JP5641193B2 - All-solid lithium secondary battery - Google Patents

All-solid lithium secondary battery Download PDF

Info

Publication number
JP5641193B2
JP5641193B2 JP2010049982A JP2010049982A JP5641193B2 JP 5641193 B2 JP5641193 B2 JP 5641193B2 JP 2010049982 A JP2010049982 A JP 2010049982A JP 2010049982 A JP2010049982 A JP 2010049982A JP 5641193 B2 JP5641193 B2 JP 5641193B2
Authority
JP
Japan
Prior art keywords
positive electrode
solid electrolyte
sulfide
electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010049982A
Other languages
Japanese (ja)
Other versions
JP2011187253A (en
Inventor
国昭 辰巳
国昭 辰巳
田渕 光春
光春 田渕
竹内 友成
友成 竹内
英丈 岡本
英丈 岡本
和之 砂山
和之 砂山
日数谷 進
進 日数谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Hitachi Zosen Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Hitachi Zosen Corp
Priority to JP2010049982A priority Critical patent/JP5641193B2/en
Publication of JP2011187253A publication Critical patent/JP2011187253A/en
Application granted granted Critical
Publication of JP5641193B2 publication Critical patent/JP5641193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、全固体リチウム二次電池に関するものである。   The present invention relates to an all-solid lithium secondary battery.

近年、携帯電話・PDA・ノートパソコンなどの高機能化に伴い、長時間使用が可能であり、且つ小型・軽量で、安全性の高い二次電池が強く要望されている。かかる要望に応える二次電池として、他の二次電池に比べて、高いエネルギー密度を有するリチウム二次電池が多用されている。   In recent years, there has been a strong demand for a secondary battery that can be used for a long time, is small in size and light in weight, and has high safety, with an increase in functionality of a mobile phone, a PDA, a notebook personal computer, and the like. As a secondary battery that meets such demands, lithium secondary batteries having a higher energy density than other secondary batteries are frequently used.

しかし、従来から使用されてきた可燃性の有機溶媒を含むリチウム二次電池は過充電時や濫用時に液漏れや発火の惧れがある。そのため、電池の高エネルギー密度化に伴い、安全性の確保が重要な課題とされてきた。   However, lithium secondary batteries containing flammable organic solvents that have been used in the past have a risk of liquid leakage or ignition during overcharge or abuse. Therefore, ensuring the safety has been an important issue as the energy density of the battery increases.

このような課題を解決する電池として、有機電解液に比べて化学的に安定で且つ液漏れや発火の惧れがない固体電解質を用いた全固体リチウム二次電池の研究開発が鋭意行われている。   Research and development of all-solid-state lithium secondary batteries using solid electrolytes that are chemically stable and have no risk of liquid leakage or ignition compared to organic electrolytes have been conducted as batteries that solve these problems. Yes.

この全固体リチウム二次電池においては、正極集電体、正極材(正極合材)、固体電解質層、負極材(負極合材)、負極集電体が全て固体または固体粉末から成るため、固体/固体間の接触状態の改善が非常に重要となる。すなわち、積層界面での高いリチウムイオン伝導性、電子伝導性を得るためには強い密着性が必要となり、例えば電極活物質粉末や固体電解質粉末を積層して単動プレスやロールプレスによって圧密することにより、電解液を用いたリチウム二次電池に匹敵する高い電池性能を得ることができる。   In this all-solid lithium secondary battery, the positive electrode current collector, the positive electrode material (positive electrode mixture), the solid electrolyte layer, the negative electrode material (negative electrode mixture), and the negative electrode current collector are all made of solid or solid powder. / Improving the contact state between solids is very important. That is, in order to obtain high lithium ion conductivity and electronic conductivity at the laminated interface, strong adhesion is required. For example, electrode active material powder and solid electrolyte powder are laminated and consolidated by single action press or roll press. Thus, high battery performance comparable to a lithium secondary battery using an electrolytic solution can be obtained.

ところで、従来の電解液系電池では電極の空隙に電解液が浸み込むため、電極/電解質間の接触面積については、それほど大きい問題にはならなかった。
そして、全固体リチウム二次電池においても、当然ながら、高出力化が望まれており、このような要望に応えるものとして、正極活物質と結晶性固体電解質との間の緩衝層としてチタンを含む酸化物固体電解質が用いられたものがある。この結晶性固体電解質としては、イオン伝導性が高く、電気化学的な安定性が高い硫化物系固体電解質が用いられている(例えば、特許文献1参照)。
By the way, in the conventional electrolyte solution battery, since the electrolyte solution penetrates into the gaps of the electrodes, the contact area between the electrode and the electrolyte has not been a big problem.
In all solid lithium secondary batteries, of course, higher output is desired, and in order to meet such demand, titanium is included as a buffer layer between the positive electrode active material and the crystalline solid electrolyte. Some oxide solid electrolytes are used. As this crystalline solid electrolyte, a sulfide-based solid electrolyte having high ion conductivity and high electrochemical stability is used (for example, see Patent Document 1).

この硫化物系無機固体電解質を用いた全固体リチウム二次電池においては、硫化物系無機固体電解質と酸化物正極活物質との接触界面において高抵抗層が形成されており、この高抵抗層は電池特性を低下させる原因の一つであるとともに、硫化物系無機固体電解質と酸化物正極活物質との化学ポテンシャルの違いが当該高抵抗層を形成する原因であると言われている。   In the all solid lithium secondary battery using the sulfide inorganic solid electrolyte, a high resistance layer is formed at the contact interface between the sulfide inorganic solid electrolyte and the oxide positive electrode active material. It is said that it is one of the causes for deteriorating battery characteristics, and the difference in chemical potential between the sulfide-based inorganic solid electrolyte and the oxide positive electrode active material is the cause for forming the high resistance layer.

このため、特許文献1においては、酸化物正極活物質表面をリチウムイオン伝導性酸化物で被覆することで、酸化物正極活物質とリチウムイオン伝導性酸化物の化学ポテンシャルを近くして高抵抗層の形成を抑制し、電池特性すなわち充放電性能の向上が図られている。   For this reason, in Patent Document 1, the surface of the oxide positive electrode active material is covered with a lithium ion conductive oxide, thereby bringing the chemical potential of the oxide positive electrode active material and the lithium ion conductive oxide close to each other and the high resistance layer. Thus, the battery characteristics, that is, the charge / discharge performance is improved.

