酸無水物
(C)成分:チタンおよび/またはジルコニウムを含む有機金属錯体
(D)成分:ニッケル粉および/または銀メッキ粉
The gist of the present invention will be described below.
1st invention of this invention is a conductive resin composition containing (A)-(D) component, (B) component as a hardening | curing agent, and (C) component as a catalyst which carries out hardening reaction, , free of amine curing agent, and an amine-based curing accelerator that does not contain a conductive resin composition.
(A) Component: Epoxy compound (B) Component: Acid anhydride (C) Component: Organometallic complex containing titanium and / or zirconium (D) Component: Nickel powder and / or silver plating powder

本発明の第2の発明は、前記(B)成分が、常温において液状で少なくとも1種類の酸無水物であり、さらに、前記酸無水物の含有量は合計で、前記(A)成分100質量部に対して50〜100質量部である、上記第1の発明に記載の導電性樹脂組成物である。 The second aspect of the present invention, the component (B), Ri least one acid anhydride der in liquid at normal temperature, and further, a total content of the acid anhydride, the component (A) 100 The conductive resin composition according to the first invention, wherein the conductive resin composition is 50 to 100 parts by mass with respect to part by mass .

本発明の第3の発明は、前記(D)成分が、ニッケル粉、銀メッキ銅粉、銀メッキアルミニウム粉、銀メッキニッケル粉、銀メッキカーボン粉、銀メッキガラス粉、銀メッキアルミナ粉、銀メッキシリカ粉、および銀メッキ樹脂粉からなる群より選ばれる少なくとも1種類である上記第1または第2の発明に記載の導電性樹脂組成物である。   In the third invention of the present invention, the component (D) is nickel powder, silver-plated copper powder, silver-plated aluminum powder, silver-plated nickel powder, silver-plated carbon powder, silver-plated glass powder, silver-plated alumina powder, silver The conductive resin composition according to the first or second invention, wherein the conductive resin composition is at least one selected from the group consisting of plated silica powder and silver plated resin powder.

本発明の第4の発明は、前記(A)成分が、ゴム骨格を有し、1分子中にエポキシ基を2以上有するゴム変性エポキシ化合物である上記第1〜第3のいずれかに記載の導電性樹脂組成物である。   According to a fourth aspect of the present invention, the component (A) is a rubber-modified epoxy compound having a rubber skeleton and having two or more epoxy groups in one molecule. It is a conductive resin composition.

本発明の導電性樹脂組成物においては、その成分として、エポキシ化合物、酸無水物、およびそれらを硬化させる触媒としてチタンおよび/またはジルコニウムの有機金属錯体を用いることにより、ニッケル粉や銀メッキ粉などの安価な導電性粉体を使用しても、耐湿試験、およびヒートサイクル試験もしくはヒートショック試験における導電性の劣化を抑制することができる。   In the conductive resin composition of the present invention, nickel powder, silver plating powder, etc. can be obtained by using an epoxy compound, an acid anhydride, and an organometallic complex of titanium and / or zirconium as a catalyst for curing them. Even when an inexpensive conductive powder is used, it is possible to suppress deterioration of conductivity in the moisture resistance test and the heat cycle test or heat shock test.

本発明の詳細を以下に説明する。
本発明の(A)成分としては、エポキシ化合物を用いる。エポキシ化合物としては、1分子中にエポキシ基を少なくとも1つ有する化合物であれば特に限定はなく、種々のエポキシ化合物を用い得るが、1分子中にエポキシ基を2以上有する多価のエポキシ化合物が好ましい。また、この多価のエポキシ化合物と、1分子中にエポキシ基を1有する単価のエポキシ化合物の混合物を用いることもできる。
Details of the present invention will be described below.
An epoxy compound is used as the component (A) of the present invention. The epoxy compound is not particularly limited as long as it is a compound having at least one epoxy group in one molecule, and various epoxy compounds can be used, but a polyvalent epoxy compound having two or more epoxy groups in one molecule can be used. preferable. A mixture of this polyvalent epoxy compound and a unit price epoxy compound having one epoxy group in one molecule can also be used.

エポキシ化合物の具体例としては、エピクロルヒドリンとビスフェノール類などの多価フェノール類や多価アルコールとの縮合によって得られるもので、ビスフェノールA型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオレン型、ノボラック型、フェノールノボラック型、オルソクレゾールノボラック型、トリス(ヒドロキシフェニル)メタン型、テトラフェニロールエタン型などのグリシジルエーテル型エポキシ樹脂を例示することができる。その他、エピクロルヒドリンとフタル酸誘導体や脂肪酸などのカルボン酸との縮合によって得られるグリシジルエステル型エポキシ樹脂、エピクロルヒドリンとアミン類、シアヌル酸類、ヒダントイン類との反応によって得られるグリシジルアミン型エポキシ樹脂、さらには様々な方法で変性したエポキシ樹脂が挙げられるが、これらに限定されるものではない。   Specific examples of epoxy compounds are those obtained by condensation of epichlorohydrin with polyhydric phenols such as bisphenols and polyhydric alcohols, and include bisphenol A type, brominated bisphenol A type, hydrogenated bisphenol A type, and bisphenol F type. Glycidyl ether type epoxy resins such as bisphenol S type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, novolak type, phenol novolak type, orthocresol novolak type, tris (hydroxyphenyl) methane type, tetraphenylolethane type Can be illustrated. In addition, glycidyl ester type epoxy resins obtained by condensation of epichlorohydrin with carboxylic acids such as phthalic acid derivatives and fatty acids, glycidyl amine type epoxy resins obtained by reaction of epichlorohydrin with amines, cyanuric acids, hydantoins, and various Examples thereof include, but are not limited to, epoxy resins modified by various methods.

