JP5633505B2 - Reuse of spent carbon-containing refractories - Google Patents

Reuse of spent carbon-containing refractories Download PDF

Info

Publication number
JP5633505B2
JP5633505B2 JP2011272612A JP2011272612A JP5633505B2 JP 5633505 B2 JP5633505 B2 JP 5633505B2 JP 2011272612 A JP2011272612 A JP 2011272612A JP 2011272612 A JP2011272612 A JP 2011272612A JP 5633505 B2 JP5633505 B2 JP 5633505B2
Authority
JP
Japan
Prior art keywords
carbon
refractory
refractories
dmax
carbon content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011272612A
Other languages
Japanese (ja)
Other versions
JP2012140318A (en
Inventor
康雅 福島
康雅 福島
加藤 久樹
久樹 加藤
中村 善幸
善幸 中村
雅夫 平
雅夫 平
住吉 秀文
秀文 住吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011272612A priority Critical patent/JP5633505B2/en
Publication of JP2012140318A publication Critical patent/JP2012140318A/en
Application granted granted Critical
Publication of JP5633505B2 publication Critical patent/JP5633505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、製鉄所等で発生した使用済み炭素含有耐火物を再生させて再利用する方法に関する。   The present invention relates to a method for reusing and recycling used carbon-containing refractories generated in steelworks and the like.

黒鉛などを含有する炭素含有耐火物は、炭素を含有するため、高熱伝導性かつ低熱膨張特性を有し、溶融金属やスラグに対して濡れにくくかつ反応しにくいために高耐食性を示して耐用性に優れるという特徴がある。このことから、該炭素含有耐火物は、冶金炉用耐火材料、例えば、マグネシア−カーボンれんがやアルミナ−カーボンれんが等が転炉や電気炉の炉壁れんがとして使用され、また、アルミナ−炭化珪素、黒鉛質れんが等が取鍋や混銑炉の内張り耐火物として使用されている。   Carbon-containing refractories containing graphite have high thermal conductivity and low thermal expansion characteristics because they contain carbon, and are resistant to wetting and reaction with molten metal and slag, so they exhibit high corrosion resistance and are durable. It is characterized by being excellent. From this, the carbon-containing refractory is used as a refractory material for metallurgical furnaces, for example, magnesia-carbon bricks, alumina-carbon bricks and the like are used as furnace wall bricks for converters and electric furnaces, and alumina-silicon carbide, Graphite bricks are used as lining refractories for ladle and kneading furnaces.

ただし、冶金炉用炉壁れんがとして使用された使用済みマグネシア−カーボンれんが等は、使用時に高温に曝されたとしてもなお、成形時に用いた樹脂(バインダー)に由来する残留炭素やピッチ等が残留しているのが普通である。こうした残留炭素等は黒鉛化度が低いため、そのままで粉砕、整粒しても熱伝導率や耐酸化性が低く、これを耐火物原料として再利用した場合、得られる耐火物は特性的に不十分なものになることが多い。   However, used magnesia-carbon bricks used as furnace wall bricks for metallurgical furnaces still have residual carbon, pitch, etc. derived from the resin (binder) used during molding, even when exposed to high temperatures during use. It is normal to do. Since such residual carbon has a low degree of graphitization, its thermal conductivity and oxidation resistance are low even if pulverized and sized as it is, and when this is reused as a refractory material, the resulting refractory is characteristically Often it is inadequate.

これに対し、近年、冶金炉などに施工された各種耐火物の使用済みれんが屑については、これらを再生処理して、再利用する方法についての種々の提案がある。例えば、特許文献1には、使用済み耐火物を粉砕、分級した上で、各粒子径に応じて定形耐火物や不定形耐火物の原料しとして、あるいは土木材料などとして再利用する方法が開示されている。また、特許文献2には、使用済み黒鉛含有耐火物を高温酸化雰囲気容器内で処理して、黒鉛成分を灰化除去し、耐火物成分(MgO、Al)のみを抽出して再利用する方法が開示されている。 On the other hand, in recent years, regarding used brick scraps of various refractories constructed in a metallurgical furnace or the like, there are various proposals for a method of reprocessing and reusing them. For example, Patent Document 1 discloses a method of pulverizing and classifying used refractories and then reusing them as raw materials for shaped refractories and irregular refractories according to each particle diameter, or as civil engineering materials. Has been. In Patent Document 2, a used graphite-containing refractory is treated in a high-temperature oxidizing atmosphere container, the graphite component is ashed and removed, and only the refractory component (MgO, Al 2 O 3 ) is extracted and re-examined. A method of using is disclosed.