WO2007/004590号公報WO2007 / 004590 Publication

上述した硫化物系無機固体電解質を用いた全固体リチウム二次電池においては、酸化物正極活物質表面をリチウムイオン伝導性酸化物で被覆することで、酸化物正極活物質とリチウムイオン伝導性酸化物の化学ポテンシャルを近くして高抵抗層の形成を抑制するようにしているが、リチウムイオン伝導性酸化物で被覆する工程が増えることになり、製造コストの上昇に繋がるという問題があった。   In the all-solid lithium secondary battery using the sulfide-based inorganic solid electrolyte described above, the oxide positive electrode active material and the lithium ion conductive oxide are coated by covering the surface of the oxide positive electrode active material with a lithium ion conductive oxide. Although the chemical potential of the material is made close to suppress the formation of the high resistance layer, there is a problem in that the number of steps for coating with a lithium ion conductive oxide increases, leading to an increase in manufacturing cost.

そこで、本発明は、製造コストを上昇させることなく充放電性能の向上を図り得る全固体リチウム二次電池を提供することを目的とする。   Then, an object of this invention is to provide the all-solid-state lithium secondary battery which can aim at the improvement of charging / discharging performance, without raising manufacturing cost.

上記課題を解決するため、本発明の全固体リチウム二次電池は、正極材と負極材との間にリチウムイオン伝導性固体電解質層を介在させてなる全固体リチウム二次電池において、
上記正極材を正極活物質とリチウムイオン伝導性固体電解質とから構成するとともに、この正極材における固体電解質として、硫化物系結晶性電解質と硫化物系非晶質電解質との混合物を用いるとともに正極材に含まれる硫化物系非晶質電解質の割合を、正極材全体に対して1〜15質量%の範囲となるようにし、
上記リチウムイオン伝導性固体電解質層として硫化物系結晶性電解質を用い、
上記負極材を負極活物質とリチウムイオン伝導性固体電解質とで構成するとともに、この負極材における固体電解質として硫化物系結晶性電解質を用いたものである。
た上記全固体リチウム二次電池における硫化物系結晶性電解質としてLiS−Pを用いるとともに、硫化物系非晶質電解質としてLiPO−LiS−SiSを用いたものである。
In order to solve the above problems, the all solid lithium secondary battery of the present invention is an all solid lithium secondary battery in which a lithium ion conductive solid electrolyte layer is interposed between a positive electrode material and a negative electrode material.
As well as constituting the cathode material from the cathode active material and the lithium ion conductive solid electrolyte, as a solid electrolyte in the positive electrode, Rutotomoni with a mixture of sulfide-based amorphous electrolyte and sulfide-based crystalline electrolyte, The ratio of the sulfide-based amorphous electrolyte contained in the positive electrode material is in the range of 1 to 15% by mass with respect to the entire positive electrode material,
Using a sulfide-based crystalline electrolyte as the lithium ion conductive solid electrolyte layer,
As well as constituting the negative electrode material in the negative electrode active material and a lithium ion conductive solid electrolyte, Ru der those using a sulfide-based crystalline electrolyte as the solid electrolyte in the negative electrode material.
With use of the Li 2 S-P 2 S 5 as a sulfide-based crystalline electrolyte in upper Symbol all-solid lithium secondary battery or a Li 3 PO 4 -Li 2 S- SiS 2 as a sulfide-based amorphous electrolyte It is what was used.

上記全固体リチウム二次電池によると、正極材として、正極活物質との副反応性は高いがイオン伝導性が良い硫化物系結晶性電解質と、イオン伝導度は少し劣るが正極活物質との副反応性が低い硫化物系非晶質電解質との混合物を用いるようにしたので、従来のように、酸化物正極活物質表面をリチウムイオン伝導性酸化物で被覆する必要がないので、製造コストを上げることなく且つ充放電性能を損なうことのない二次電池を製造することができる。   According to the all-solid-state lithium secondary battery, as the positive electrode material, a sulfide-based crystalline electrolyte that has high side reactivity with the positive electrode active material but good ion conductivity, and the positive electrode active material is slightly inferior in ionic conductivity. Since a mixture with a sulfide-based amorphous electrolyte with low side reactivity is used, it is not necessary to coat the surface of the oxide positive electrode active material with a lithium ion conductive oxide as in the prior art. It is possible to manufacture a secondary battery that does not impair the charge / discharge performance without increasing the battery life.

本発明の実施の形態に係る全固体リチウム二次電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the all-solid-state lithium secondary battery which concerns on embodiment of this invention.

[実施の形態]
以下、本発明の実施の形態に係る全固体リチウム二次電池について説明する。
この全固体リチウム二次電池は、図1に示すように、正極材(正極合材)4と負極材(負極合材)2との間にリチウムイオン伝導性固体電解質層3が配置されるとともに、正極材4の上記リチウムイオン伝導性固体電解質層3とは反対側の表面に正極集電体5が、また負極材2の上記リチウムイオン伝導性固体電解質層3とは反対側の表面に負極集電体1が、それぞれ積層されたものであり、さらに上記正極材4を正極活物質とリチウムイオン伝導性固体電解質とから構成するとともに、この正極材4におけるリチウムイオン伝導性固体電解質として硫化物系結晶性電解質と硫化物系非晶質電解質との混合物を用い、上記リチウムイオン伝導性固体電解質層3として硫化物系結晶性電解質を用い、上記負極材2を負極活物質とリチウムイオン伝導性固体電解質とで構成するとともに、負極活物質として炭素材料を用い且つ当該負極材2におけるリチウムイオン伝導性固体電解質として硫化物系結晶性電解質を用いたものである。
[Embodiment]
The all-solid lithium secondary battery according to the embodiment of the present invention will be described below.
As shown in FIG. 1, the all solid lithium secondary battery includes a lithium ion conductive solid electrolyte layer 3 disposed between a positive electrode material (positive electrode mixture) 4 and a negative electrode material (negative electrode mixture) 2. The positive electrode current collector 5 is disposed on the surface of the positive electrode material 4 opposite to the lithium ion conductive solid electrolyte layer 3, and the negative electrode material 2 is disposed on the surface opposite to the lithium ion conductive solid electrolyte layer 3. Each of the current collectors 1 is laminated, and the positive electrode material 4 is composed of a positive electrode active material and a lithium ion conductive solid electrolyte, and a sulfide as a lithium ion conductive solid electrolyte in the positive electrode material 4 A mixture of a crystalline electrolyte and a sulfide-based amorphous electrolyte, a sulfide-based crystalline electrolyte as the lithium ion conductive solid electrolyte layer 3, and the negative electrode material 2 as a negative electrode active material and a lithium ion. Together constituting between conductive solid electrolyte, those using a sulfide-based crystalline electrolyte as lithium ion conductive solid electrolyte in and the negative electrode material 2 using a carbon material as an anode active material.