単価のエポキシ化合物の具体例としては、フェニルグリシジルエーテル、クレシルグリシジルエーテル、p−t−ブチルフェニルグリシジルエーテル、ブチルグリシジルエーテル、C12〜C14アルコールグリシジルエーテル、ブタンジグリシジルエーテル、ヘキサンジグリシジルエーテル、シクロヘキサンジメチルジグリシジルエーテル、又はポリエチレングリコールもしくはポリプロピレングリコールをベースとするグリシジルエーテルなどが挙げられるが、これらに限定されるものではない。   Specific examples of unit price epoxy compounds include phenyl glycidyl ether, cresyl glycidyl ether, pt-butylphenyl glycidyl ether, butyl glycidyl ether, C12-C14 alcohol glycidyl ether, butane diglycidyl ether, hexane diglycidyl ether, cyclohexane Examples include, but are not limited to, dimethyl diglycidyl ether, or glycidyl ether based on polyethylene glycol or polypropylene glycol.

また、透湿性の低いエポキシ化合物として、ポリブタジエン、水添ポリブタジエン、ポリイソプレン、水添ポリイソプレンまたはこれらのスチレン共重合体などの、ゴム骨格を有するゴム変性エポキシ樹脂が一般に知られている。(B)成分と(C)成分との相溶性に問題がなければ、これらゴム変性エポキシ化合物を使用する事が好ましい。ゴム変性エポキシ化合物の具体例としては、イソプレン骨格を有する株式会社クラレ製のKL−610、KL−630T、KL−613や、ブタジエン骨格を有する出光石油化学株式会社製のデナレックスR−45EPTや、旭電化工業株式会社製のBF−1000などが挙げられる。   Further, rubber-modified epoxy resins having a rubber skeleton such as polybutadiene, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, or a styrene copolymer thereof are generally known as epoxy compounds having low moisture permeability. If there is no problem in compatibility between the component (B) and the component (C), it is preferable to use these rubber-modified epoxy compounds. Specific examples of the rubber-modified epoxy compound include KL-610, KL-630T and KL-613 manufactured by Kuraray Co., Ltd. having an isoprene skeleton, Denalex R-45EPT manufactured by Idemitsu Petrochemical Co., Ltd. having a butadiene skeleton, and Asahi. Examples include BF-1000 manufactured by Denka Kogyo Co., Ltd.

本発明で用いることができる(B)成分としては、酸無水物であれば特に限定はなく、種々のものを適宜用い得る。本発明において、酸無水物は(A)成分のエポキシ化合物の硬化剤として働く。エポキシ化合物を硬化させる時には、一般的にはアミン系硬化剤および/またはアミン系硬化促進剤が使用される。しかし、アミン化合物は一般的に腐食の原因となることが多く、導電性粉体に対して腐食を発生させることは例外ではない。また、有機材料は透湿性があるため、水分が樹脂組成物に浸透する様な耐湿試験では、特にその腐食が促進されると推測される。浸透した水分と成分に含まれるアミン化合物の腐食性の影響で銀粉でも表面が腐食される可能性が非常に高い。銀粉の場合は、表面が腐食しても内部が腐食されず、電流が流れるルートとしてはあまり影響が出ないが、ニッケル粉や、酸化被膜を強固に形成した金属や絶縁体の銀メッキ粉では、表層部の腐食は大きな致命傷になり、導電性接着剤などとしては導電性が劣化する傾向が発生すると推測される。本発明では、かかるアミン系硬化剤やアミン系硬化促進剤は使用しない。   The component (B) that can be used in the present invention is not particularly limited as long as it is an acid anhydride, and various components can be appropriately used. In the present invention, the acid anhydride functions as a curing agent for the epoxy compound as the component (A). When the epoxy compound is cured, an amine curing agent and / or an amine curing accelerator is generally used. However, amine compounds generally cause corrosion, and it is no exception to cause corrosion on conductive powder. Further, since the organic material has moisture permeability, it is presumed that the corrosion is particularly accelerated in a moisture resistance test in which moisture penetrates into the resin composition. There is a high possibility that the surface of the silver powder is corroded due to the infiltrated moisture and the corrosive effect of the amine compound contained in the component. In the case of silver powder, even if the surface is corroded, the inside is not corroded, and there is not much influence as a route through which current flows. However, in the case of nickel powder, metal plating with a strong oxide film, or silver plating powder of insulator The corrosion of the surface layer part is a fatal wound, and it is presumed that the conductive adhesive tends to deteriorate the conductivity. In the present invention, such amine curing agents and amine curing accelerators are not used.

酸無水物としては、例えば、ドデセニル無水コハク酸、ポリアゼライン酸無水物、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物、テトラブロモ無水フタル酸、無水ヘッド酸など環状の酸無水物が好ましい。また、酸無水物としては常温で固体状であっても液状であってもよいが、成分混合における作業性の観点から液状であるものが好ましい。具体的には、日立化成工業株式会社製のHN−2200、HN−2000、HN−5500、MHAC−Pや、新日本理化株式会社製のリカシッドTH、HT−1A、HH、MH−700、MH−700G、HNA−100、TMEG−S、TMEG−100、TMEG−200、TMEG−500、TMEG−600、TMTA−C、TMA−15、DDSA、HF−08、SA、DSDA、TMEG−100、TDA−100、BT−100や、大日本インキ化学工業株式会社製のEPICLONB−570、B−650、B−4400などが挙げられるが、これらに限定されるものではない。また、1分子中に2以上の酸無水物骨格を有するポリマー型の酸無水物で、具体的には、株式会社クラレ製のLIR−403、LIR−410や、ダイセル化学工業株式会社製のVEMAなども使用することができる。   Examples of the acid anhydride include dodecenyl succinic anhydride, polyazeline acid anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic acid anhydride, trimellitic anhydride, pyromellitic anhydride, Cyclic acid anhydrides such as benzophenone tetracarboxylic anhydride, tetrabromophthalic anhydride, and head acid anhydride are preferred. The acid anhydride may be solid or liquid at normal temperature, but is preferably liquid from the viewpoint of workability in mixing the components. Specifically, HN-2200, HN-2000, HN-5500, MHAC-P manufactured by Hitachi Chemical Co., Ltd., Ricacid TH, HT-1A, HH, MH-700, MH manufactured by Shin Nippon Chemical Co., Ltd. -700G, HNA-100, TMEG-S, TMEG-100, TMEG-200, TMEG-500, TMEG-600, TMTA-C, TMA-15, DDSA, HF-08, SA, DSDA, TMEG-100, TDA -100, BT-100, and EPICLONB-570, B-650, B-4400 manufactured by Dainippon Ink & Chemicals, Inc., but are not limited thereto. Further, it is a polymer type acid anhydride having two or more acid anhydride skeletons in one molecule, specifically, LIR-403, LIR-410 manufactured by Kuraray Co., Ltd., or VEMA manufactured by Daicel Chemical Industries, Ltd. Etc. can also be used.

