JP5627283B2 - Treatment method of seabed sediment - Google Patents

Treatment method of seabed sediment Download PDF

Info

Publication number
JP5627283B2
JP5627283B2 JP2010114306A JP2010114306A JP5627283B2 JP 5627283 B2 JP5627283 B2 JP 5627283B2 JP 2010114306 A JP2010114306 A JP 2010114306A JP 2010114306 A JP2010114306 A JP 2010114306A JP 5627283 B2 JP5627283 B2 JP 5627283B2
Authority
JP
Japan
Prior art keywords
paper sludge
seabed
weight
sediment
incineration ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010114306A
Other languages
Japanese (ja)
Other versions
JP2011241295A (en
Inventor
清 滝川
清 滝川
大造 福岡
大造 福岡
政浩 新西
政浩 新西
濱田 薫
薫 濱田
勇雄 小野寺
勇雄 小野寺
龍哉 増田
龍哉 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2010114306A priority Critical patent/JP5627283B2/en
Publication of JP2011241295A publication Critical patent/JP2011241295A/en
Application granted granted Critical
Publication of JP5627283B2 publication Critical patent/JP5627283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Artificial Fish Reefs (AREA)
  • Cultivation Of Seaweed (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、土壌改良技術、特に、海底の堆積土砂を固化して造粒する技術に関する。   The present invention relates to a soil improvement technique, and more particularly to a technique for solidifying and granulating sediment sediment on the seabed.

汚泥やヘドロなどの軟泥、流出しやすい土壌、軟弱な地盤の土壌などを固化して、土壌流出を抑制するため、従来から、各種の固化剤を軟泥や汚泥に添加して処理することが行われている。その際の固化剤としては、無機系の土壌に対してはセメント系固化剤、糞尿汚泥などの有機系の汚泥に対しては石灰系の固化剤が一般に用いられる。   In order to solidify sludge, sludge, and other soft mud, soil that tends to flow out, and soil with soft ground to suppress soil outflow, various solidifying agents have been conventionally added to soft mud and sludge for treatment. It has been broken. As the solidifying agent at that time, a cement-based solidifying agent is generally used for inorganic soil, and a lime-based solidifying agent is generally used for organic sludge such as manure sludge.

しかし、セメント系固化剤は、セメントの水和硬化反応を利用して土壌を固化するものであり、セメントの硬化反応は有機物によって阻害されてしまう。そのため、水底から得られる浚渫土砂のような有機物を含有する処理対象に対してセメント系固化剤を用いることは有効でなく、十分な強度を有する固化物が得られない。また、石灰系固化剤は、固化処理後にアルカリが溶出する問題があり、環境保全の立場から、石灰系固化剤は、土壌の流出抑制や埋め立て、護岸などの用途に適するものではない。さらに、水底から得られる浚渫土砂は、海水などに由来する塩を多く含有し、水分含量が高いため、水底の堆積土砂に対しては一般的な土壌固化剤が有効でない場合も多い。   However, the cement-based solidifying agent solidifies the soil using the hydration hardening reaction of cement, and the hardening reaction of cement is inhibited by organic substances. Therefore, it is not effective to use a cement-based solidifying agent for a treatment target containing an organic substance such as dredged sand obtained from the bottom of the water, and a solidified product having sufficient strength cannot be obtained. Further, the lime-based solidifying agent has a problem that alkali is eluted after the solidification treatment, and from the viewpoint of environmental conservation, the lime-based solidifying agent is not suitable for uses such as soil outflow suppression, land reclamation, and revetment. Furthermore, dredged soil obtained from the bottom of the water contains a large amount of salt derived from seawater and has a high water content, and therefore, a general soil solidifying agent is often not effective for sediment at the bottom of the water.

そこで、水底の堆積土砂に適した固化技術を開発すべく、種々の検討が行われており、例えば、以下の技術が報告されている。すなわち、特許文献1〜6には、ポリビニルアルコールを用いて浚渫土砂を固化する技術が記載されている。また、特許文献7には、硫酸第1鉄を用いて海底質汚泥を固化する技術が記載されている。さらに、特許文献8には、浚渫土砂から魚礁ブロックを製造する技術が記載されている。   Therefore, various studies have been conducted to develop a solidification technique suitable for sediments on the bottom of the water. For example, the following techniques have been reported. That is, Patent Documents 1 to 6 describe a technique for solidifying dredged sand using polyvinyl alcohol. Patent Document 7 describes a technique for solidifying seabed sludge using ferrous sulfate. Furthermore, Patent Document 8 describes a technique for manufacturing a fish reef block from dredged soil.

特開2008−253163号公報JP 2008-253163 A 特開2007−167790号公報JP 2007-167790 A 特開2007−007587号公報JP 2007-007587 A 特開2006−325514号公報JP 2006-325514 A 特開2006−325515号公報JP 2006-325515 A 特開2005−131595号公報JP 2005-131595 A 特開2005−334730号公報JP 2005-334730 A 特開2008−182898号公報JP 2008-182898 A

しかし、海底堆積土の固化に関する従来の技術は、特殊な処理や高価な処理剤が必要であったり、大量の処理剤を使用するため、技術的または経済的に実用的とはいえず、より優れた海底堆積土の処理方法を開発することが強く望まれていた。   However, the conventional technology related to the solidification of submarine sediments is not technically or economically practical because it requires special treatments or expensive treatment agents, or uses a large amount of treatment agents. There was a strong desire to develop an excellent treatment method for marine sediments.

そこで、本発明の課題は、水分含量の高い海底堆積土から簡便かつ経済的に造粒物を得る技術を提供することである。   Then, the subject of this invention is providing the technique which obtains a granulated material simply and economically from the seabed sediment with a high water content.