また、上記全固体リチウム二次電池において、正極材4に含まれる硫化物系非晶質電解質の割合を、当該正極材4全体に対して1〜15質量%(または重量%)の範囲となるようにしたものであり、さらに硫化物系結晶性電解質としてLiS−Pを用いるとともに、硫化物系非晶質電解質としてLiPO−LiS−SiSを用いたものである。なお、硫化物系非晶質電解質の割合が1%未満であると、結晶性電解質と正極活物質との接触面積が増えて副反応が進行しやすくなり、15%を超えると、正極に占める非晶質電解質の割合が増えてリチウムイオン伝導性が低下し、放電容量を低下させてしまう。 In the all solid lithium secondary battery, the ratio of the sulfide-based amorphous electrolyte contained in the positive electrode material 4 is in the range of 1 to 15% by mass (or weight%) with respect to the entire positive electrode material 4. Further, Li 2 S—P 2 S 5 is used as a sulfide-based crystalline electrolyte, and Li 3 PO 4 —Li 2 S—SiS 2 is used as a sulfide-based amorphous electrolyte. It is. If the ratio of the sulfide-based amorphous electrolyte is less than 1%, the contact area between the crystalline electrolyte and the positive electrode active material increases, and side reactions tend to proceed. If the ratio exceeds 15%, it accounts for the positive electrode. The proportion of the amorphous electrolyte is increased, the lithium ion conductivity is lowered, and the discharge capacity is lowered.

ここで、本発明を想到するに到った理由を簡単に述べておく。
背景技術の欄で説明した特許文献1においては、硫化物系無機固体電解質と酸化物正極活物質の接触界面において高抵抗層が形成されており、この高抵抗層が電池特性を低下させる原因の一つであると記述されている。
Here, the reason why the present invention has been conceived will be briefly described.
In Patent Document 1 described in the Background Art section, a high resistance layer is formed at the contact interface between the sulfide-based inorganic solid electrolyte and the oxide positive electrode active material, and this high resistance layer is a cause of deterioration in battery characteristics. It is described as one.

そして、本発明者等は、酸化物正極活物質と硫化物系固体電解質の接触界面において副反応が生じていることが高抵抗層生成の原因の一つであると判断した。
すなわち、酸化物正極活物質と硫化物系固体電解質の接触界面において、酸化物正極活物質および硫化物系固体電解質が分解して絶縁体であるLiSが形成され、これが一種の高抵抗層が形成していると判断した。
The inventors have determined that one of the causes of the generation of the high resistance layer is that a side reaction occurs at the contact interface between the oxide positive electrode active material and the sulfide-based solid electrolyte.
That is, at the contact interface between the oxide positive electrode active material and the sulfide solid electrolyte, the oxide positive electrode active material and the sulfide solid electrolyte are decomposed to form Li 2 S as an insulator, which is a kind of high resistance layer. Was judged to have formed.

一方で、硫化物系非晶質(ガラス状)固体電解質を電極に用いた場合に、副反応が小さくなることを見出したが、充放電性能は低下した。
一般的に、結晶性電解質は優れたリチウムイオン伝導性を有し且つ成形性にも優れていることから、結晶性電解質を電極に用いると充放電特性の優れた電極が得られ、また非晶質電解質は熱安定性が高いことから、非晶質電解質を電極に用いると、保存性能に優れた電極が得られる。
On the other hand, when a sulfide-based amorphous (glassy) solid electrolyte was used for the electrode, the side reaction was found to be small, but the charge / discharge performance was lowered.
In general, since a crystalline electrolyte has excellent lithium ion conductivity and excellent moldability, when the crystalline electrolyte is used as an electrode, an electrode having excellent charge / discharge characteristics can be obtained. Since the electrolyte electrolyte has high thermal stability, when an amorphous electrolyte is used for the electrode, an electrode having excellent storage performance can be obtained.

このことから、硫化物系非晶質固体電解質を電極に用いた場合、熱的な安定性が高いために副反応が小さかったが、結晶性固体電解質に比べてリチウムイオン伝導性が劣るため充放電性能が低下したと考えられる。   Thus, when a sulfide-based amorphous solid electrolyte was used for the electrode, the side reaction was small due to its high thermal stability, but the lithium ion conductivity was inferior to that of the crystalline solid electrolyte. It is considered that the discharge performance has deteriorated.

これらの結果から、本発明者等は、充放電性能を損なわずに保存安定性を向上させるために、副反応が生じる電極層に結晶質と非晶質との二種類の固体電解質を混合する方法が最良であるという知見を得たからである。   From these results, in order to improve storage stability without impairing charge / discharge performance, the present inventors mix two types of solid electrolytes, crystalline and amorphous, in the electrode layer where the side reaction occurs. This is because the knowledge that the method is the best was obtained.

上記全固体リチウム二次電池の構成によると、正極材4として、正極活物質との副反応性は高いがイオン伝導性(イオン伝導度)が良い(優れた)硫化物系結晶性電解質と、イオン伝導度は少し劣るが正極活物質との副反応性が低い硫化物系非晶質電解質とを混合し、且つリチウムイオン伝導性固体電解質層3および負極材4として、イオン伝導性の高いLiS−P(結晶性電解質)を用いたので、充放電性能を損なうことなく且つ保存特性の優れた二次電池を得ることができる。勿論、従来のように、正極活物質をリチウムイオン伝導性酸化物で被膜する必要がないので、製造コストの上昇を抑制することができる。 According to the configuration of the all solid lithium secondary battery, as the positive electrode material 4, a sulfide-based crystalline electrolyte that has high side reaction with the positive electrode active material but good ion conductivity (ion conductivity) (excellent); Lithium ion conductive solid electrolyte layer 3 and negative electrode material 4 are mixed with a sulfide-based amorphous electrolyte that is slightly inferior in ionic conductivity but low in side reactivity with the positive electrode active material. Since 2 S—P 2 S 5 (crystalline electrolyte) is used, a secondary battery excellent in storage characteristics can be obtained without impairing charge / discharge performance. Of course, unlike the conventional case, it is not necessary to coat the positive electrode active material with a lithium ion conductive oxide, so that an increase in manufacturing cost can be suppressed.

