WO2004053173A1 - METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni - Google Patents

METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni Download PDF

Info

Publication number
WO2004053173A1
WO2004053173A1 PCT/JP2003/015409 JP0315409W WO2004053173A1 WO 2004053173 A1 WO2004053173 A1 WO 2004053173A1 JP 0315409 W JP0315409 W JP 0315409W WO 2004053173 A1 WO2004053173 A1 WO 2004053173A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
waste
based alloy
alloy
containing waste
Prior art date
Application number
PCT/JP2003/015409
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroichi Sugimori
Susumu Yoshikawa
Original Assignee
Mitsubishi Corporation
Jfe Material Co., Ltd.
Kashima-Kita Electric Power Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corporation, Jfe Material Co., Ltd., Kashima-Kita Electric Power Corporation filed Critical Mitsubishi Corporation
Publication of WO2004053173A1 publication Critical patent/WO2004053173A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering valuable metals from waste such as a used desulfurization catalyst, boiler ash, boiler sludge, nickel-based sludge, and ammonium metapanadinate.
  • Ni and V heavy metals are in the form of oxides in boiler sludge deposited at the bottom of the boiler and boiler ash captured by the dust collector. Condensed. The heavy metal of V is also condensed in the form of oxides on ammonium metapananadate, which is obtained by subjecting boiler ash to wet alkali treatment.
  • desulfurization catalysts are provided in the refining process. Also in this used desulfurization catalyst, Ni, Mo, and V heavy metals are condensed in the form of oxides. It is desired to recover these Ni, Mo and V oxidized substances in the form of metal as an effective use of waste.
  • One of such recovery technologies is to heat V-containing waste to 450 to 950 ° C to remove S, N, and C in the waste, and then transfer the waste to an iron source and It is mixed with a reducing agent, pulverized, formed into granules, and then heated to 115-135 ° C to reduce the Fe, Ni, and Mo components in the raw material by solid-phase reduction. After that, it is charged into an electric furnace and heated to generate a metal mainly composed of Fe, Ni, and Mo and a V-rich flux, and mainly composed of Fe, Ni, and Mo.
  • the metal is subjected to a de-P treatment to obtain a low-P alloy, while a V-rich flux is supplied with a reducing agent in a container having a strong stirring function, and is stirred to reduce V in the flux to reduce Fe.
  • a method for obtaining a V-based alloy has been disclosed (see Patent Document 1, Claim 1).
  • Another recovery technique is the first step of roasting waste containing V, Mo, Co and Ni. And 50 to 120% of the chemical equivalent of the metal equivalent necessary for reducing Mo, Ni and Co oxides to metal, and adding and reducing by heating and dissolving by it is Rukoto, Mo- N i alloy or Mo- Co alloy or Mo- N i-Co-based alloy and C a O- a 1 2 0 3 system second step of recovering each and slag separates When the CaO-a 1 2 0 3 based slag to, oxides metal above chemical equivalent necessary for reduction to a metallic S i and / or metal a 1 of V contained in the slag It was added pressure by dissolving heat reduced to a third step of recovering each by separating the V-S i based alloy or V- A1 alloy and C a O- a 1 2 ⁇ 3 slag (See Patent Document 2, Claim 1).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-214423
  • Patent Document 1 pulverized coal or coatas is used as a reducing agent for solid-phase reduction of Fe, Ni, and Mo components in a raw material (Patent Document 1, See paragraph 0022). For this reason, carbon remains in the generated metal mainly composed of Fe, Ni, and Mo. Since carbon is easily bonded to Fe—Mo, Fe—Ni, and the like in the metal, it becomes difficult to remove carbon in a later step. In addition, there is also a problem that the Mo component sublimates in the kiln during the solid-phase reduction, and the recovery yield of the Mo component is deteriorated. There is also the problem that the process is long and equipment costs increase.
  • waste is melted as powder, which deteriorates the furnace condition, for example, causing shelves to be suspended or blown up in the melting furnace.
  • Deteriorating reactor conditions lead to deterioration of power consumption and operation instability.
  • metal Si and / or metal A1 is used as a reducing agent, there is a problem that it becomes difficult to separate the V component from the Mo and Ni components. That is, when the amount of the metal Si and Z or the metal A1 is reduced and the amount of the metal A1 is weakly reduced, the yield of the Mo and Ni components deteriorates, and the Mo and Ni components enter the V-containing slag.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a Fe-Mo-Ni-based alloy and a Fe-V-based alloy from V, Mo, and Ni-containing waste. It is an object of the present invention to provide a method for recovering the yield in a stable manner.
  • the present inventors focused on the oxygen affinity of Ni, Mo, and V at a smelting reduction temperature of 140 ° C. to 180 ° C. As shown in Fig. 1 (graph of the standard free energy of formation of oxides), focusing on the fact that Fe has a stronger oxygen affinity than Ni and Mo and is weaker than V, Fe is used as a reducing agent. It was found that if used, V-containing slag and Fe—Mo—Ni alloy can be separated with good yield.
  • the present invention provides a step of reducing V, Mo, and Ni-containing waste with Fe to generate a V-containing slag and a Fe-Mo-Ni-based alloy, and reducing the V-containing slag to the V-containing slag.
  • a method for recovering a valent metal which comprises the steps of:
  • the present invention also relates to a method for recovering valuable metals from V, Mo and Ni-containing waste, comprising the following steps: a step of roasting V, Mo and Ni-containing waste; , Mo and Ni-containing waste, Fe as a reducing agent, and flux are charged into a heating furnace, and these are heated and reduced to convert the V-containing slag and Fe-Mo-Ni-based alloy. step generate; by introducing the a 1 reducing agent to the V-containing slag, the step of generating a F e- V alloy ⁇ beauty C a O- a 1 2 0 3 slag can also be configured as.
  • the V, Mo and Ni-containing waste is reduced by the Fe and then reduced by the F'e. And the resulting Fe oxide may be reduced with A 1 and Z or Si.
  • the Fe oxide generated by the reduction reaction can be used as an iron source of the Fe—Mo—Ni based alloy.
  • the Fe content in the V-containing slag can be adjusted, and thus the Fe content can be adjusted in accordance with the final Fe-V alloy specifications. Can be adjusted.
  • the V, Mo, and Ni-containing waste be dried, crushed, formed into briquettes, and roasted. No.
  • waste containing V, Mo, and Ni is not charged into the heating furnace as powder, so that shelving or blowing up does not occur, and therefore, stable operation can be performed. .
  • the V, Mo and Ni-containing waste may be roasted and then formed into briquettes.
  • an iron bath is generated in advance, and the V, Mo and Ni-containing waste is charged into the iron bath. It is desirable to carry out the smelting reduction reaction.
  • the reaction efficiency of the reduction reaction can be improved, and the heat efficiency can be improved.
  • continuous operation of the heating furnace becomes possible.
  • impurities of S, P and C can be removed according to the standard of Fe—Mo—Ni alloy. Also, V molded into briquettes, the S component contained in waste when roasting Mo ⁇ Pi N i-containing waste to SO X, it is discharged to the C content in co 2, Fe-Mo By removing S and C after separating the Ni-based alloy from the V-containing slag, the burden of roasting can be reduced.
  • the recovery method can be performed with a minimum number of facilities.
  • the V-containing slag is discharged a plurality of times while the Fe-Mo-Ni-based alloy is once discharged. Is desirable.
  • the amount of Fe—Mo—Ni alloy produced is very small compared to V-containing slag.
  • the thermal efficiency is improved by frequently tapping the V-containing slag.
  • productivity is improved as compared with the case where Fe-Mo-Ni alloy is tapped for each batch in which V-containing slag is tapped.
  • Fig. 1 Graph of standard free energy of formation of oxide.
  • FIG. 2 is a diagram showing a flow of a method for recovering valuable metals in one embodiment of the present invention.
  • FIG. 3 is a diagram illustrating the flow of FIG.
  • Fig. 4 Conceptual diagram showing changes over time in Fe, Ni, and Mo components in metal and changes in the amount of molten metal in the electric furnace.
  • Fig. 5 Diagram showing another example of the flow of the method for recovering valuable metals.
  • Fig. 6 is a diagram showing still another example of the flow of the method for recovering valuable metals.
  • a waste containing V, Mo, and Ni is used as a raw material.
  • the raw material shall be at least one of spent desulfurization catalyst (direct desulfurization catalyst, indirect desulfurization catalyst), boiler ash, boiler sludge, nickele sludge, ammonium metavanadate, or a mixture thereof.
