JP5640452B2 - Control device for power converter - Google Patents

Control device for power converter Download PDF

Info

Publication number
JP5640452B2
JP5640452B2 JP2010112157A JP2010112157A JP5640452B2 JP 5640452 B2 JP5640452 B2 JP 5640452B2 JP 2010112157 A JP2010112157 A JP 2010112157A JP 2010112157 A JP2010112157 A JP 2010112157A JP 5640452 B2 JP5640452 B2 JP 5640452B2
Authority
JP
Japan
Prior art keywords
phase
value
power
calculation
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112157A
Other languages
Japanese (ja)
Other versions
JP2011244537A (en
Inventor
野村 尚史
尚史 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010112157A priority Critical patent/JP5640452B2/en
Publication of JP2011244537A publication Critical patent/JP2011244537A/en
Application granted granted Critical
Publication of JP5640452B2 publication Critical patent/JP5640452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Description

この発明は、電力系統に連系して交流電力を直流電力に、または直流電力を交流電力に変換する、例えばPWM(パルス幅変調)コンバータやインバータなどの電力変換器、特に電力系統の角周波数や位相を検出してその制御を行なう制御装置に関する。 The present invention relates to a power converter such as a PWM (pulse width modulation) converter or an inverter that converts AC power into DC power or DC power into AC power in connection with a power system, particularly an angular frequency of the power system. The present invention relates to a control device that detects and controls a phase.

例えばPWMコンバータでは、連系される電力系統の電圧検出値位相を求め、これに基づき電流を制御することにより力率1の運転が可能である。なお、電力系統の電圧検出値位相の求め方は例えば特許文献1,2に開示されている。
そこで、特許文献1における電圧位相演算の概要について、以下に説明する。
For example, a PWM converter can be operated with a power factor of 1 by obtaining a voltage detection value phase of an interconnected power system and controlling the current based on this. In addition, the method of calculating | requiring the voltage detection value phase of an electric power grid | system is disclosed by patent document 1, 2, for example.
Therefore, an outline of the voltage phase calculation in Patent Document 1 will be described below.

まず、電力系統の相電圧Vr,Vs,Vtを検出し、これを直交回転座標のd、q軸上の値Vd,Vqに座標変換する。d軸の位相を、電力系統の位相演算値とする。位相演算誤差が小さい場合、系統電圧検出値のq軸成分は、この偏差に比例する。そこで、系統電圧検出値のq軸成分を比例・積分調節器で増幅して電力系統の角周波数演算値を求め、角周波数演算値を積分して位相演算値を求める。これらの演算により、位相演算誤差を零に制御することができ、電力系統の角周波数と位相を正確に演算することが可能となる。 First, phase voltages Vr, Vs, and Vt of the power system are detected, and the coordinates are converted into values Vd and Vq on the d and q axes of the orthogonal rotation coordinates. The d-axis phase is set as a phase calculation value of the power system. When the phase calculation error is small, the q-axis component of the system voltage detection value is proportional to this deviation. Therefore, the q-axis component of the system voltage detection value is amplified by the proportional / integral controller to obtain the angular frequency calculation value of the power system, and the angular frequency calculation value is integrated to obtain the phase calculation value. By these calculations, the phase calculation error can be controlled to zero, and the angular frequency and phase of the power system can be accurately calculated.

以上の演算方法で位相演算誤差が大きい場合には、系統電圧検出値のq軸成分と位相演算誤差との比例関係が成り立たなくなり、制御系が不安定となる。そこで、特許文献1には、系統電圧検出値のd軸成分とq軸成分とから位相演算誤差Δθを検出し、位相演算誤差が大きい場合は、系統電圧検出値のd軸成分を使って角周波数を演算する技術が示されている。   When the phase calculation error is large by the above calculation method, the proportional relationship between the q-axis component of the system voltage detection value and the phase calculation error does not hold, and the control system becomes unstable. Therefore, in Patent Document 1, the phase calculation error Δθ is detected from the d-axis component and the q-axis component of the system voltage detection value. A technique for computing the frequency is shown.