本発明者は、上記課題を解決すべく鋭意研究し、ペーパースラッジ焼却灰に固化助剤として石膏を併用することによって海底堆積土を効率的に固化して造粒物が得られることを見出し、本発明を完成させるに至った。   The present inventor has eagerly studied to solve the above problems, and found that a granulated product can be obtained by efficiently solidifying the seabed sediment by using gypsum as a solidification aid in the paper sludge incineration ash, The present invention has been completed.

1つの態様において本発明は、土壌改良剤であり、特に、ペーパースラッジ焼却灰と石膏とを含んでなる海底堆積土用固化剤である。また別の態様において本発明は、造粒物の製造方法であり、特に、海底堆積土とペーパースラッジ焼却灰などから造粒物を製造する方法に関する。さらに別の態様において本発明は、土壌改良方法であり、特に、海底堆積土からペーパースラッジ焼却灰などを用いて製造した造粒物によって土砂流出の抑制や土壌の改良を行う方法に関する。   In one embodiment, the present invention is a soil conditioner, in particular, a seabed sediment soil solidifying agent comprising paper sludge incineration ash and gypsum. In another aspect, the present invention relates to a method for producing a granulated product, and more particularly to a method for producing a granulated product from seabed sediment and paper sludge incinerated ash. In yet another aspect, the present invention relates to a soil improvement method, and more particularly, to a method for suppressing sediment discharge and improving soil by using a granulated product produced from seabed sediment using paper sludge incineration ash or the like.

本発明は、以下に限定されるものでないが、下記の発明を包含する。
(1) ペーパースラッジ焼却灰と石膏を含んでなる海底堆積土用固化剤。
(2) ペーパースラッジ焼却灰と石膏を海底堆積土に添加して造粒することを含む、海底堆積土から造粒物を製造する方法であって、海底堆積土の固形分重量とペーパースラッジ焼却灰との合計重量に対して石膏を2〜20重量%添加する上記方法。
(3) ペーパースラッジ焼却灰が、CaO換算でカルシウムを20重量%以上含んでなる、(2)に記載の方法。
(4) ペーパースラッジ焼却灰の添加量が、海底堆積土の固形分重量に対して100〜400重量%である、(2)または(3)に記載の方法。
(5) 造粒物が、2mm以上の直径を有する粒子を40重量%以上含む、(2)〜(4)のいずれか1項に記載の方法。
(6) (2)〜(5)のいずれか1項に記載の方法によって得られた造粒物を海水中に投入することを含む、土壌改良方法。
Although this invention is not limited to the following, the following invention is included.
(1) A solidifying agent for seabed sedimentary soil comprising paper sludge ash and gypsum.
(2) Paper sludge incineration ash and gypsum are added to the seabed sediment and granulated to produce a granulated material from the seabed sediment, the solid weight of the seabed sediment and the paper sludge incineration The above method wherein 2 to 20% by weight of gypsum is added to the total weight of ash.
(3) The method according to (2), wherein the paper sludge incineration ash comprises 20% by weight or more of calcium in terms of CaO.
(4) The method according to (2) or (3), wherein the added amount of paper sludge incineration ash is 100 to 400% by weight based on the solid content weight of the seabed sediment.
(5) The method according to any one of (2) to (4), wherein the granulated product contains 40% by weight or more of particles having a diameter of 2 mm or more.
(6) A soil improvement method comprising introducing the granulated product obtained by the method according to any one of (2) to (5) into seawater.

本発明によれば、海底堆積土から効率的に造粒物を得ることができる。また、本発明の造粒物はある程度の強度を備えており、また、本発明の造粒物を環境中に置いてもpHが増大しにくいため、埋め立てや護岸、人工干潟の造成などに好適に使用することができ、土砂流出の抑制など、環境保全にも有用である。さらに本発明は、海底堆積土やペーパースラッジの焼却灰といった廃棄物を利用して造粒物を得るため、コスト的に極めて優れており、廃棄物削減という観点からも有利である。   According to the present invention, a granulated material can be efficiently obtained from seabed sediment. In addition, the granulated product of the present invention has a certain level of strength, and even if the granulated product of the present invention is placed in the environment, it is difficult for the pH to increase, so it is suitable for reclamation, revetment, creation of artificial tidal flats, etc. It is also useful for environmental conservation such as suppression of sediment runoff. Furthermore, since the present invention obtains a granulated material using waste such as seabed sediment and paper sludge incineration ash, it is extremely excellent in cost and advantageous from the viewpoint of waste reduction.

図1は、実施例1で用いた浚渫土砂のX線回折チャートである。1 is an X-ray diffraction chart of dredged sand used in Example 1. FIG. 図2は、実施例1で用いたペーパースラッジ焼却灰のX線回折チャートである。FIG. 2 is an X-ray diffraction chart of the paper sludge incineration ash used in Example 1. 図3は、実施例1の浚渫土砂とペーパースラッジ焼却灰との混合物のX線回折チャートである。FIG. 3 is an X-ray diffraction chart of a mixture of dredged sand and paper sludge incinerated ash of Example 1. 図4は、実施例2における海水のpH変化を示すグラフである。FIG. 4 is a graph showing the pH change of seawater in Example 2.

1つの態様において本発明は、ペーパースラッジ焼却灰と石膏とを含んでなる海底堆積土用固化剤に関する。また別の態様において本発明は、ペーパースラッジ焼却灰と石膏とを海底堆積土に添加して造粒することを含む、海底堆積土から造粒物を製造する方法に関する。本発明では、ペーパースラッジの焼却灰と石膏を併用することによって、軟泥である海底堆積土から適度な強度を有する造粒物を得ることができる。本発明によって得られる造粒物は、例えば生石灰などを用いて得られる造粒物と比べて、環境中に置いた際に環境水のpHを増大させにくいため環境負荷が小さく、環境保全を図る上で極めて実用的である。   In one embodiment, the present invention relates to a solidifying agent for seabed sedimentary soil comprising paper sludge incineration ash and gypsum. In yet another aspect, the present invention relates to a method for producing a granulated material from seabed sediment, comprising adding paper sludge incinerated ash and gypsum to the seabed sediment and granulating it. In the present invention, by using incinerated ash of paper sludge and gypsum in combination, a granulated product having an appropriate strength can be obtained from seabed sediment that is soft mud. The granulated product obtained by the present invention has a low environmental load and is environmentally friendly because it is difficult to increase the pH of environmental water when placed in the environment, for example, compared to a granulated product obtained using quick lime or the like. Very practical above.