特開2005−58835号公報JP 2005-58835 A 特開平03−75255号公報Japanese Patent Laid-Open No. 03-75255

使用済み耐火物から有用な耐火物成分を分別回収する上掲の従来技術のうち、特許文献1に記載の再利用方法は、回収した使用済み耐火物を粉砕−分級し、用途別に選別する技術であって、回収耐火物の改質が行われていないことから、耐火物原料としては耐用性の劣るものしか得られないという問題がある。また、特許文献2に記載の方法は、粗大粒が混入するため灰化黒鉛が残存することから特性が悪く、均質な耐火物原料になりにくいという問題がある。   Among the above-mentioned conventional techniques for separating and recovering useful refractory components from used refractories, the recycling method described in Patent Document 1 is a technique for crushing-classifying recovered used refractories and selecting them according to their use. However, since the recovered refractory is not reformed, there is a problem that only a poor refractory material can be obtained. In addition, the method described in Patent Document 2 has a problem that coarse particles are mixed and incinerated graphite remains, so that the characteristics are poor and it is difficult to obtain a homogeneous refractory raw material.

そこで、本発明の目的は、使用済み炭素含有耐火物を、残留炭素量の少ない耐火物用原料に再生させると共に、使途に応じた再利用しやすい形の耐火物原料を簡便に得る方法を提案することにある。   Therefore, the object of the present invention is to recycle the used carbon-containing refractory into a refractory raw material with a small amount of residual carbon, and propose a method for easily obtaining a refractory raw material in a form that can be easily reused according to the purpose of use. There is to do.

明者らは、使用済み炭素含有耐火物を粉砕したのち篩分けし、次いで、大気中において700℃以上の温度に加熱して残留炭素を燃焼除去して再生したものを耐火物原料として再利用する方法において、記粉砕および篩分け後の使用済み炭素含有耐火物の最大粒径(Dmax)を、加熱後の再生炭素含有耐火物原料の使途に応じた炭素含有率の目標上限値(γ)と、加熱前の使用済み炭素含有耐火物の炭素含有率(α)との関係が、下記式を満たすように調整し、れんが向けの高級再生耐火物か、不定形耐火材料向けの中級再生耐火物か、あるいは耐熱被覆材向けの低級耐火物かのいずれかの使途に応じた再生耐火物原料に作り分けることを特徴とする使用済み炭素含有耐火物の再利用方法を開発した。 Originating inventor et al., Sieved After crushing a used carbon-containing refractory, then re those reproduced residual carbon was heated to 700 ° C. or higher temperatures in the atmosphere by burning removed as refractory material a method of use, before Symbol ground and the maximum particle diameter (Dmax) and the target upper limit of the carbon content in accordance with the uses of recycled carbon-containing refractory raw material after heating the spent carbon-containing refractories after sieving ( and gamma), the relationship between the carbon content (alpha) of the used carbon-containing refractories before heating was adjusted so as to satisfy the following following formula, or higher regeneration refractories for brick, for monolithic refractories materials We have developed a method for reusing used carbon-containing refractories, characterized by making them into recycled refractory raw materials according to the use of either intermediate-grade refractories or low-grade refractories for heat-resistant coatings .