酸無水物が液体の場合は、エポキシ化合物とそのまま混練できるが、酸無水物が固体の場合は、エポキシ化合物中に分散させるため撹拌機などによる撹拌か、ボールミルや三本ロールミルにより混練して使用することができる。酸無水物の固体の粒子が非常に大きい場合は、粉砕処理を行った上で使用し、粒子の平均粒径としては20μm未満が好ましい。また、液状の酸無水物に固体の酸無水物を溶かした上で使用することもできる。(B)成分の添加量としては、エポキシ化合物100質量部に対して40〜120質量部が好ましく、50〜100質量部がより好ましい。(B)成分の添加量が上記範囲内であれば、十分な硬化性を得ることができるため好ましい。   If the acid anhydride is liquid, it can be kneaded with the epoxy compound as it is, but if the acid anhydride is solid, it can be dispersed in the epoxy compound by stirring with a stirrer or by kneading with a ball mill or three-roll mill. can do. When the acid anhydride solid particles are very large, they are used after being pulverized, and the average particle size of the particles is preferably less than 20 μm. It can also be used after dissolving a solid acid anhydride in a liquid acid anhydride. (B) As addition amount of a component, 40-120 mass parts is preferable with respect to 100 mass parts of epoxy compounds, and 50-100 mass parts is more preferable. If the addition amount of the component (B) is within the above range, it is preferable because sufficient curability can be obtained.

本発明で用いることができる(C)成分としては、チタンおよび/またはジルコニウムを含む有機金属錯体であれば特に限定はなく、種々のものを適宜用い得る。有機チタン錯体の具体例としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラオクチルチタネート、チタンアセチルアセトナート、チタンオクチレングリコレート、チタンテトラアセチルアセトナート、チタンエチルアセトアセテート、ポリヒドロキシチタンステアレート、チタンラクテート、チタントリエタノールアミネートなどが挙げられる。有機ジルコニウム錯体の具体例としては、テトラノルマルプロポキシジルコニウム、テトラノルマルブトキシジルコニウム、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムジブトキシビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシステアレートなどが挙げられる。   The component (C) that can be used in the present invention is not particularly limited as long as it is an organometallic complex containing titanium and / or zirconium, and various components can be appropriately used. Specific examples of the organic titanium complex include tetraisopropyl titanate, tetranormal butyl titanate, butyl titanate dimer, tetraoctyl titanate, titanium acetylacetonate, titanium octylene glycolate, titanium tetraacetylacetonate, titanium ethyl acetoacetate, polyhydroxy Examples include titanium stearate, titanium lactate, and titanium triethanolamate. Specific examples of the organic zirconium complex include tetranormal propoxyzirconium, tetranormalbutoxyzirconium, zirconium tetraacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetoacetate), zirconium dibutoxybis (ethylacetoacetate), zirconium tetra Examples thereof include acetylacetonate and zirconium tributoxy systemate.

本発明の導電性樹脂組成物の硬化の反応機構が完全に解明されたわけではないが、チタンおよび/またはジルコニウムを含む有機錯体が硬化反応の触媒になり、酸無水物を開環させてエポキシ基と反応して高分子化すると推測される。チタンの方が反応性が良いため、チタンの有機錯体を使用することが好ましい。(C)成分の添加量としては、エポキシ化合物100質量部に対して0.1〜10質量部が好ましい。(C)成分の添加量が上記範囲内であれば、十分な硬化性を得ることができるため好ましい。   Although the curing reaction mechanism of the conductive resin composition of the present invention has not been completely elucidated, an organic complex containing titanium and / or zirconium serves as a catalyst for the curing reaction, and the acid anhydride is ring-opened to form an epoxy group. It is presumed that the polymer reacts with. Since titanium is more reactive, it is preferable to use an organic complex of titanium. (C) As addition amount of a component, 0.1-10 mass parts is preferable with respect to 100 mass parts of epoxy compounds. When the amount of component (C) is within the above range, it is preferable because sufficient curability can be obtained.

本発明で用いることができる(D)成分としては、ニッケル粉および/または銀メッキ粉であれば特に限定はなく、種々のものを適宜用い得る。ニッケル粉の形状としては、球状、フレーク状(鱗片状)、不定形、フィラメント状など様々な形状であって良い。また、銀メッキ粉の形状としては、球状、フレーク状(鱗片状)、不定形が一般的であるが、特に限定はない。ニッケル粉や銀メッキ粉の粒径についても、特に限定は無いが、樹脂成分に混練するためには、二次凝集粉として50μm以下であることが好ましい。(D)成分の添加量としては、(A)成分と(B)成分と(C)成分からなる樹脂成分(固形分)100質量部に対して250〜500質量部が好ましい。(D)成分の添加量が上記範囲内であれば、十分な導電性を得ることができるため好ましい。   The component (D) that can be used in the present invention is not particularly limited as long as it is nickel powder and / or silver plating powder, and various types can be used as appropriate. The shape of the nickel powder may be various shapes such as a spherical shape, a flake shape (scale shape), an indeterminate shape, and a filament shape. Moreover, as a shape of silver plating powder, although spherical shape, flake shape (scale shape), and an indeterminate form are common, there is no limitation in particular. The particle size of the nickel powder or silver plating powder is not particularly limited, but is preferably 50 μm or less as a secondary agglomerated powder in order to knead the resin component. (D) As addition amount of a component, 250-500 mass parts is preferable with respect to 100 mass parts of resin components (solid content) which consist of (A) component, (B) component, and (C) component. If the amount of component (D) is within the above range, it is preferable because sufficient conductivity can be obtained.