  • Table 1 shows an example of components for each raw material.
  • desulfurization catalysts have many Ni, Mo, and V components, and many C and S components.
  • Boiler ash contains, for example, about 80% of the C component, but does not contain the Mo component.
  • Power-pond sludge contains, for example, 50% water. Waste materials with various components are used as raw materials. The original family is in a state where heavy oil or moisture is attached.
  • Table 2 shows an example of the final product standard.
  • Fe-V alloys for example, standards equivalent to JIS No. 2 standard products are required. In this standard, it is necessary to adjust the V component to 45 to 55 mass% to keep the C, Si, P, S components and the like low, and also to keep the Ni, Mo and A1 components low.
  • Fe-Ni-Mo alloys for example, there is a standard for use in steel-related applications. According to this standard, it is necessary to keep the P and S components low.
  • Fig. 2 shows the flow of the method for recovering valuable metals
  • Fig. 3 illustrates this flow.
  • raw materials such as a desulfurization catalyst (direct desulfurization catalyst and indirect desulfurization catalyst), boiler ash, carbon-based sludge, nickel-based sludge, and heavy oil gasification sludge are dried (S1).
  • the raw material is dried by heating to a temperature of, for example, about 120 ° C. using a rotary dryer. Water is present in the raw materials as volatile matter, for example, at about 30 to 40%. If the process proceeds to the next step in a state where there is water, briquetting may not be possible due to too much water. Since the desulfurization catalyst and coke boiler ash originally have low water content, they may be added after the drying process.
  • the dried V, Mo, and Ni-containing waste is ground (S2).
  • the waste containing V, Mo and Ni is ground by a wet mill. When crushed, a wide variety of raw materials are mixed and become uniform.
  • the crushed waste is granulated and formed into briquettes (S3).
  • the crushed material is formed into pellets or briquettes using a pelletizer or briquettes. If the raw material proceeded to the next process without being formed into briquettes, the raw material sintered in the kiln to be roasted, and the condition of the furnace deteriorated due to shelving and blowing up in the heating furnace for smelting and reducing. May be lost.
  • the aggregated raw material is roasted (S4).
  • the aggregated raw material is heated in a kiln to, for example, 800 to 900 ° C.
  • S and C components in the waste are pyrolyzed and removed as SOx, CO2, etc.
  • the temperature of 800 ° C or higher is a temperature suitable for removing heavy oil and C attached to the raw material as oxides, and the temperature of 950 ° C or lower is sublimation of Mo and the recovery rate is lower than 950 ° C. This is to prevent it from falling.
  • the steps from the drying step (S1) to the roasting step (S4) may be omitted depending on the situation of the operation in the heating furnace.
  • the baked raw material, Fe as a reducing agent, and lime as a flux are charged into an electric furnace as a heating furnace. These are reduced by heating at about 1700 ° C to produce V-containing slag and Fe-Mo-Ni alloy (S5).
  • the roasted raw material, Fe, and flux may be simultaneously charged into an electric furnace, or an iron bath is generated in advance, and the raw material and lime are added to the iron bath.
  • the smelting reduction reaction can be performed by charging. If an iron bath is generated in advance, the reaction efficiency of the reduction reaction can be improved, and the thermal efficiency can also be improved.
  • Reduction of Mo oxide and Ni oxide in the raw material is performed by Fe.
  • the amount of Fe as a reducing agent is set approximately equal to the chemical equivalent required to reduce Mo oxides and Ni oxides in V, Mo and Ni-containing wastes to metals. .
  • an A 1 reducing agent is added to the molten metal, and the Fe oxide generated by the Fe reduction and the Fe oxide in the raw material are reduced with the A 1 reducing agent.
  • the reduction with the A1 reducing agent is to return the Fe oxide generated by the reduction reaction to the metal as an iron source of the Fe—Mo—Ni alloy, and to reduce the Fe in the V-containing slag. It is also to adjust the minute.
  • the A 1 reducing agent is used only for adjusting the component of Fe.
  • metal A1, metal Si, fue silicon, carbon, or the like, any one of them, or a combination thereof can be used.
  • the Fe-Mo-Ni-based alloy is de-S, de-P, and de-C (S6, S7).
  • the P component in the raw material remains in the Fe—Mo—Ni alloy.
  • the S component must be de-S because of strict specifications, and the C component must be de-C because there is carburization from the electrode.
  • Fe-Mo-Ni alloy is used as a heating vessel with a ladle Take water to the furnace (S6).
  • lime, ⁇ & ⁇ over eight 1 2 ⁇ 3 based flux was charged with ⁇ beauty CaO- A l 2 0 3 -FeO based flux or the like, de S, P, and C performed (S 7).
  • Ca_ ⁇ to one A 1 2 0 3 based flux it may be utilized slag generated by A 1 reducing the V-containing slag to be described later.
  • Ar gas and 0 2 gas blowing (bubbling use) is effective.
  • the Fe-Mo-Ni-based alloy, which has been de-S, de-P, and de-C-deposited is incorporated into the ⁇ type.
  • V-containing slag is also supplied to the ladle and furnace as heating vessels (S8).
  • the ladle 'furnace, A 1 reducing agent, also V 2 O g for lime and V components adjusted is turned on, thereby V-containing Fe- V alloy from the slag and CaO- A 12O3 slag is produced.
  • the ladle furnace used to remove S, P, and C from Fe—Mo—Ni alloys and A 1 reduction of slag containing V The ladle used is shared with the furnace.
  • Fig. 4 is a conceptual diagram showing the changes over time in the amount of molten metal and the Fe, Ni, and Mo components in an electric furnace.
  • the Fe reduction the Fe component in the metal decreases with time, the Ni and M0 components increase, and the metal can be stabilized thereafter. Also, when the V-containing slag reaches a predetermined amount, the metal is left in the furnace as it is, and only the V-containing slag flows out to the ladle furnace. Then, the V-containing slag is reduced in the Ladle's furnace. On the other hand, once every batch containing V-containing slag into the ladle furnace, the Fe-Mo-Ni-based alloy is tapped into the same ladle-furnace. Then, scouring for removal of S, removal of P, and removal of the same material is performed in the same furnace.
  • the amount of Fe-Mo-Ni-based alloy produced is very small compared to V-containing slag. Frequent tapping of V-containing slag improves the thermal efficiency of the electric furnace. Also, productivity is improved compared to the case where Fe-Mo-Ni alloy is tapped for each batch in which V-containing slag is tapped.
  • Fig. 5 shows another example of the flow of the valuable metal recovery method. This flow simplifies the process by combining the drying and roasting steps of the pretreatment step.
  • First desulfurization catalyst direct desulfurization catalyst, indirect desulfurization catalyst
  • boiler ash carbon-based sludge, nickel sludge, roasting raw materials such as heavy oil gasification sludge (S 1 ') 0
  • S 1 ' heavy oil gasification sludge
  • the raw material that has been shattered is aggregated (S 3 ′).
  • the raw material is formed into pellet-like or pricket-like briquettes using a pelletizer or a pricket.
  • a grinding process may be performed before briquetting to reduce briquettes by briquetting (S 2 ′).
  • Non-powder may be charged as it is without bridging.
  • the process after charging the raw material, Fe as the reducing agent, and lime as the flux into the electric furnace as the heating furnace (S5) is the same as the flow of the recovery method shown in Fig. 2 above.
  • the same reference numerals are given and the description is omitted.
  • FIG. 6 shows still another example of the flow of the method for recovering valuable metals.
  • the process is further simplified, and the raw materials are charged directly into the electric furnace. If a raw material containing volatile components such as oil and water is charged into an electric furnace, the operation of the electric furnace may become difficult, but some raw materials have low volatile components.
  • This flow is suitable for processing raw materials with low volatile content.
  • the raw material, Fe as a reducing agent, and lime as a flux are charged into an electric furnace as a heating furnace (S 5).
  • the process after that is the same as the flow of the recovery method shown in FIG. The description is omitted by attaching the sign.
  • the raw material mixture of the desulfurization catalyst, boiler ash, and nickel-based sludge was roasted with a dryer to obtain the component compositions shown in Table 3.
  • the Fe-Mo-Ni alloy was heated and held in a high-frequency furnace to remove S, P, and C. Table 8 shows the results.
  • Fe-Mo-Ni-based alloys and Fe-V-based alloys can be stably produced with high yield from V, M0, and Ni-containing wastes. Can be collected.