Dmax≦10×γ/α
ここで、
γ:加熱後の再生炭素含有耐火物原料中の炭素含有率の目標上限値(mass%)
α:加熱前の使用済み炭素含有耐火物中の炭素含有率(mass%)
Dmax:篩分け後の加熱前使用済み炭素含有耐火物の最大粒径(mm)
Dmax ≦ 10 × γ / α
here,
γ: Target upper limit value (mass%) of carbon content in refractory material containing regenerated carbon after heating
α: Carbon content (mass%) in used refractories containing carbon before heating
Dmax: Maximum particle size of used carbon-containing refractory before heating after sieving (mm)

上記のように構成される本発明によれば、使用済み炭素含有耐火物を大気雰囲気中の高温加熱(焼成)することで残留炭素を燃焼除去することができ、平均的に残留炭素の少ない耐火物原料に再生させることができると共に、高品質の再利用しやすい耐火物原料に改質させることができる。   According to the present invention configured as described above, the residual carbon can be burned and removed by heating (firing) the used carbon-containing refractory at a high temperature in the air atmosphere, and the refractory having little residual carbon on average. It can be regenerated into a raw material and can be modified into a high-quality refractory material that is easy to reuse.

しかも、本発明によれば、破砕、整粒後の耐火物最大粒径に応じて、焼成後の耐火物原料の炭素含有率を調整できるので、高純度のものを必要としない吹付け用などの不定形耐火材料用原料向け、或いは高純度のものを必要とするれんが用耐火物原料向け等に、所謂、使用目的(使途)に応じた再生耐火物を容易に作り分けることができるようになり、使用済み炭素含有耐火物の効率的な再利用が達成される。   Moreover, according to the present invention, the carbon content of the refractory raw material after firing can be adjusted according to the maximum particle size of the refractory after crushing and sizing, so that it is not necessary to have a high purity. So that it can be easily made separately for refractory materials according to the purpose of use (use), such as for raw materials for amorphous refractory materials or for refractory materials for bricks that require high purity Thus, efficient reuse of spent carbon-containing refractories is achieved.

本発明を説明するための、焼成後の炭素含有耐火物の炭素含有率と、焼成前の炭素含有耐火物の炭素含有率および最大粒径との関係を示すグラフである。It is a graph which shows the relationship between the carbon content rate of the carbon-containing refractory material after baking, the carbon content rate of the carbon-containing refractory material before baking, and the maximum particle size for explaining the present invention.

本発明は、主として、製鉄所で発生する使用済みの炭素含有耐火物、例えば、マグネシア−カーボンれんが屑、アルミナ−カーボンれんが屑等を、新たな耐火物用原料として、高級品や中・低級品に分けられ、それぞれの使途に適した形態のものに再生させて利用する方法を提案するものである。即ち、本発明によれば、これら使用済み炭素含有耐火物の再生耐火物としては、冶金炉用れんがの原料となるような高級耐火物用原料、または不定形耐火物用材料となるような中級耐火物原料、あるいは耐熱被覆材用の低級耐火物原料として作り分けることができる。   The present invention mainly uses used carbon-containing refractories generated at steelworks such as magnesia-carbon brick scrap, alumina-carbon brick scrap, etc. It is divided into two types and proposes a method of reproducing and using a form suitable for each use. That is, according to the present invention, the recycled refractories of these used carbon-containing refractories are high-grade refractory raw materials that are used as raw materials for metallurgical furnace bricks, or intermediate refractory materials that are used as amorphous refractory materials. They can be made separately as refractory raw materials or lower refractory raw materials for heat-resistant coating materials.

例えば、前記の高級品としての耐火物用原料としては、黒鉛化度の低い残留炭素の含有量が少なくマグネシアやアルミナ成分の多い再生耐火物原料にすることが好ましく、逆に、残留炭素の多い再生耐火物原料については、中級の不定形耐火材料や低級の耐熱被覆材のための再生耐火物原料とすることが好ましい。また、個別の用途に応じて、高い耐酸化性が要求されるような場合には、残留炭素の含有量が少ない再生耐火物原料とすることが好ましい。   For example, the above-mentioned refractory material as a high-grade product is preferably a recycled refractory material with a low content of residual carbon with a low degree of graphitization and a high content of magnesia and alumina components. The recycled refractory raw material is preferably a recycled refractory raw material for a medium-sized amorphous refractory material or a low-temperature heat-resistant coating material. In addition, when high oxidation resistance is required according to individual applications, it is preferable to use a recycled refractory material with a low residual carbon content.

