JP5637544B2 - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
JP5637544B2
JP5637544B2 JP2012157067A JP2012157067A JP5637544B2 JP 5637544 B2 JP5637544 B2 JP 5637544B2 JP 2012157067 A JP2012157067 A JP 2012157067A JP 2012157067 A JP2012157067 A JP 2012157067A JP 5637544 B2 JP5637544 B2 JP 5637544B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
dopant
electrolytic capacitor
solution
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012157067A
Other languages
English (en)
Other versions
JP2013010958A (ja
Inventor
良介 杉原
良介 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2012157067A priority Critical patent/JP5637544B2/ja
Publication of JP2013010958A publication Critical patent/JP2013010958A/ja
Application granted granted Critical
Publication of JP5637544B2 publication Critical patent/JP5637544B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は、導電性高分子用ドーパント溶液、そのドーパントと酸化剤とを含む酸化剤兼ドーパント溶液、その酸化剤兼ドーパント溶液を用いて合成される導電性高分子を含む導電性組成物および上記導電性組成物を固体電解質として用いた固体電解コンデンサに関するものである。
導電性高分子を固体電解質として用いた固体電解コンデンサは、二酸化マンガンを固体電解質として用いた従来の固体電解コンデンサに比べて、ESR(等価直列抵抗)が低く、信頼性が高いなど、種々の特性が優れていることから、急速な勢いで市場が拡大している。
上記導電性高分子の製造は、一般に、化学酸化重合法で行われており、例えば、酸化剤兼ドーパントとしてパラトルエンスルホン酸鉄などの有機スルホン酸の遷移金属塩を用い、チオフェンまたはその誘導体などのモノマーを重合させることによって行われている(特許文献1〜2)。
しかしながら、それらの方法は、大量生産に向いているものの、酸化剤として用いた遷移金属が導電性高分子内に残るという問題があった。そこで、遷移金属を取り除くため、洗浄工程を入れたとしても、遷移金属は完全に取り除きにくいという性質があり、遷移金属が導電性高分子中に残った場合の遷移金属の導電性高分子に与える影響や、それを固体電解質として用いた固体電解コンデンサへの影響を払拭し、導電性高分子の安定性や固体電解コンデンサの長期信頼性をより一層高めたいという要望があった。そのため、酸化剤として遷移金属塩以外のもの、例えば、過酸化物を酸化剤として用いることが提案されているが、チオフェンまたはその誘導体をモノマーとして用いた場合は、遷移金属塩に比べて反応効率が非常に悪かったり、得られた導電性高分子の導電率が非常に悪いという問題があった。
そこで、OH基を含有するベンゼン骨格スルホン酸またはナフタレン骨格スルホン酸のアルキルアミン塩またはイミダゾール塩をドーパントとして用いることによって、反応効率を向上させることが提案されている(特許文献3)。
上記の方法によれば、それ以前の技術に比べて、導電性高分子合成時の反応効率が向上し、得られた導電性高分子の導電率も向上するものの、それでも充分とは言えなかった。
特開平10−50558号公報 特開2000−106331号公報 国際公開第2006−085601号公報
本発明は、上記のような従来技術の問題点を解決し、導電率が高い導電性組成物を高反応効率で提供することができる酸化剤兼ドーパント溶液、上記酸化剤兼ドーパント溶液を構成するためのドーパント溶液を提供するとともに、その酸化剤兼ドーパント溶液を用いることによって導電性の高い導電性高分子を含む導電性組成物を提供し、その導電性組成物を固体電解質として用いることによって長期信頼性の高い固体電解コンデンサを提供することを目的とする。
本発明者は、上記課題を解決するため鋭意研究を重ねた結果、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種をドーパントとし、そのドーパントを構成する有機塩と過硫酸有機塩との混合物を酸化剤兼ドーパントとして、チオフェンまたはその誘導体、ピロールまたはその誘導体、アニリンまたはその誘導体などの複素環状構造のモノマーを重合させるときは、導電率が高い導電性高分子を含む導電性組成物を高反応効率で得ることができ、また、その導電性組成物を固体電解質として用いることによって長期信頼性の高い固体電解コンデンサを構成することができ、上記課題を解決できることを見出した。
すなわち、本発明は、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種が40質量%以上の濃度で溶解していることを特徴とする導電性高分子用ドーパント溶液に関するものである。
また、本発明は、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩と過硫酸有機塩との質量比が1:0.1〜1:1.5の混合物である酸化剤兼ドーパントが溶解していることを特徴とする導電性高分子用酸化剤兼ドーパント溶液に関するものである。
さらに、本発明は、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種と過硫酸有機塩との質量比が1:0.1〜1:1.5の混合物を酸化剤兼ドーパントとして、チオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種を重合させて得られた導電性組成物に関するものである。
加えて、本発明は、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種と過硫酸有機塩との質量比が1:0.1〜1:1.5の混合物を酸化剤兼ドーパントとして、チオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種を重合させて得られた導電性組成物を固体電解質として用いて構成したことを特徴とする固体電解コンデンサに関するものである。
本発明の導電性組成物は、その主成分が上記特定の酸化剤兼ドーパントの酸化剤部分の酸化作用により酸化重合し、そのドーパントを取り込んで導電性を有するようになったチオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種の重合体(ポリマー)で構成されているが、本発明において、導電性高分子とせず、導電性組成物としているのは、上記酸化剤兼ドーパントが金属塩を含んでいないので、未反応分や反応残渣が若干含まれていても、それらが上記ドーパントを取り込んで重合したチオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種のモノマーの重合体に悪影響を及ぼすことなく、導電性高分子とほぼ同様の特性を有し、導電性高分子とほぼ同様の用途に使用できるので、精製してそれらの未反応分や反応残渣を除去することなく、それらを含んだままで構成されていてもよいという意味である。つまり、本発明の導電性組成物とは、その主成分となる導電性高分子(上記特定のドーパントを取り込んで重合したチオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種の重合体)のみで構成されているもののみならず、その導電性高分子と共に上記の未反応分や反応残渣を若干含んで構成されているものも含む概念である。