海底堆積土
本発明は海底堆積土の造粒技術に関し、本発明において海底堆積土とは、海底に堆積している土砂のことを指し、いわゆる外海の海底堆積土だけでなく、港湾などの内海の海底堆積土も含まれ、また、湖であっても海水湖であればその海底堆積土も含まれる。本発明の技術は、海中などの現場でそのまま施工して海底堆積土を造粒してもよく、また、海底から浚渫した土砂に本発明を適用して造粒してもよい。本発明の海底堆積土は、海や港湾などの海水環境における海底堆積土であり、浚渫土砂とは、航路浚渫やヘドロ浄化などのために海底から浚渫される土砂をいう。一般に、浚渫土砂は、環境保全のために湖沼や湾内のヘドロを取り除く際や、航路に堆積した土砂を取り除く際に得られ、浸食された海岸などへ運搬されて、臨海部の埋め立てや護岸工事などに利用されることもある。
Submarine sediment present invention relates to granulation technique seabed sediment, the seabed sediment in the present invention, refers to the sediment deposited on the seabed, as well as so-called open sea seabed sediment, Utsumi such ports In addition, even if it is a lake, it is also included if it is a seawater lake. The technology of the present invention may be directly applied at a site such as in the sea to granulate the seabed sedimentary soil, or may be granulated by applying the present invention to earth and sand dredged from the seabed. The seabed sediment of the present invention is a seabed sediment in a seawater environment such as the sea or a harbor, and dredged sand refers to the earth and sand dredged from the seabed for navigation dredging or sludge purification. In general, dredged soil is obtained when removing sludge in lakes and bays for environmental conservation, or when removing sediment accumulated in the channel, and transported to eroded beaches, etc. for land reclamation and revetment work in coastal areas. It may be used for such purposes.

本発明において海底堆積土は、軟泥状態、脱水後のケーキ状態等どのような状態でも使用できる。好ましい態様において、ペーパースラッジ焼却灰を用いて処理する際の海底堆積土の水分含量は10〜65重量%であり、より好ましくは30〜60重量%である。このような水分含量の海底堆積土であれば、海底堆積土の濃度が高いため効率的に固化物を得ることができ、また、適度な流動性を有するため輸送や造粒処理に好適である。   In the present invention, the seabed sediment can be used in any state such as a soft mud state or a cake state after dehydration. In a preferred embodiment, the water content of the seabed sediment when treated with paper sludge incineration ash is 10 to 65% by weight, more preferably 30 to 60% by weight. A seabed sediment with such a water content can efficiently obtain a solidified product because of the high concentration of the seabed sediment, and is suitable for transportation and granulation treatment because it has an appropriate fluidity. .

本発明の海底堆積土として浚渫土砂を用いる場合、公知の浚渫方法によって海底から得ることができ、例えば、グラブ浚渫やポンプ浚渫などによって浚渫土砂を得ることができる。ここで、グラブ浚渫とは、浚渫船などから吊されたグラブで海底の土砂を堀りあげることであり、小規模の浚渫に一般的に利用される。ポンプ浚渫とは、ポンプを用いて海底の土砂を堀りあげることをいい、連続的に土砂を吸引できることから、底泥を広く薄く浚渫でき(薄層浚渫)、大規模で均一な浚渫が可能である。本発明において、浚渫土砂を得るための浚渫方法は特に制限されず、例えば、海底のヘドロを浚渫する場合、ヘドロの堆積高は数十cm程度であるため、ヘドロが舞い上がることを抑制しつつ、ヘドロ層を薄層浚渫するような方法を選択すればよい。   When dredged sand is used as the seabed sediment of the present invention, it can be obtained from the seabed by a known dredging method. For example, dredged sand can be obtained by a grab dredge or a pump dredge. Here, the grab dredging is to dig up the sediment on the seabed with a grab suspended from a dredger or the like, and is generally used for small dredging. Pump dredging refers to the use of a pump to dig up sediment on the seabed, and because it can continuously suck in sediment, dredged mud can be drastically and thinly (thin layer dredging), enabling large-scale and uniform dredging. It is. In the present invention, the dredging method for obtaining dredged soil is not particularly limited. For example, when dredging the sludge on the sea floor, the accumulation height of the sludge is about several tens of centimeters, so that the sludge is suppressed from rising, A method for thinning the sludge layer may be selected.

ペーパースラッジ焼却灰
本発明はペーパースラッジの焼却灰を用いる。本発明においてペーパースラッジ(PS:Paper Sludge)とは、製紙工程から回収される廃棄物をいい、例えば、古紙再生工程(DIP製造工程)、パルプ製造工程、紙製造工程などから発生するものを含む。したがって、ペーパースラッジは、パルプ繊維、填料や顔料に由来する無機物(カオリン、タルク、炭酸カルシウム等)、インキやインク、接着剤などを含んで構成される。焼却灰の原料となるペーパースラッジとしては、カルシウム含量などの観点から、古紙再生工程から発生するペーパースラッジが特に好ましい。一般にペーパースラッジは、製紙工場などから大量に排出されるため、ペーパースラッジ焼却灰は入手が容易である。そのため、本発明の海底堆積土用固化剤は、廃棄物削減、入手容易性、経済性などの観点から特に有利である。
Paper sludge incineration ash The present invention uses paper sludge incineration ash. In the present invention, paper sludge (PS) refers to waste recovered from the papermaking process, and includes, for example, waste generated from a used paper recycling process (DIP manufacturing process), a pulp manufacturing process, a paper manufacturing process, and the like. . Accordingly, the paper sludge is configured to include pulp fibers, inorganic substances derived from fillers and pigments (kaolin, talc, calcium carbonate, etc.), inks, inks, adhesives, and the like. The paper sludge that is the raw material for the incinerated ash is particularly preferably paper sludge generated from the used paper recycling process from the viewpoint of calcium content and the like. In general, paper sludge is discharged in large quantities from a paper mill or the like, and paper sludge incineration ash is easily available. Therefore, the solidifying agent for seabed sediment of the present invention is particularly advantageous from the viewpoints of waste reduction, availability, economy, and the like.