このような高級・中級・低級の耐火物原料を、前記使用済み炭素含有耐火物から製造(再生)するために、本発明ではまず、該使用済み炭素含有耐火物(以下、単に「使用後耐火物」という)を破砕し、篩分けし、次いで、整粒または整粒しないで、即ち、粗粒のものと細粒のものとをそれぞれ別々の回転炉や移動炉、床炉、成形炉などの各種の加熱炉にて700℃以上1200℃以下の温度に1時間〜24時間程度の間、大気雰囲気中で加熱処理し、再利用するのに好適な、即ち、残留炭素の少ない改質された焼成再生炭素含有耐火物(以下、単に「再生耐火物」という)を得る。   In order to produce (recycle) such a high-grade / intermediate / low-grade refractory material from the above-mentioned used carbon-containing refractory, first in the present invention, the used carbon-containing refractory (hereinafter simply referred to as “post-use refractory”). Crushing and sieving, and then sizing or not sizing, that is, coarse and fine sized separate rotary furnaces, moving furnaces, floor furnaces, molding furnaces, etc. Suitable for heat treatment in an air atmosphere at temperatures of 700 ° C. to 1200 ° C. in various heating furnaces for about 1 to 24 hours, that is, reforming with little residual carbon. A fired regenerated carbon-containing refractory (hereinafter simply referred to as “regenerated refractory”) is obtained.

使用後耐火物を加熱処理(焼成)する理由は、黒鉛化度が小さくかつ熱伝導率や耐高温酸化性が悪く、有効成分とは言い難い残留炭素を燃焼除去(灰化)し、真に有効な耐火物成分の多い改質再生耐火物を得ることにある。   The reason for heat-treating (firing) the refractory after use is that it has a low degree of graphitization and poor thermal conductivity and high-temperature oxidation resistance. The object is to obtain a modified regenerated refractory with many effective refractory components.

この加熱処理において、その温度を700℃以上にする理由は、バインダーの残炭やピッチに由来する残留炭素燃焼除去をするために必要な温度であり、一方、上限の1200℃は主として設備上、経済上の理由から、この温度とすることが好ましいと考えられるからである。特に、れんが用耐火物原料にするには、粒径にもよるが大気中で800℃以上、より好ましくは1000℃程度にまで加熱する。   In this heat treatment, the reason why the temperature is set to 700 ° C. or higher is a temperature necessary for removing and burning residual carbon derived from the residual charcoal and pitch of the binder, while the upper limit of 1200 ° C. is mainly on equipment. This is because it is considered preferable to set this temperature for economic reasons. In particular, to make a refractory raw material for brick, although it depends on the particle size, it is heated to 800 ° C. or higher, more preferably about 1000 ° C. in the atmosphere.

上記のような加熱処理によって得られる再生耐火物の場合、所謂、マグネシアやアルミナ等を相対的(残留炭素量に比べて)多く含む再生耐火物は、発明者らの研究によれば、使用後耐火物の最大粒径Dmaxの小さいもの、即ち、細かい耐火物に多く見られ、逆に、残留炭素を多く含む再生耐火物としては、焼成前使用後耐火物の最大粒径Dmaxの大きいものに多く見られることが判った。   In the case of the recycled refractory obtained by the heat treatment as described above, the so-called regenerated refractory containing a relatively large amount of magnesia, alumina, etc. (compared to the amount of residual carbon) is, according to the inventors' research, after use. A refractory having a small maximum particle diameter Dmax, that is, a large number of fine refractories, and conversely, a regenerated refractory containing a large amount of residual carbon has a large maximum particle diameter Dmax of the refractory after use before firing. It was found that many were seen.