本発明によれば、導電率が高い導電性組成物を高反応効率で提供することができ、また、その導電性組成物を固体電解質として用いて長期信頼性の高い固体電解コンデンサを提供することができる。また、本発明の酸化剤兼ドーパント溶液によれば、上記本発明の導電性組成物を高反応効率で提供することができ、本発明のドーパント溶液によれば、上記本発明の酸化剤兼ドーパント溶液を構成することができる。
すなわち、本発明では、導電性組成物を得るにあたって、その酸化剤兼ドーパントとしてナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩と過硫酸有機塩との特定比率の混合物を用いていて、酸化剤兼ドーパント中に導電性高分子の劣化を加速させる原因となる金属塩を含まず、また、用いる酸化剤兼ドーパントの溶解度が高く、高濃度の酸化剤兼ドーパントの存在下でチオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種のモノマーの重合を行うことができるので、それらのモノマーを効率よく重合させることができ、したがって、導電率が高い導電性組成物を高反応効率で提供することができる。また、本発明の導電性組成物は、導電率が高く、かつ貯蔵による導電率の低下が少ないので、その導電性組成物を固体電解質として用いることによって、従来より長期信頼性の高い固体電解コンデンサを提供することができる。
本発明の導電性組成物は、導電率が高く、かつ金属塩を含まないので、従来の導電性組成物に見られたような金属塩による急速な劣化が生じないことから、主として、固体電解コンデンサの固体電解質に用いられるが、それ以外にも、それらの特性を生かして、例えば、帯電防止シート、帯電防止塗料、帯電防止樹脂などの帯電防止剤、耐腐食用塗料の耐腐食剤などに好適に用いることができる。
本発明の導電性高分子用ドーパント溶液は、本発明の導電性高分子用酸化剤兼ドーパント溶液を構成するためのものであり、その成分として、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種を用いる。
本発明において用いるナフタレントリスルホン酸としては、例えば、1,3,6−ナフタレントリスルホン酸、1,3,8−ナフタレントリスルホン酸、1,4,8−ナフタレントリスルホン酸などが挙げられる。そして、そのナフタレントリスルホン酸のアルキルアミン塩を構成するアルキルアミンとしては、炭素数が1〜12のアルキル基を有するものが好ましく、その好適な具体例としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、オクチルアミン、ドデシルアミン、3−エトキシプロピルアミン、3−(2−エチルヘキシルオキシ)プロピルアミンなどが挙げられる。
また、ナフタレントリスルホン酸のイミダゾール塩を構成するイミダゾールとしては、イミダゾールそのものやイミダゾール環上の水素原子の一部が、炭素数1〜20のアルキル基またはフェニル基で置換されているものが好ましい。すなわち、本発明でいう「ナフタレントリスルホン酸のイミダゾール塩」とは、ナフタレントリスルホン酸とイミダゾールとで構成される塩のみならず、ナフタレントリスルホン酸とイミダゾール誘導体(例えば、上記、イミダゾール環上の水素原子の一部がアルキル基やフェニル基で置換されたイミダゾール誘導体)とで構成される塩も含む概念である。
上記ナフタレントリスルホン酸のイミダゾール塩を構成するイミダゾールが、炭素数1〜20のアルキル基またはフェニル基で置換されている場合には、安価に製造でき生産性が良好な点で、イミダゾール環の2位または4位が置換されていることが好ましい。
上記ナフタレントリスルホン酸のイミダゾール塩を構成するイミダゾールの好適な具体例としては、例えば、イミダゾール、1−メチルイミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−ブチルイミダゾール、2−ウンデシルイミダゾール、2−フェニルイミダゾール、4−メチルイミダゾール、4−ウンデシルイミダゾール、4−フェニルイミダゾール、2−エチル−4−メチルイミダゾール、1,2−ジメチルイミダゾールなどが挙げられ、特にイミダゾール、2−メチルイミダゾール、4−メチルイミダゾール、2−エチル−4−メチルイミダゾールが好ましい。
上記ドーパント溶液の溶媒としては、通常、水でよいが、エタノールなどの水親和性の有機溶媒を50体積%程度以下含んだ水性液でもよい。
上記ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種の、ドーパント溶液中の濃度としては、40質量%以上であり、70質量%以上であることが好ましい。このような高濃度のドーパント溶液であれば、上記導電性が優れた導電性組成物を高反応効率で生成できる高濃度の酸化剤兼ドーパント溶液(詳しくは後述する)を構成することができる。なお、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種の、ドーパント溶液中の濃度の上限は、例えば、95質量%であることが好ましい。
上記ドーパント溶液のpHは、1以上であることが好ましく、4以上であることがより好ましい。アルミニウム固体電解コンデンサに用いる導電性組成物の生成の際には、酸化剤兼ドーパント溶液のpHを1以上にして、アルミニウム固体電解コンデンサに係るコンデンサ素子の誘電体層の破壊を抑制することが好ましいが(詳しくは後述する)、ドーパント溶液のpHを1以上とすることで、アルミニウム固体電解コンデンサ用の導電性組成物の生成にも好適な酸化剤兼ドーパント溶液を容易に提供できるようになる。そして、このドーパント溶液のpHは、10以下であることが好ましく、8以下であることがより好ましい。
また、上記ドーパント溶液には乳化剤を添加しておくことが好ましい。これは、乳化剤を添加しておくことによって、チオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種の重合反応をより均一に進行させることができる酸化剤兼ドーパント溶液を構成できるからである。上記乳化剤としては、種々のものを用いることができるが、特にアルキルアミンオキサイドが好ましい。このアルキルアミンオキサイドは、たとえ導電性組成物中に残ったとしても、導電性組成物の導電率を大きく低下させたり、その導電性組成物を固体電解コンデンサの固体電解質として用いた場合に、該コンデンサの機能を著しく低下させるようなことはない。そして、上記アルキルアミンオキサイドにおけるアルキル基は炭素数が1〜20のものが好ましい。また、上記モノマーの重合反応が進行すると、それに伴って反応系のpHが低下するが、上記アルキルアミンオキサイドはそのようなpHの低下を抑制する作用も有している。
本発明の導電性高分子用酸化剤兼ドーパント溶液は、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩と過硫酸有機塩との特定比率の混合物である酸化剤兼ドーパントが溶解しているものである。
上記酸化剤兼ドーパント溶液に係るナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩や、溶媒は、上記ドーパント溶液の場合と同じものが適用できる。
また、酸化剤兼ドーパント溶液に係る過硫酸有機塩としては、例えば、過硫酸アンモニウム、過硫酸アルキルアミン塩、過硫酸イミダゾール塩などが挙げられる。そして、そのアルキルアミン塩やイミダゾール塩に関しては、上記ナフタレントリスルホン酸のアルキルアミン塩やイミダゾール塩に関して説明したものと同様のものが好ましい。