ニッケル粉の具体例としては、三井金属鉱業株式会社製の球状粉、CuloxTechnologies社製の球状粉やフレーク粉、東邦チタニウム株式会社製の球状粉、Inco Limited製の球状粉やフィラメント状粉、NOVAMET製のフレーク粉などが挙げられる。   Specific examples of the nickel powder include spherical powder manufactured by Mitsui Mining & Smelting Co., Ltd., spherical powder and flake powder manufactured by Cloox Technologies, spherical powder manufactured by Toho Titanium Co., Ltd., spherical powder and filament powder manufactured by Inco Limited, and NOVAMET manufactured. Flake powder and the like.

銀メッキ粉としては、絶縁性酸化金属被膜を有する金属または絶縁体の粉体に銀メッキを施してなる銀メッキ粉が好ましく用いられる。ここで絶縁性酸化金属被膜を有する金属とは、強固な酸化被膜により導電性接着剤などに使用しても導電性が発現しない金属を指す。具体的には、銅、アルミニウム、鉄などで、ステンレスなどの合金も含まれる。これらの金属粉の銀メッキ品としては、三井金属鉱業株式会社の銀メッキ銅粉、DOWAエレクトロニクス株式会社の銀メッキ銅粉、NOVAMET社製の銀メッキニッケル粉などが挙げられる。これらの金属粉は安価であることから、これらの金属粉をコアにして表面を銀メッキした粉体は安価で流通している。   As the silver plating powder, a silver plating powder obtained by performing silver plating on a metal or insulating powder having an insulating metal oxide film is preferably used. Here, the metal having an insulating metal oxide film refers to a metal that does not exhibit conductivity even when used as a conductive adhesive or the like due to a strong oxide film. Specifically, copper, aluminum, iron, etc., and alloys such as stainless steel are also included. Examples of the silver-plated products of these metal powders include silver-plated copper powder from Mitsui Mining & Smelting Co., Ltd., silver-plated copper powder from DOWA Electronics Co., Ltd., and silver-plated nickel powder from NOVAMET. Since these metal powders are inexpensive, powders whose surfaces are silver-plated using these metal powders as a core are available at low cost.

また、上記絶縁体とは、アルミナ、シリカ、チタン酸カリウム、ガラス、プラスチック(合成樹脂)などの、一般的には充填剤として使用される材料である。これらの絶縁体は安価であることから、これらの絶縁体の粉体の表面を銀メッキした粉体は安価で流通している。商業化されている具体例としては、ポッターズ・バロティーニ株式会社製の真球状の銀メッキガラス粉が挙げられる。   The insulator is a material generally used as a filler, such as alumina, silica, potassium titanate, glass, and plastic (synthetic resin). Since these insulators are inexpensive, powders obtained by silver-plating the surface of these insulator powders are inexpensively distributed. Specific examples that have been commercialized include true spherical silver-plated glass powder manufactured by Potters Barotini Co., Ltd.

本発明で用いる銀メッキ粉に於いて、銀の有効な含有量は、銀メッキ粉体の全重量のうち1〜30質量%であることが好ましい。銀の含有量が1質量%以上であれば、メッキ表層部の銀の劣化による導電性の低下が起こりにくく、信頼性が向上するため好ましい。なお、導電性が低下する原因としては、銀メッキの下地が絶縁性酸化金属被膜を有する金属または絶縁体であるため、電流が流れるルートが表面の銀メッキにしか存在しないことが推測される。また、銀の含有量が30質量%以下であれば、コスト面で有意となる。   In the silver plating powder used in the present invention, the effective silver content is preferably 1 to 30% by mass in the total weight of the silver plating powder. If the silver content is 1% by mass or more, it is preferable because the decrease in conductivity due to the deterioration of silver in the plating surface layer portion hardly occurs and the reliability is improved. The reason why the conductivity is lowered is presumed that the root of the silver plating is a metal or an insulator having an insulating metal oxide film, so that the route through which the current flows exists only in the surface silver plating. Further, when the silver content is 30% by mass or less, the cost becomes significant.

本発明の導電性樹脂組成物には、本発明の所期の効果を損なわない範囲において、顔料、染料などの着色剤、金属粉、炭酸カルシウム、タルク、シリカ、アルミナ、水酸化アルミニウム等の無機充填剤、難燃剤、有機充填剤、可塑剤、酸化防止剤、消泡剤、シラン系カップリング剤、レベリング剤、レオロジーコントロール剤、トルエン、キシレン等の芳香族系溶剤、エチレングリコールモノノルマルブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルアセテート等のエーテル系溶剤等の溶剤、等の添加剤を適量配合しても良い。これらの添加により、樹脂強度・接着強さ・作業性・保存性等に優れた組成物およびその硬化物が得られる。   In the conductive resin composition of the present invention, a colorant such as a pigment and a dye, metal powder, calcium carbonate, talc, silica, alumina, aluminum hydroxide and the like are within the range not impairing the intended effect of the present invention. Fillers, flame retardants, organic fillers, plasticizers, antioxidants, antifoaming agents, silane coupling agents, leveling agents, rheology control agents, aromatic solvents such as toluene and xylene, ethylene glycol mononormal butyl ether, An appropriate amount of additives such as solvents such as ether solvents such as ethylene glycol monomethyl ether and ethylene glycol monoethyl ether acetate may be blended. By these additions, a composition excellent in resin strength, adhesive strength, workability, storage stability and the like and a cured product thereof can be obtained.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、これらの例において部及び%はそれぞれ質量部及び質量%を表す。また、実施例1〜14の組成は表1に、比較例1〜8の組成は表2にまとめて示した。   The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. In these examples, parts and% represent parts by mass and% by mass, respectively. The compositions of Examples 1 to 14 are summarized in Table 1, and the compositions of Comparative Examples 1 to 8 are summarized in Table 2.