本発明で用いるペーパースラッジ焼却灰(PS灰)とは、ペーパースラッジを燃焼させて得られる焼却残渣であり、炭酸カルシウム、硅砂、タルク、カオリンなどに由来する無機物を主成分とする。本発明のペーパースラッジ焼却灰は、ペーパースラッジの焼却残渣であれば、集塵機などで捕捉されるフライアッシュ(飛灰)や炉底灰が含まれていてもよい。ペーパースラッジの焼却は、例えば、700〜1500℃程度の温度で行うことができる。また、公知の焼却設備を用いてペーパースラッジを焼却することができ、具体的には流動床焼却炉などを挙げることができる。   The paper sludge incineration ash (PS ash) used in the present invention is an incineration residue obtained by burning paper sludge, and contains an inorganic substance derived from calcium carbonate, cinnabar, talc, kaolin and the like as a main component. The paper sludge incineration ash of the present invention may contain fly ash (fly ash) or furnace bottom ash captured by a dust collector or the like as long as it is an incineration residue of paper sludge. Paper sludge can be incinerated at a temperature of about 700 to 1500 ° C., for example. Moreover, paper sludge can be incinerated using a well-known incinerator, Specifically, a fluidized bed incinerator etc. can be mentioned.

一般に、紙には、炭酸カルシウムなどのカルシウム分が顔料や填料として添加されるため、ペーパースラッジを原料とする焼却灰は、塵芥の焼却灰や高炉スラグと比較して、カルシウム含量が高いという特徴を有する。本発明の好ましい態様において、本発明で用いるペーパースラッジ焼却灰は、元素分析した場合、CaO換算でCaOの比率が20重量%以上であることが好ましく、30重量%以上であることがより好ましい。また、CaOの比率の上限は特に限定されないが、60重量%以下であることが一般的である。さらに、本発明で用いるペーパースラッジ焼却灰は、アルミニウム分に対するカルシウム分の比率も比較的高く、AlとCaOの比率が1:0.5〜1:3程度であることが好ましく、1:1〜1:2.5程度であることがより好ましい。 In general, since calcium such as calcium carbonate is added to paper as a pigment or filler, incineration ash made from paper sludge has a high calcium content compared to incineration ash from trash and blast furnace slag. Have In a preferred embodiment of the present invention, when the paper sludge incineration ash used in the present invention is subjected to elemental analysis, the CaO ratio in terms of CaO is preferably 20% by weight or more, and more preferably 30% by weight or more. The upper limit of the CaO ratio is not particularly limited, but is generally 60% by weight or less. Furthermore, the paper sludge incineration ash used in the present invention also has a relatively high ratio of calcium to aluminum, and the ratio of Al 2 O 3 and CaO is preferably about 1: 0.5 to 1: 3. : It is more preferable that it is about 1-1: 2.5.

本発明におけるペーパースラッジ焼却灰の作用は、海底堆積土のような高含水軟泥に添加されると、土砂中の水分と水和反応し、エトリンガイト(3CaO・Al・3CaSO・32HO)やケイ酸カルシウム水和物などを生成しながら、海底堆積土を凝集・固化させるものと考えられる。本発明においてペーパースラッジ焼却灰を用いると海底堆積土から適度な強度を有する造粒物が得られる理由の詳細は明らかでないが、ペーパースラッジ焼却灰に含まれるアルミニウムやカルシウムが海底堆積土中の水分と反応して自硬するのに適しているためだと考えられる。 Action of paper sludge incineration ash in the present invention, when added to high water ooze like seabed sediments, and moisture and hydration in soil, ettringite (3CaO · Al 2 O 3 · 3CaSO 4 · 32H 2 It is considered that the seabed sedimentary soil is agglomerated and solidified while producing O) and calcium silicate hydrate. Although the details of the reason why a granulated product having an appropriate strength is obtained from the seabed sediment using paper sludge incinerated ash in the present invention are not clear, the aluminum and calcium contained in the paper sludge incinerated ash contain water in the seabed sediment. This is thought to be because it is suitable for self-hardening by reacting with.

本発明においてペーパースラッジ焼却灰の添加量は、特に制限されないが、好ましい態様において、海底堆積土よりも多くのペーパースラッジ焼却灰を使用し、例えば、海底堆積土の固形分重量に対して100〜400重量%のペーパースラッジ焼却灰を添加することが好ましい。すなわち、海底堆積土に対してペーパースラッジ焼却灰を多く配合すると、造粒物の強度が高くなり、長期的に安定な造粒物を得ることができる。   In the present invention, the amount of paper sludge incineration ash added is not particularly limited, but in a preferred embodiment, more paper sludge incineration ash is used than the sea bottom sediment, for example, 100 to 100% of the solid weight of the sea bottom sediment. It is preferable to add 400% by weight of paper sludge incineration ash. That is, when a large amount of paper sludge incineration ash is blended with the seabed sediment, the strength of the granulated product is increased, and a stable granulated product can be obtained in the long term.