特開2008−220018号公報JP 2008-220018 A 特開平10−313574号公報JP 10-31574 A

しかし、上記特許文献1に記載の技術は、位相演算誤差に応じて2種類の演算を切り替える必要があり、構成が複雑になるという問題がある。
従って、この発明の課題は、2種類の演算を切り替える必要をなくし、電力系統の角周波数と位相を簡単に検出し得るようにすることにある。
However, the technique described in the above-mentioned Patent Document 1 has a problem that the configuration is complicated because it is necessary to switch between two types of calculations in accordance with the phase calculation error.
Therefore, an object of the present invention is to eliminate the need to switch between two types of calculations and to easily detect the angular frequency and phase of the power system.

上記のような課題を解決するため、請求項1の発明では、電力系統に連系して交流電力を直流電力に、または直流電力を交流電力に変換する電力変換器において、
前記電力系統の電圧を検出する電圧検出手段と、
前記電圧検出手段で検出された前記電力系統の電圧検出値をd、q軸の直交回転座標に変換する座標変換器と、
前記座標変換器から出力される前記電力系統の電圧検出値のq軸成分を増幅して前記電力系統の角周波数を演算する角周波数演算手段と、
前記角周波数演算手段で求めた角周波数を積分して前記電力系統の電圧検出値のd軸成分の位相演算値を求める位相演算手段と、
前記座標変換器から出力される前記電力系統の電圧検出値のd軸成分およびq軸成分から、前記電力系統の電圧検出値の前記d軸に対する角度差を演算する角度差演算手段と、
前記座標変換器から出力される前記電力系統の電圧検出値のd軸成分およびq軸成分から、前記電力系統の電圧検出値の前記d軸に対する角度差を演算する角度差演算手段と、
前記位相演算手段の演算開始時に、前記位相演算手段で求めた位相演算値を、この位相演算値に前記角度差演算手段で求めた角度差演算値を加算した値に初期化する手段とを設けたことを特徴とする。
In order to solve the above problems, in the invention of claim 1, in a power converter that is connected to a power system and converts AC power into DC power or DC power into AC power,
Voltage detecting means for detecting the voltage of the power system;
A coordinate converter that converts the voltage detection value of the power system detected by the voltage detection means into orthogonal rotation coordinates of d and q axes;
Angular frequency calculation means for amplifying the q-axis component of the voltage detection value of the power system output from the coordinate converter to calculate the angular frequency of the power system;
Phase calculation means for integrating the angular frequency obtained by the angular frequency calculation means to obtain a phase calculation value of the d-axis component of the voltage detection value of the power system;
An angle difference calculating means for calculating an angle difference of the voltage detection value of the power system with respect to the d axis from a d-axis component and a q-axis component of the voltage detection value of the power system output from the coordinate converter;
An angle difference calculating means for calculating an angle difference of the voltage detection value of the power system with respect to the d axis from a d-axis component and a q-axis component of the voltage detection value of the power system output from the coordinate converter;
Means for initializing the phase calculation value obtained by the phase calculation means at a start of calculation by the phase calculation means to a value obtained by adding the angle difference calculation value obtained by the angle difference calculation means to the phase calculation value; It is characterized by that.

また、請求項2の発明では、電力系統に連系して交流電力を直流電力に、または直流電力を交流電力に変換する電力変換器において、
前記電力系統の電圧を検出する電圧検出手段と、
前記電圧検出手段で検出された前記電力系統の電圧検出値をd、q軸の直交回転座標に変換する座標変換器と、
前記座標変換器から出力される前記電力系統の電圧検出値のq軸成分を増幅して前記電力系統の角周波数を演算する角周波数演算手段と、
前記角周波数演算手段で求めた角周波数を積分して前記電力系統の電圧検出値のd軸成分の位相演算値を求める位相演算手段と、
前記座標変換器から出力される前記電力系統の電圧検出値のd軸成分の極性、またはq軸成分の極性の少なくとも一方を用いて位相補償値を演算する位相補償値演算手段と、
前記座標変換器から出力される前記電力系統の電圧検出値のd軸成分の極性、またはq軸成分の極性の少なくとも一方を用いて位相補償値を演算する位相補償値演算手段と、
前記位相演算手段の演算開始時に、前記位相演算手段で求めた位相演算値を、この位相演算値に前記角位相補償値演算手段で求めた位相補償値を加算した値に初期化する手段とを設けたことを特徴とする。
Further, in the invention of claim 2, in the power converter that converts AC power into DC power or DC power into AC power linked to the power system,
Voltage detecting means for detecting the voltage of the power system;
A coordinate converter that converts the voltage detection value of the power system detected by the voltage detection means into orthogonal rotation coordinates of d and q axes;
Angular frequency calculation means for amplifying the q-axis component of the voltage detection value of the power system output from the coordinate converter to calculate the angular frequency of the power system;
Phase calculation means for integrating the angular frequency obtained by the angular frequency calculation means to obtain a phase calculation value of the d-axis component of the voltage detection value of the power system;
Phase compensation value computing means for computing a phase compensation value using at least one of the polarity of the d-axis component or the q-axis component of the voltage detection value of the power system output from the coordinate converter;
Phase compensation value computing means for computing a phase compensation value using at least one of the polarity of the d-axis component or the q-axis component of the voltage detection value of the power system output from the coordinate converter;
Means for initializing the phase calculation value obtained by the phase calculation means at a start of calculation by the phase calculation means to a value obtained by adding the phase compensation value obtained by the angular phase compensation value calculation means to the phase calculation value ; It is provided.