上記酸化剤兼ドーパント溶液におけるナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種と過硫酸有機塩との混合比率としては、質量比で、1:0.1〜1:1.5である。つまり、質量比で、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩が1に対して、過硫酸有機塩が0.1以上、1.5以下であり、0.2以上、0.8以下が好ましい。過硫酸有機塩の混合比率が、上記比率より多い場合には、ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩の比率が少なくなるため、ドーパントとして硫酸イオンが多くなってしまい、得られる導電性組成物の導電率が低くなって、耐熱性も悪くなる傾向がある。また、過硫酸有機塩の混合比率が、上記比率より少ない場合は、高分子が得られにくくなる傾向がある。
本発明において、酸化剤兼ドーパントとして用いる上記ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種と過硫酸有機塩との混合物中の有機スルホン酸のアルキルアミン塩またはイミダゾール塩は、主として、ドーパントとしての役割を果たし、過硫酸有機塩は、主として、酸化剤としての役割を果たしているが、それらにおけるナフタレントリスルホン酸、過硫酸有機塩とも、有機塩を用いていて、金属塩を含まないので、従来の導電性高分子に見られたような金属塩による導電性高分子の急速な劣化が生じない。そして、上記ナフタレントリスルホン酸を要件としているのは、ドーパントとして機能するためには少なくとも1つのスルホン基が必要であり、また、重合反応を促進させるためにはその他のスルホン基が必要であるからであり、さらに、スルホン基が多くあることによって、電子吸引性が強くなり、それによって、導電性組成物の導電率が向上するものと考えられるからである。スルホン基がそのような作用をする理由については、現在のところ必ずしも明確ではないが、スルホン基のプロトンが重合反応を速やかに進行させ、かつドーパントとしてポリマー中に取り込まれやすくするためではないかと考えられる。また、水溶性を高めるスルホン基を複数個含むことによって、高濃度化が可能になったと考えられる。さらに、ナフタレントリスルホン酸を用いるのは、ナフタレン骨格を有することによって、得られる導電性組成物の耐熱性を高めることができるからである。
本発明の酸化剤兼ドーパント溶液は、例えば、上記ナフタレントリスルホン酸のアルキルアミンとしてブチルアミンを例に挙げ、過硫酸有機塩として過硫酸アンモニウムを例に挙げて説明すると、例えば、次のようにして得ることができる。まず、ナフタレントリスルホン酸の水溶液にブチルアミンを添加し、pHを調整することによって、ナフタレントリスルホン酸ブチルアミン水溶液(すなわち、本発明の導電性高分子用ドーパント溶液)を得ることができる。そして、例えば、別途固形の過硫酸アンモニウムを水に溶解させた溶液と、上記ナフタレントリスルホン酸ブチルアミン水溶液(本発明の導電性高分子用ドーパント溶液)とを混合することによって本発明の酸化剤兼ドーパント溶液を得ることができる。
本発明の導電性組成物は、モノマーとして、チオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種を用いるが、そのチオフェンの誘導体としては、例えば、3,4−エチレンジオキシチオフェン、3−アルキルチオフェン、3−アルコキシチオフェン、3−アルキル−4−アルコキシチオフェン、3,4−アルキルチオフェン、3,4−アルコキシチオフェンなどが挙げられ、ピロールの誘導体としては、例えば、3,4−アルキルピロール、3,4−アルコキシピロールなどが挙げられ、アニリンの誘導体としては、例えば、2−アルキルアニリン、2−アルコキシアニリンなどが挙げられる。そのアルキル基やアルコキシ基の炭素数としては1〜16が好ましい。
そして、上記モノマーの重合にあたって、液状のものはそのまま使用できるが、重合反応をよりスムーズに進行させるには、上記モノマーを、例えば、メタノール、エタノール、プロパノール、ブタノール、アセトン、アセトニトリルなどの有機溶媒で希釈して溶液(有機溶媒溶液)状にしておくことが好ましい。
上記モノマーの重合時の態様としては、導電性組成物の使用形態によっては異なる態様を採ることが好ましく、例えば、導電性組成物をフィルム状などに形成し、それを導電性組成物の応用機器に組み込む場合は、どのような態様を採用してもよいが、導電性組成物を固体電解コンデンサの固体電解質として用いる場合は、固体電解コンデンサの製造工程中で酸化剤兼ドーパントの溶液の存在下で上記モノマーを重合させることが好ましい。
上記モノマーの誘導体の重合態様としては、例えば、(1)上記ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種と過硫酸有機塩との混合物からなる酸化剤兼ドーパントの溶液と上記モノマーあるいはその有機溶媒溶液とを混合して上記モノマーを重合させる方法、(2)上記モノマーあるいはその有機溶媒溶液を先にコンデンサ素子の微細な孔に染み込ませた後、そのコンデンサ素子を酸化剤兼ドーパント溶液に浸漬して、上記モノマーを重合させる方法、あるいはその逆にコンデンサ素子を酸化剤兼ドーパント溶液に浸漬してコンデンサ素子の微細な孔に染み込ませた後、そのコンデンサ素子を上記モノマーあるいはその有機溶媒溶液に浸漬して、上記モノマーを重合させる方法、などが挙げられる。さらに、コンデンサ素子を酸化剤兼ドーパント溶液と上記モノマーあるいはその有機溶媒溶液に交互に浸漬して、上記モノマーを重合させてもよい。その際、コンデンサ素子を酸化剤兼ドーパント溶液、上記モノマーあるいはその有機溶媒溶液のいずれを先に浸漬してもよい。
次に、これら重合態様(1)〜(2)をより具体的に示す。
重合態様(1)
乳化剤としてアルキルアミンオキサイドを用い(具体的には、例えば35質量%デシルジアミンオキサイド水溶液を用いる)、この乳化剤を酸化剤兼ドーパント溶液に対して、質量比で、酸化剤兼ドーパント溶液:乳化剤=100:20〜100:0.01、好ましくは100:10〜10:0.05の割合で混合し、その溶液に対し、質量基準で、2〜50%、好ましくは10〜30%の上記モノマーを混ぜ合わせる。30秒〜30分間、好ましくは3分〜20分間混合した後、その混合液にコンデンサ素子を浸漬する。10秒〜300秒後、好ましくは30秒〜120秒後にコンデンサ素子を液中から引き出し、0〜50℃、好ましくは5〜30℃の温度で、30分〜600分放置した後、または引き出した直後に、50℃〜200℃の温度で、10分〜1日間放置して上記モノマーの重合を行う。
重合態様(2)
上記モノマーを濃度が5〜100質量%、さらに好ましくは10〜40質量%になるよう有機溶媒で希釈した液(有機溶媒溶液)にタンタル焼結体を浸漬し、10秒〜300秒、さらに好ましくは20秒〜120秒後にタンタル焼結体を上記モノマー溶液の有機溶媒溶液中から引き出し、10〜60℃、さらに好ましくは10〜30℃の温度で溶媒がある程度蒸発するまで、1分〜60分、さらに好ましくは1分〜10分放置する。その後、あらかじめ用意しておいた酸化剤兼ドーパント溶液と乳化剤としての20%デシルジメチルアミンオキサイド溶液とを質量比で100:10〜100:0.01、好ましくは100:5〜100:0.1で混合した混合液に上記タンタル焼結体を浸漬し、10秒〜300秒、10秒〜60秒後に上記タンタル焼結体を上記混合液中から取り出し、0〜50℃、10〜30℃の温度で、表面が乾燥するまで(5分間以上)放置した後、あるいは上記モノマーの有機溶媒溶液を滴下直後に、0〜120℃、好ましくは30〜70℃の温度で、10分から1日、好ましくは10分〜2時間放置して上記モノマーの重合を行う。