固化助剤
また本発明は、海底堆積土から造粒物を得るために、ペーパースラッジ焼却灰とともに、固化助剤として石膏を併用する。このような固化助剤を併用することによって、軟泥である海底堆積土から、高強度かつ長期的に安定な粒状の造粒物を得ることができる。本発明において石膏とは、硫酸カルシウム(CaSO)またはその水和物であり、具体的には、焼石膏(CaSO・1/2HO)、二水石膏(CaSO・2HO)、無水石膏(CaSO)などを使用することができる。本発明の石膏は、ペーパースラッジ焼却灰と一緒に海底堆積土に添加してもよく、また、ペーパースラッジ焼却灰とは独立して海底堆積土に添加してもよい。
The solidification aid or the present invention uses gypsum as a solidification aid together with paper sludge incineration ash in order to obtain a granulated product from seabed sediment. By using such a solidification aid together, it is possible to obtain a granulated product having a high strength and a long-term stability from the seabed sediment which is soft mud. In the present invention, gypsum is calcium sulfate (CaSO 4 ) or a hydrate thereof. Specifically, calcined gypsum (CaSO 4 .1 / 2H 2 O), dihydrate gypsum (CaSO 4 .2H 2 O). Anhydrous gypsum (CaSO 4 ) and the like can be used. The gypsum of the present invention may be added to the seabed sediment with the paper sludge incineration ash, or may be added to the seabed sediment without the paper sludge incineration ash.

石膏の添加量は、海底堆積土(固形分重量)とペーパースラッジ焼却灰の合計重量に対して2〜20重量%であることが好ましく、3〜15重量%であることがより好ましい。このような範囲であれば、強度が高く、ある程度の粒子径を有する造粒物を効率よく製造することができる。また、石膏の添加量は、ペーパースラッジ焼却灰重量に対して2重量%以上であることが好ましい。経済性等を考慮すると、石膏の添加量は、ペーパースラッジ焼却灰重量に対して2〜15重量%であることが好ましく、2〜10重量%であることがより好ましい。   The amount of gypsum added is preferably 2 to 20% by weight, more preferably 3 to 15% by weight, based on the total weight of the seabed sediment (solid weight) and paper sludge incineration ash. Within such a range, a granulated product having high strength and a certain particle size can be efficiently produced. Moreover, it is preferable that the addition amount of gypsum is 2 weight% or more with respect to the paper sludge incineration ash weight. In consideration of economy and the like, the addition amount of gypsum is preferably 2 to 15% by weight, more preferably 2 to 10% by weight with respect to the weight of the paper sludge incineration ash.

本発明においては、海底堆積土に対して、ペーパースラッジ焼却灰と石膏とを添加して造粒物を製造するが、海底堆積土と添加剤とが十分に混合されれば、添加の態様は特に制限されない。   In the present invention, a paper sludge incineration ash and gypsum are added to the seabed sediment to produce a granulated product, but if the seabed sediment and the additive are sufficiently mixed, the mode of addition is There is no particular limitation.

造粒物
本発明によって得られる造粒物とは、粒状であればその形状は限定されない。造粒物の粒径とは、直径を意味するが、長径、短径のある場合はその平均を指し、レーザー回折、顕微鏡観察等により決定することができる。本発明の造粒物は、2mm以上の直径を有する粒子を40重量%以上含むことが好ましい。このような造粒物は、ある程度の大きさを有するため、例えば海中で使用しても波にさらわれにくく、自然環境における土壌流出を抑制できるため、特に有用である。また、本発明の造粒物は、平均粒子径が1mm以上であることが好ましく、2mm以上であることがより好ましい。なお、造粒物の粒子径は、例えば、固化剤の添加量や造粒時間などによって適宜調整することができ、また、振動式や回転式などのふるい分け法などによって一定の粒子径を有する造粒物を得てもよい。
Granulated product The shape of the granulated product obtained by the present invention is not limited as long as it is granular. The particle size of the granulated product means a diameter, but when there is a major axis or a minor axis, it indicates the average and can be determined by laser diffraction, microscopic observation or the like. The granulated product of the present invention preferably contains 40% by weight or more of particles having a diameter of 2 mm or more. Such a granulated product is particularly useful because it has a certain size and is not easily exposed to waves even when used in the sea, for example, and can suppress soil runoff in the natural environment. The granulated product of the present invention preferably has an average particle diameter of 1 mm or more, more preferably 2 mm or more. The particle size of the granulated product can be adjusted as appropriate depending on, for example, the addition amount of the solidifying agent and the granulation time, and the granulated product has a fixed particle size by a sieving method such as a vibration type or a rotary type. Granules may be obtained.

造粒物を製造する際には、通常の造粒技術を用いることができる。造粒は、公知の方法により行うことができ、例えば、逆流式、転動方式、撹拌方式、押出方式、破砕方式などの造粒法を採用することができる。具体的な装置としては日本アイリッヒ社製のインテンシィブミキサー(逆流式)やKitchen Aid社製のスタンドミキサー(撹拌方式)などが挙げられる。海底堆積土へのペーパースラッジ焼却灰などの混合と造粒を両方行うことができ、造粒物の多孔性や強度を調整しやすい点で、逆流式ミキサーや撹拌方式のミキサーを好適に利用することができる。造粒時間に特に制限はなく、造粒時間を長くすると造粒物の粒子径が大きくなる傾向があるが、一定の大きさ以上には成長しない。撹拌方式のミキサーを用いる場合、造粒時間は、1〜5分、好ましくは2〜4分である。   When manufacturing a granulated material, a normal granulation technique can be used. The granulation can be performed by a known method, and for example, a granulation method such as a reverse flow method, a rolling method, a stirring method, an extrusion method, or a crushing method can be employed. Specific examples of the apparatus include an intensive mixer (reverse flow type) manufactured by Japan Eirich, and a stand mixer (stirring system) manufactured by Kitchen Aid. It is possible to mix and granulate paper sludge incineration ash, etc., into the seabed sediment, and use a reverse flow mixer or a mixer with a stirring method in that it is easy to adjust the porosity and strength of the granulated material. be able to. There is no restriction | limiting in particular in granulation time, When the granulation time is lengthened, there exists a tendency for the particle diameter of a granulated material to become large, but it does not grow more than fixed size. In the case of using a stirring type mixer, the granulation time is 1 to 5 minutes, preferably 2 to 4 minutes.