この発明によれば、2種類の演算の切り替え等を必要とせず、簡単な演算で位相演算誤差が小さい状態から電力系統の角周波数と位相の演算を開始することができ、演算を安定に実行できるので、制御性能を向上させることが可能となる。 According to the present invention, it is possible to start the calculation of the angular frequency and the phase of the power system from a state where the phase calculation error is small with a simple calculation without switching between two types of calculations, and the calculation is stably executed. Therefore, the control performance can be improved.

この発明の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 図1の原理を説明するための説明図である。It is explanatory drawing for demonstrating the principle of FIG. この発明の別の実施の形態を示すブロック図である。It is a block diagram which shows another embodiment of this invention. 位相補償値の演算原理説明図である。It is a calculation explanatory view of a phase compensation value. 図3で用いる位相補償値の演算テーブル図である。It is a calculation table figure of the phase compensation value used in FIG. 図3の変形例を示すブロック図である。It is a block diagram which shows the modification of FIG. 図6で用いる位相補償値の演算テーブル図である。It is a calculation table figure of the phase compensation value used in FIG. 図3の他の変形例を示すブロック図である。It is a block diagram which shows the other modification of FIG. 図8の場合の位相補償値の演算テーブル図である。FIG. 9 is a calculation table of phase compensation values in the case of FIG. 8.

図1はこの発明の実施形態を示すブロック図である。これは、系統電圧検出値から位相演算誤差を求め、これを用いて位相演算値を初期化することで、位相演算誤差を低減するものである。
より具体的には、座標変換器11において位相演算値θdetを用い、3相の電圧検出値vsR,vsS,vsTをd、q軸系統電圧検出値vsd,vsqに座標変換する。d、q軸は直交回転座標であり、d軸の位相は位相演算値θdetとし、q軸の位相はd軸から90°進み方向とする。
FIG. 1 is a block diagram showing an embodiment of the present invention. In this method, the phase calculation error is obtained from the system voltage detection value, and the phase calculation value is initialized by using the phase calculation error, thereby reducing the phase calculation error.
More specifically, the coordinate converter 11 uses the phase calculation value θ det to convert the three-phase voltage detection values v sR , v sS , and v sT into d and q-axis system voltage detection values v sd and v sq. To do. The d and q axes are orthogonal rotation coordinates, the phase of the d axis is a phase calculation value θ det, and the phase of the q axis is a direction advanced by 90 ° from the d axis.

角周波数補正器12はq軸系統電圧検出値Vsqを内部の比例・積分調節器により増幅して、角周波数補正値ωcmpを演算する。加算器13は、角周波数補正値ωcmpと角周波数基準値ωbaseとを加算して角周波数演算値ωdetを求める。積分器14は、角周波数演算値ωdetを積分して位相演算値θdetを演算する。また、極座標変換器21は、d、q軸系統電圧検出値vsd,vsqから、d軸と系統電圧検出値との角度差を演算し、これを位相補償値θinitialとして設定する。 The angular frequency corrector 12 calculates the angular frequency correction value ω cmp by amplifying the q-axis system voltage detection value V sq by an internal proportional / integral controller. The adder 13 adds the angular frequency correction value ω cmp and the angular frequency reference value ω base to obtain an angular frequency calculation value ω det . The integrator 14 integrates the angular frequency calculation value ω det to calculate the phase calculation value θ det . Further, the polar coordinate converter 21 calculates an angular difference between the d-axis and the system voltage detection value from the d and q-axis system voltage detection values v sd and v sq , and sets this as the phase compensation value θ initial .