本発明の酸化剤兼ドーパント溶液を用いて得られる上記本発明の導電性組成物は、例えば、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム固体電解コンデンサ(アルミニウム積層型固体電解コンデンサ、アルミニウム巻回型固体電解コンデンサなど)などの固体電解コンデンサの固体電解質として好適に用いられるが、本発明の導電性組成物を固体電解コンデンサの固体電解質として用いる場合、前記のように、固体電解コンデンサの製造工程中で上記モノマーの重合を行うことが好ましい。その際、酸化剤兼ドーパント溶液の濃度は、導電性組成物の生成効率、つまり、上記モノマーの重合時の反応効率に影響を及ぼし、ひいては固体電解コンデンサの製造効率や特性などに影響を及ぼす。よって、酸化剤兼ドーパント溶液中の酸化剤兼ドーパント濃度としては、25質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましく、55質量%以上にすることがさらに好ましく、また、いずれの場合も、濃度を80質量%以下にすることが好ましい。
すなわち、酸化剤兼ドーパントの濃度が25質量%より低い場合は、上記モノマーの重合反応が進行しにくく、反応効率が非常に悪くなるが、25質量%以上では、重合反応が進行しやすくなり、30質量%以上、より好ましくは40質量%以上になると、タンタル固体電解コンデンサ、ニオブ固体電解コンデンサ、アルミニウム固体電解コンデンサなどの製造効率や特性面のいずれに関しても満足すべき結果が得られるようになるが、酸化剤兼ドーパント溶液の濃度を55質量%以上にすることによって、ESRが低く、かつ静電容量が高いなど、特性面でも満足すべきコンデンサが得られるようになる。ただし、酸化剤兼ドーパント溶液の濃度が80質量%より高くなると、かえって特性が低下する傾向がある。本発明の酸化剤兼ドーパント溶液は、上記のような高濃度にすることができ、それが導電性組成物の製造効率、ひいては固体電解コンデンサの製造効率や特性を向上させることになる。
また、酸化剤兼ドーパント溶液のpHも、特にアルミニウム固体電解コンデンサに関しては重要であり、pHが1未満では、誘電体層が破壊されて、優れた特性が出なくなるおそれがあるので、酸化剤兼ドーパント溶液のpHは、1以上であることが好ましく、4以上であることがより好ましく、10以下であることが好ましく、8以下であることがより好ましい。ただし、タンタル固体電解コンデンサやニオブ固体電解コンデンサなどは、誘電体層の耐酸性が強いため、pHが1未満でもさしつかえない。ちなみに、これまでの固体電解コンデンサの製造にあたって用いられてきた有機スルホン酸鉄塩の場合、pHは0.5程度であり、アルミニウム固体電解コンデンサの製造に際しては必ずしも適していない。
上記モノマーの重合反応が進むにつれて、反応系のpHは低くなるが、酸化剤兼ドーパント溶液に、ドーパント溶液の乳化剤として上述したアルキルアミンオキサイドを添加している場合(例えば、この乳化剤を含有するドーパント溶液を用いて酸化剤兼ドーパント溶液を構成した場合)、このアルキルアミンオキサイドがpHの低下を抑制する作用があり、反応を均一に進行させるという作用に加えて、この面でも効果がある。
以上、酸化剤兼ドーパント溶液の濃度に関して、特に固体電解コンデンサを製造する場合について説明してきたが、酸化剤兼ドーパント溶液の濃度は、導電性組成物を製造する場合も重要であり、その酸化剤兼ドーパント溶液中の酸化剤兼ドーパント濃度としては、25質量%以上が好ましく、30質量%以上がより好ましく、55質量%以上がさらに好ましく、また、80質量%以下が好ましい。そして、固体電解コンデンサの製造に際しても、これまで説明してきたように、酸化剤兼ドーパント溶液の存在下で上記モノマーを重合させる場合だけでなく、酸化剤兼ドーパント溶液を一旦乾燥して、それに上記モノマーを接触させて、上記モノマーを重合させてもよい。また、このように、一旦乾燥して上記モノマーに接触させる場合にも、酸化剤兼ドーパント溶液の濃度は高いほど好ましく、その濃度としては、前記同様に25質量%以上が好ましく、30質量%以上がより好ましく、55質量%以上がさらに好ましく、また、80質量%以下が好ましい。
なお、本発明の固体電解コンデンサは、上記本発明の導電性組成物を固体電解質として
有していればよく、その他の構成については、従来公知の固体電解コンデンサで採用され
ている構成と同様のものが採用できる。
本発明の固体電解コンデンサにおいては、固体電解質として使用されている導電性組成物における導電性高分子のドーパントと構成モノマー(チオフェンまたは誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種のモノマー)との比率をモル比で1:1〜1:3の範囲にすることができる。
Systhetic Metals,101 561−564(1999),K.E.Aasmundtveutによれば、パラトルエンスルホン酸第2鉄(III)を酸化剤兼ドーパントとして用いて3,4−エチレンジオキシチオフェンを重合させ、洗浄、乾燥して得られた導電性高分子を分析すると、ドーパントであるパラトルエンスルホン酸のS(硫黄)と構成モノマーである3,4−エチレンジオキシチオフェンのS(硫黄)の比率は、それらの仕込み比にかかわらず、モル比で1:4になると報じられている。すなわち、ドーパント:構成モノマーの比率がモル比で1:4である。
これに対して、本発明の固体電解コンデンサにおいては、例えば、後記の実施例11〜12に示すように、ドーパントのS(硫黄)と構成モノマーのS(硫黄)との比率をモル比で1:1〜1:3の範囲内におさめることができる。そして、この構成モノマーに対するドーパントの比率を高くすることができることも、得られる導電性高分子の導電率を向上させることに寄与しているものと考えられる。つまり、本発明の酸化剤兼ドーパントを用いた場合、パラトルエンスルホン酸第2鉄(III)を酸化剤兼ドーパントとして用いた場合に比べて、得られる導電性高分子のドーパントのモノマーに対する比率を高くすることができ、これが得られる導電性高分子の導電率を高くさせることに寄与していると考えられる。
つぎに、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。なお、以下の実施例などにおいて、溶液、希釈液、分散液などの濃度を示す%は、特にその単位を付記しないかぎり、質量%である。
〔導電性組成物での評価〕
実施例1
濃度が70%のナフタレントリスルホン酸(実施例で用いるナフタレントリスルホン酸はいずれも1,3,6−ナフタレントリスルホン酸である)ブチルアミン水溶液(pH5)3.58mlと濃度が45%の過硫酸アンモニウム水溶液3.58mlを密栓付きバイアルに入れ、混合した後、その混合液のうちの150μlを3cm×4cmのセラミックプレート上に滴下し、室温下30分間放置した。次いで、その上に、濃度が25%の3,4−エチレンジオキシチオフェンのエタノール溶液を100μl滴下し、5分間室温で放置した後、70℃で30分間重合反応を行った。セラミックプレート上に形成されたポリエチレンジオキシチオフェンを大過剰の水で洗浄した後、50℃で1時間、150℃で1時間乾燥して導電性組成物を得た。なお、ナフタレントリスルホン酸ブチルアミン水溶液と過硫酸アンモニウム水溶液との混合液中のナフタレントリスルホン酸ブチルアミンと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸ブチルアミン1に対し、過硫酸アンモニウム0.64であった。
実施例2