このようにして得られた造粒物は、海、港湾、湖、河川、沼、干潟などにおいて、造成、埋め立て、護岸、土砂の流出防止などの用途に好適に使用することができる。特に本発明の造粒物は、海水などの環境中に置いても、例えば生石灰などを用いて得られる造粒物と比べて、環境のpHを増大させにくく、環境に与える影響が小さい。すなわち、本発明は環境負荷が小さく、環境保全を図る上で極めて実用的である。本発明の造粒物は、海水中における強度が十分であるため、海底堆積土を固化・造粒した造粒物を再び海水中において用いる場合に特に好適である。さらに、かかる海底堆積土は、通常、15〜16%程度の有機栄養分を含むため、海底堆積土から製造した造粒物を人工干潟、藻礁、魚礁などとして海に設置することにより、そこに着生する生物への栄養供給源となって、現場海域の環境の回復などに大きく貢献し得る。以上の点から、本発明で得られる造粒物は干拓や人工干潟の造成に適している。   The granulated product thus obtained can be suitably used for purposes such as creation, landfill, revetment, prevention of sediment discharge in the sea, harbor, lake, river, swamp, tidal flat and the like. In particular, even when the granulated product of the present invention is placed in an environment such as seawater, the pH of the environment is less likely to be increased and the influence on the environment is small compared to a granulated product obtained using, for example, quick lime. That is, the present invention has a low environmental load and is extremely practical for environmental protection. Since the granulated product of the present invention has sufficient strength in seawater, it is particularly suitable when the granulated product obtained by solidifying and granulating the seabed sediment is used again in seawater. Furthermore, since such seabed sediments usually contain about 15-16% organic nutrients, granulated products produced from seabed sediments can be installed in the sea as artificial tidal flats, algae reefs, fish reefs, etc. It can be a source of nutrients for living organisms and can greatly contribute to the restoration of the environment in the sea area. From the above points, the granulated product obtained by the present invention is suitable for reclamation and creation of artificial tidal flats.

以下、本発明の実施例を挙げつつ、本発明の内容を詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、本明細書において、部および%などは特に記載がない場合、重量基準であり、数値範囲はその端点を含むものとして記載される。   Hereinafter, the content of the present invention will be described in detail with reference to examples of the present invention, but the present invention is not limited to the following examples. In the present specification, unless otherwise specified, parts and% are based on weight, and numerical ranges are described as including the end points.

実施例1
(1)海底堆積土
海底堆積土として、熊本県熊本市新港の海底から得た浚渫土砂を用いた。後述する固化剤と混合する際の浚渫土砂の水分含量は60重量%(固形分40%)であった。また、この浚渫土砂を元素分析(蛍光X線分析)した結果を以下の表1に示す。表1から明らかなように、この浚渫土砂は、SiおよびAlを主成分としていた。また、浚渫土砂をX線回折により分析したところ、アノーサイト(CaAlSi)、オージャイト、SiOなどが確認された(図1)。
Example 1
(1) Submarine sediment The dredged soil obtained from the seafloor in Shinko, Kumamoto City, Kumamoto Prefecture was used as the seafloor sediment. The water content of the dredged sand when mixed with the solidifying agent described later was 60% by weight (solid content 40%). The results of elemental analysis (fluorescence X-ray analysis) of this dredged soil are shown in Table 1 below. As is apparent from Table 1, this dredged sand was composed mainly of Si and Al. Further, when the dredged sand was analyzed by X-ray diffraction, anorthite (CaAl 2 Si 2 O 8 ), augite, SiO 2 and the like were confirmed (FIG. 1).

Figure 0005627283
Figure 0005627283

(2)ペーパースラッジ焼却灰(PS焼却灰)
製紙工場のパルプ製造工程や抄紙工程から回収されたペーパースラッジを焼却して得られる焼却残渣(焼却灰)を用いた。ペーパースラッジの焼却は、流動床焼却炉にて800〜900℃で行った。得られたペーパースラッジ焼却灰を元素分析した結果を表2に示す。表2から明らかなように、このペーパースラッジ焼却灰は、Si、AlおよびCaを主成分としていた。また、X線回折の結果から、SiO、ゲーレナイト(CaAlSiO)、炭酸カルシウム、生石灰などが確認された(図2)。
(2) Paper sludge incineration ash (PS incineration ash)
The incineration residue (incineration ash) obtained by incinerating paper sludge collected from the pulp manufacturing process and papermaking process of a paper mill was used. Paper sludge was incinerated at 800 to 900 ° C. in a fluidized bed incinerator. Table 2 shows the results of elemental analysis of the obtained paper sludge incineration ash. As apparent from Table 2, this paper sludge incineration ash was composed mainly of Si, Al and Ca. From the results of X-ray diffraction, SiO 2 , gehlenite (CaAl 2 SiO 2 ), calcium carbonate, quicklime, etc. were confirmed (FIG. 2).

Figure 0005627283
Figure 0005627283

(3)海底堆積土とPS焼却灰の混合物
上記の海底堆積土とPS焼却灰の50:50混合物について、元素分析した結果を表3、X線回折のチャートを図3に示す。
(3) Mixture of seabed sediment and PS incinerated ash Table 3 shows the results of elemental analysis of the 50:50 mixture of seabed sediment and PS incinerated ash, and FIG. 3 shows an X-ray diffraction chart.