Abstract

A method for recovering a valuable metal from a waste containing V, Mo and Ni, which comprises a step of drying the waste containing V, Mo and Ni, a step of charging the dried waste containing V, Mo and Ni, Fe as a reducing agent, and a flux into a heating furnace and heating and reducing them, to thereby form a V-containing slag and an Fe-Mo-Ni based alloy, and a step of adding Al as an reducing agent to the V-containing slag and reacting them, to thereby form an Fe-V based alloy and a CaO-Al2O3 slag. The method ca be used for recovering an Fe-Mo-Ni based alloy and an Fe-V based alloy from a waste containing V, Mo and Ni, with stability in good yield.

Description

明細書  Specification
V、 M o、 及び N i含有廃棄物からの有価金属の回収方法 技術分野 Method for recovering valuable metals from waste containing V, Mo, and Ni
本発明は、 使用済脱硫触媒、 ボイラー灰、 ボイラースラッジ、 ニッケル系スラ ッジ、 メタパナジン酸アンモニゥム等の廃棄物から有価金属を回収する方法に関 する。 背景技術  The present invention relates to a method for recovering valuable metals from waste such as a used desulfurization catalyst, boiler ash, boiler sludge, nickel-based sludge, and ammonium metapanadinate. Background art
例えば発電所のように石油系燃料を燃料とするボイラーにおいては、 ボイラー の底に沈着するボイラースラッジ、 集塵装置に捕捉されるボイラー灰の中に、 N i、 Vの重金属が酸化物の形態で凝縮されている。 ボイラー灰を湿式アルカリ処 理して得られるメタパナジン酸アンモ-ゥムにも、 Vの重金属が酸化物の形態で 凝縮されている。  For example, in a boiler that uses petroleum fuel as a fuel, such as a power plant, Ni and V heavy metals are in the form of oxides in boiler sludge deposited at the bottom of the boiler and boiler ash captured by the dust collector. Condensed. The heavy metal of V is also condensed in the form of oxides on ammonium metapananadate, which is obtained by subjecting boiler ash to wet alkali treatment.
石油精製、 ガス処理工業等の分野においては、 精製過程で脱硫触媒が設けられ ている。 この使用済脱硫触媒にも、 N i、 M o、 Vの重金属が酸化物の形態で凝 縮されている。これら N i、 M o、 Vの酸ィ匕物をメタルの形態で回収することが、 廃棄物の有効活用として望まれている。  In the fields of petroleum refining and gas processing industries, desulfurization catalysts are provided in the refining process. Also in this used desulfurization catalyst, Ni, Mo, and V heavy metals are condensed in the form of oxides. It is desired to recover these Ni, Mo and V oxidized substances in the form of metal as an effective use of waste.
こうした回収技術の一つに、 V含有廃棄物を 4 5 0〜9 5 0 °Cに加熱して廃棄 物中の S分、 N分及び C分を除去した後、 この廃棄物を鉄源及び還元剤と共に混 合、 粉砕してから粒状に成形し、 次いで、 1 1 5 0〜1 3 5 0 °Cに加熱して原料 中の F e分、 N i分、 M o分を固相還元した後、 電気炉に装入し加熱して F e、 N i、 M oを主成分とするメタルと Vリッチなフラックスとを生成させ、 この F e、 N i、 M oを主成分とするメタルには脱 P処理を行なって低 P合金を得る一 方、 Vリッチなフラックスには強攪拌機能を有する容器にて還元材を投入すると ともに攪拌を行ってフラックス中の Vを還元し F e—V系合金を得る方法が開示 されている (特許文献 1、 請求項 1参照)。  One of such recovery technologies is to heat V-containing waste to 450 to 950 ° C to remove S, N, and C in the waste, and then transfer the waste to an iron source and It is mixed with a reducing agent, pulverized, formed into granules, and then heated to 115-135 ° C to reduce the Fe, Ni, and Mo components in the raw material by solid-phase reduction. After that, it is charged into an electric furnace and heated to generate a metal mainly composed of Fe, Ni, and Mo and a V-rich flux, and mainly composed of Fe, Ni, and Mo. The metal is subjected to a de-P treatment to obtain a low-P alloy, while a V-rich flux is supplied with a reducing agent in a container having a strong stirring function, and is stirred to reduce V in the flux to reduce Fe. —A method for obtaining a V-based alloy has been disclosed (see Patent Document 1, Claim 1).
他の回収技術として、 V、 M o、 C o及び N i含有廃棄物を焙焼する第 1工程 と、 Mo、 N i及び C o酸化物を金属にまで還元するのに必要な化学的当量の 5 0-120 %相当の金属 S i及ぴ 又は金属 A 1を添加し、 加熱還元して溶解す ることにより、 Mo— N i系合金又は Mo— Co系合金又は Mo— N i—Co系 合金と C a O— A 1203系スラグとを分離してそれぞれを回収する第 2工程と、 前記 CaO— A 1203系スラグに対し、 このスラグ中に含まれる Vの酸化物を金 属にまで還元するのに必要な化学的当量以上の金属 S i及び/又は金属 A 1を添 加し、 加熱還元して溶解することにより、 V—S i系合金又は V— A1系合金と C a O— A 123系スラグとを分離してそれぞれを回収する第 3工程とを備える 方法が開示されている (特許文献 2、 請求項 1参照)。 Another recovery technique is the first step of roasting waste containing V, Mo, Co and Ni. And 50 to 120% of the chemical equivalent of the metal equivalent necessary for reducing Mo, Ni and Co oxides to metal, and adding and reducing by heating and dissolving by it is Rukoto, Mo- N i alloy or Mo- Co alloy or Mo- N i-Co-based alloy and C a O- a 1 2 0 3 system second step of recovering each and slag separates When the CaO-a 1 2 0 3 based slag to, oxides metal above chemical equivalent necessary for reduction to a metallic S i and / or metal a 1 of V contained in the slag It was added pressure by dissolving heat reduced to a third step of recovering each by separating the V-S i based alloy or V- A1 alloy and C a O- a 1 23 slag (See Patent Document 2, Claim 1).
【特許文献 1】 特開 2000— 204420号公報  [Patent Document 1] JP-A-2000-204420
【特許文献 2】 特開 2001— 214423号公報  [Patent Document 2] Japanese Patent Application Laid-Open No. 2001-214423
しかしながら特許文献 1に記載の回収方法にあっては、 原料中の F e、 N i、 及び M o成分を固相還元する還元剤として、微粉炭又はコータスを用いている(特 許文献 1、段落 0022参照)。 このため、生成される F e、 N i、 Moを主成分 とするメタル中にカーボンが残ってしまう。 カーボンはメタル中の F e— Mo、 F e— N i等に結合し易いので、後の工程でカーボンを除去するのが困難になる。 また固相還元する際に M o成分がキルン内で昇華してしまい、 Mo成分の回収歩 留りが悪化してしまうという問題もある。 さらに工程が長く設備費が増大してし まうという問題もある。  However, in the recovery method described in Patent Document 1, pulverized coal or coatas is used as a reducing agent for solid-phase reduction of Fe, Ni, and Mo components in a raw material (Patent Document 1, See paragraph 0022). For this reason, carbon remains in the generated metal mainly composed of Fe, Ni, and Mo. Since carbon is easily bonded to Fe—Mo, Fe—Ni, and the like in the metal, it becomes difficult to remove carbon in a later step. In addition, there is also a problem that the Mo component sublimates in the kiln during the solid-phase reduction, and the recovery yield of the Mo component is deteriorated. There is also the problem that the process is long and equipment costs increase.
特許文献 2に記載の回収方法にあっては、 第 1工程において、 廃棄物をペレツ トにしないで粉のまま焙焼する (特許文献 2、段落 0010参照)。 このため廃棄 物がキルン内で焼結してしまい、 流れなくなるという問題がある。  In the recovery method described in Patent Document 2, in the first step, the waste is roasted as a powder without pelleting (see Patent Document 2, paragraph 0010). For this reason, there is a problem that the waste sinters in the kiln and stops flowing.
また第 2工程において、 廃棄物を粉のまま溶解するので、 炉況が悪化し、 例え ば溶解炉内で棚吊りや吹き上げが生じてしまう。 炉況の悪化は電力原単位の悪化 や操業の不安定を招く。 さらに第 2工程において、 還元剤として金属 S i及び/ 又は金属 A 1を用いているので、 V成分と Mo、 N i成分との分離が困難になる という問題も生じる。 すなわち金属 S i及び Z又は金属 A 1の量を少なくして弱 還元したときには、 Mo及ぴ N i成分の歩留りが悪くなり、 V含有スラグに M o 及ぴ N i成分が入ってしまう。 一方強還元したときには、 還元された V成分が M o -N i系合金に入ってしまうのみならず、 S i及び Z又は A 1還元剤が M o― N i系合金に入ってしまう。 特に還元剤として A 1を用いると、 A 1が大気中の 酸素と反応してしまい、 酸化ロスも大きくなる。 発明の開示 In the second step, waste is melted as powder, which deteriorates the furnace condition, for example, causing shelves to be suspended or blown up in the melting furnace. Deteriorating reactor conditions lead to deterioration of power consumption and operation instability. Further, in the second step, since metal Si and / or metal A1 is used as a reducing agent, there is a problem that it becomes difficult to separate the V component from the Mo and Ni components. That is, when the amount of the metal Si and Z or the metal A1 is reduced and the amount of the metal A1 is weakly reduced, the yield of the Mo and Ni components deteriorates, and the Mo and Ni components enter the V-containing slag. On the other hand, when strongly reduced, the reduced V component becomes M In addition to entering the o-Ni alloy, Si and Z or A1 reducing agents enter the Mo-Ni alloy. In particular, when A1 is used as a reducing agent, A1 reacts with oxygen in the atmosphere, and oxidation loss increases. Disclosure of the invention