<実施例1〜14>
導電性樹脂組成物を調製するために下記成分を準備した。
(a)エポキシ化合物
・ビスフェノールA型液状エポキシ樹脂:「jER827(ジャパンエポキシレジン株式会社製)」または
・ゴム変性エポキシ樹脂:「KL−610(株式会社クラレ製)」
(b)酸無水物
・3−メチル−ヘキサヒドロ無水フタルと4−メチル−ヘキサヒドロ無水フタル酸の混合物:「HN−5500(日立化成工業株式会社製)」または
・3−メチル−1,2,3,6−テトラヒドロ無水フタル酸と4−メチル−1,2,3,6−テトラヒドロ無水フタル酸の混合物:「HN−2200(日立化成工業株式会社)」
(c)有機金属錯体
・チタンテトラアセチルアセトナート:「オルガチックスTC−401(マツモトファインケミカル株式会社製)」または
・ジルコニウムテトラアセチルアセトネート:「オルガチックス ZC−150(マツモトファインケミカル株式会社製)」
(d)ニッケル粉、銀メッキ粉
・フレーク状ニッケル粉:「HCA−1(Novamet製)」または
・球状銀メッキ銅粉:「Ag/湿式銅粉(三井金属鉱業株式会社製)」または
・球状銀メッキガラス粉:「S−3000−S2(ポッターズ・バロティーニ株式会社製)」
(e)溶剤
・工業用キシレン「キシロール(日本アルコール販売株式会社製)」
<Examples 1 to 14>
In order to prepare the conductive resin composition, the following components were prepared.
(A) Epoxy compound-Bisphenol A type liquid epoxy resin: "jER827 (manufactured by Japan Epoxy Resin Co., Ltd.)" or-Rubber-modified epoxy resin: "KL-610 (manufactured by Kuraray Co., Ltd.)"
(B) Acid anhydrides • Mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride: “HN-5500 (manufactured by Hitachi Chemical Co., Ltd.)” or • 3-methyl-1,2,3 , 6-Tetrahydrophthalic anhydride and 4-methyl-1,2,3,6-tetrahydrophthalic anhydride mixture: “HN-2200 (Hitachi Chemical Industry Co., Ltd.)”
(C) Organometallic complex-Titanium tetraacetylacetonate: "Orgachix TC-401 (manufactured by Matsumoto Fine Chemical Co., Ltd.)" or-Zirconium tetraacetylacetonate: "Olgatix ZC-150 (manufactured by Matsumoto Fine Chemical Co., Ltd.)"
(D) Nickel powder, silver plating powder ・ Flake nickel powder: “HCA-1 (manufactured by Novamet)” or • Spherical silver plating copper powder: “Ag / wet copper powder (manufactured by Mitsui Mining & Smelting Co., Ltd.)” or Silver-plated glass powder: “S-3000-S2 (Potters Barotini Co., Ltd.)”
(E) Solvents • Industrial xylene “Xylol (manufactured by Nippon Alcohol Sales Co., Ltd.)”

上記(a)、(b)、(c)および(e)を撹拌機で10分間撹拌した後、(d)を添加してさらに30分間撹拌した。(d)としてHCA−1またはAg/湿式銅粉を使用した場合は、三本ロールミルに3回通して凝集粉が残らないように混練した。ただし、S−3000−S2を使用した場合は三本ロールミルを使用しなかった。こうして、表1に示す組成の導電性樹脂組成物を調製した。   After stirring (a), (b), (c) and (e) with a stirrer for 10 minutes, (d) was added and the mixture was further stirred for 30 minutes. When HCA-1 or Ag / wet copper powder was used as (d), the mixture was passed through a three-roll mill three times and kneaded so that no agglomerated powder remained. However, a three-roll mill was not used when S-3000-S2 was used. Thus, a conductive resin composition having the composition shown in Table 1 was prepared.

<比較例1〜8>
導電性樹脂組成物を調製するために下記(a)〜(e)を準備した。
(a)エポキシ化合物
・ビスフェノールA型液状エポキシ樹脂:「jER827(ジャパンエポキシレジン株式会社製)」または
・ゴム変性エポキシ樹脂:「KL−610(株式会社クラレ製)」
(b)酸無水物
・3−メチル−ヘキサヒドロ無水フタルと4−メチル−ヘキサヒドロ無水フタル酸の混合物:「HN−5500(日立化成工業株式会社製)」
(b’)液状ポリフェノール化合物
・「MEH−8005(明和化成株式会社製)」
(c’)1−ベンジル−2−メチルイミダゾール
・「キュアゾール1B2MZ(四国化成株式会社製)」
(d)ニッケル粉、銀メッキ粉
・フレーク状ニッケル粉:「HCA−1(Novamet製)」または
・球状銀メッキ銅粉:「Ag/湿式銅粉(三井金属鉱業株式会社製)」または
・球状銀メッキガラス粉:「S−3000−S2(ポッターズ・バロティーニ株式会社製)」
(e)溶剤
・工業用キシレン「キシロール(日本アルコール販売株式会社製)」
<Comparative Examples 1-8>
In order to prepare the conductive resin composition, the following (a) to (e) were prepared.
(A) Epoxy compound-Bisphenol A type liquid epoxy resin: "jER827 (manufactured by Japan Epoxy Resin Co., Ltd.)" or-Rubber-modified epoxy resin: "KL-610 (manufactured by Kuraray Co., Ltd.)"
(B) Acid anhydrides • Mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride: “HN-5500 (manufactured by Hitachi Chemical Co., Ltd.)”
(B ′) Liquid polyphenol compound “MEH-8005 (Maywa Kasei Co., Ltd.)”
(C ′) 1-benzyl-2-methylimidazole “Cureazole 1B2MZ (manufactured by Shikoku Kasei Co., Ltd.)”
(D) Nickel powder, silver plating powder ・ Flake nickel powder: “HCA-1 (manufactured by Novamet)” or • Spherical silver plating copper powder: “Ag / wet copper powder (manufactured by Mitsui Mining & Smelting Co., Ltd.)” or Silver-plated glass powder: “S-3000-S2 (Potters Barotini Co., Ltd.)”
(E) Solvents • Industrial xylene “Xylol (manufactured by Nippon Alcohol Sales Co., Ltd.)”