Figure 0005627283
Figure 0005627283

(4)海底堆積土の造粒処理
上記浚渫土砂300g(固形分:120g)に対し、ペーパースラッジ焼却灰(PS灰)280g、焼石膏(CaSO・1/2HO)20g、水100gを添加して混合物の水分を40%とし、スタンドミキサー(KSM50P、Kitchen Aid社製)を用いて3分間処理することによって造粒物を製造した(表4:サンプル1)。また、表4に示すように水和数の異なる石膏を用いた造粒物(サンプル2、3)、焼石膏の配合部数を変更した造粒物(サンプル4〜7)、生石灰を配合した造粒物(サンプル8:比較例)、固化助剤を添加しなかった造粒物(サンプル9:比較例)も製造した。
(4) Granulation treatment of seabed sedimentary soil For 300 g of dredged sand (solid content: 120 g), 280 g of paper sludge incinerated ash (PS ash), 20 g of calcined gypsum (CaSO 4 1 / 2H 2 O), and 100 g of water The mixture was adjusted to a moisture content of 40%, and a granulated product was produced by treating for 3 minutes using a stand mixer (KSM50P, manufactured by Kitchen Aid) (Table 4: Sample 1). Moreover, as shown in Table 4, the granulated material (samples 2 and 3) using gypsum with different hydration numbers, the granulated material (samples 4 to 7) in which the blended number of calcined gypsum is changed, and the granulated material blended with quicklime. Granules (sample 8: comparative example) and granulated products (sample 9: comparative example) to which no solidification aid was added were also produced.

造粒物の圧縮強度を、リングクラッシュ試験機(日本TMC製)を用いて圧縮板の下降速度12.5mm/minという条件にて、造粒物を破壊するために要する力を測定した。圧縮強度の測定は粒径が2mmである造粒物を用いて行った。   The compression strength of the granulated product was measured using a ring crush tester (manufactured by Nippon TMC) under the condition that the compression plate descended at a rate of 12.5 mm / min. The compression strength was measured using a granulated product having a particle size of 2 mm.

Figure 0005627283
Figure 0005627283

表4に示したように固化助剤である各種石膏を添加することにより造粒物の圧縮強度が格段に向上し、配合部数を多くすることでさらに向上する。また、固化助剤として生石灰を用いたサンプル8に比べると圧縮強度がやや低下するものの、固化助剤を添加しないサンプル9と比べて圧縮強度が大きく向上した。   As shown in Table 4, the compression strength of the granulated product is remarkably improved by adding various gypsum as a solidification aid, and further improved by increasing the number of blending parts. Moreover, although compressive strength fell a little compared with the sample 8 which used quicklime as a solidification adjuvant, the compressive strength improved greatly compared with the sample 9 which does not add a solidification adjuvant.

実施例2
50mlビーカー中に実施例1の造粒物10gと海水40mlを入れた後に静置して海水のpHの経時変化を追跡した。
Example 2
After putting 10 g of the granulated product of Example 1 and 40 ml of seawater into a 50 ml beaker, the mixture was allowed to stand and the change in the pH of the seawater over time was followed.

Figure 0005627283
Figure 0005627283

海水のpH変化を表5および図4に示す。表5および図4から明らかなように固化助剤として各種石膏を添加したもの(サンプル1〜7)はいずれも海水のpHが経時で上昇する傾向にあるが、生石灰を配合したサンプル(サンプル8)に比べると石膏を配合したサンプルはその上昇幅が小さくなる。また、石膏の配合部数を高くした場合も海水のpHは石膏を無配合の場合と同等であった。得られた造粒物を用いて人工干潟などを造成する場合にはその周辺に生息する動植物に対する影響を小さくするためにpH変動を抑制する必要があるため、石膏を固化助剤に使用することは極めて有用である。   The pH change of seawater is shown in Table 5 and FIG. As apparent from Table 5 and FIG. 4, the samples (samples 1 to 7) to which various gypsums were added as solidification aids all had a tendency to increase the pH of seawater over time. ), The sample with gypsum blended has a smaller increase. Moreover, when the number of blended parts of gypsum was increased, the pH of seawater was the same as that without gypsum. When artificial tidal flats are created using the obtained granulated material, it is necessary to suppress pH fluctuations in order to reduce the effect on animals and plants that inhabit the surroundings. Use gypsum as a solidification aid. Is extremely useful.

以上のように固化助剤として各種石膏を用いることで十分な強度を有する造粒物を得ることができる。また、本発明の造粒物を海水に入れても海水のpHが上昇しにくいため、本発明は環境への負荷が小さい。特に人工干潟などを造成する場合、本発明によれば海水のpH上昇を抑えることができ、好適である。   As described above, a granulated product having sufficient strength can be obtained by using various gypsum as a solidification aid. Moreover, even if the granulated material of this invention is put in seawater, since the pH of seawater does not rise easily, this invention has a small load to an environment. In particular, when constructing artificial tidal flats and the like, the present invention is preferable because it can suppress the pH increase of seawater.

実施例3
実施例1と同様にして、表6に示す組成の造粒物を作製した。得られたサンプルについて、海水浸漬前と浸漬後の圧縮強度を測定した。海水浸漬後のサンプルは、50mlビーカー中に造粒物10gと海水40mlを入れ、2日間経過後サンプルを取出して調製した。圧縮強度は実施例1と同様に測定した。また、実施例1で得たサンプル1についても海水浸漬後の圧縮強度を測定した。これらの結果をまとめて表6に示す。表6から、海水に浸漬することで、サンプルの圧縮強度が大きく向上することが明らかである。よって、本発明の造粒物は海水中に投入して人工干潟に使用するのに好適である。
Example 3
In the same manner as in Example 1, granulated materials having the compositions shown in Table 6 were produced. About the obtained sample, the compressive strength before seawater immersion and after immersion was measured. The sample after immersion in seawater was prepared by putting 10 g of the granulated product and 40 ml of seawater in a 50 ml beaker and taking out the sample after 2 days. The compressive strength was measured in the same manner as in Example 1. Moreover, the compressive strength after immersion in seawater was also measured for Sample 1 obtained in Example 1. These results are summarized in Table 6. From Table 6, it is clear that the compressive strength of the sample is greatly improved by immersing in seawater. Therefore, the granulated product of the present invention is suitable for use in artificial tidal flats by being poured into seawater.