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が45%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行って導電性組成物を得た。なお、ナフタレントリスルホン酸ブチルアミン水溶液と過硫酸アンモニウム水溶液との混合液中のナフタレントリスルホン酸ブチルアミンと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸ブチルアミン1に対し、過硫酸アンモニウム1であった。
実施例3
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が70%のナフタレントリスルホン酸2−メチルイミダゾール水溶液(pH5)を用いた以外は、実施例1と同様の操作を行って導電性組成物を得た。なお、ナフタレントリスルホン酸2−メチルイミダゾール水溶液と過硫酸アンモニウム水溶液との混合液中のナフタレントリスルホン酸2−メチルイミダゾールと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸2−メチルイミダゾール1に対し、過硫酸アンモニウム0.64であった。
実施例4
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が70%のナフタレントリスルホン酸4−メチルイミダゾール水溶液(pH5)を用いた以外は、実施例1と同様の操作を行って導電性組成物を得た。なお、ナフタレントリスルホン酸4−メチルイミダゾール水溶液と過硫酸アンモニウム水溶液との混合液中のナフタレントリスルホン酸4−メチルイミダゾールと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸4−メチルイミダゾール1に対し、過硫酸アンモニウム0.64であった。
実施例5
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が70%のナフタレントリスルホン酸メチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行って導電性組成物を得た。なお、ナフタレントリスルホン酸メチルアミン水溶液と過硫酸アンモニウム水溶液との混合液中のナフタレントリスルホン酸メチルアミンと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸メチルアミン1に対し、過硫酸アンモニウム0.64であった。
比較例1
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が70%のスルホフタル酸ブチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行った。ただし、この比較例1では、導電性組成物の膜を形成することができなかった。
比較例2
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が45%のパラトルエンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行った。
比較例3
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が60%のメトキシベンゼンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行った。
比較例4
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が60%のテトラリンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行った。
比較例5
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が45%のブチルナフタレンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、実施例1と同様の操作を行った。
比較例6
ナフタレントリスルホン酸ブチルアミン水溶液と過硫酸アンモニウム水溶液との混合物からなる酸化剤兼ドーパント溶液7.16mlに代えて、濃度が40%のパラトルエンスルホン酸第2鉄溶液(ブタノール溶液)7.16mlを用いた以外は、実施例1と同様の操作を行った。
上記実施例1〜5および比較例2〜6でセラミックプレート上に形成したポリエチレンジオキシチオフェン膜に、1.5トン(t)の荷重をかけたまま5分間静置し、膜圧を均等にした後、それらのポリエチレンジオキシチオフェンの表面抵抗を室温(約25℃)下でJIS K 7194に準じて4探針方式の電導度測定器〔三菱化学製MCP−T600(商品名)〕により測定した。その結果を表1に示す。なお、測定は、各試料とも、5点ずつについて行い、表1に示す数値はその5点の平均値を求め、小数点以下を四捨五入して示したものである。また、前記のように、比較例1の場合は膜の形成ができなかったので、表面抵抗の測定はしていない。
また、上記表面抵抗を測定後の実施例1〜5および比較例2〜6のポリエチレンジオキシチオフェン膜をそのセラミックプレートと共に150℃の恒温槽中に静置し、100時間貯蔵後に上記プレートを取り出し、そのポリエチレンジオキシチオフェン膜の表面抵抗を前記と同様に測定し、その測定結果に基づき貯蔵による表面抵抗の増加率を調べた。その結果も表1に示す。なお、この表面抵抗の増加率は、貯蔵後の表面抵抗値を初期表面抵抗値(すなわち、貯蔵前の表面抵抗値)で割り、パーセント(%)で示したものである。その表面抵抗の増加率を算出するための式は次の通りである。
Figure 0005637544
Figure 0005637544
表1に示すように、実施例1〜5は、比較例2〜5に比べて、初期表面抵抗が小さく、比較例6に比べて、貯蔵による表面抵抗の増加率が少なかった。なお、実施例1〜5では、表面が緻密な(綺麗な)ポリエチレンジオキシチオフェン膜が形成されていたが、比較例2〜5では、表面がまばらな膜しか形成できなかった。これは、実施例1〜5で用いた酸化剤兼ドーパントが、・BR>芒R例2〜5で用いた酸化剤兼ドーパントより、ポリエチレンジオキシチオフェンを生成させる反応効率が高いことによるものと考えられる。なお、比較例6でも、膜の形態こそ実施例1〜5の場合と同様に緻密な膜が形成されていたが、前記のように、比較例6は、貯蔵による表面抵抗の増加率が高く、実施例1〜5に比べて、実用性に欠けていた。
次に、アルミニウム巻回型固体電解コンデンサでの評価を示す。
〔アルミニウム巻回型固体電解コンデンサでの評価〕
実施例6
アルミニウム箔の表面をエッチング処理した後、化成処理を行って誘電体層を形成した陽極にリード端子を取り付け、また、アルミニウム箔からなる陰極にリード端子を取り付け、それらのリード端子付き陽極と陰極とをセパレータを介して巻回して、コンデンサ素子を作製した。
次に、濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)3.58mlと濃度が45%の過硫酸アンモニウム水溶液3.58mlと濃度が35%のジメチルラウリルアミンオキサイド水溶液0.26mlと3,4−エチレンジオキシチオフェン2mlとを密栓付きバイアルに入れて、10分間混合した後、その中に素早く上記コンデンサ素子を浸漬した。1分後に引き出し、室温で2時間重合を行い、その後、エタノールで2時間洗浄した後、150℃で180分間加熱して重合を完結させた後、アルミニウムの外装ケースに入れ、封止した。その後、130℃で25Vの定格電圧をかけながらエージングを行って、アルミニウム巻回型固体電解コンデンサを作製した。なお、上記の重合に用いた混合液中のナフタレントリスルホン酸ブチルアミンと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸ブチルアミン1に対して、過硫酸アンモニウム0.64であった。
実施例7