以下、上記全固体リチウム二次電池を具体的に示した実施例1〜4について説明する。これら各実施例においては、全固体リチウム二次電池の構成とともにその製造方法についても説明し、また図1で示した二次電池の構成部材と同一の名称および同一符号を用いて説明する。
[実施例1]
実施例1に係る全固体リチウム二次電池(以下、リチウム二次電池という)は、正極材(正極合材)4と負極材(負極合材)2との間にリチウムイオン伝導性固体電解質層3が配置されるとともに、正極材4のリチウムイオン伝導性固体電解質層3とは反対側の表面に正極集電体5が、また負極材2のリチウムイオン伝導性固体電解質層3とは反対側の表面に負極集電体1が、それぞれ積層されたものである。
Hereinafter, Examples 1 to 4 specifically showing the all solid lithium secondary battery will be described. In each of these examples, the configuration of the all-solid lithium secondary battery and the manufacturing method thereof will be described, and the description will be made using the same names and the same reference numerals as the constituent members of the secondary battery shown in FIG.
[Example 1]
The all solid lithium secondary battery according to Example 1 (hereinafter referred to as a lithium secondary battery) has a lithium ion conductive solid electrolyte layer between a positive electrode material (positive electrode mixture) 4 and a negative electrode material (negative electrode mixture) 2. 3 is disposed, the positive electrode current collector 5 is disposed on the surface of the positive electrode material 4 opposite to the lithium ion conductive solid electrolyte layer 3, and the negative electrode material 2 is opposite to the lithium ion conductive solid electrolyte layer 3. Each of the negative electrode current collectors 1 is laminated on the surface.

上記リチウムイオン伝導性固体電解質層3としては、硫化物系結晶性電解質である0.80LiS−0.20Pが用いられる。また、この電解質(LiS−P)として、その粉末を目開き56μmの篩にかけ、その篩下のものを用いた。 As the lithium ion conductive solid electrolyte layer 3, 0.80Li 2 S-0.20P 2 S 5 which is a sulfide-based crystalline electrolyte is used. Further, as the electrolyte (Li 2 S—P 2 S 5 ), the powder was passed through a sieve having an opening of 56 μm, and the one under the sieve was used.

この固体電解質を40mg秤量し、内径10mmのSKD(冷間ダイス鋼)製の円筒金型に入れ、185MPaで3回加圧成形することにより、リチウムイオン伝導性個体電解質層3を得た。   40 mg of this solid electrolyte was weighed, put into a cylindrical die made of SKD (cold die steel) having an inner diameter of 10 mm, and press-molded three times at 185 MPa to obtain a lithium ion conductive solid electrolyte layer 3.

上記負極材2としては、負極活物質とリチウムイオン伝導性固体電解質との混合物が用いられる。負極活物質としては炭素材料であるグラファイトが用いられるとともに、リチウムイオン伝導性固体電解質としては硫化物系結晶性電解質であるLiS−Pが用いられる。 As the negative electrode material 2, a mixture of a negative electrode active material and a lithium ion conductive solid electrolyte is used. Graphite that is a carbon material is used as the negative electrode active material, and Li 2 S—P 2 S 5 that is a sulfide-based crystalline electrolyte is used as the lithium ion conductive solid electrolyte.

負極活物質であるグラファイトとリチウムイオン伝導性固体電解質(LiS−P)との混合物は、所定の質量比(重量比)、例えば6:4の割合でもって作製される。ここでは、負極活物質と上記固体電解質とを60mg:40mgの割合で秤量し、乳鉢にて十分に混合する。この固体電解質(LiS−P)として、その粉末を目開き56μmの篩にかけ、その篩下のものを用いた。 A mixture of graphite as the negative electrode active material and lithium ion conductive solid electrolyte (Li 2 S—P 2 S 5 ) is produced at a predetermined mass ratio (weight ratio), for example, a ratio of 6: 4. Here, the negative electrode active material and the solid electrolyte are weighed at a ratio of 60 mg: 40 mg and sufficiently mixed in a mortar. As this solid electrolyte (Li 2 S—P 2 S 5 ), the powder was passed through a sieve having an opening of 56 μm, and the one under the sieve was used.

ところで、負極材2に用いるリチウムイオン伝導性固体電解質は還元分解されないように、電位窓が広い材料を選択する必要があるが、LiS−Pは非常に広い電位窓を有している。 By the way, it is necessary to select a material having a wide potential window so that the lithium ion conductive solid electrolyte used for the negative electrode material 2 is not reductively decomposed. However, Li 2 S—P 2 S 5 has a very wide potential window. ing.

次に、得られた負極材としての混合物を15mg秤量して、加圧成形後の固体電解質が入れられた円筒金型に投入し、185MPaで3回加圧成形した。
上記正極材4としては、正極活物質と硫化物系非晶質固体電解質と硫化物系結晶性固体電解質との混合物が用いられる。
Next, 15 mg of the obtained mixture as the negative electrode material was weighed, put into a cylindrical mold containing a solid electrolyte after pressure molding, and pressure molded at 185 MPa three times.
As the positive electrode material 4, a mixture of a positive electrode active material, a sulfide-based amorphous solid electrolyte and a sulfide-based crystalline solid electrolyte is used.

また、正極活物質としては、酸素気流中において700℃で20時間焼成したLiNi0.8Co0.15Al0.05(以下、NCAとも称する)が用いられる。また、硫化物系非晶質(ガラス状)固体電解質としては、例えば0.01LiPO−0.63LiS−0.36SiSが用いられ、硫化物系結晶性固体電解質としては、例えば0.80LiS−0.20Pが用いられる。これらの固体電解質として、それぞれ目開きが56μmの篩にかけ、篩下のものを用いた。 Further, as the positive electrode active material, LiNi 0.8 Co 0.15 Al 0.05 O 2 (hereinafter also referred to as NCA) fired at 700 ° C. for 20 hours in an oxygen stream is used. Further, as the sulfide-based amorphous (glassy) solid electrolyte, for example, 0.01Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 is used, and as the sulfide-based crystalline solid electrolyte, for example, 0.80Li 2 S-0.20P 2 S 5 is used. As these solid electrolytes, sieves having openings of 56 μm were used, and those under the sieve were used.

そして、正極材4は、NCAとLiPO−LiS−SiSとLiS−Pとを7:1.5:1.5(質量比)の割合で混合して作製されるが、NCAと硫化物系非晶質固体電解質であるLiPO−LiS−SiSとを先に十分に混合した後に、硫化物系結晶性固体電解質であるLiS−Pを追加混合して作製される。 The positive electrode 4, NCA and Li 3 PO 4 -Li 2 S- SiS 2 and Li 2 S-P 2 S 5 and a 7: 1.5: mixed at a ratio of 1.5 (weight ratio) NCA and a sulfide-based amorphous solid electrolyte, Li 3 PO 4 —Li 2 S—SiS 2 , are first mixed thoroughly, and then a sulfide-based crystalline solid electrolyte, Li 2 S. It is prepared by adding mixed -P 2 S 5.