本発明は上記事情に鑑みなされたもので、 その目的とするところは、 V、 M o 及ぴ N i含有廃棄物から、 F e— M o— N i系合金及ぴ F e—V系合金を安定し て歩留りょく回収できる方法を提供することにある。  SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a Fe-Mo-Ni-based alloy and a Fe-V-based alloy from V, Mo, and Ni-containing waste. It is an object of the present invention to provide a method for recovering the yield in a stable manner.
本発明者は、 溶融還元温度 1 4 0 0 °C〜1 8 0 0°Cにおける N i、 M o、 Vの 酸素親和力に着目した。 そして図 1 (酸化物の標準生成自由エネルギのグラフ) に示されるように、 F eが N i及び M oよりも酸素親和力が強く、 Vよりも弱い ことに着目し、 還元剤として F eを用いれば V含有スラグと F e— M o— N i系 合金とを歩留まり良く分離できることを知見した。  The present inventors focused on the oxygen affinity of Ni, Mo, and V at a smelting reduction temperature of 140 ° C. to 180 ° C. As shown in Fig. 1 (graph of the standard free energy of formation of oxides), focusing on the fact that Fe has a stronger oxygen affinity than Ni and Mo and is weaker than V, Fe is used as a reducing agent. It was found that if used, V-containing slag and Fe—Mo—Ni alloy can be separated with good yield.
すなわち本発明は、 V、 M o及び N i含有廃棄物を F eで還元して、 V含有ス ラグ及び F e -M o -N i系合金を生成させる工程と、 前記 V含有スラグに還元 剤を投入して F e— V系合金を生成させる工程と、 を備えることを特徴とする有 価金属の回収方法により、 上述した課題を解決する。  That is, the present invention provides a step of reducing V, Mo, and Ni-containing waste with Fe to generate a V-containing slag and a Fe-Mo-Ni-based alloy, and reducing the V-containing slag to the V-containing slag. The above object is achieved by a method for recovering a valent metal, which comprises the steps of:
また本発明は、 V、 M o及び N i含有廃棄物からの有価金属の回収方法であつ て、以下の工程を備える: V、 M o及び N i含有廃棄物を焙焼する工程;前記 V、 M o及び N i含有廃棄物、 還元剤としての F e、 及びフラックスを加熱炉に装入 し、 これらを加熱還元することで、 V含有スラグ及び F e— M o— N i系合金を 生成させる工程;前記 V含有スラグに A 1還元剤を投入して、 F e— V系合金及 び C a O— A 1 203スラグを生成させる工程、 としても構成することができる。 前記 V含有スラグ及び F e— M o— N i系合金を生成させる工程において、 前 記 V、 M o及び N i含有廃棄物を前記 F eで還元した後、 前記 F' eで還元するこ とにより生じた F e酸化物を、 A 1及び Z又は S iで還元してもよい。 The present invention also relates to a method for recovering valuable metals from V, Mo and Ni-containing waste, comprising the following steps: a step of roasting V, Mo and Ni-containing waste; , Mo and Ni-containing waste, Fe as a reducing agent, and flux are charged into a heating furnace, and these are heated and reduced to convert the V-containing slag and Fe-Mo-Ni-based alloy. step generate; by introducing the a 1 reducing agent to the V-containing slag, the step of generating a F e- V alloy及beauty C a O- a 1 2 0 3 slag can also be configured as. In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, the V, Mo and Ni-containing waste is reduced by the Fe and then reduced by the F'e. And the resulting Fe oxide may be reduced with A 1 and Z or Si.
この発明によれば、 還元反応により生じた F e酸化物を F e— M o— N i系合 金の鉄源として用いることができる。 また V含有スラグ中の F e分を調整するこ とができ、 ひいては最終的に得られる F e— V系合金の規格に合わせて F e分を 調整することができる。 According to the present invention, the Fe oxide generated by the reduction reaction can be used as an iron source of the Fe—Mo—Ni based alloy. In addition, the Fe content in the V-containing slag can be adjusted, and thus the Fe content can be adjusted in accordance with the final Fe-V alloy specifications. Can be adjusted.
前記 V、 Mo及び N i含有廃棄物を乾燥する工程において、 前記 V、 Mo及ぴ N i含有廃棄物を乾燥した後、 粉砕し、 団鉱に成形し、 これを焙焼することが望 ましい。  In the step of drying the V, Mo, and Ni-containing waste, it is preferable that the V, Mo, and Ni-containing waste be dried, crushed, formed into briquettes, and roasted. No.
この発明によれば、 V、 Mo及び N i含有廃棄物を粉のまま加熱炉に装入する ことがないので、 棚吊りや吹き上げが生ずることがなく、 したがって安定した操 業をすることができる。  According to the present invention, waste containing V, Mo, and Ni is not charged into the heating furnace as powder, so that shelving or blowing up does not occur, and therefore, stable operation can be performed. .
また、 前記 V、 Mo及び N i含有廃棄物を焙焼する工程において、 前記 V、 M o及び N i含有廃棄物を焙焼した後、 団鉱に成形してもよレ、。  Further, in the step of roasting the V, Mo and Ni-containing waste, the V, Mo and Ni-containing waste may be roasted and then formed into briquettes.
前記 V含有スラグ及び F e-Mo-N i系合金を生成させる工程において、 あ らかじめ鉄浴を生成しておき、 該鉄浴に前記 V、 Mo及ぴ N i含有廃棄物を装入 して溶融還元反応を行うことが望ましい。  In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, an iron bath is generated in advance, and the V, Mo and Ni-containing waste is charged into the iron bath. It is desirable to carry out the smelting reduction reaction.
この発明によれば、 還元反応の反応効率を向上させることができ、 しかも熱効 率も向上させることができる。 また加熱炉の連続した操業も可能になる。  According to the present invention, the reaction efficiency of the reduction reaction can be improved, and the heat efficiency can be improved. In addition, continuous operation of the heating furnace becomes possible.
前記 V含有スラグ及び F e-Mo-N i系合金を生成させる工程において、 前 記 F e— Mo— N i系合金を前記 V含有スラグと分離した後、 前記 F e— Mo— N i系合金の脱 S, 脱 P, 脱 Cを行うことが望ましい。  In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, after separating the Fe-Mo-Ni-based alloy from the V-containing slag, It is desirable to remove S, P, and C of the alloy.
この発明によれば、 F e—Mo— N i系合金の規格に合わせて S分, P分及び C分の不純物を除去することができる。 また、 団鉱に成形した V、 Mo及ぴ N i 含有廃棄物を焙焼する際に廃棄物中に含まれる S分を SO Xにし、 C分を co2 にして排出するが、 Fe-Mo-N i系合金を V含有スラグと分離した後に脱 S、 脱 Cすることで、 焙焼する際の負担を軽減することができる。 According to the present invention, impurities of S, P and C can be removed according to the standard of Fe—Mo—Ni alloy. Also, V molded into briquettes, the S component contained in waste when roasting Mo及Pi N i-containing waste to SO X, it is discharged to the C content in co 2, Fe-Mo By removing S and C after separating the Ni-based alloy from the V-containing slag, the burden of roasting can be reduced.
前記 Fe— Mo— Ni系合金の脱 S, 脱 P, 脱 Cを行うのに使用される加熱用 容器と、 前記 V含有スラグに還元剤を投入して F e _V系合金を生成させる工程 において使用される加熱用容器とが、 共用されることが望ましい。  A heating vessel used to remove S, P, and C of the Fe—Mo—Ni alloy; and a step of adding a reducing agent to the V-containing slag to generate a Fe_V alloy. It is desirable that the heating container used be shared.
この発明によれば、 最少の設備で回収方法を実施することができる。  According to the present invention, the recovery method can be performed with a minimum number of facilities.
前記 V含有スラグ及び F e-Mo-N i系合金を生成させる工程において、 前 記 F e-Mo-N i系合金が一回出湯される間に、 前記 V含有スラグが複数回出 湯されるのが望ましい。 生成される F e— M o— N i系合金の量は V含有スラグに比較して非常に少な い。 この発明によれば、 V含有スラグを頻繁に出湯することにより、 熱効率が向 上する。 また V含有スラグを出湯するバッチ毎に F e— M o _N i系合金を出湯 する場合に比較して、 生産性も向上する。 図面の簡単な説明. In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, the V-containing slag is discharged a plurality of times while the Fe-Mo-Ni-based alloy is once discharged. Is desirable. The amount of Fe—Mo—Ni alloy produced is very small compared to V-containing slag. According to the present invention, the thermal efficiency is improved by frequently tapping the V-containing slag. In addition, productivity is improved as compared with the case where Fe-Mo-Ni alloy is tapped for each batch in which V-containing slag is tapped. Brief description of the drawings.