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液3.85mlに代えて、濃度が80%のナフタレントリスルホン酸2−メチルイミダゾール水溶液(pH5)3.85mlを用いた以外は、すべて実施例6と同様の操作を行って、アルミニウム巻回型固体電解コンデンサを作製した。なお、重合に用いた混合液中のナフタレントリスルホン酸2−メチルイミダゾールと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸2−メチルイミダゾール1に対して、過硫酸アンモニウム0.56であった。
実施例8
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液3.58mlに代えて、濃度が80%のナフタレントリスルホン酸2−エチル−4−メチルイミダゾール水溶液(pH5)3.58mlを用いた以外は、すべて実施例6と同様の操作を行って、アルミニウム巻回型固体電解コンデンサを作製した。なお、重合に用いた混合液中のナフタレントリスルホン酸2−エチル−4−メチルイミダゾールと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸2−エチル−4−メチルイミダゾール1に対して、過硫酸アンモニウム0.56であった。
実施例9
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液3.58mlに代えて、濃度が70%のナフタレントリスルホン酸エチルアミン水溶液(pH5)3.58mlを用いた以外は、すべて実施例6と同様の操作を行って、アルミニウム巻回型固体電解コンデンサを作製した。なお、重合に用いた混合液中のナフタレントリスルホン酸エチルアミンと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸エチルアミン1に対して、過硫酸アンモニウム0.64であった。
実施例10
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液3.58mlに代えて、濃度が80%のナフタレントリスルホン酸2−メチルイミダゾール水溶液(pH5)3.58mlを用いた以外は、すべて実施例6と同様の操作を行って、アルミニウム巻回型固体電解コンデンサを作製した。なお、重合に用いた混合液中のナフタレントリスルホン酸2−メチルイミダゾールと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸2−メチルイミダゾール1に対して、過硫酸アンモニウム0.56であった。
比較例7
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液に代えて、濃度が70%のスルホフタル酸ブチルアミン水溶液(pH5)を用いた以外は、すべて実施例6と同様の操作を行った。
比較例8
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液に代えて、濃度が65%のメトキシベンゼンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、すべて実施例6と同様の操作を行った。
比較例9
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液に代えて、濃度が45%のパラトルエンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、すべて実施例6と同様の操作を行った。
比較例10
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液に代えて、濃度が60%のナフタレンスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、すべて実施例6と同様の操作を行ったが、過硫酸アンモニウム水溶液と混合した時点で、溶液が固化したため、コンデンサ素子を浸漬することができなかった。
比較例11
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液に代えて、濃度が80%のナフタレンスルホン酸水溶液を用いた以外は、すべて実施例6と同様の操作を行ったが、過硫酸アンモニウム水溶液と混合した時点で、溶液が固化したため、コンデンサ素子を浸漬することができなかった。
比較例12
濃度が40%のパラトルエンスルホン酸第2鉄溶液(ブタノール溶液)と3,4−エチレンジオキシチオフェンとを質量比4:1で混合し、10秒間激しく振った後、素早くコンデンサ素子を浸漬した以外は、実施例6と同様の操作を行った。
比較例13
3,4−エチレンジオキシチオフェン以外のすべての試薬の濃度を2倍に希釈した溶液を用いて室温で1時間重合を行うところまで、実施例6と同様の操作を行った。さらにもう1度この操作を繰り返した後、40℃で20分、70℃で30分、130℃で1時間、180℃で20分加熱重合して重合を完結させた後、実施例6と同様の操作でアルミニウム巻回型固体電解コンデンサを作製した。
上記のようにして作製した実施例6〜10および比較例7〜9、比較例12〜13のアルミニウム巻回型固体電解コンデンサについて、その静電容量、ESR(等価直列抵抗)および漏れ電流を測定し、また、漏れ電流不良の発生の有無を調べた。その結果を表2に示す。なお、静電容量、ESRおよび漏れ電流の測定方法や漏れ電流不良の発生の有無の試験方法は次に示す通りである。
静電容量:
HEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃、120Hzで静電容量を測定した。
ESR:
HEWLETT PACKARD社製のLCRメーター(4284A)を用い、25℃、100kHzでESRを測定した。
漏れ電流:
アルミニウム巻回型固体電解コンデンサに、25℃で25Vの定格電圧を60秒間印加した後、デジタルオシロスコープにて漏れ電流を測定した。
漏れ電流不良の発生:
上記漏れ電流の場合と同様に漏れ電流を測定し、漏れ電流が83μA以上のものは漏れ電流不良が発生していると判断した。
なお、測定は、各試料とも、30個ずつについて行い、静電容量、ESRおよび漏れ電流に関して表2に示す数値は、その30個の平均値を求め、小数点以下を四捨五入して示したものである。また、この漏れ電流不良の発生の有無を調べた結果の表2への表示にあたっては、試験に供した全コンデンサ個数を分母に示し、漏れ電流不良の発生があったコンデンサ個数を分子に示す態様で表示する。ただし、漏れ電流値に関しては、漏れ電流不良が発生しなかったものについての平均値である。
Figure 0005637544
表2に示すように、実施例6〜10のアルミニウム巻回型固体電解コンデンサは、比較例7〜9および比較例13のアルミニウム巻回型固体電解コンデンサに比べて、静電容量が大きく、かつESRが小さく、また、比較例12のアルミニウム巻回型固体電解コンデンサに比べて、漏れ電流が少なく、漏れ電流不良の発生が少なかった。
また、表2に示す結果から明らかなように、比較例7〜9および比較例13のアルミニウム巻回型固体電解コンデンサは、静電容量が小さく、かつ、ESRが大きすぎ、コンデンサとして使用するのに必要な特性を有していなかった。また、比較例12のアルミニウム巻回型固体電解コンデンサは、静電容量やESRを見るかぎりでは、実施例6〜10のアルミニウム巻回型固体電解コンデンサと同等の特性を有するものの、漏れ電流不良の発生が多く、また、漏れ電流不良が発生しなかったものでも、漏れ電流が実施例6〜10のアルミニウム巻回型固体電解コンデンサに比べて大きく、実用性に欠けていた。
つぎに、上記実施例6〜10および比較例12〜13のアルミニウム巻回型固体電解コンデンサ中からそれぞれ無作為に選んだ20個ずつのコンデンサを105℃で、1000時間貯蔵後に前記と同様に静電容量、ESR、漏れ電流を測定し、かつ漏れ電流不良の発生の有無を調べた。その結果を表3に示す。なお、表3に示す静電容量、ESRおよび漏れ電流の値は、それぞれ20個の平均値を求め、小数点以下を四捨五入して示したものである。