ここでは、まず、正極活物質と硫化物系非晶質固体電解質と硫化物系結晶性固体電解質とをそれぞれ70mg:15mg:15mgの割合で秤量し、乳鉢にて十分に混合する。
次に、得られた正極材としての混合物を20mg秤量して、加圧成形後の固体電解質−負極材からなる積層部材(積層ペレット)が入れられた円筒金型の固体電解質側に投入し、370MPaで3回加圧成形し、そしてこの加圧成形された積層部材を円筒金型から取り出す。
Here, first, the positive electrode active material, the sulfide-based amorphous solid electrolyte, and the sulfide-based crystalline solid electrolyte are weighed in a ratio of 70 mg: 15 mg: 15 mg, and sufficiently mixed in a mortar.
Next, 20 mg of the obtained mixture as the positive electrode material was weighed and charged into the solid electrolyte side of the cylindrical mold in which the laminated member (laminated pellet) composed of the solid electrolyte-negative electrode material after pressure molding was placed, Pressure molding is performed three times at 370 MPa, and the pressure-molded laminated member is taken out from the cylindrical mold.

次に、PET製(ポリエチレンテフタレート)の金型(ダイ)に、チタン(Ti)の正極集電体5、および正極材4が正極集電体5に接触するように上記積層部材を充填し、その上からチタン(Ti)の負極集電体1を投入して上下をSKD製のパンチで挟み、185MPa、370MPa、370MPaでもって、順次、加圧成形して積層体を得る。   Next, the laminated member is filled in a PET (polyethylene terephthalate) mold (die) so that the positive electrode current collector 5 of titanium (Ti) and the positive electrode material 4 are in contact with the positive electrode current collector 5. Then, a negative electrode current collector 1 made of titanium (Ti) is inserted from above, and the upper and lower sides are sandwiched between punches made of SKD, and are sequentially pressure-formed with 185 MPa, 370 MPa, and 370 MPa to obtain a laminate.

そして、得られた積層体を電池用セル内に組み込むことにより、全固体リチウム二次電池を得た。
このようにして製造されたリチウム二次電池(つまり、構築直後電池)の初期放電容量および30日保存後の正極側のX線リートベルト解析によるLiNiOに対するLiS検出量並びに30日保存後の放電容量を調べた結果について、下記の[表1]に示しておく。なお、[表1]には、比較例についてのデータも記載している。
And the all-solid-state lithium secondary battery was obtained by incorporating the obtained laminated body in the battery cell.
The initial discharge capacity of the lithium secondary battery thus manufactured (that is, the battery immediately after construction), the detected amount of Li 2 S for LiNiO 2 by X-ray Rietveld analysis on the positive electrode side after 30 days storage, and after 30 days storage The results of examining the discharge capacity are shown in [Table 1] below. In [Table 1], data on comparative examples are also described.

Figure 0005641193
ここで、比較例について説明しておく。
Figure 0005641193
Here, a comparative example will be described.

まず、比較例1について説明する。
比較例1に係る全固体リチウム二次電池の製造方法について説明すると、リチウムイオン伝導性固体電解質層および負極材は、実施例1で説明したものと同一である。
First, Comparative Example 1 will be described.
When the manufacturing method of the all-solid-state lithium secondary battery which concerns on the comparative example 1 is demonstrated, the lithium ion conductive solid electrolyte layer and negative electrode material are the same as what was demonstrated in Example 1. FIG.

正極材としては、正極活物質と硫化物系結晶性固体電解質との混合物が用いられる。正極活物質としては、酸素気流中において700℃で20時間焼成したLiNi0.8Co0.15Al0.05(NCA)が用いられている。また、硫化物系結晶性固体電解質としては、例えば0.80LiS−0.20Pが用いられるとともに、目開きが56μmの篩にかけ、篩下のものを用いた。 As the positive electrode material, a mixture of a positive electrode active material and a sulfide-based crystalline solid electrolyte is used. As the positive electrode active material, LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) fired at 700 ° C. for 20 hours in an oxygen stream is used. Further, as the sulfide-based crystalline solid electrolyte, for example, 0.80Li 2 S-0.20P 2 S 5 was used, and a sieve having an opening of 56 μm was used, and the one under the sieve was used.

正極材は、NCAとLiS−Pとを7:3(質量比)の割合で混合して作製される。ここでは、正極活物質と硫化物系結晶性固体電解質とをそれぞれ70mg:30mgの割合で秤量し、乳鉢にて十分に混合する。 The positive electrode material is produced by mixing NCA and Li 2 S—P 2 S 5 at a ratio of 7: 3 (mass ratio). Here, the positive electrode active material and the sulfide-based crystalline solid electrolyte are weighed at a ratio of 70 mg: 30 mg, respectively, and sufficiently mixed in a mortar.

次に、得られた混合物を20mg秤量して、加圧成形後の固体電解質−負極材からなる積層部材(積層ペレット)が入れられた円筒金型の固体電解質側に投入し、370MPaで3回加圧成形し、そしてこの加圧成形された積層部材を円筒金型から取り出す。   Next, 20 mg of the obtained mixture was weighed and charged into the solid electrolyte side of a cylindrical mold in which a laminated member (laminated pellet) made of a solid electrolyte-negative electrode material after pressure molding was placed, and three times at 370 MPa. The pressure-molded laminated member is taken out from the cylindrical mold.

次に、PET製の金型(ダイ)に、チタン(Ti)の正極集電体を配置し、この正極集電体に正極材が接触するように上記積層部材を充填し、チタン(Ti)の負極集電体1を投入して上下をSKD製のパンチで挟み、185MPa、370MPa、370MPaでもって、順次、加圧成形して積層体を得た。   Next, a titanium (Ti) positive electrode current collector is placed in a PET mold (die), and the laminated member is filled so that the positive electrode material is in contact with the positive electrode current collector. The negative electrode current collector 1 was put in, and the upper and lower parts were sandwiched between punches made of SKD, and were sequentially pressure-formed with 185 MPa, 370 MPa, and 370 MPa to obtain a laminate.