積分器14は、角周波数と位相の演算の開始時に、位相演算値θdetを次の(1)式で初期化する。
θdet=θdet+θinitial…(1)
これにより、位相演算誤差が零の状態から角周波数と位相の演算を開始することができ、角周波数と位相の演算を安定に実行することができる。
The integrator 14 initializes the phase calculation value θ det with the following equation (1) at the start of the calculation of the angular frequency and the phase.
θ det = θ det + θ initial (1)
Thereby, the calculation of the angular frequency and the phase can be started from the state where the phase calculation error is zero, and the calculation of the angular frequency and the phase can be stably executed.

図2を参照して、位相補償値θinitialの演算原理を説明する。
d軸の位相は位相演算値θdetに等しいことから、位相演算値θdetの演算誤差は、d軸と系統電圧検出値との角度差に等しい。そこで、変換器21により系統電圧検出値vsd,vsqを座標変換することによってd軸と系統電圧検出値との角度差を求め、これを位相補償値θinitialとする。
The calculation principle of the phase compensation value θ initial will be described with reference to FIG.
Since the d-axis in phase equal to the phase calculation value theta det, calculation error of the phase calculation value theta det is equal to the angle difference between the d-axis and the system voltage detection value. Therefore, the converter 21 performs coordinate conversion of the system voltage detection values v sd and v sq to obtain an angle difference between the d-axis and the system voltage detection value, which is set as a phase compensation value θ initial .

図3はこの発明の別の実施の形態を示すブロック図である。
これは、図1に示す極座標変換器21の代わりに、位相誤差演算器22を用いるようにした点が特徴で、それ以外は図1と同様である。
図4は位相補償値θinitialの演算原理説明図である。dq軸系統電圧検出値の方向は、検出値vsd,vsqがdq軸の極性から、まず図4に示す領域1〜4の領域のいずれの領域かを判断する。領域が決定したら、図5に示すテーブルを用いて位相補償値θinitialを求め、上記(1)式によって位相演算値θdetを初期化する。これにより、位相演算誤差を±45°以下の状態から、角周波数と位相の演算を開始することができ、角周波数と位相の演算を安定に実行できることになる。
FIG. 3 is a block diagram showing another embodiment of the present invention.
This is characterized in that a phase error calculator 22 is used in place of the polar coordinate converter 21 shown in FIG. 1, and is otherwise the same as FIG.
FIG. 4 is a diagram for explaining the calculation principle of the phase compensation value θ initial . The direction of the dq-axis system voltage detection value is determined based on the detection values v sd and v sq based on the polarity of the dq axis. When the region is determined, the phase compensation value θ initial is obtained using the table shown in FIG. 5, and the phase calculation value θ det is initialized by the above equation (1). Thereby, the calculation of the angular frequency and the phase can be started from the state where the phase calculation error is ± 45 ° or less, and the calculation of the angular frequency and the phase can be stably executed.

図6は図3の変形例を示すブロック図である。
これは、図3に示す位相誤差演算器22の代わりに、位相誤差演算器23を用いるようにした点が特徴で、それ以外は図3と同様である。
ここでは、d軸系統電圧検出値vsdの極性のみから、図4に示す領域1,4または2,3のいずれの領域かを判断する。領域が決定したら、図7に示すテーブルを用いて位相補償値θinitialを求め、上記(1)式によって位相演算値θdetを初期化する。これにより、位相演算誤差を±90°以下の状態から、角周波数と位相の演算を開始することができ、角周波数と位相の演算を安定に実行できることになる。
FIG. 6 is a block diagram showing a modification of FIG.
This is characterized in that a phase error calculator 23 is used instead of the phase error calculator 22 shown in FIG. 3, and the other points are the same as in FIG.
Here, it is determined from any one of the regions 1, 4 and 2, 3 shown in FIG. 4 only from the polarity of the detected d-axis system voltage value sd . When the region is determined, the phase compensation value θ initial is obtained using the table shown in FIG. 7, and the phase calculation value θ det is initialized by the above equation (1). Thereby, the calculation of the angular frequency and the phase can be started from the state where the phase calculation error is ± 90 ° or less, and the calculation of the angular frequency and the phase can be executed stably.