即ち、加熱前の使用後耐火物の炭素含有率をα(mass%)とするとき、これを粗粉砕して得られる粒径(最大粒径:Dmax)の大きい耐火物粒子の場合、とくに700℃未満たとえば600℃程度の低いの温度で加熱すると、残留炭素の燃焼除去が不十分となり、焼成後の耐火物、即ち、得られる再生耐火物中の炭素含有率β(mass%)は高くなる。つまり、最大粒径Dmaxの大きい使用後耐火物の場合、加熱処理によっても残留炭素の十分な燃焼除去が困難となり、高級耐火物用原料とはなりにくいことを意味している。   That is, when the carbon content of the refractory after use before heating is α (mass%), in the case of refractory particles having a large particle size (maximum particle size: Dmax) obtained by coarsely pulverizing this, particularly 700 When heated at a low temperature, for example, lower than about 600 ° C., the residual carbon is not sufficiently burned and removed, and the refractory after firing, that is, the carbon content β (mass%) in the obtained regenerated refractory increases. . That is, in the case of a refractory after use having a large maximum particle size Dmax, it is difficult to sufficiently burn and remove residual carbon even by heat treatment, and it is difficult to become a high-grade refractory raw material.

一方、加熱前の使用後耐火物の最大粒Dmax(mm)が小さいものの場合、それの炭素含有率α(mass%)にかかわらず、再生耐火物の炭素含有率β(mass%)は低くなり、所謂、耐火物成分の方が多い高級耐火物用原料として好ましいものが得られる。これらの関係を整理すると、下記(1)式のように表すことができる。   On the other hand, when the maximum grain Dmax (mm) of the refractory after use before heating is small, the carbon content β (mass%) of the regenerated refractory is low regardless of the carbon content α (mass%) of the refractory. Therefore, what is preferable as a raw material for a high-grade refractory having a larger amount of refractory components can be obtained. By arranging these relationships, it can be expressed as the following equation (1).

図1は、熱処理において700℃未満の温度で処理して残留炭素量の変化が小さかった例(×印)と700℃以上の温度で処理して残留炭素量の変化が大きかった例(○印)とについて、最大粒径(Dmax)に影響を受ける使用後耐火物の炭素含有率(α)、即ち、「α×Dmax×(1/10)」と、再生耐火物の炭素含有率(β)との関係を示したものである。ここで最大粒径は、篩分けに用いた篩の目開きの大きさを意味している。
この図から、「β」と「α×Dmax×(1/10)」とは、下記(1)式のように表すことができる。
FIG. 1 shows an example in which the change in residual carbon amount was small after heat treatment at a temperature of less than 700 ° C. (x) and an example in which the change in residual carbon amount was large after treatment at a temperature of 700 ° C. ), The carbon content (α) of the refractory after use affected by the maximum particle size (Dmax), that is, “α × Dmax × (1/10)” and the carbon content of the regenerated refractory (β ). Here, the maximum particle size means the size of the sieve opening used for sieving.
From this figure, “β” and “α × Dmax × (1/10)” can be expressed as the following equation (1).

Figure 0005633505
Figure 0005633505

従って、本発明において、れんが向けの高級再生耐火物を得ようとするときも、あるいは、不定形耐火材料向けの中級再生耐火物を得ようとするときも、即ち、前者はDmaxの小さいもの、後者はDmaxの大きいものを、整粒後の加熱処理時に選択して処理すると同時に、前記(1)式を満足するように大気雰囲気下で700℃以上の温度で熱処理すれば、それぞれの使途に応じた耐火物原料を、あるいは平均的に残留炭素の少ない再生耐火物を得ることができるようになり、再利用しやすい形の使用済み炭素含有耐火物にすることが可能になる。   Therefore, in the present invention, when trying to obtain a high-grade recycled refractory for bricks or when trying to obtain an intermediate-grade recycled refractory for an amorphous refractory material, that is, the former has a small Dmax, In the latter case, a material having a large Dmax is selected and processed during the heat treatment after sizing, and at the same time, if it is heat-treated at a temperature of 700 ° C. or higher in an air atmosphere so as to satisfy the formula (1), it can be used for each purpose. It becomes possible to obtain a corresponding refractory raw material, or a regenerated refractory having a small amount of residual carbon on average, and a used carbon-containing refractory in a form that can be easily reused.