Figure 0005637544
表2に示す結果と表3に示す結果との対比から明らかなように、実施例6〜10のアルミニウム巻回型固体電解コンデンサは、貯蔵による静電容量の低下やESRの増加が少なく、かつ漏れ電流の増加も少なく、漏れ電流不良の発生もなかったが、比較例12〜13のアルミニウム巻回型固体電解コンデンサは、貯蔵によるESRや漏れ電流の増加が実施例6〜10のアルミニウム巻回型固体電解コンデンサに比べて大きく、また、漏れ電流不良の発生も認められた。
つぎに、タンタル固体電解コンデンサでの評価について示す。
〔タンタル固体電解コンデンサでの評価〕
実施例11
タンタル焼結体を濃度が0.1%のリン酸水溶液に浸漬した状態で、12Vの電圧を印加することによって化成処理を行い、タンタル焼結体の表面に誘電体被膜を形成した。次に、濃度が35%の3,4−エチレンジオキシチオフェンのエタノール溶液にタンタル焼結体を浸漬し、1分後に取り出し、5分間放置した。その後、あらかじめ用意しておいた濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)と濃度が40%の過硫酸アンモニウム水溶液と濃度が20%のデシルジメチルアミンオキサイド水溶液を200:200:1の質量比で混合した混合物からなる乳化剤入りの酸化剤兼ドーパント溶液中に浸漬し、30秒間後に取り出し、室温で60分間放置して、重合を行った。その後、純水中に上記タンタル焼結体を浸漬し、30分間放置した後、取り出して70℃で30分間乾燥させた。この操作を12回繰り返した後、カーボンペースト、銀ペーストでポリエチレンジオキシチオフェン層を覆ってタンタル固体電解コンデンサを作製した。なお、酸化剤兼ドーパント溶液中のナフタレントリスルホン酸ブチルアミンと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸ブチルアミン1に対して、過硫酸アンモニウム0.57であった。
実施例12
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が80%のナフタレントリスルホン酸2−メチルイミダゾール水溶液(pH5)を用いた以外は、すべて実施例11と同様の操作を行って、タンタル固体電解コンデンサを得た。なお、酸化剤兼ドーパント溶液中のナフタレントリスルホン酸2−メチルイミダゾールと過硫酸アンモニウムとの比率は、質量比で、ナフタレントリスルホン酸2−メチルイミダゾール1に対して、過硫酸アンモニウム0.57であった。
比較例14
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が70%のスルホフタル酸ブチルアミン水溶液(pH5)を用い、重合回数を18回とした以外は、実施例11と同様の操作を行った。
比較例15
濃度が70%のナフタレントリスルホン酸ブチルアミン水溶液(pH5)に代えて、濃度が70%のフェノールスルホン酸ブチルアミン水溶液(pH5)を用いた以外は、実施例11と同様の操作を行った。
比較例16
実施例11における酸化剤兼ドーパント溶液に代えて、濃度が35%のパラトルエンスルホン酸第2鉄のエタノール溶液を用いた以外は、実施例11と同様の操作を行った。
上記のようにして作製した実施例11〜12および比較例14〜16のタンタル固体電解コンデンサについて、前記実施例6と同様に静電容量およびESRを測定した。その結果を表4に示す。なお、測定は、各試料とも、20個ずつについて行い、表4に示す数値は、その20個の平均値を求め、小数点以下を四捨五入して示したものである。
Figure 0005637544
表4に示すように、実施例11〜12のタンタル固体電解コンデンサは、比較例14のタンタル固体電解コンデンサに比べて、静電容量が大きく、かつESRが小さく、タンタル固体電解コンデンサとして優れた特性を有していた。なお、比較例15〜16のタンタル固体電解コンデンサは、静電容量やESRの測定結果を見る限りでは、実施例11〜12のタンタル固体電解コンデンサに比べて遜色はないものの、次に示すように、高温で貯蔵した場合のESRの増加が大きく、貯蔵特性に問題点を有していた。
つぎに、上記実施例11〜12および比較例14〜16のタンタル固体電解コンデンサからそれぞれ無作為に選んだ20個ずつのコンデンサを105℃で400時間貯蔵した後、前記と同様に静電容量およびESRを測定した。その結果を表5に示す。なお、表5に示す数値は、それぞれ20個の平均値を求め、小数点以下を四捨五入して示したものである。
Figure 0005637544
表4に示す結果と表5に示す結果との対比から明らかなように、実施例11〜12のタンタル固体電解コンデンサは、高温での貯蔵による静電容量の低下やESRの増加がそれほど大きくないのに対し、比較例14〜16のタンタル固体電解コンデンサは、特に貯蔵によるESRの増加が大きく、貯蔵特性に問題点を有していた。
つぎに、上記実施例11〜12および比較例14〜16のタンタル固体電解コンデンサを分解し、固体電解質として使用されている導電性高分子(ドーパントを取り込んで重合して導電性を有するようになった3,4−エチレンジオキシチオフェンの重合体)層がむき出しになった状態のコンデンサ素子をそれぞれESCA(光電子分光法)でドーパントのS(硫黄)と構成モノマーの3,4−エチレンジオキシチオフェンのS(硫黄)とを測定した。測定はそれぞれのコンデンサについて5個ずつ行い、その平均値を算出し、ドーパントのSとモノマーのSとのモル比率を求めた。その結果を表6に示す。
Figure 0005637544
前記のようにSysthetic Metals,101 561−564(1999),K.E.Aasmundtveutによれば、パラトルエンスルホン酸第2鉄(III)を酸化剤兼ドーパントとして用いて3,4−エチレンジオキシチオフェンを重合させ、洗浄、乾燥して得られた導電性高分子を分析すると、ドーパントであるパラトルエンスルホン酸のS(硫黄)と構成モノマーである3,4−エチレンジオキシチオフェンのS(硫黄)との比率は、両者の仕込比のいかんにかかわらず、モル比で1:4であると報じられている。つまり、ドーパント:モノマーの比率がモル比で1:4である。
これに対して、本発明の実施例11〜12により得られたコンデンサの導電性高分子におけるドーパントと構成モノマーとの比率は、表6に示すように、モル比で1.0:1.9〜1.0:2.4の範囲にあり、本発明の酸化剤兼ドーパントを用いた方が、パラトルエンスルホン酸第2鉄を酸化剤兼ドーパントとして用いた場合より、モノマーに対するドーパントのモル比率が高くなっている。なお、上記実施例11〜12のタンタル固体電解コンデンサの導電性高分子におけるドーパントは、アンモニア水溶液で脱ドープした後、LC−MS(液体クロマトグラフィー−マススペクトル、商品名JMS−T100LC、日本電子社製)で測定したところ、硫酸とナフタレントリスルホン酸が検出された。

Claims (8)

  1. ナフタレントリスルホン酸のアルキルアミン塩またはイミダゾール塩から選ばれる少なくとも1種と過硫酸有機塩との質量比が1:0.1〜1:1.5の混合物を酸化剤兼ドーパントとして、チオフェンまたはその誘導体、ピロールまたはその誘導体およびアニリンまたはその誘導体よりなる群から選ばれる少なくとも1種のモノマーを重合させて得られた導電性組成物を固体電解質として構成したことを特徴とする固体電解コンデンサ。
  2. チオフェンの誘導体が、3,4−エチレンジオキシチオフェンである請求項に記載の固体電解コンデンサ。
  3. ナフタレントリスルホン酸のアルキルアミン塩を構成するアルキルアミンのアルキル基は、炭素数が1〜12である請求項に記載の固体電解コンデンサ。