Figure 0005627283
Figure 0005627283

Claims (6)

ペーパースラッジ焼却灰と石膏を含んでなる海底堆積土用固化剤であって
石膏の含有量が、海底堆積土の固形分重量とペーパースラッジ焼却灰との合計重量に対して2〜20重量%である、上記海底堆積土用固化剤
A solidifying agent for seabed sediment containing paper sludge incineration ash and gypsum,
The solidifying agent for seabed sediments, wherein the gypsum content is 2 to 20% by weight with respect to the total weight of the solid content of the seabed sediments and the paper sludge incinerated ash .
ペーパースラッジ焼却灰と石膏を海底堆積土に添加して造粒することを含む、海底堆積土から造粒物を製造する方法であって、
海底堆積土の固形分重量とペーパースラッジ焼却灰との合計重量に対して石膏を2〜20重量%添加する、上記方法。
A method for producing a granulated material from seabed sediment, comprising adding paper sludge incineration ash and gypsum to the seabed sediment and granulating it,
The method as described above, wherein 2 to 20% by weight of gypsum is added to the total weight of the solid content of the seabed sediment and the paper sludge incineration ash.
ペーパースラッジ焼却灰が、CaO換算でカルシウムを20重量%以上含んでなる、請求項2に記載の方法。   The method according to claim 2, wherein the paper sludge incineration ash comprises 20% by weight or more of calcium in terms of CaO. ペーパースラッジ焼却灰の添加量が、海底堆積土の固形分重量に対して100〜400重量%である、請求項2または3に記載の方法。   The method of Claim 2 or 3 that the addition amount of paper sludge incineration ash is 100 to 400 weight% with respect to the solid content weight of seabed sediment. 造粒物が、2mm以上の直径を有する粒子を40重量%以上含む、請求項2〜4のいずれか1項に記載の方法。   The method according to any one of claims 2 to 4, wherein the granulated product contains 40% by weight or more of particles having a diameter of 2 mm or more. 請求項2〜5のいずれか1項に記載の方法によって得られた造粒物を海水中に投入することを含む、土壌改良方法。   The soil improvement method including throwing in the seawater the granulated material obtained by the method of any one of Claims 2-5.
JP2010114306A 2010-05-18 2010-05-18 Treatment method of seabed sediment Active JP5627283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010114306A JP5627283B2 (en) 2010-05-18 2010-05-18 Treatment method of seabed sediment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010114306A JP5627283B2 (en) 2010-05-18 2010-05-18 Treatment method of seabed sediment

Publications (2)

Publication Number Publication Date
JP2011241295A JP2011241295A (en) 2011-12-01
JP5627283B2 true JP5627283B2 (en) 2014-11-19

Family

ID=45408294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010114306A Active JP5627283B2 (en) 2010-05-18 2010-05-18 Treatment method of seabed sediment

Country Status (1)

Country Link
JP (1) JP5627283B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963177B2 (en) * 2013-10-17 2016-08-03 株式会社ワールド・リンク Method for treating solid heavy metal contaminated material and method for producing cement solidified material
JP6260038B2 (en) * 2013-11-29 2018-01-17 国立大学法人横浜国立大学 Granulation and solidification method of liquid mud

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321036A (en) * 2003-04-23 2004-11-18 Yasukaze Katsuki Granular culture soil
JP2005131595A (en) * 2003-10-31 2005-05-26 Japan Vam & Poval Co Ltd Sludge solidifying composition and sludge solidifying method
JP2007007587A (en) * 2005-07-01 2007-01-18 Japan Science & Technology Agency Dredge soil pellet
JP5042589B2 (en) * 2006-10-23 2012-10-03 株式会社あの津技研 Powder solidifying material for soft mud soil and method for producing the same
JP2009185220A (en) * 2008-02-08 2009-08-20 Daiei Kogyo:Kk Soil improvement solidifying material
JP5596942B2 (en) * 2009-07-03 2014-09-24 日本製紙株式会社 Treatment method of bottom sediment

Also Published As

Publication number Publication date
JP2011241295A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
CN101955345B (en) Neutral inorganic composite material for dehydration, solidification and modification of high water content sludge
CN101863601A (en) Flocculation curing agent, composition thereof and stabilization improvement method of silt type soil
JP5049453B2 (en) How to deactivate sludge
JP5042589B2 (en) Powder solidifying material for soft mud soil and method for producing the same
KR100956593B1 (en) Manufacturing method of artificial soil by solidifying organic or inorganic sludge
JP5596942B2 (en) Treatment method of bottom sediment
JP5818469B2 (en) Treatment method of bottom sediment
JP2024045574A (en) Method for producing modified soil of high water content mud
JP2000157094A (en) Stone material for sinking and disposing in water and its production
CN107531573A (en) The cement composition of continuity of environment, it is used for the method for making dredging sediment/mud deactivation, correlation method and equipment for deactivation
JP2002001397A (en) Modifier and process for solidifying and neutralizing muddy material
JP5627283B2 (en) Treatment method of seabed sediment
KR101379095B1 (en) Method of manufacturing artificial stone
JP2002238401A (en) Method for improving underwater environment
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP2005240544A (en) Method of developing shallows and the like
JP2001252694A (en) Underwater structure and bottom material/water quality cleaning method
JP2005013973A (en) Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge
KR101600747B1 (en) Composition for solidification of spoil or sludge, method for solidification of spoil or sludge using the same, and solid matter prepared therefrom
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
JPH0971777A (en) Process for neutralizing solidified soil resulting from solidification of sludge and soft soil
JP2006325515A (en) Method for producing ocean block
Gutsalenko et al. Effects of GGBS on the solidification/stabilization of port sediments contaminated with heavy metals
JP2003026456A (en) Steel making slag for port and harbor work

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R150 Certificate of patent or registration of utility model

Ref document number: 5627283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350