このようにして得られた積層体を電池用セル内に組み込むことにより、リチウム二次電池を製造した。
上述した実施例1と同様に製造されたリチウム二次電池(つまり、構築直後電池)の初期放電容量および30日保存後の正極側のX線リートベルト解析によるLiNiOに対するLiS検出量並びに30日保存後の放電容量を調べた結果を[表1]に示しておく。比較例1は30日保存によりLiS検出量が増加(副反応が進行)し、その結果、容量の大部分が減少しているため好ましくない。
A lithium secondary battery was manufactured by incorporating the thus obtained laminate into a battery cell.
The initial discharge capacity of the lithium secondary battery manufactured in the same manner as in Example 1 (that is, the battery immediately after construction), the detected amount of Li 2 S with respect to LiNiO 2 by the X-ray Rietveld analysis on the positive electrode side after storage for 30 days, and The results of examining the discharge capacity after 30 days storage are shown in [Table 1]. Comparative Example 1 is not preferable because the amount of Li 2 S detected increases (side reaction proceeds) by storage for 30 days, and as a result, most of the capacity decreases.

次に、比較例2について説明する。
比較例2に係る全固体リチウム二次電池の製造方法について説明すると、リチウムイオン伝導性固体電解質層および負極材については、上述した実施例1(つまり比較例1)と同じである。
Next, Comparative Example 2 will be described.
The manufacturing method of the all-solid lithium secondary battery according to Comparative Example 2 will be described. The lithium ion conductive solid electrolyte layer and the negative electrode material are the same as those in Example 1 (that is, Comparative Example 1) described above.

正極材としては、正極活物質と硫化物系非晶質(ガラス状)固体電解質との混合物が用いられる。正極活物質としては酸素気流中において700℃で20時間焼成したLiNi0.8Co0.15Al0.05(NCA)が用いられる。また、硫化物系非晶質固体電解質としては、例えば0.01LiPO−0.63LiS−0.36SiSが用いられ、目開きが56μmの篩にかけ、篩下のものを用いた。 As the positive electrode material, a mixture of a positive electrode active material and a sulfide-based amorphous (glassy) solid electrolyte is used. As the positive electrode active material, LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) fired at 700 ° C. for 20 hours in an oxygen stream is used. In addition, as the sulfide-based amorphous solid electrolyte, for example, 0.01Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 is used, and a sieve having a mesh opening of 56 μm is used. .

正極材は、NCAとLiPO−LiS−SiSとを7:3(質量比)の割合で混合して作製される。ここでは、正極活物質と硫化物系非晶質固体電解質とをそれぞれ70mg:30mgの割合で秤量し、乳鉢にて十分に混合する。 The positive electrode material is produced by mixing NCA and Li 3 PO 4 —Li 2 S—SiS 2 at a ratio of 7: 3 (mass ratio). Here, the positive electrode active material and the sulfide-based amorphous solid electrolyte are weighed in a ratio of 70 mg: 30 mg, respectively, and sufficiently mixed in a mortar.

次に、得られた混合物を20mg秤量して、加圧成形後の固体電解質−負極からなる積層部材が入れられた円筒金型の固体電解質側に投入し、370MPaで3回加圧成形し、そしてこの加圧成形された上記積層部材を円筒金型から取り出す。   Next, 20 mg of the obtained mixture was weighed and charged into the solid electrolyte side of the cylindrical mold containing the solid electrolyte-negative electrode laminated member after pressure molding, and pressure molded at 370 MPa three times. The pressure-molded laminated member is taken out from the cylindrical mold.

次に、PET製の金型(ダイ)に、チタン(Ti)の正極集電体を配置し、この正極集電体に正極材が接触するように上記積層部材を充填し、チタン(Ti)の負極集電体を投入して上下をSKD製のパンチで挟み、185MPa、370MPa、370MPaでもって、順次、加圧成形して積層体を得た。   Next, a titanium (Ti) positive electrode current collector is placed in a PET mold (die), and the laminated member is filled so that the positive electrode material is in contact with the positive electrode current collector. The negative electrode current collector was put in, and the upper and lower sides were sandwiched between punches made of SKD, and pressure-molded sequentially with 185 MPa, 370 MPa, and 370 MPa to obtain a laminate.

このようにして得られた積層体を電池用セル内に組み込むことにより、リチウム二次電池を製造した。
上述した実施例1と同様に製造されたリチウム二次電池(つまり、構築直後電池)の初期放電容量および30日保存後の正極側のX線リートベルト解析によるLiNiOに対するLiS検出量並びに30日保存後の放電容量を調べた結果を[表1]に示しておく。比較例2は正極に占める電解質を全て非晶質電解質にしたため副反応は少ないが、リチウムイオン伝導性が低下し容量が出ないため好ましくない。
A lithium secondary battery was manufactured by incorporating the thus obtained laminate into a battery cell.
The initial discharge capacity of the lithium secondary battery manufactured in the same manner as in Example 1 (that is, the battery immediately after construction), the detected amount of Li 2 S with respect to LiNiO 2 by the X-ray Rietveld analysis on the positive electrode side after storage for 30 days, and The results of examining the discharge capacity after 30 days storage are shown in [Table 1]. Comparative Example 2 is not preferable because the electrolyte occupying the positive electrode is all an amorphous electrolyte, so there are few side reactions, but the lithium ion conductivity is lowered and capacity is not generated.

なお、実施例1、比較例1および比較例2の初期充放電はセル加圧力が78.4MPaのもとで且つ30℃の恒温槽内で、充電終止電圧4.2V、放電終止電圧2.5Vおよび充放電電流0.15mA/cmの条件で定電流充放電を行ったものである。
[実施例2〜4]
次に、実施例2〜4について説明する。
The initial charge / discharge of Example 1, Comparative Example 1 and Comparative Example 2 was conducted at a cell pressurization pressure of 78.4 MPa and in a thermostatic chamber at 30 ° C. with a charge end voltage of 4.2 V and a discharge end voltage of 2. A constant current charge / discharge was performed under the conditions of 5 V and a charge / discharge current of 0.15 mA / cm 2 .
[Examples 2 to 4]
Next, Examples 2 to 4 will be described.