図 1 酸化物の標準生成自由エネルギのグラフ。  Fig. 1 Graph of standard free energy of formation of oxide.
図 2 本発明の一実施形態における有価金属の回収方法のフローを示す図。 図 3 図 2のフローを図式ィ匕した図。  FIG. 2 is a diagram showing a flow of a method for recovering valuable metals in one embodiment of the present invention. FIG. 3 is a diagram illustrating the flow of FIG.
図 4 電気炉におけるメタル中の F e, N i, M o成分の経時的な変化と電気 炉の溶湯量の変化を示す概念図。  Fig. 4 Conceptual diagram showing changes over time in Fe, Ni, and Mo components in metal and changes in the amount of molten metal in the electric furnace.
図 5 有価金属の回収方法のフローの他の例を示す図。  Fig. 5 Diagram showing another example of the flow of the method for recovering valuable metals.
図 6 有価金属の回収方法のフローのさらに他の例を示す図。 発明を実施するための最良の形態  Fig. 6 is a diagram showing still another example of the flow of the method for recovering valuable metals. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施形態について説明する。 本実施形態では、 V、 M o及ぴ N iを含有する廃棄物を原料とする。具体的には使用済脱硫触媒 (直接脱硫触媒、 間接脱硫触媒)、 ボイラー灰、 ボイラースラッジ、 ニッケノレ系スラッジ、 メタバナ ジン酸アンモニゥム等の少なくとも一つ又はこれらを混合した廃棄物を原料とす る。 表 1は原料毎の成分の一例を示す。 Hereinafter, an embodiment of the present invention will be described. In the present embodiment, a waste containing V, Mo, and Ni is used as a raw material. Specifically, the raw material shall be at least one of spent desulfurization catalyst (direct desulfurization catalyst, indirect desulfurization catalyst), boiler ash, boiler sludge, nickele sludge, ammonium metavanadate, or a mixture thereof. Table 1 shows an example of components for each raw material.
【表 1】 【table 1】
揮発分等 [投入原料の推定平均 ¾ Ξ状: Dry, wt%] Volatile content, etc. [Estimated average of input materials ¾ ¾: Dry, wt%]
原料名 Raw material name
wt% i Mo V P S C Fe Al Si 使用済直接脱硫触媒 26.0% 3.81% 5.39% 7.30% 0.80% 10.00% 23.00% 3.00% 25.00% 0.8 使用済間接脱硫触媒 11.0% 1.20% 12.09% 0.64% 0.50% 1.00% 23.00% 3.00% 25.00% 0.0 石油コークスボイラー灰 11.0% 0.50% 0.00% 1.50% 0.00% 6.50% 80.00% 0.50% 0.20% 2. カーボン系スラッジ 50.0% 1.50% 0.00% 2.00% 0.00% 0.13% 68.00% 2.00% 0.04% 0.1 ニッケル系スラッジ 55.0% 8.50% 0.00% 3.50% 0.02% 0.00% 0.00% 0.10% 0.01% 0. メタバナジン酸アンモニゥム 0.0% 0.00% 0.00% 43.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0. 重質油ガス化スラッジ 75.0% 0.90% 0.00% 3.30% 0.00% 0.00% 0.00% 7.64% 1.50% 0. wt% i Mo VPSC Fe Al Si Spent direct desulfurization catalyst 26.0% 3.81% 5.39% 7.30% 0.80% 10.00% 23.00% 3.00% 25.00% 0.8 Spent indirect desulfurization catalyst 11.0% 1.20% 12.09% 0.64% 0.50% 1.00% 23.00 % 3.00% 25.00% 0.0 Petroleum coke boiler ash 11.0% 0.50% 0.00% 1.50% 0.00% 6.50% 80.00% 0.50% 0.20% 2.Carbon sludge 50.0% 1.50% 0.00% 2.00% 0.00% 0.13% 68.00% 2.00% 0.04 % 0.1 Nickel-based sludge 55.0% 8.50% 0.00% 3.50% 0.02% 0.00% 0.00% 0.10% 0.01% 0.Ammonium metavanadate 0.0% 0.00% 0.00% 43.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0. Heavy Oil gasification sludge 75.0% 0.90% 0.00% 3.30% 0.00% 0.00% 0.00% 7.64% 1.50% 0.
VRボイラー灰 50.0% 0.75% 0.00% 0.75% 0.00% 3.50% 88.00% 1.00% 1.00% 5.0 VR boiler ash 50.0% 0.75% 0.00% 0.75% 0.00% 3.50% 88.00% 1.00% 1.00% 5.0
例えば脱硫触媒には Ni、 Mo、 及び V成分が多く、 C、 S成分も多い。 ボイ ラー灰には C成分が例えば 80%程度含まれるが、 Mo成分が含まれていない。 力ーポン系スラッジには水分が例えば 50%も含まれる。 このように多種多様な 成分を有する廃棄物を原料としている。 原科は重油又は水分が付着した状態にな つている。 For example, desulfurization catalysts have many Ni, Mo, and V components, and many C and S components. Boiler ash contains, for example, about 80% of the C component, but does not contain the Mo component. Power-pond sludge contains, for example, 50% water. Waste materials with various components are used as raw materials. The original family is in a state where heavy oil or moisture is attached.
表 2は最終的に得られる製品規格の一例を示す。 Table 2 shows an example of the final product standard.
【表 2】 [Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0002
製品名:カルシウムアルミネ一ト; GaOAIzOa  Product name: calcium aluminum; GaOAIzOa
AlaOs (アルミナ) CaO (生石灰) MgO SiOz FeO P (リン) S (硫黄) 製品規格 50.0 ~ 55.0% 28.0~33.0% 10.0% max. 5.0% max. 1.0% max. 0.05% max. 0.1% max. AlaOs (alumina) CaO (quick lime) MgO SiO z FeO P (phosphorus) S (sulfur) Product specifications 50.0 to 55.0% 28.0 to 33.0% 10.0% max. 5.0% max. 1.0% max. 0.05% max. 0.1% max.
F e一 V系合金には例えば J I S 2号規格品相当の規格が求められる。 この規 格では、 V成分を 45〜55ma s s%に調整し、 C、 S i、 P、 S成分等を低 く抑える必要があり、 Ni、 Mo及ぴ A 1成分も低く抑える必要がある。 また F e— N i—Mo系合金には、 例えば鉄鋼関係で使用される際の規格があり、 この 規格によれば P、 S成分を低く抑える必要がある。 For Fe-V alloys, for example, standards equivalent to JIS No. 2 standard products are required. In this standard, it is necessary to adjust the V component to 45 to 55 mass% to keep the C, Si, P, S components and the like low, and also to keep the Ni, Mo and A1 components low. For Fe-Ni-Mo alloys, for example, there is a standard for use in steel-related applications. According to this standard, it is necessary to keep the P and S components low.
図 2は有価金属の回収方法のフローを示し、 図 3はこのフローを図式化したも のである。 まず脱硫触媒(直接脱硫触媒、 間接脱硫触媒)、 ボイラー灰、カーボン 系スラッジ、二ッケル系スラッジ、重質油ガス化スラッジ等の原料を乾燥する( S 1)。 この乾燥工程では >ロータリードライヤで原料を例えば 120°C程度の温度 に加熱して乾燥する。 原料中には水分が例えば 30〜40%程度揮発分として存 在する。 水分がある状態でこのまま次工程に進むと、 水分が多すぎて団鉱できな いことがある。 なお、 脱硫触媒及ぴコークスボイラー灰はもともと水分が少ない ので、 乾燥工程の後に投入することもある。  Fig. 2 shows the flow of the method for recovering valuable metals, and Fig. 3 illustrates this flow. First, raw materials such as a desulfurization catalyst (direct desulfurization catalyst and indirect desulfurization catalyst), boiler ash, carbon-based sludge, nickel-based sludge, and heavy oil gasification sludge are dried (S1). In this drying step, the raw material is dried by heating to a temperature of, for example, about 120 ° C. using a rotary dryer. Water is present in the raw materials as volatile matter, for example, at about 30 to 40%. If the process proceeds to the next step in a state where there is water, briquetting may not be possible due to too much water. Since the desulfurization catalyst and coke boiler ash originally have low water content, they may be added after the drying process.
次に、乾燥した V、 Mo及ぴ N i含有廃棄物を粉碎する (S 2)。例えば潤式ミ ルにより V、 Mo及び N i含有廃棄物を粉碎する。 粉砕すると多種多様な原料が 混合され、 均一になる。  Next, the dried V, Mo, and Ni-containing waste is ground (S2). For example, the waste containing V, Mo and Ni is ground by a wet mill. When crushed, a wide variety of raw materials are mixed and become uniform.
次に粉砕した廃棄物を造粒して団鉱に成形する(S 3)。例えばペレタイザ一又 はブリケットにより粉碎物をぺレット状又はブリケット状の団鉱に成形する。 原 料を団鉱に成形することなく粉のまま次工程に進むと、 焙焼するキルンで原料が 焼結したり、 溶融還元する加熱炉で棚吊りや吹き上げが生じて炉況が悪くなった りするおそれがある。  Next, the crushed waste is granulated and formed into briquettes (S3). For example, the crushed material is formed into pellets or briquettes using a pelletizer or briquettes. If the raw material proceeded to the next process without being formed into briquettes, the raw material sintered in the kiln to be roasted, and the condition of the furnace deteriorated due to shelving and blowing up in the heating furnace for smelting and reducing. May be lost.