さらに粉砕手段の変更などによって、粉砕および篩分け後の加熱処理前使用済み炭素含有耐火物の最大粒径Dmaxを、調整することで、加熱後の再生炭素含有耐火物原料中の使用目的に応じた炭素含有率の目標上限値(γ)と、加熱前の使用済み炭素含有耐火物の炭素含有率(α)との関係において、下記(2)式を満足するように調整してもよい。この(2)式は、前記(1)式を変形して導出した式である。   Furthermore, by adjusting the maximum particle size Dmax of the used carbon-containing refractory before heat treatment after pulverization and sieving by changing the pulverizing means, etc., according to the intended use in the recycled carbon-containing refractory raw material after heating In addition, in the relationship between the target upper limit value (γ) of the carbon content and the carbon content (α) of the used carbon-containing refractory before heating, the following equation (2) may be adjusted. This expression (2) is an expression derived by modifying the expression (1).

Figure 0005633505
Figure 0005633505

この実施例は、転炉内張り耐火物として使用された使用済みマグネシア−カーボンれんが屑を粗粉砕し、本発明適合例として、最大粒径Dmax:0.5、1.0、5.6、9.5mmで篩分けたものを、大気雰囲気下において、700℃と1000℃×1hrまたは24hrの条件で加熱処理した。また、比較例として、最大粒径Dmax:0.5、1.0、5.6、9.5mmで篩分けたものを、大気雰囲気下において600℃−24hrの条件で加熱処理した。その結果を表1にまとめた。   In this example, used magnesia-carbon brick scraps used as converter lining refractories were roughly pulverized, and the maximum particle size Dmax: 0.5, 1.0, 5.6, 9 What was sieved by 0.5 mm was heat-treated under conditions of 700 ° C. and 1000 ° C. × 1 hr or 24 hr in an air atmosphere. In addition, as a comparative example, a material screened with a maximum particle size Dmax of 0.5, 1.0, 5.6, and 9.5 mm was heat-treated under conditions of 600 ° C. and 24 hours in an air atmosphere. The results are summarized in Table 1.

Figure 0005633505
Figure 0005633505

表1に示すように、本発明に適合する再生耐火物の場合、いかなる最大粒径であっても、それぞれに応じて好ましい炭素含有量を示して、上記(1)式を満足する再生耐火物が得られていることが判った。これに対し、比較例は、特に加熱処理を600℃で行ったためか、どの粒径においても上記(1)式を満足するものが得られなかった。   As shown in Table 1, in the case of the regenerated refractory suitable for the present invention, the regenerated refractory satisfying the above formula (1) by showing a preferable carbon content according to each maximum particle size regardless of the maximum particle size. Was found to be obtained. On the other hand, in the comparative example, because the heat treatment was performed particularly at 600 ° C., none of the particle sizes satisfying the above formula (1) was obtained.

次に、第2の実施例として、使用済みのマグカーボン煉瓦を用いて、RH脱ガス装置の浸漬管の吹付け補修に用いる不定形耐火材料である吹付け材に再生した例について説明する。RH脱ガス装置の浸漬管の不定形耐火材料である吹付け材は炭素含有率が高くなると、溶鋼の脱ガス処理後に大気による酸化に晒されて気孔率が高くなってスラグによる侵食が進むため、3質量%以下の炭素含有率を目標範囲としている(即ち(2)式のγ=3)。平均炭素含有率が15質量%の使用済みマグカーボン煉瓦(即ち(2)式のα=15)を用いたことから、(2)式よりDmax≦2mmとなるように粉砕すればよいことがわかる。 Next, as a second embodiment, an example in which used magcarbon brick is used to regenerate a spray material that is an irregular refractory material used for spray repair of a dip tube of an RH degasser will be described. If the carbon content of the spray material, which is an irregular refractory material for the RH degassing dip tube, is increased, it is exposed to atmospheric oxidation after degassing of molten steel, and the porosity increases and erosion by slag proceeds. A carbon content of 3% by mass or less is set as a target range (that is, γ = 3 in the formula (2)). Since used magcarbon bricks having an average carbon content of 15% by mass (that is, α = 15 in the formula (2)) are used, it can be understood from the formula (2) that Dmax ≦ 2 mm. .