実施例2〜4に係る全固体リチウム二次電池は、実施例1と殆ど同じ方法で製造したもので、正極活物質と非晶質固体電解質と結晶性固体電解質との混合比が異なるだけである。すなわち、実施例2については、正極活物質:非晶質固体電解質:結晶性固体電解質の混合比が70:1:29(質量比)であり、実施例3については、70:5:25(質量比)であり、実施例4については、70:10:20(質量比)である。   The all-solid lithium secondary batteries according to Examples 2 to 4 were manufactured by almost the same method as Example 1, except that the mixing ratio of the positive electrode active material, the amorphous solid electrolyte, and the crystalline solid electrolyte was different. is there. That is, for Example 2, the mixing ratio of positive electrode active material: amorphous solid electrolyte: crystalline solid electrolyte was 70: 1: 29 (mass ratio), and for Example 3, 70: 5: 25 ( Mass ratio), and in Example 4, it is 70:10:20 (mass ratio).

次に、比較例3および比較例4について説明する。
この比較例3に係る全固体リチウム二次電池は、実施例1と殆ど同じ方法で製造したもので、正極活物質と非晶質固体電解質と結晶性固体電解質との混合比が異なるだけである。
Next, Comparative Example 3 and Comparative Example 4 will be described.
The all-solid lithium secondary battery according to Comparative Example 3 was manufactured by almost the same method as in Example 1, and only the mixing ratio of the positive electrode active material, the amorphous solid electrolyte, and the crystalline solid electrolyte was different. .

すなわち、比較例3における正極活物質:非晶質固体電解質:結晶性固体電解質の混合比は、70:20:10(質量比)である。
また、比較例4に係る全固体リチウム二次電池の構成、および固体電解質、正極材の作製方法は実施例1と同じである。
That is, the mixing ratio of positive electrode active material: amorphous solid electrolyte: crystalline solid electrolyte in Comparative Example 3 is 70:20:10 (mass ratio).
The configuration of the all-solid lithium secondary battery according to Comparative Example 4 and the method for producing the solid electrolyte and the positive electrode material are the same as those in Example 1.

負極材としては、負極活物質と硫化物系非晶質固体電解質と硫化物系結晶性固体電解質との混合物が用いられる。
上記負極活物質としては炭素材料であるグラファイトが用いられる。また、硫化物系非晶質固体電解質としては、例えば0.01LiPO−0.63LiS−0.36SiSが用いられ、硫化物系結晶性固体電解質としては、例えば0.80LiS−0.20Pが用いられる。
As the negative electrode material, a mixture of a negative electrode active material, a sulfide-based amorphous solid electrolyte, and a sulfide-based crystalline solid electrolyte is used.
As the negative electrode active material, graphite which is a carbon material is used. As the sulfide-based amorphous solid electrolyte, for example, 0.01Li 3 PO 4 -0.63Li 2 S-0.36SiS 2 is used, and as the sulfide-based crystalline solid electrolyte, for example, 0.80Li 2 S-0.20P 2 S 5 is used.

これらの固体電解質については、それぞれ目開きが56μmの篩にかけ、篩下のものを用いた。
この負極材は、グラファイトとLiPO−LiS−SiSとLiS−Pとが、6:2:2(質量比)の割合で混合して作製されるが、グラファイトと硫化物系非晶質固体電解質、つまりLiPO−LiS−SiSを先に十分に混合してから硫化物系結晶性固体電解質、つまりLiS−Pを追加・混合して作製される。
Each of these solid electrolytes was passed through a sieve having an opening of 56 μm, and the one under the sieve was used.
This negative electrode material is produced by mixing graphite, Li 3 PO 4 —Li 2 S—SiS 2 and Li 2 S—P 2 S 5 in a ratio of 6: 2: 2 (mass ratio). First, graphite and a sulfide-based amorphous solid electrolyte, that is, Li 3 PO 4 —Li 2 S—SiS 2 , are thoroughly mixed before the sulfide-based crystalline solid electrolyte, that is, Li 2 S—P 2 S 5 . Made by adding and mixing.

ここでは、負極活物質と硫化物系非晶質固体電解質と硫化物系結晶性固体電解質とをそれぞれ60mg:20mg:20mgの割合で秤量し、乳鉢にて十分に混合する。そして、これらの固体電解質、正極材、負極材を用いて実施例1と同様にリチウム二次電池を製造した。   Here, the negative electrode active material, the sulfide-based amorphous solid electrolyte, and the sulfide-based crystalline solid electrolyte are weighed in a ratio of 60 mg: 20 mg: 20 mg, respectively, and sufficiently mixed in a mortar. And the lithium secondary battery was manufactured similarly to Example 1 using these solid electrolyte, positive electrode material, and negative electrode material.

上述した比較例1および比較例2と同様に、製造された二次電池(つまり、構築直後電池)の初期放電容量および30日保存後の正極側のX線リートベルト解析によるLiNiOに対するLiS検出量並びに30日保存後の放電容量を調べた結果を[表1]に示しておく。比較例3は、比較例1と同様に、30日保存によりLiS検出量が増加(副反応が進行)し、その結果、容量の大部分が減少しているため好ましくない。また、比較例4は充電時に負極が還元分解をしてしまうため、電池構築直後、30日保存後ともに容量が出ないため好ましくない。 Similar to Comparative Example 1 and Comparative Example 2 described above, the initial discharge capacity of the manufactured secondary battery (that is, the battery immediately after construction) and Li 2 for LiNiO 2 by the X-ray Rietveld analysis on the positive electrode side after 30 days storage [Table 1] shows the results of examining the detected S amount and the discharge capacity after 30 days storage. As in Comparative Example 1, Comparative Example 3 is not preferable because the detected amount of Li 2 S increases (side reaction proceeds) by storage for 30 days, and as a result, most of the capacity decreases. Further, Comparative Example 4 is not preferable because the negative electrode undergoes reductive decomposition at the time of charging, and the capacity does not come out immediately after battery construction and after storage for 30 days.

1 負極集電体
2 負極材
3 リチウムイオン伝導性固体電解質層
4 正極材
5 正極集電体
DESCRIPTION OF SYMBOLS 1 Negative electrode collector 2 Negative electrode material 3 Lithium ion conductive solid electrolyte layer 4 Positive electrode material 5 Positive electrode collector

Claims (2)