次に団鉱した原料を焙焼する (S4)。 この工程では、団鉱した原料をキルンで 例えば 800〜900°Cに加熱する。 この焙焼により廃棄物中の S分、 C分が加 熱分解され、 SOx、 CO2等として除去される。 800°C以上にするのは、 原 料に付着した重油とか C分を酸化物にして除去するのに適した温度であり、 95 0°C以下にするのは Moが昇華して回収率が落ちてしまうのを防止するためであ る。  Next, the aggregated raw material is roasted (S4). In this step, the aggregated raw material is heated in a kiln to, for example, 800 to 900 ° C. By this roasting, S and C components in the waste are pyrolyzed and removed as SOx, CO2, etc. The temperature of 800 ° C or higher is a temperature suitable for removing heavy oil and C attached to the raw material as oxides, and the temperature of 950 ° C or lower is sublimation of Mo and the recovery rate is lower than 950 ° C. This is to prevent it from falling.
なおこれら乾燥工程 (S 1) から焙焼工程 (S 4) までは、 加熱炉での操業の 状況によっては省略されることもあり得る。 次に培焼した原料、 還元剤としての F e、 及びフラックスとしての石灰を、 加 熱炉としての電気炉に装入する。 そして、 これらを約 1700°Cで加熱還元する ことで、 V含有スラグ及び F e— Mo— N i系合金を生成させる (S 5)。 Note that the steps from the drying step (S1) to the roasting step (S4) may be omitted depending on the situation of the operation in the heating furnace. Next, the baked raw material, Fe as a reducing agent, and lime as a flux are charged into an electric furnace as a heating furnace. These are reduced by heating at about 1700 ° C to produce V-containing slag and Fe-Mo-Ni alloy (S5).
この工程 (S 5) では、 焙焼した原料、 Fe、 及びフラックスを同時に電気炉 に装入してもよいし、 またあらかじめ鉄浴を生成しておき、 該鉄浴に原料及ぴ石 灰を装入すること.で溶融還元反応を行ってもよレヽ。あらかじめ鉄浴を生成すると、 還元反応の反応効率を向上させることができ、 しかも熱効率も向上させることが できる。  In this step (S5), the roasted raw material, Fe, and flux may be simultaneously charged into an electric furnace, or an iron bath is generated in advance, and the raw material and lime are added to the iron bath. The smelting reduction reaction can be performed by charging. If an iron bath is generated in advance, the reaction efficiency of the reduction reaction can be improved, and the thermal efficiency can also be improved.
原料中の M o酸化物及ぴ N i酸化物の還元は、 F eで行なわれる。 還元剤とし ての F eの量は、 V、 Mo及び N i含有廃棄物中の Mo酸化物及ぴ N i酸化物を 金属にまで還元するのに必要な化学的当量に略等しく設定される。  Reduction of Mo oxide and Ni oxide in the raw material is performed by Fe. The amount of Fe as a reducing agent is set approximately equal to the chemical equivalent required to reduce Mo oxides and Ni oxides in V, Mo and Ni-containing wastes to metals. .
原料を F eで還元した後、 溶湯に A 1還元剤を添加して、 F e還元により生じ た F e酸化物及び原料中の F e酸化物を A 1還元剤で還元する。 A 1還元剤で還 元するのは、 還元反応により生じた F e酸化物を F e— Mo— N i系合金の鉄源 としてメタル中に戻すためであり、 また V含有スラグ中の F e分を調整するため でもある。 A 1還元剤はあくまで F e分の成分調整用に補助的に用いられる。 F e酸ィ匕物の還元剤としては、 金属 A 1、 金属 S i、 フエ口シリコン、 カーボン等 のレ、ずれか一つ、 又はこれらの組み合わせを用いることができる。  After reducing the raw material with Fe, an A 1 reducing agent is added to the molten metal, and the Fe oxide generated by the Fe reduction and the Fe oxide in the raw material are reduced with the A 1 reducing agent. The reduction with the A1 reducing agent is to return the Fe oxide generated by the reduction reaction to the metal as an iron source of the Fe—Mo—Ni alloy, and to reduce the Fe in the V-containing slag. It is also to adjust the minute. The A 1 reducing agent is used only for adjusting the component of Fe. As the reducing agent for the Fe fertilizer, metal A1, metal Si, fue silicon, carbon, or the like, any one of them, or a combination thereof can be used.
A 1還元剤を添加することなく、 全て F e還元剤で還元することも、 還元剤と しての F eの量に F e-Mo-N i系合金の鉄源としての分を加えることで可能 である。 しかしそうすると次工程で V含有スラグ中の F e分が多くなりすぎて、 V成分を還元するのが困難になってしまう。 V含有スラグ中の F e分が多い場合、 V含有スラグに V成分調整用に V205又はメタバナジン酸アンモニゥムを装入す る必要がある。 A 1 All reduction with Fe reducing agent without adding reducing agent is also possible by adding the amount of Fe as a reducing agent to the amount of Fe as an iron source of Fe-Mo-Ni alloy. It is possible. However, if this is done, the Fe content in the V-containing slag in the next step will be too large, making it difficult to reduce the V component. If F e in V-containing slag is large, it is necessary to charged V 2 0 5 or metavanadate Anmoniumu for V component adjusted to V-containing slag.
次に F e—Mo _N i系合金を V含有スラグと分離した後、 F e_Mo— N i 系合金の脱 S, 脱 P, 脱 Cを行う (S 6, S 7)。原料中の P成分は F e— Mo— N i系合金中に残る。 S成分は規格が厳しいので脱 Sする必要があり、 C成分は 電極からの加炭もあるので脱 Cする必要がある。  Next, after separating the Fe-Mo-Ni-based alloy from the V-containing slag, the Fe-Mo-Ni-based alloy is de-S, de-P, and de-C (S6, S7). The P component in the raw material remains in the Fe—Mo—Ni alloy. The S component must be de-S because of strict specifications, and the C component must be de-C because there is carburization from the electrode.
この工程では、 まず F e-Mo-N i系合金を加熱用容器としてのレードル · ファーネスに出湯する (S 6)。 次に、 石灰、 〇&〇ー八123系フラックス、 及 び CaO— A l203—FeO系フラックス等を装入し、 脱 S, P, Cを行う (S 7)。 Ca〇一 A 1203系フラックスには、後述する V含有スラグを A 1還元する ことで発生するスラグを利用してもよい。 Arガスや 02ガス吹き (バブリング 利用) は効果がある。 最後に脱 S, 脱 P, 脱 Cを行った Fe— Mo— N i系合金 を铸型に錶込む。 In this process, first, Fe-Mo-Ni alloy is used as a heating vessel with a ladle Take water to the furnace (S6). Next, lime, 〇 & 〇 over eight 1 23 based flux was charged with及beauty CaO- A l 2 0 3 -FeO based flux or the like, de S, P, and C performed (S 7). Ca_〇 to one A 1 2 0 3 based flux, it may be utilized slag generated by A 1 reducing the V-containing slag to be described later. Ar gas and 0 2 gas blowing (bubbling use) is effective. Finally, the Fe-Mo-Ni-based alloy, which has been de-S, de-P, and de-C-deposited, is incorporated into the 铸 type.
一方 V含有スラグも、 加熱用容器としてのレードル,ファーネスに出湯される (S 8)。 このレードル 'ファーネスには、 A 1還元剤、石灰及び V成分調整用の V2Ogも投入され、 これにより V含有スラグから Fe— V系合金及び CaO— A 12O3スラグが生成する。 ここで最少の設備にするために、 F e— Mo— N i系 合金を脱 S, 脱 P, 脱 Cするのに使用されるレードル ·ファーネスと、 V含有ス ラグを A 1還元するのに使用されるレードル'ファーネスとが共用される。 図 4は電気炉における溶湯量と、 メタル Fe, N i, Mo成分の経時的な変化 を示す概念図である。 Fe還元することにより、 時間の経過に伴ってメタル中の F e成分が少なくなり、 N i及び M 0成分が多くなり、 その後安定させることが できる。また、 V含有スラグが所定の量になると、メタルをそのまま炉内に残し、 V含有スラグだけレ一ドル'ファーネスに出湯する。 そしてレ一ドル'ファーネ スで V含有スラグの還元が行なわれる。 一方 V含有スラグがレードル ·ファーネ スに出湯される複数バッチに一回、 Fe— Mo— N i系合金が同じレードル-フ ァ一ネスに出湯される。 そして同じレ一ドル ·ファーネスで脱 S, 脱 P, 脱じの 精練が行われる。 On the other hand, V-containing slag is also supplied to the ladle and furnace as heating vessels (S8). The ladle 'furnace, A 1 reducing agent, also V 2 O g for lime and V components adjusted is turned on, thereby V-containing Fe- V alloy from the slag and CaO- A 12O3 slag is produced. In order to minimize the equipment here, the ladle furnace used to remove S, P, and C from Fe—Mo—Ni alloys and A 1 reduction of slag containing V The ladle used is shared with the furnace. Fig. 4 is a conceptual diagram showing the changes over time in the amount of molten metal and the Fe, Ni, and Mo components in an electric furnace. By the Fe reduction, the Fe component in the metal decreases with time, the Ni and M0 components increase, and the metal can be stabilized thereafter. Also, when the V-containing slag reaches a predetermined amount, the metal is left in the furnace as it is, and only the V-containing slag flows out to the ladle furnace. Then, the V-containing slag is reduced in the Ladle's furnace. On the other hand, once every batch containing V-containing slag into the ladle furnace, the Fe-Mo-Ni-based alloy is tapped into the same ladle-furnace. Then, scouring for removal of S, removal of P, and removal of the same material is performed in the same furnace.