図8は図3の他の変形例を示すブロック図である。
これは、図3に示す極座標変換器21の代わりに、位相誤差演算器24を用いるようにした点が特徴で、それ以外は図3と同様である。
この例は、q軸系統電圧検出値vsqの極性のみから、図4に示す領域1,2または3,4のいずれの領域かを判断する。領域が決定したら、図9に示すテーブルを用いて位相補償値θinitialを求め、上記(1)式によって位相演算値θdetを初期化する。これにより、位相演算誤差を±90°以下の状態から、角周波数と位相の演算を開始することができ、角周波数と位相の演算を安定に実行できることになる。
FIG. 8 is a block diagram showing another modification of FIG.
This is characterized in that a phase error calculator 24 is used in place of the polar coordinate converter 21 shown in FIG. 3, and the rest is the same as FIG.
This example is only the polarity of the q-axis system voltage detection value v sq, determines which regions of the regions 1, 2, or 3 and 4 shown in FIG. When the region is determined, the phase compensation value θ initial is obtained using the table shown in FIG. 9, and the phase calculation value θ det is initialized by the above equation (1). Thereby, the calculation of the angular frequency and the phase can be started from the state where the phase calculation error is ± 90 ° or less, and the calculation of the angular frequency and the phase can be executed stably.

11…座標変換器、12…角周波数補正器、13…加算器、14…積分器、21…極座標変換器、22,23,24…位相誤差演算器。
DESCRIPTION OF SYMBOLS 11 ... Coordinate converter, 12 ... Angular frequency corrector, 13 ... Adder, 14 ... Integrator, 21 ... Polar coordinate converter, 22, 23, 24 ... Phase error calculator.

Claims (2)

電力系統に連系して交流電力を直流電力に、または直流電力を交流電力に変換する電力変換器において、
前記電力系統の電圧を検出する電圧検出手段と、
前記電圧検出手段で検出された前記電力系統の電圧検出値をd、q軸の直交回転座標に変換する座標変換器と、
前記座標変換器から出力される前記電力系統の電圧検出値のq軸成分を増幅して前記電力系統の角周波数を演算する角周波数演算手段と、
前記角周波数演算手段で求めた角周波数を積分して前記電力系統の電圧検出値のd軸成分の位相演算値を求める位相演算手段と、
前記座標変換器から出力される前記電力系統の電圧検出値のd軸成分およびq軸成分から、前記電力系統の電圧検出値の前記d軸に対する角度差を演算する角度差演算手段と、
前記位相演算手段の演算開始時に、前記位相演算手段で求めた位相演算値を、この位相演算値に前記角度差演算手段で求めた角度差演算値を加算した値に初期化する手段とを設けたことを特徴とする電力変換器の制御装置。
In a power converter that converts AC power to DC power or DC power to AC power linked to the power system,
Voltage detecting means for detecting the voltage of the power system;
A coordinate converter that converts the voltage detection value of the power system detected by the voltage detection means into orthogonal rotation coordinates of d and q axes;
Angular frequency calculation means for amplifying the q-axis component of the voltage detection value of the power system output from the coordinate converter to calculate the angular frequency of the power system;
Phase calculation means for integrating the angular frequency obtained by the angular frequency calculation means to obtain a phase calculation value of the d-axis component of the voltage detection value of the power system;
An angle difference calculating means for calculating an angle difference of the voltage detection value of the power system with respect to the d axis from a d-axis component and a q-axis component of the voltage detection value of the power system output from the coordinate converter;
Means for initializing the phase calculation value obtained by the phase calculation means at a start of calculation by the phase calculation means to a value obtained by adding the angle difference calculation value obtained by the angle difference calculation means to the phase calculation value; A power converter control device.
電力系統に連系して交流電力を直流電力に、または直流電力を交流電力に変換する電力変換器において、
前記電力系統の電圧を検出する電圧検出手段と、
前記電圧検出手段で検出された前記電力系統の電圧検出値をd、q軸の直交回転座標に変換する座標変換器と、
前記座標変換器から出力される前記電力系統の電圧検出値のq軸成分を増幅して前記電力系統の角周波数を演算する角周波数演算手段と、
前記角周波数演算手段で求めた角周波数を積分して前記電力系統の電圧検出値のd軸成分の位相演算値を求める位相演算手段と、
前記座標変換器から出力される前記電力系統の電圧検出値のd軸成分の極性、またはq軸成分の極性の少なくとも一方を用いて位相補償値を演算する位相補償値演算手段と、
前記位相演算手段の演算開始時に、前記位相演算手段で求めた位相演算値を、この位相演算値に前記角位相補償値演算手段で求めた位相補償値を加算した値に初期化する手段とを設けたことを特徴とする電力変換器の制御装置。
In a power converter that converts AC power to DC power or DC power to AC power linked to the power system,
Voltage detecting means for detecting the voltage of the power system;
A coordinate converter that converts the voltage detection value of the power system detected by the voltage detection means into orthogonal rotation coordinates of d and q axes;
Angular frequency calculation means for amplifying the q-axis component of the voltage detection value of the power system output from the coordinate converter to calculate the angular frequency of the power system;
Phase calculation means for integrating the angular frequency obtained by the angular frequency calculation means to obtain a phase calculation value of the d-axis component of the voltage detection value of the power system;
Phase compensation value computing means for computing a phase compensation value using at least one of the polarity of the d-axis component or the q-axis component of the voltage detection value of the power system output from the coordinate converter;
Means for initializing the phase calculation value obtained by the phase calculation means at a start of calculation by the phase calculation means to a value obtained by adding the phase compensation value obtained by the angular phase compensation value calculation means to the phase calculation value ; A control device for a power converter, characterized by being provided.
JP2010112157A 2010-05-14 2010-05-14 Control device for power converter Active JP5640452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112157A JP5640452B2 (en) 2010-05-14 2010-05-14 Control device for power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010112157A JP5640452B2 (en) 2010-05-14 2010-05-14 Control device for power converter