正極材と負極材との間にリチウムイオン伝導性固体電解質層を介在させてなる全固体リチウム二次電池において、
上記正極材を正極活物質とリチウムイオン伝導性固体電解質とから構成するとともに、この正極材における固体電解質として、硫化物系結晶性電解質と硫化物系非晶質電解質との混合物を用いるとともに正極材に含まれる硫化物系非晶質電解質の割合を、正極材全体に対して1〜15質量%の範囲となるようにし、
上記リチウムイオン伝導性固体電解質層として硫化物系結晶性電解質を用い、
上記負極材を負極活物質とリチウムイオン伝導性固体電解質とで構成するとともに、この負極材における固体電解質として硫化物系結晶性電解質を用いたことを特徴とする全固体リチウム二次電池。
In an all solid lithium secondary battery in which a lithium ion conductive solid electrolyte layer is interposed between a positive electrode material and a negative electrode material,
As well as constituting the cathode material from the cathode active material and the lithium ion conductive solid electrolyte, as a solid electrolyte in the positive electrode, Rutotomoni with a mixture of sulfide-based amorphous electrolyte and sulfide-based crystalline electrolyte, The ratio of the sulfide-based amorphous electrolyte contained in the positive electrode material is in the range of 1 to 15% by mass with respect to the entire positive electrode material,
Using a sulfide-based crystalline electrolyte as the lithium ion conductive solid electrolyte layer,
An all-solid lithium secondary battery, wherein the negative electrode material is composed of a negative electrode active material and a lithium ion conductive solid electrolyte, and a sulfide-based crystalline electrolyte is used as the solid electrolyte in the negative electrode material.
硫化物系結晶性電解質としてLiS−Pを用いるとともに、硫化物系非晶質電解質としてLiPO−LiS−SiSを用いたことを特徴とする請求項1に記載の全固体リチウム二次電池。 With use of the Li 2 S-P 2 S 5 as a sulfide-based crystalline electrolyte to claim 1, characterized in that using Li 3 PO 4 -Li 2 S- SiS 2 as a sulfide-based amorphous electrolyte The all-solid-state lithium secondary battery as described.
JP2010049982A 2010-03-08 2010-03-08 All-solid lithium secondary battery Active JP5641193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049982A JP5641193B2 (en) 2010-03-08 2010-03-08 All-solid lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049982A JP5641193B2 (en) 2010-03-08 2010-03-08 All-solid lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2011187253A JP2011187253A (en) 2011-09-22
JP5641193B2 true JP5641193B2 (en) 2014-12-17

Family

ID=44793315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049982A Active JP5641193B2 (en) 2010-03-08 2010-03-08 All-solid lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5641193B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260807B2 (en) * 2012-12-06 2018-01-17 三星電子株式会社Samsung Electronics Co.,Ltd. Solid battery
US9166253B2 (en) 2012-12-06 2015-10-20 Samsung Electronics Co., Ltd. Solid-state battery
JP6127528B2 (en) * 2013-01-16 2017-05-17 トヨタ自動車株式会社 Electrode, all-solid-state battery, and manufacturing method thereof
JP6116315B2 (en) * 2013-03-28 2017-04-19 日立造船株式会社 Material for all solid state battery and method for producing all solid state battery material
US9379383B2 (en) 2013-06-17 2016-06-28 Electronics And Telecommunications Research Institute Lithium battery and method of preparing the same
WO2016194705A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Solid electrolyte composition, electrode sheet for all-solid-state secondary cell, all-solid-state secondary cell, and method for manufacturing electrode sheet for all-solid-state secondary cell and all-solid-state secondary cell
CN106611871B (en) * 2015-10-23 2020-11-06 比亚迪股份有限公司 Solid electrolyte material, method for producing same, solid electrolyte, and battery
CN105742575B (en) * 2016-02-02 2018-02-06 北京理工大学 A kind of method that polyvinyl alcohol crosslinked carbonization of gelatin in situ prepares the porous silicium cathode of lithium ion battery
JP6409794B2 (en) * 2016-02-18 2018-10-24 トヨタ自動車株式会社 Method for producing positive electrode mixture, method for producing positive electrode, and method for producing all solid lithium ion secondary battery
CN106848380B (en) * 2017-01-12 2019-08-27 深圳市盛邦科技有限公司 All-solid lithium-ion battery and preparation method thereof
CN113422109B (en) * 2021-06-23 2023-02-21 中国第一汽车股份有限公司 Multilayer solid electrolyte membrane and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744665B2 (en) * 1997-12-09 2006-02-15 トヨタ自動車株式会社 Lithium ion conductive solid electrolyte and battery
JP2008103291A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd All-solid battery for power storage
JP2008235227A (en) * 2007-03-23 2008-10-02 Toyota Motor Corp Solid battery and manufacturing method
JP2009093968A (en) * 2007-10-10 2009-04-30 Seiko Epson Corp Whole-solid lithium secondary battery
JP5389391B2 (en) * 2008-07-31 2014-01-15 出光興産株式会社 Electrode material sheet for lithium battery, solid lithium battery, and device including solid lithium battery

Also Published As

Publication number Publication date
JP2011187253A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5641193B2 (en) All-solid lithium secondary battery
US11411247B2 (en) Solid electrolyte material and battery
CN110233298B (en) Preparation method of novel all-solid-state lithium ion battery
CN105742613B (en) A kind of cathode pole piece and lithium ion battery
RU2361326C2 (en) Accumulator battery with improved mobility of lithium ions and improved capacitance of cells
US20160261002A1 (en) Solid-state multi-layer electrolyte, electrochemical cell and battery including the electrolyte, and method of forming same
US20110081580A1 (en) Solid-state lithium secondary battery and method for producing the same
KR20160096068A (en) Electrode mixture for sodium ion batteries, production method therefor, and all-solid-state sodium battery
JP2014116149A (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
MX2010009700A (en) Lithium-sulfur battery and cathode therefore.
JPH11283664A (en) Solid-electrolyte battery
JP5435469B2 (en) Negative electrode material in all solid lithium ion secondary battery and method for producing all solid lithium ion secondary battery
JP4925690B2 (en) Nonaqueous electrolyte secondary battery
JP6648649B2 (en) Manufacturing method of all solid lithium sulfur battery
KR20140021072A (en) Solid secondary battery and battery system
WO2011093129A1 (en) Electrode active material for all-solid-state secondary battery, and all-solid-state secondary battery using same
CN109119635B (en) Battery with a battery cell
US20190334174A1 (en) All-solid battery
JP5975459B2 (en) Method for producing positive electrode for all-solid lithium secondary battery and all-solid lithium secondary battery using the same
KR20100056257A (en) Secondary zinc alkaline battery comprising negative electrodes and separators surface-modified with gel electrolyte for coating
JP2021034328A (en) All-solid battery and system of all-solid battery
JP2021034326A (en) All-solid battery
KR20170069071A (en) An all-solid state battery and preparation thereof
CN109524604A (en) A kind of lithium ion battery separator and lithium ion battery
KR20110078307A (en) Metal based zn negative active material and lithium secondary battery comprising thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141014

R150 Certificate of patent or registration of utility model

Ref document number: 5641193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250