上記(a)、(b)もしくは(b’)、(c’)および(e)を撹拌機で10分間撹拌した後、(d)を添加してさらに30分間撹拌した。(d)としてHCA−1またはAg/湿式銅粉を使用した場合は、三本ロールミルに3回通して凝集粉が残らないように混練した。ただし、S−3000−S2を使用した場合は三本ロールミルを使用しなかった。こうして、表2に示す組成の導電性樹脂組成物を調製した。   The above (a), (b) or (b '), (c') and (e) were stirred with a stirrer for 10 minutes, and then (d) was added and further stirred for 30 minutes. When HCA-1 or Ag / wet copper powder was used as (d), the mixture was passed through a three-roll mill three times and kneaded so that no agglomerated powder remained. However, a three-roll mill was not used when S-3000-S2 was used. Thus, a conductive resin composition having the composition shown in Table 2 was prepared.

Figure 0005651913
Figure 0005651913

Figure 0005651913
Figure 0005651913

実施例1〜14、および比較例1〜8で得られた導電性樹脂組成物について、下記のように、テストピースを作成し、その体積抵抗率の確認を行った。また、このテストピースについて、信頼性試験を行い体積抵抗率の変化を確認した。   About the conductive resin composition obtained in Examples 1-14 and Comparative Examples 1-8, the test piece was created as follows and the volume resistivity was confirmed. Moreover, about this test piece, the reliability test was done and the change of volume resistivity was confirmed.

[テストピース作成]
寸法2.0mm×100mm×100mmのガラス板の上に幅10mm×長さ90〜100mmにマスキングを行い、上記実施例1〜14、および比較例1〜8で得られた導電性樹脂組成物をそれぞれスキージした。この時、塗膜表面は平坦でマスキングの幅は試験板に平行であり、樹脂組成物には泡が混入しないように注意する。最後にマスキングを剥がし、循環式の熱風乾燥炉により120℃×1時間加熱して樹脂組成物を硬化させ、テストピースを作成した。
[Create test piece]
Masking is performed on a glass plate having dimensions of 2.0 mm × 100 mm × 100 mm to a width of 10 mm × length of 90 to 100 mm, and the conductive resin compositions obtained in Examples 1 to 14 and Comparative Examples 1 to 8 are used. Each was squeegeeed. At this time, care should be taken so that the surface of the coating film is flat and the width of the masking is parallel to the test plate, and bubbles are not mixed into the resin composition. Finally, the masking was peeled off, and the resin composition was cured by heating at 120 ° C. for 1 hour in a circulating hot air drying furnace to prepare a test piece.

[信頼性試験]
導電性樹脂組成物のテストピースについて、下記に示す条件で耐湿試験とヒートショック試験を実施した。そしてこの耐湿試験後のテストピースと、ヒートショック試験後のテストピースについて、後述する条件で体積抵抗率の測定を行った。
・耐湿試験
上記テストピースについて、温度85℃、相対湿度85%下で各投入時間ごとに体積抵抗率の測定を行った。なお、各投入時間でテストピースを取り出して、室温に戻った段階で体積低効率の測定を行い、測定後は再び耐湿試験を継続した。
・ヒートショック試験
上記テストピースについて、低温側−40℃、高温側85℃で、各々の保持時間を30分とした1サイクル1時間の条件で、表4に記載のサイクル毎に体積抵抗率の測定を行った。
[Reliability test]
The test piece of the conductive resin composition was subjected to a moisture resistance test and a heat shock test under the conditions shown below. The volume resistivity of the test piece after the moisture resistance test and the test piece after the heat shock test were measured under the conditions described later.
-Humidity resistance test About the said test piece, the volume resistivity was measured for every input time under the temperature of 85 degreeC and the relative humidity of 85%. In addition, the test piece was taken out at each charging time, and when the temperature returned to room temperature, the volume low efficiency was measured. After the measurement, the moisture resistance test was continued again.
-Heat shock test About the above test piece, the volume resistivity of each cycle shown in Table 4 under the condition of one cycle and one hour at a low temperature side of -40 ° C and a high temperature side of 85 ° C and a holding time of 30 minutes. Measurements were made.

[体積抵抗率の測定]
導電性樹脂組成物のテストピースの温度を室温となし、板状の電極を持つテスターを使用して、電極間が50mmの場合の抵抗(R:Ω)を測定した。その後、膜厚計で硬化物の厚さ(t:m)を測定した。これら二つの測定を元に下記式1で体積抵抗率を計算した。
[Measurement of volume resistivity]
The resistance (R: Ω) when the temperature of the test piece of the conductive resin composition was set to room temperature and the distance between the electrodes was 50 mm was measured using a tester having a plate-like electrode. Thereafter, the thickness (t: m) of the cured product was measured with a film thickness meter. Based on these two measurements, the volume resistivity was calculated by the following formula 1.

Figure 0005651913
Figure 0005651913

式1中、ρは体積抵抗率、Rは電極間の抵抗値(抵抗R)、Aは電流方向に対する断面積(幅10mm×厚さt)、Lは電極間の長さである。   In Equation 1, ρ is the volume resistivity, R is the resistance value between the electrodes (resistance R), A is the cross-sectional area (width 10 mm × thickness t) in the current direction, and L is the length between the electrodes.