生成される F e -Mo-N i系合金の量は V含有スラグに比較して非常に少な い。 V含有スラグを頻繁に出湯することにより、 電気炉の熱効率が向上する。 ま た V含有スラグを出湯するバッチ毎に F e-Mo-N i系合金を出湯する場合に 比較して、 生産性も向上する。  The amount of Fe-Mo-Ni-based alloy produced is very small compared to V-containing slag. Frequent tapping of V-containing slag improves the thermal efficiency of the electric furnace. Also, productivity is improved compared to the case where Fe-Mo-Ni alloy is tapped for each batch in which V-containing slag is tapped.
図 5は有価金属の回収方法のフローの他の例を示す。 このフローでは、 予備処 理工程の乾燥工程と焙焼工程とを一緒にして、 プロセスをシンプルにしている。 まず脱硫触媒(直接脱硫触媒、間接脱硫触媒)、ボイラー灰、カーボン系スラッジ、 ニッケル系スラッジ、 重質油ガス化スラッジ等の原料を焙焼する (S 1 ')0 こ の工程では、 例えばロー夕リーキルンで例えば 8 0 0〜 9 0 0 °Cに加熱する。 こ の焙焼により、 廃棄物中の水分が蒸発し、 また、 S分、 C分が除かれる。 Fig. 5 shows another example of the flow of the valuable metal recovery method. This flow simplifies the process by combining the drying and roasting steps of the pretreatment step. First desulfurization catalyst (direct desulfurization catalyst, indirect desulfurization catalyst), boiler ash, carbon-based sludge, nickel sludge, roasting raw materials such as heavy oil gasification sludge (S 1 ') 0 This In the step (2), the mixture is heated, for example, to 800 to 900 ° C. with a roasting kiln. By this roasting, the water in the waste evaporates and the S and C components are removed.
次に、 粉々になっている原料を団鉱する (S 3 ' )。 例えばペレタイザ一又は プリケットにより原料をペレツト状又はプリケット状の団鉱に成形する。 原料に よっては、 ブリゲット状により団鉱しゃすくするために、 団鉱する前に粉碎工程 を入れてもよい(S 2 ' )。粉でないものは団鉱せずにそのまま装入してもよい。 原料、 還元剤としての F e、 及びフラックスとしての石灰を、 加熱炉としての電 気炉に装入する (S 5 ) 以降のプロセスは、 上記図 2に示される回収方法のフロ —と同一なので、 同一の符号を附してその説明を省略する。  Next, the raw material that has been shattered is aggregated (S 3 ′). For example, the raw material is formed into pellet-like or pricket-like briquettes using a pelletizer or a pricket. Depending on the raw material, a grinding process may be performed before briquetting to reduce briquettes by briquetting (S 2 ′). Non-powder may be charged as it is without bridging. The process after charging the raw material, Fe as the reducing agent, and lime as the flux into the electric furnace as the heating furnace (S5) is the same as the flow of the recovery method shown in Fig. 2 above. The same reference numerals are given and the description is omitted.
図 6は、有価金属の回収方法のフローのさらに他の例を示す。このフローでは、 さらにプロセスをシンプルにし、 原料をそのまま電気炉に装入している。 油、 水 等の揮発分が含まれる原料を電気炉に装入すると、 電気炉操業が困難になるおそ れがあるが、 原料によっては揮発分が少ないものもある。 このフローは、 揮発分 が少ない原料の処理に適している。 原料、 還元剤としての F e、 及びフラックス としての石灰を、 加熱炉としての電気炉に装入する (S 5 ) 以降のプロセスは、 上記図 2に示される回収方法のフローと同一なので、 同一の符号を附してその説 明を省略する。  FIG. 6 shows still another example of the flow of the method for recovering valuable metals. In this flow, the process is further simplified, and the raw materials are charged directly into the electric furnace. If a raw material containing volatile components such as oil and water is charged into an electric furnace, the operation of the electric furnace may become difficult, but some raw materials have low volatile components. This flow is suitable for processing raw materials with low volatile content. The raw material, Fe as a reducing agent, and lime as a flux are charged into an electric furnace as a heating furnace (S 5). The process after that is the same as the flow of the recovery method shown in FIG. The description is omitted by attaching the sign.
【実施例 1】  [Example 1]
脱硫触媒、 ボイラー灰、 ニッケル系スラッジの混合原料をドライヤで焙焼して 表 3の成分組成が得られた。  The raw material mixture of the desulfurization catalyst, boiler ash, and nickel-based sludge was roasted with a dryer to obtain the component compositions shown in Table 3.
【表 3】
Figure imgf000014_0001
次に 5 0 0 KVA電気炉に、 乾燥原料 1 0 0 k g、 生石灰 1 4 k g F e 7 k gを装入し、 これらを約 1 7 0 0 °Cに加熱し、 溶融還元反応を行った。 表 4に示 される成分組成の F e— M o— N i系合金 1 0 k gと Vリッチスラグを生成した。 【表 4】
Figure imgf000015_0001
分離回収した Vリッチスラグ 57 kgを高周波炉で 1600°Cに保持し、 還元 剤として金属 A 1を 5 k gと石灰 5 k g、 V2057 kgを添加して表 5に示され る Fe— V系合金 10kgを回収した。
[Table 3]
Figure imgf000014_0001
Next, 100 kg of dry raw material and 14 kg of quicklime were charged into a 500 KVA electric furnace, and these were heated to about 170 ° C. to perform a smelting reduction reaction. A 10-kg Fe-Mo-Ni alloy with the composition shown in Table 4 and V-rich slag were produced. [Table 4]
Figure imgf000015_0001
The separated recovered V-rich slag 57 kg and held at a high-frequency furnace to 1600 ° C, Ru shown a metal A 1 as the reducing agent 5 kg and lime 5 kg, was added to V 2 0 5 7 kg Table 5 Fe — Recovered 10 kg of V alloy.
【表 5】
Figure imgf000015_0002
[Table 5]
Figure imgf000015_0002
【実施例 2】 [Example 2]
脱硫触媒、 ポイラ一スラッジ、 ニッケル系スラッジ、 ボイラー灰等の原料を乾 燥後、 バインダとしてベントナイトを 2%添加してから潤式ポールミルにて 20 Ome s h以下に調湿 ·粉砕し、 次いで団鉱機を用いて直径 10mm程度のペレ ッ卜に成形した。 その後、 竪型キルンにて、 800°C、 3時間焙焼し、 表 6に示 される焙焼物を得た。  After drying the raw materials such as desulfurization catalyst, poiler sludge, nickel-based sludge, and boiler ash, add 2% of bentonite as a binder, then humidify and pulverize to 20 Omesh or less with a wet-type pole mill, and then aggregate. It was formed into a pellet with a diameter of about 10 mm using a machine. Then, it was roasted in a vertical kiln at 800 ° C for 3 hours to obtain a roasted product shown in Table 6.
【表 6】  [Table 6]
(%) C S Mo Ni Co V S1O2 AI2O3 焙焼物 0.1 0.4 5.5 7.5 0.2 8.4 2.4 40.0 マグネシアライニングされた 500KVA電気炉に、 あらかじめ F e 17 kg を溶融しておき、 そこに上記焙焼物 100 kgと生石灰 32、 Al 4kgを添加 し、 さらに A rガスを吹き込む攪拌を加えることにより、 表 7に示される Fe— Mo— N i系合金 24 kgを得た。 (%) CS Mo Ni Co V S1O2 AI2O3 Roasted material 0.1 0.4 5.5 7.5 0.2 8.4 2.4 40.0 17 kg of F e is melted in advance in a magnesia-lined 500 KVA electric furnace, where 100 kg of the roasted material and quicklime 32 Then, 4 kg of Al and 4 kg of Fe—Mo—Ni based alloy shown in Table 7 were obtained by adding stirring by blowing Ar gas.
【表 7】 [Table 7]
o Ni Co V Si P S C (%) o Ni Co V Si P S C (%)
Fe-Mo-Ni 20.0 29.0 0.8 0.2 0.1 0.5 0.3 0.1 さらに Fe— Mo— N i系合金を高周波炉で加熱保持し、脱 S, P, Cを行った。 表 8に結果を示す。 Fe-Mo-Ni 20.0 29.0 0.8 0.2 0.1 0.5 0.3 0.1 The Fe-Mo-Ni alloy was heated and held in a high-frequency furnace to remove S, P, and C. Table 8 shows the results.
【表 8】
Figure imgf000016_0001
分離回収した Vリッチスラグ 138kgを約 1600°Cに保持し、 Arガスで 攪拌した。 還元剤として金属 A 1 25 kgと、 V205を 21 kgと、 石灰 25 k gとを添加することで、 表 9に示される F e— V系合金 39 kgを回収した。
[Table 8]
Figure imgf000016_0001
138 kg of the separated V-rich slag was kept at about 1600 ° C and stirred with Ar gas. And the metal A 1 25 kg as a reducing agent, and the V 2 0 5 21 kg, by adding lime 25 kg, was recovered F e- V alloy 39 kg as shown in Table 9.
【表 9】  [Table 9]
V AI Mo Ni Si P (%) V AI Mo Ni Si P (%)
Fe-V 46.8 0.1 0.9 0.5 0.4 0.05 また、スラグ成分は、 C a〇31 %、 A 12352 %、 S i〇22%、Mg08%、 FeOO. 8%であった。 Fe-V 46.8 0.1 0.9 0.5 0.4 0.05 In addition, the slag component, C A_rei_31%, A 1 23 52%, S I_〇 2 2%, Mg08%, was FeOO. 8%.
以上説明したように本発明によれば、 還元剤として Feを用いるので、 V、 M 0及び N i含有廃棄物から、 Fe_Mo— N i系合金及び F e— V系合金を安定 して歩留りよく回収できる。  As described above, according to the present invention, since Fe is used as the reducing agent, Fe-Mo-Ni-based alloys and Fe-V-based alloys can be stably produced with high yield from V, M0, and Ni-containing wastes. Can be collected.