  4. ナフタレントリスルホン酸のイミダゾール塩を構成するイミダゾールは、イミダゾールであるか、あるいはイミダゾール環の2位または4位が、炭素数1〜20のアルキル基またはフェニル基で置換されているものである請求項に記載の固体電解コンデンサ。
  5. ナフタレントリスルホン酸のアルキルアミン塩が、ナフタレントリスルホン酸メチルアミン、ナフタレントリスルホン酸エチルアミン、ナフタレントリスルホン酸プロピルアミンまたはナフタレントリスルホン酸ブチルアミンである請求項に記載の固体電解コンデンサ。
  6. ナフタレントリスルホン酸のイミダゾール塩が、ナフタレントリスルホン酸2−メチルイミダゾール、ナフタレントリスルホン酸4−メチルイミダゾールまたはナフタレントリスルホン酸2−エチル−4−メチルイミダゾールである請求項に記載の固体電解コンデンサ。
  7. 過硫酸有機塩が、過硫酸アンモニウムである請求項のいずれかに記載の固体電解コンデンサ。
  8. 固体電解質として用いられている導電性組成物におけるドーパントと構成モノマーとの比率がモル比で1:0.1〜1:3である請求項のいずれかに記載の固体電解コンデンサ。
JP2012157067A 2012-07-13 2012-07-13 固体電解コンデンサ Active JP5637544B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157067A JP5637544B2 (ja) 2012-07-13 2012-07-13 固体電解コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157067A JP5637544B2 (ja) 2012-07-13 2012-07-13 固体電解コンデンサ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008263484A Division JP2010090324A (ja) 2008-10-10 2008-10-10 導電性高分子用ドーパント溶液、導電性高分子用酸化剤兼ドーパント溶液、導電性組成物、固体電解コンデンサおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2013010958A JP2013010958A (ja) 2013-01-17
JP5637544B2 true JP5637544B2 (ja) 2014-12-10

Family

ID=47685085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157067A Active JP5637544B2 (ja) 2012-07-13 2012-07-13 固体電解コンデンサ

Country Status (1)

Country Link
JP (1) JP5637544B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5526660B2 (ja) * 2009-08-31 2014-06-18 三洋電機株式会社 導電性高分子膜、導電性高分子膜の製造方法、および電子デバイスの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651637B2 (en) * 2005-02-08 2010-01-26 Tayca Corporation Dopant solution for an electroconductive polymer, an oxidant and dopant solution for an electroconductive polymer, an electroconductive composition and a solid electrolytic capacitor
JP4776338B2 (ja) * 2005-10-28 2011-09-21 テイカ株式会社 導電性高分子用ドーパント溶液、導電性高分子用酸化剤兼ドーパント、導電性組成物、固体電解コンデンサおよびその製造方法
EP2031008B1 (en) * 2006-06-07 2016-10-05 Tayca Corporation Reaction accelerator for conductive polymer synthesis, conductive polymer and solid electrolytic capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JP2013010958A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
JP4480039B2 (ja) 導電性高分子用ドーパント溶液、導電性高分子用酸化剤兼ドーパント溶液、導電性組成物および固体電解コンデンサ
JP5637544B2 (ja) 固体電解コンデンサ
JP5072112B2 (ja) 導電性高分子合成用反応促進剤、導電性高分子および固体電解コンデンサ
JP5911136B2 (ja) 固体電解コンデンサの製造方法
JP4454029B2 (ja) 導電性高分子およびそれを用いた固体電解コンデンサ
JP4776338B2 (ja) 導電性高分子用ドーパント溶液、導電性高分子用酸化剤兼ドーパント、導電性組成物、固体電解コンデンサおよびその製造方法
JP4785122B2 (ja) 導電性高分子用酸化剤兼ドーパント、導電性組成物、固体電解コンデンサおよびその製造方法。
JP2010090324A (ja) 導電性高分子用ドーパント溶液、導電性高分子用酸化剤兼ドーパント溶液、導電性組成物、固体電解コンデンサおよびその製造方法
WO2011052237A1 (ja) 固体電解コンデンサおよびその製造方法
JP5598897B2 (ja) 固体電解コンデンサの製造方法
JP5296860B2 (ja) 固体電解コンデンサの製造方法
JP5327844B2 (ja) 導電性高分子形成用電解重合液、導電性高分子、それを用いた固体電解コンデンサ及びその製造方法
JP4986062B2 (ja) 固体電解コンデンサの製造方法
JP2013214674A (ja) 巻回型固体電解コンデンサの製造方法
JP5289212B2 (ja) 導電性高分子製造用酸化剤とそれを用いた固体電解コンデンサ及びその製造方法
JP5062694B2 (ja) 導電性高分子製造用酸化剤、それを用いた固体電解コンデンサとその製造方法
JP5481639B2 (ja) 導電性高分子製造用酸化剤とそれを用いた固体電解コンデンサ及びその製造方法
JP2010143996A (ja) 導電性高分子とそれを用い固体電解コンデンサ及びその製造方法
JP2013179292A (ja) 導電性高分子製造用酸化剤溶液及びそれを用いた固体電解コンデンサの製造方法
JP5170707B2 (ja) 固体電解コンデンサ及びその製造方法
JP2012025919A (ja) 導電性高分子製造用酸化剤溶液とそれを用いた固体電解コンデンサの製造方法
JP2010245364A (ja) 固体電解コンデンサ及びその製造方法
JP2011009314A (ja) 固体電解コンデンサ及びその製造方法
JP2017174917A (ja) 固体電解コンデンサ及びその製造方法
JP2011187513A (ja) 導電性高分子製造用酸化剤及び固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R150 Certificate of patent or registration of utility model

Ref document number: 5637544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250