耐湿試験後のテストピースについての体積抵抗率の測定結果を表3に示した。また、ヒートショック試験後のテストピースについての体積抵抗率の測定結果を表4に示した。なお、表3、表4における「OL」とはオーバーロードの略称であり、テスターによる抵抗(R:Ω)の測定において測定限界を超えた抵抗値のことを意味する。   Table 3 shows the volume resistivity measurement results for the test pieces after the moisture resistance test. Table 4 shows the measurement results of volume resistivity of the test pieces after the heat shock test. “OL” in Tables 3 and 4 is an abbreviation for overload, and means a resistance value exceeding the measurement limit in measuring resistance (R: Ω) by a tester.

Figure 0005651913
Figure 0005651913

Figure 0005651913
Figure 0005651913

比較例では、耐湿試験で急激な導電性の劣化が見られると共に、ヒートショック試験でも緩やかな劣化が見られ、共に最終的には抵抗測定限界以上の抵抗値になった。その原因として、水分の浸透および/または熱による導電性粉体の劣化が影響を与えたと推測される。一方、実施例の場合は、若干抵抗値の上昇が見られるものの、比較例よりも非常に緩やかな上昇であり、耐湿試験1000時間、ヒートショック試験1000サイクルという過酷な信頼性試験にもかかわらず抵抗値は安定していた。   In the comparative example, a sudden deterioration in conductivity was observed in the moisture resistance test, and a gradual deterioration was also observed in the heat shock test, both of which finally became resistance values exceeding the resistance measurement limit. As the cause, it is presumed that the penetration of moisture and / or the deterioration of the conductive powder due to heat had an influence. On the other hand, in the case of the example, although a slight increase in the resistance value is seen, it is a very gradual increase compared to the comparative example, despite the severe reliability test of 1000 hours of the moisture resistance test and 1000 cycles of the heat shock test. The resistance value was stable.

近年は世界情勢の変化により貴金属の地金の価格が変動するため、電極形成用の金属として使用されている貴金属は卑金属への変更が行われることも多い。俗に言う銀ペーストも銀の地金の価格変動の影響を強く受けるため、本発明の導電性樹脂組成物のように安価な導電粉体を使用するにかかわらず信頼性の高い導電性樹脂組成物は、銀の地金の価格変動の影響を受けにくく、使用分野が広がっていく可能性が高い。   In recent years, the prices of precious metal bullion fluctuate due to changes in the world situation, so that precious metals used as electrode forming metals are often changed to base metals. The silver paste, which is commonly called, is strongly affected by the price fluctuation of the silver bullion. Therefore, a highly reliable conductive resin composition is used regardless of the use of inexpensive conductive powder such as the conductive resin composition of the present invention. Goods are less susceptible to fluctuations in the price of silver bullion, and are likely to expand the field of use.

Claims (4)

下記(A)〜(D)成分を含み、硬化剤としては(B)成分を、硬化反応する触媒としては(C)成分を含む導電性樹脂組成物であって、アミン系硬化剤を含まず、かつアミン系硬化促進剤を含まない、導電性樹脂組成物。
(A)成分:エポキシ化合物
(B)成分:酸無水物
(C)成分:チタンおよび/またはジルコニウムを含む有機金属錯体
(D)成分:ニッケル粉および/または銀メッキ粉
A conductive resin composition containing the following components (A) to (D), a curing agent (B) as a curing agent, and a catalyst (C) as a curing reaction , and does not include an amine curing agent. and an amine-based curing accelerator that does not contain a conductive resin composition.
(A) Component: Epoxy compound (B) Component: Acid anhydride (C) Component: Organometallic complex containing titanium and / or zirconium (D) Component: Nickel powder and / or silver plating powder
前記(B)成分が、常温において液状で少なくとも1種類の酸無水物であり、さらに、前記酸無水物の含有量は合計で、前記(A)成分100質量部に対して50〜100質量部である、請求項1に記載の導電性樹脂組成物。   The component (B) is at least one acid anhydride which is liquid at normal temperature, and the content of the acid anhydride is 50 to 100 parts by mass with respect to 100 parts by mass of the component (A). The conductive resin composition according to claim 1, wherein 前記(D)成分が、ニッケル粉、銀メッキ銅粉、銀メッキアルミニウム粉、銀メッキニッケル粉、銀メッキカーボン粉、銀メッキガラス粉、銀メッキアルミナ粉、銀メッキシリカ粉、および銀メッキ樹脂粉からなる群より選ばれる少なくとも1種類である、請求項1または2に記載の導電性樹脂組成物。   The component (D) is nickel powder, silver plating copper powder, silver plating aluminum powder, silver plating nickel powder, silver plating carbon powder, silver plating glass powder, silver plating alumina powder, silver plating silica powder, and silver plating resin powder. The conductive resin composition according to claim 1, wherein the conductive resin composition is at least one selected from the group consisting of: 前記(A)成分が、ゴム骨格を有し1分子中にエポキシ基を2以上有するゴム変性エポキシ化合物である、請求項1〜3のいずれか1項に記載の導電性樹脂組成物。   The conductive resin composition according to any one of claims 1 to 3, wherein the component (A) is a rubber-modified epoxy compound having a rubber skeleton and having two or more epoxy groups in one molecule.
JP2008110143A 2008-04-21 2008-04-21 Conductive resin composition Active JP5651913B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008110143A JP5651913B2 (en) 2008-04-21 2008-04-21 Conductive resin composition
PCT/JP2009/057871 WO2009131101A1 (en) 2008-04-21 2009-04-20 Conductive resin composition
KR1020107023577A KR101505236B1 (en) 2008-04-21 2009-04-20 Conductive resin composition
CN2009801140073A CN102015884B (en) 2008-04-21 2009-04-20 Conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008110143A JP5651913B2 (en) 2008-04-21 2008-04-21 Conductive resin composition

Publications (2)

Publication Number Publication Date
JP2009256539A JP2009256539A (en) 2009-11-05
JP5651913B2 true JP5651913B2 (en) 2015-01-14

Family

ID=41216833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110143A Active JP5651913B2 (en) 2008-04-21 2008-04-21 Conductive resin composition