使用済みマグカーボン煉瓦をロッドミルで粉砕後、目開き2mmの篩で篩分け、篩上をさらにボールミルで粉砕して全量が目開き2mmの篩を通過するようにし、Dmax=2mmの試料を作製した。これを700℃で24時間熱処理して、吹付け材用の耐火物原料としたところ、炭素含有率2.5質量%の良好な不定形耐火材料である吹付け材が得られた。 The used magcarbon brick was pulverized with a rod mill, and then sieved with a sieve having a mesh opening of 2 mm, and the top of the sieve was further pulverized with a ball mill so that the entire amount passed through a sieve with a mesh opening of 2 mm to prepare a sample with Dmax = 2 mm. . When this was heat-treated at 700 ° C. for 24 hours to obtain a refractory material for a spray material, a spray material that was a good amorphous refractory material having a carbon content of 2.5 mass% was obtained.

本発明の技術は、例示の使用済み炭素含有耐火物だけでなく、各種の炭素を含有する耐火物にも適用が可能であり、使用済み耐火物の再生、再利用方法として有効である。   The technology of the present invention can be applied not only to the illustrated used carbon-containing refractories, but also to refractories containing various types of carbon, and is effective as a method for recycling and reusing used refractories.

Claims (1)

使用済み炭素含有耐火物を粉砕したのち篩分けし、次いで、大気中において700℃以上の温度に加熱して残留炭素を燃焼除去して再生したものを耐火物原料として再利用する方法において、記粉砕および篩分け後の使用済み炭素含有耐火物の最大粒径(Dmax)を、加熱後の再生炭素含有耐火物原料の使途に応じた炭素含有率の目標上限値(γ)と、加熱前の使用済み炭素含有耐火物の炭素含有率(α)との関係が、下記式を満たすように調整し、れんが向けの高級再生耐火物か、不定形耐火材料向けの中級再生耐火物か、あるいは耐熱被覆材向けの低級耐火物かのいずれかの使途に応じた再生耐火物原料に作り分けることを特徴とする使用済み炭素含有耐火物の再利用方法。
Dmax≦10×γ/α
ここで、
γ:加熱後の再生炭素含有耐火物原料中の炭素含有率の目標上限値(mass%)
α:加熱前の使用済み炭素含有耐火物中の炭素含有率(mass%)
Dmax:篩分け後の加熱前使用済み炭素含有耐火物の最大粒径(mm)
Sieved After crushing a used carbon-containing refractory, then in a method for reusing those reproduced residual carbon was heated to 700 ° C. or higher temperatures in the atmosphere by burning removed as refractory material, prior The maximum particle size (Dmax) of the used carbon-containing refractory after grinding and sieving, the target upper limit (γ) of the carbon content according to the use of the recycled carbon-containing refractory raw material after heating, and before heating the relationship between the carbon content (alpha) of the used carbon-containing refractory, adjusted to satisfy the following following formula, or higher regeneration refractories for brick, or intermediate regeneration refractories for monolithic refractories material, Alternatively, a method for reusing a used carbon-containing refractory, characterized in that it is separately made into a recycled refractory raw material according to the use of any one of lower refractories for heat-resistant coating materials .
Dmax ≦ 10 × γ / α
here,
γ: Target upper limit value (mass%) of carbon content in refractory material containing regenerated carbon after heating
α: Carbon content (mass%) in used refractories containing carbon before heating
Dmax: Maximum particle size of used carbon-containing refractory before heating after sieving (mm)
JP2011272612A 2010-12-17 2011-12-13 Reuse of spent carbon-containing refractories Active JP5633505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272612A JP5633505B2 (en) 2010-12-17 2011-12-13 Reuse of spent carbon-containing refractories