Claims

請求の範囲 The scope of the claims
I V、 M o及び N i含有廃棄物を F eで還元して、 V含有スラグ及び F e - Mo— N i系合金を生成させる工程と、  Reducing the IV, Mo and Ni-containing waste with Fe to produce a V-containing slag and a Fe-Mo-Ni-based alloy;
前記 V含有スラグに還元剤を投入して F e一 V系合金を生成させる工程と、 を 備える V、 Mo及ぴ N i含有廃棄物からの有価金属の回収方法。  A method of adding a reducing agent to the V-containing slag to generate an Fe-IV alloy, a method for recovering valuable metals from V, Mo and Ni-containing waste.
2 V、 Mo及ぴ N i含有廃棄物からの有価金属の回収方法であって、 以下の 工程を備える:  2 A method for recovering valuable metals from waste containing V, Mo and Ni, comprising the following steps:
V、 Mo及び N i含有廃棄物を焙焼する工程;  Roasting V, Mo and Ni containing waste;
前記 V、 Mo及び N i含有廃棄物、 還元剤としての Fe、 及ぴフラックスを加 熱炉に装入し、 これらを加熱還元することで、 V含有スラグ及び F e— Mo_N i系合金を生成させる工程;  The V-, Mo-, and Ni-containing waste, Fe as a reducing agent, and flux are charged into a heating furnace, and these are heated and reduced to produce a V-containing slag and a Fe—Mo_Ni-based alloy. The step of causing;
前記 V含有スラグに A 1還元剤を投入して、 F e一 V系合金及ぴ C a O— A 12 o3スラグを生成させる工程。 The V-containing slag by introducing the A 1 reducing agent, F e one V alloy及Pi C a O- A 1 2 o 3 steps to produce the slag.
3 前記 V含有スラグ及び F e-Mo-N i系合金を生成させる工程において、 前記 V、 Mo及び N i含有廃棄物を前記 F eで還元した後、 前記 F eで還元す ることにより生じた Fe酸化物を Al、 S i、 及び Cの少なくとも一つで還元す ることを特徴とする請求項 1又は 2に記載の V、 Mo及び N i含有廃棄物からの 有価金属の回収方法。  (3) In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, the V-, Mo-, and Ni-containing waste is reduced by the Fe and then reduced by the Fe. 3. The method for recovering valuable metals from V, Mo and Ni-containing waste according to claim 1 or 2, wherein the reduced Fe oxide is reduced with at least one of Al, Si and C.
4 前記 V、 Mo及び N i含有廃棄物を焙焼する工程において、  4 In the step of roasting the V, Mo and Ni-containing waste,
前記 V、 Mo及び N i含有廃棄物を乾燥した後、 粉砕し、 団鉱に成形し、 これ を焙焼することを特徴とする請求項 2又は 3に記載の V、 M o及び N i含有廃棄 物からの有価金属の回収方法。  The V, Mo, and Ni-containing waste according to claim 2 or 3, wherein the V, Mo, and Ni-containing waste is dried, then crushed, formed into briquettes, and roasted. A method for recovering valuable metals from waste.
5 前記 V、 M o及び N i含有廃棄物を焙焼する工程において、  5 In the step of roasting the V, Mo and Ni-containing waste,
前記 V、 M o及び N i含有廃棄物を焙焼した後、 団鉱に成形することを特徴と する請求項 2又は 3に記載の V、 Mo及ぴ N i含有廃棄物からの有価金属の回収 方法。  The valuable metal from V, Mo and Ni-containing waste according to claim 2 or 3, wherein the V, Mo and Ni-containing waste is formed into briquettes after roasting. Collection method.
6 前記 V含有スラグ及び F e-Mo-N i系合金を生成させる工程において、 あらかじめ鉄浴を生成しておき、 該鉄浴に前記 V、 Mo及ぴ N i含有廃棄物を 装入して溶融還元反応を行うことを特徴とする請求項 1ないし 5いずれかに記载 の V、 Mo及び N i含有廃棄物からの有価金属の回収方法。 6 In the step of producing the V-containing slag and the Fe-Mo-Ni-based alloy, an iron bath is generated in advance, and the V, Mo and Ni-containing waste is charged into the iron bath. The method according to any one of claims 1 to 5, wherein a smelting reduction reaction is performed. Of valuable metals from waste containing V, Mo and Ni.
7 前記 V含有スラグ及び F e -Mo-N i系合金を生成させる工程において、 前記 F e— Mo— N i系合金を前記 V含有スラグと分離した後、 前記 F e一 M 0—1^系合金の脱3, 脱 P, 脱 Cを行うことを特徴とする請求項 1ないし 6い ずれかに記載の V、 M o及び N i含有廃棄物からの有価金属の回収方法。 In seventh step of generating the V-containing slag and F e -Mo-N i based alloy, after the F e- Mo- N i based alloy was separated from the V-containing slag, the F e one M 0 -1 ^ The method for recovering valuable metals from V, Mo and Ni-containing waste according to any one of claims 1 to 6, wherein the dealloying, de-P and de-C of the base alloy are performed.
8 前記 F e— Mo_N i系合金の脱 S, 脱 P, 脱 Cを行うのに使用される加 熱用容器と、 前記 V含有スラグに還元剤を投入して F e一 V系合金を生成させる 工程において使用されるカロ熱用容器とが、 共用されることを特徴とする請求項 7 に記載の V、 Mo及ぴ N i含有廃棄物からの有価金属の回収方法。  8 A heating vessel used to remove S, P, and C from the Fe-Mo_Ni-based alloy, and a reducing agent is added to the V-containing slag to produce a Fe-V-based alloy The method for recovering valuable metals from V-, Mo-, and Ni-containing waste according to claim 7, wherein the container for calorific heat used in the step of causing is shared.
9 前記 V含有スラグ及び F e-Mo-N i系合金を生成させる工程において、 前記 F e -Mo-N i系合金が一回出湯される間に、 前記 V含有スラグが複数 回出湯されることを特徴とする請求項 1ないし 8レ、ずれかに記載の V、 M o及び N i含有廃棄物からの有価金属の回収方法。  9 In the step of generating the V-containing slag and the Fe-Mo-Ni-based alloy, the V-containing slag is discharged a plurality of times while the Fe-Mo-Ni-based alloy is discharged once. The method for recovering valuable metals from V, Mo, and Ni-containing waste according to any one of claims 1 to 8, wherein:
PCT/JP2003/015409 2002-12-06 2003-12-02 METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni WO2004053173A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-355729 2002-12-06
JP2002355729 2002-12-06
JP2003059837 2003-03-06
JP2003-059837 2003-03-06

Publications (1)

Publication Number Publication Date
WO2004053173A1 true WO2004053173A1 (en) 2004-06-24

Family

ID=32510611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015409 WO2004053173A1 (en) 2002-12-06 2003-12-02 METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni

Country Status (2)

Country Link
KR (1) KR100764259B1 (en)
WO (1) WO2004053173A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108440A (en) * 2011-03-15 2011-06-29 中南大学 Method for extracting molybdenum from nickel-molybdenum mineral alkali leaching solution
CN105112647A (en) * 2015-09-06 2015-12-02 中南大学 Sulfur fixation method of roasting low-grade molybdenite concentrate through lime method
RU2623928C2 (en) * 2015-12-14 2017-06-29 Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО "НВП Центр-ЭСТАгео") Method of deep recycling iron-containing wastes
RU2629129C2 (en) * 2015-10-28 2017-08-24 Василий Михайлович Рыбаулин Method of processing waste copper production
RU2657149C1 (en) * 2017-07-25 2018-06-08 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method of rare earth metals and scandium extraction from slag wastes
CN110734238A (en) * 2019-10-29 2020-01-31 中冶南方都市环保工程技术股份有限公司 method for synergistically recovering red mud and desulfurized fly ash, filler, cementing material and preparation method
TWI761256B (en) * 2021-07-08 2022-04-11 虹京金屬股份有限公司 Method for recycling metals from concentrate with nickel and aluminum

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102445476B1 (en) * 2021-09-15 2022-09-21 주식회사 한내포티 Method of extracting valuable metals containing denitrification waste catalyst using an alkali sintered body
WO2023043095A1 (en) * 2021-09-15 2023-03-23 주식회사 한내포티 Method for extracting waste denitrification catalyst-containing valuable metals

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150162A (en) * 1997-08-05 1999-02-23 Chubu Electric Power Co Inc Recovery of valuable metal from heavy oil ash
JP2000020420A (en) * 1998-06-30 2000-01-21 Canon Inc Communication system, control method therefor, communication equipment, control method therefor and computer readable memory
JP2001316732A (en) * 2000-05-11 2001-11-16 Nippon Cms Kk Method for recovering valuable metal from material containing nickel and vanadium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150162A (en) * 1987-12-08 1989-06-13 Ricoh Co Ltd Method for controlling image forming device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150162A (en) * 1997-08-05 1999-02-23 Chubu Electric Power Co Inc Recovery of valuable metal from heavy oil ash
JP2000020420A (en) * 1998-06-30 2000-01-21 Canon Inc Communication system, control method therefor, communication equipment, control method therefor and computer readable memory
JP2001316732A (en) * 2000-05-11 2001-11-16 Nippon Cms Kk Method for recovering valuable metal from material containing nickel and vanadium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102108440A (en) * 2011-03-15 2011-06-29 中南大学 Method for extracting molybdenum from nickel-molybdenum mineral alkali leaching solution
CN102108440B (en) * 2011-03-15 2012-08-08 中南大学 Method for extracting molybdenum from nickel-molybdenum mineral alkali leaching solution
CN105112647A (en) * 2015-09-06 2015-12-02 中南大学 Sulfur fixation method of roasting low-grade molybdenite concentrate through lime method
RU2629129C2 (en) * 2015-10-28 2017-08-24 Василий Михайлович Рыбаулин Method of processing waste copper production
RU2623928C2 (en) * 2015-12-14 2017-06-29 Общество с ограниченной ответственностью "НВП Центр-ЭСТАгео" (ООО "НВП Центр-ЭСТАгео") Method of deep recycling iron-containing wastes
RU2657149C1 (en) * 2017-07-25 2018-06-08 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method of rare earth metals and scandium extraction from slag wastes
CN110734238A (en) * 2019-10-29 2020-01-31 中冶南方都市环保工程技术股份有限公司 method for synergistically recovering red mud and desulfurized fly ash, filler, cementing material and preparation method
TWI761256B (en) * 2021-07-08 2022-04-11 虹京金屬股份有限公司 Method for recycling metals from concentrate with nickel and aluminum

Also Published As

Publication number Publication date
KR20050065676A (en) 2005-06-29
KR100764259B1 (en) 2007-10-05

Similar Documents

Publication Publication Date Title
CN100469907C (en) Method for processing dust with zinc of electric furnace
CN101715492B (en) Direct smelting of zinc bearing compounds to produce metallic zinc
JPWO2007039938A1 (en) Method for roasting inclusions containing at least one of V, Mo and Ni and rotary kiln for roasting
AU2005300680B2 (en) Process and plant for producing titania slag from ilmenite
CA3056280C (en) Carbothermic direct reduction of chromite using a catalyst for the production of ferrochrome alloy
EP1165845A2 (en) Method and apparatus for removing undesirable metals from iron-containing materials
WO2004053173A1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP5446735B2 (en) Method for producing metal manganese
JP3727232B2 (en) Zinc recovery method
JP3705472B2 (en) Method for recovering useful metals from vanadium-containing waste
JP4485987B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
JP3705498B2 (en) Method for recovering valuable metals from waste containing V, Mo and Ni
WO2009145348A1 (en) Method for manufacturing pig iron
JP2007521393A (en) Mechanical separation of volatile metals at high temperatures.
AU2007285415B2 (en) A method for the commercial production of iron
GB2067599A (en) Recovery of Pt group metals
JP2004270036A (en) Recovering method of useful metal from useful metal-containing waste
KR100770059B1 (en) METHOD FOR RECOVERING VALUABLE METAL FROM WASTE CONTAINING V, Mo AND Ni
JP2001098339A (en) Method of producing vanadium alloy iron and vanadium alloy steel
JP2001316732A (en) Method for recovering valuable metal from material containing nickel and vanadium
CN1312300C (en) Method for recovering valuable metal from waste containing V, Mo and Ni
JP2000119722A (en) Production of reduced iron pellet
RU2764670C2 (en) Method for producing technical silicon (versions)
JP2023168817A (en) RECOVERY METHOD OF VALUABLE METALS FROM Mo, Ni, V-CONTAINING WASTE
MX2007014417A (en) Process for recovering valuable metals from waste

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020057008616

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A52925

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057008616

Country of ref document: KR