Publications (2)

Publication Number Publication Date
JP2011244537A JP2011244537A (en) 2011-12-01
JP5640452B2 true JP5640452B2 (en) 2014-12-17

Family

ID=45410613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112157A Active JP5640452B2 (en) 2010-05-14 2010-05-14 Control device for power converter

Country Status (1)

Country Link
JP (1) JP5640452B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077155B (en) * 2012-12-27 2016-07-06 华自科技股份有限公司 A kind of computational methods of phasor angle of electric system
US9776071B2 (en) 2013-05-09 2017-10-03 Mattel, Inc. Resonant coils for use with games and toys

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031145B2 (en) * 1999-04-19 2008-01-09 北陸電力株式会社 Power supply for uninterruptible construction
JP4093453B2 (en) * 2001-11-29 2008-06-04 河村電器産業株式会社 Power converter
JP4935166B2 (en) * 2006-04-20 2012-05-23 富士電機株式会社 Phase synchronization control device for power converter
JP2008043184A (en) * 2006-05-25 2008-02-21 Ebara Corp Power supply unit, and method for synchronously operating power conversion device
JP4876976B2 (en) * 2007-03-02 2012-02-15 富士電機株式会社 Phase synchronization control method and phase synchronization control apparatus for AC output power converter

Also Published As

Publication number Publication date
JP2011244537A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP4988329B2 (en) Beatless control device for permanent magnet motor
JP6015712B2 (en) Rotating machine control device
JP5321614B2 (en) Rotating machine control device
US9755562B2 (en) Power convertor, controller, and method for changing carrier frequency
JP5565432B2 (en) Rotating machine control device
US11063544B2 (en) Inverter device and electric power steering apparatus
JP5549384B2 (en) Electric motor control device and electric motor control system
WO2008047438A1 (en) Vector controller of permanent magnet synchronous motor
TW200935716A (en) Motor control device and control method thereof
JP2004112898A (en) Control method and device for motor in position sensorless
WO2016121237A1 (en) Inverter control device and motor drive system
JP5709932B2 (en) Synchronous machine controller
JP4912516B2 (en) Power converter
JP6241330B2 (en) Motor control device
JP5640452B2 (en) Control device for power converter
JP2011217575A (en) Power conversion apparatus
JP2013074674A (en) Motor controller and motor control method
CN113169694A (en) Control device for rotating electric machine and control device for electric vehicle
JP6361569B2 (en) Control device for rotating electrical machine
JP2013172550A (en) Motor controller and three-phase voltage command generating method of motor
JP6680104B2 (en) Motor control device and control method
WO2017122490A1 (en) Motor control system
JP6544204B2 (en) Motor control device
JP7226211B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP6354523B2 (en) Electric motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250