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010281563 2010-12-17
JP2010281563 2010-12-17
JP2011272612A JP5633505B2 (en) 2010-12-17 2011-12-13 Reuse of spent carbon-containing refractories

Publications (2)

Publication Number Publication Date
JP2012140318A JP2012140318A (en) 2012-07-26
JP5633505B2 true JP5633505B2 (en) 2014-12-03

Family

ID=46677015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272612A Active JP5633505B2 (en) 2010-12-17 2011-12-13 Reuse of spent carbon-containing refractories

Country Status (1)

Country Link
JP (1) JP5633505B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663121B2 (en) * 2012-05-31 2015-02-04 株式会社ヨータイ Reusing used carbon-containing unfired brick
JP2014051428A (en) * 2012-09-04 2014-03-20 Yotai Refractories Co Ltd Carburization raw material and amorphous refractory
KR101431425B1 (en) 2014-03-10 2014-08-18 이대열 Method for recycling of MgO-C waste and direct heating vertical furnace for the same
KR101588721B1 (en) * 2014-04-23 2016-01-26 주식회사 동일 알앤이 Apparatus and method for recycling for Magnesia(MgO) using Mg0-C refractories
WO2020196966A1 (en) * 2019-03-28 2020-10-01 주식회사 포스코 Raw material production equipment and raw material production method
JP7328566B2 (en) * 2021-01-20 2023-08-17 品川リフラクトリーズ株式会社 Manufacturing method of recycled refractory raw material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04209745A (en) * 1990-12-04 1992-07-31 Nippon Steel Corp Method for extracting refractory composition from graphite-containing refractory
JPH09278549A (en) * 1996-04-11 1997-10-28 Nippon Steel Corp Treatment of carbon-containing refractory waste and cast amorphous refractory using the carbon-containing refractory waste
JP2003212667A (en) * 2002-01-23 2003-07-30 Nippon Steel Corp Process for recycling used refractory
JP4077774B2 (en) * 2003-08-19 2008-04-23 新日本製鐵株式会社 Reusing used refractories

Also Published As

Publication number Publication date
JP2012140318A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5633505B2 (en) Reuse of spent carbon-containing refractories
JP2013126927A (en) Method for recycling used magnesia-carbon brick
JP5446735B2 (en) Method for producing metal manganese
JP4540488B2 (en) Desulfurization method of ferronickel
JP6380145B2 (en) Slag product material and manufacturing method thereof
CN110256056B (en) Titanium-containing furnace protection ramming mass for overall restoration of blast furnace hearth and use method
JP6600729B1 (en) Spinel-magnesia-carbon brick for vacuum degassing apparatus and vacuum degassing apparatus lining this on the side wall of lower tank
RU2612330C2 (en) Method of direct reduction of materials containing metal oxides to produce melt metal and device for carrying out method
WO2004053173A1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP5663121B2 (en) Reusing used carbon-containing unfired brick
JP4932309B2 (en) Chromium recovery method from chromium-containing slag
JP5194111B2 (en) Method for producing molten iron containing nickel
CN110914218A (en) Batch for making carbon-bonded refractory bricks, method for making carbon-bonded refractory bricks, and Ti2Application of AlC
JP3705498B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP3766137B2 (en) Low-carbon MgO-C refractory for vacuum degassing refining furnace
JP5682120B2 (en) Copper smelting furnace and continuous copper smelting furnace
JP7328566B2 (en) Manufacturing method of recycled refractory raw material
JP6315037B2 (en) Lined refractories for continuous casting tundish
JPH0881706A (en) Production of carbon refractories for blast furnace
JPH0733513A (en) Magnesia-carbon brick and its production
RU2589948C1 (en) Method of producing cast iron sintegal from red mud
CN111960835B (en) Pointing material for reducing oxidation of electric furnace magnesia carbon brick and preparation and use methods thereof
JPS591777B2 (en) Aluminum reduction smelting method
JP2024013030A (en) Method for producing recycled refractory raw material and method for producing refractory product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140210

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250