Country Status (4)

Country Link
JP (1) JP5651913B2 (en)
KR (1) KR101505236B1 (en)
CN (1) CN102015884B (en)
WO (1) WO2009131101A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249591B2 (en) 2015-10-29 2019-04-02 Mitsubishi Materials Corporation Resin composition, bonded body and semiconductor device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5547456B2 (en) * 2009-11-10 2014-07-16 スリーエム イノベイティブ プロパティズ カンパニー One-pack type epoxy resin composition and bonding method using the same
JP5403272B2 (en) * 2010-03-04 2014-01-29 東洋製罐株式会社 Two-component curable oxygen-absorbing resin composition
JP5608501B2 (en) * 2010-09-30 2014-10-15 太陽ホールディングス株式会社 Conductive pattern forming paste composition, conductive pattern and method for forming the same
JP2012079458A (en) * 2010-09-30 2012-04-19 Taiyo Holdings Co Ltd Conductive resin composition and electronic circuit board
JP5927177B2 (en) 2011-03-01 2016-06-01 ナミックス株式会社 Die bonding agent
CN102190980A (en) * 2011-03-28 2011-09-21 彩虹集团公司 Low-temperature conductive adhesive and preparation method thereof
CN102408856A (en) * 2011-08-09 2012-04-11 烟台德邦电子材料有限公司 Conductive adhesive for LED (light emitting diode) packaging and preparation method thereof
CN102634312A (en) * 2012-03-27 2012-08-15 烟台德邦电子材料有限公司 Silvering powder conductive adhesive for LED packaging and production method thereof
JP6190653B2 (en) * 2013-07-26 2017-08-30 京セラ株式会社 Conductive resin composition and semiconductor device
CN103694936A (en) * 2013-11-14 2014-04-02 昆山珍实复合材料有限公司 Epoxy resin pouring sealant and preparation method thereof
JP6235952B2 (en) 2014-03-28 2017-11-22 三菱マテリアル株式会社 Conductive paste
KR102325095B1 (en) 2014-10-01 2021-11-11 나믹스 가부시끼가이샤 Resin composition
JP6157440B2 (en) * 2014-11-19 2017-07-05 株式会社ノリタケカンパニーリミテド Heat-curing conductive paste
CN104538084A (en) * 2015-01-08 2015-04-22 安徽凤阳德诚科技有限公司 High-temperature-resistant electric conducting silver paste
WO2019054242A1 (en) * 2017-09-12 2019-03-21 Dowaエレクトロニクス株式会社 Silver-coated glass powder and method for manufacturing same
CN113637289B (en) * 2021-06-17 2022-10-21 上海道宜半导体材料有限公司 Epoxy resin composition and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100517A (en) * 1997-09-29 1999-04-13 Hitachi Chem Co Ltd Resin paste, film forming method, electronic part and semi-conductor device
JP4019254B2 (en) * 2002-04-24 2007-12-12 信越化学工業株式会社 Conductive resin composition
JP4248938B2 (en) * 2003-06-06 2009-04-02 旭化成エレクトロニクス株式会社 Conductive material, conductive molded body, and method for producing conductive molded body
JP2005089629A (en) * 2003-09-18 2005-04-07 Ricoh Co Ltd Electroconductive adhesive
JP4828178B2 (en) * 2004-08-18 2011-11-30 ハリマ化成株式会社 Conductive adhesive and method for producing article using the conductive adhesive
JP2007269959A (en) 2006-03-31 2007-10-18 Nippon Handa Kk Electroconductive adhesive, electronic device and method for producing the same
JP5359125B2 (en) * 2007-08-29 2013-12-04 東レ株式会社 Prepreg and carbon fiber reinforced composites

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10249591B2 (en) 2015-10-29 2019-04-02 Mitsubishi Materials Corporation Resin composition, bonded body and semiconductor device

Also Published As

Publication number Publication date
KR20110018296A (en) 2011-02-23
KR101505236B1 (en) 2015-03-24
WO2009131101A1 (en) 2009-10-29
CN102015884A (en) 2011-04-13
JP2009256539A (en) 2009-11-05
CN102015884B (en) 2013-10-02

Similar Documents

Publication Publication Date Title
JP5651913B2 (en) Conductive resin composition
JP4602970B2 (en) Electrically stable and impact resistant conductive adhesive composition for electronic devices
KR102396869B1 (en) Thermosetting conductive adhesive
WO2013150907A1 (en) Electroconductive composition
JP2010044967A (en) Conductive adhesive and led substrate using it
CN101974205A (en) Resin composition for embedded capacitor, and dielectric layer and metal foil-clad plate manufactured by using same
TWI379865B (en)
KR20150100621A (en) Conductive adhesive composition and electronic element using same
JP4872220B2 (en) Conductive adhesive
JPWO2012073360A1 (en) Insulating sheet and laminated structure
JP6668637B2 (en) Resin composition, resin film, circuit board, and semiconductor device
JP2016186972A (en) Electromagnetic wave shield sheet, cured film formed by curing the same, method for producing metal foil-laminated electromagnetic wave shield sheet, laminate, and semiconductor device
JP2013139494A (en) Electroconductive liquid resin composition and electronic part
JP2018048276A (en) Underfill material and electronic component device using the same
JP2017071707A (en) Liquid thermally conductive resin composition and electronic component
JP6576736B2 (en) Conductive adhesive and semiconductor device
JP2005078967A (en) Conductive paste
JPH03234778A (en) Electrically conductive adhesive
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
CN109563238B (en) Epoxy resin composition and conductive adhesive containing same
KR20090059298A (en) Conductive paste having a good flexibility and heat resistance
JP2006273900A (en) Epoxy resin powder coating
JP2012197398A (en) Heat-curable resin composition
JP6540590B2 (en) Liquid conductive resin composition and electronic component
JP2009084384A (en) One-component epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140129

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141103

R150 Certificate of patent or registration of utility model

Ref document number: 5651913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250