JP2003026456A - Steel making slag for port and harbor work - Google Patents

Steel making slag for port and harbor work

Info

Publication number
JP2003026456A
JP2003026456A JP2001360741A JP2001360741A JP2003026456A JP 2003026456 A JP2003026456 A JP 2003026456A JP 2001360741 A JP2001360741 A JP 2001360741A JP 2001360741 A JP2001360741 A JP 2001360741A JP 2003026456 A JP2003026456 A JP 2003026456A
Authority
JP
Japan
Prior art keywords
mass
seawater
slag
turbidity
steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001360741A
Other languages
Japanese (ja)
Other versions
JP3963711B2 (en
Inventor
Hidenori Sakai
英典 酒井
Atsushi Yamaguchi
山口  篤
Nobuo Kobayashi
延郎 小林
Kenji Nishitani
賢治 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKAN KOGYO KK
Kokan Mining Co Ltd
Original Assignee
KOKAN KOGYO KK
Kokan Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKAN KOGYO KK, Kokan Mining Co Ltd filed Critical KOKAN KOGYO KK
Priority to JP2001360741A priority Critical patent/JP3963711B2/en
Publication of JP2003026456A publication Critical patent/JP2003026456A/en
Application granted granted Critical
Publication of JP3963711B2 publication Critical patent/JP3963711B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/24Sea water resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/74Underwater applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide steel making slag for port and harbor work which does not give rise to clouding in the state of crushing the same in a crushing plant, etc. SOLUTION: On the presupposition of the steel making slag for the port and harbor work consisting of a free lime component ranging from 0 to 10.0 mass% and a sulfur component ranging from 0 to 1.0 mass%, the steel making slag further satisfies any of the requirements (1) to be <=25 mass% of the particles below 10 mm in grain size, (2) to be >=5 mm in grain size, (3) to be <=15% in open porosity, (4) to attain <=10.5% of the pH of the seawater upon lapse of 3 hours after immersion into the seawater of a twice mass ratio and (5) to be below 50 turbidity kaolin in the transmitted light turbidity stipulated in JIS K 0101 of the seawater after lapse of 3 hours of the liquid sample of the seawater when three hours elapse after immersion in the seawater of the twice mass ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、再生資源材料を利
用した海域港湾工事技術、特に護岸・築堤・岸壁・覆
土、地盤改良に用いられる港湾工事用製鋼スラグに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sea area harbor construction technique using recycled resource materials, and more particularly to a steelmaking slag for harbor construction used for revetment, embankment, quay wall, soil cover, and ground improvement.

【0002】[0002]

【従来の技術】製鋼スラグの港湾工事用土木資材への適
用技術として、ブロック等の固化体として沈設したり、
ケーソン中詰め材、サンドコンパクションパイル材およ
び底質改善浄化材などの方法がある。
2. Description of the Related Art As a technique for applying steelmaking slag to civil engineering materials for port construction, it is sunk as a solidified body such as a block,
There are methods such as caisson filling materials, sand compaction pile materials, and bottom material improvement purification materials.

【0003】製鋼スラグは、天然砂や山砂に比べて単位
体積質量、内部摩擦角が大きいという利点を活かして、
港湾工事用土木資材として、特に、サンドコンパクショ
ン工法におけるパイル材(地盤改良材)やケーソン工法
における中詰め材として用いられている。また、製鋼ス
ラグをベースに固化体を製造し、消波ブロックや魚礁材
・築磯材としての利用が進められている。前者は海水と
の直接接触が少ない工法であり、港湾工事用土木資材と
しては間接利用となり、後者は、製鋼スラグをクラッシ
ングプラント等で破砕した状態で利用するものではな
く、2次加工が必要となる。かつ、山を切り崩して採取
する天然石や山砂は、近年の環境問題から、その確保が
難しくなりつつある現状を踏まえると、現状では製鋼ス
ラグを港湾工事用土木資材として大量に再資源化をする
という観点から十分ではない。
Steelmaking slag takes advantage of its large unit volume mass and large internal friction angle as compared with natural sand and mountain sand.
It is used as a civil engineering material for harbor construction, especially as a pile material (ground improvement material) in the sand compaction method and as a filling material in the caisson method. In addition, a solidified body is manufactured based on steelmaking slag and is being used as a wave-dissipating block, fish reef material, and shore material. The former is a construction method with less direct contact with seawater and is indirectly used as a civil engineering material for port construction, while the latter is not used after crushing steelmaking slag in a crushing plant etc. and requires secondary processing. Becomes In addition, considering the current situation where it is becoming difficult to secure natural stones and mountain sand that are collected by cutting mountains, due to recent environmental problems, steelmaking slag is currently recycled in large quantities as civil engineering materials for port construction. From that point of view, it is not enough.

【0004】一方、最近、沿岸海域における水質・底質
改善のために製鋼スラグを海底に設置した基礎的研究に
おいて、30mm以下の粒径の小さいスラグについては
スラグ設置直後に近傍海水およびスラグ間隙水中でのp
H上昇が認められたが、そのpHは数時間で周辺海域と
同程度まで低下し、この際、海水のpHが高くなる影響
として、粒径の小さいスラグの設置層表面には、海水中
のマグネシウムとスラグから溶出した水酸化物および炭
酸化物の白色固形物の析出が観察されたことが報告され
ている(沼田哲始ら:日本海水学会誌、第53巻、第4
号、平成11年8月、283頁)。
On the other hand, recently, in a basic research in which steelmaking slag was installed on the seabed to improve water quality and bottom quality in coastal waters, in the case of slag with a small particle size of 30 mm or less, immediately after the slag was installed, the adjacent seawater and slag pore water At p
Although an increase in H was observed, its pH decreased to the same level as the surrounding sea area within a few hours. At this time, the effect of increasing the pH of seawater was that the slag installation layer surface with a small particle size had It has been reported that precipitation of hydroxides and carbonates of white solids eluted from magnesium and slag was observed (Tetsuji Numata et al., Journal of Japan Society for Sea Water, Vol. 53, No. 4).
No., August 1999, p. 283).

【0005】[0005]

【発明が解決しようとする課題】このように、製鋼スラ
グの石灰(CaO)は、水と反応して消石灰(Ca(O
H)2)となり、これが海水中にCa2+とOH-として溶
解しpHを上昇させ、このOH-と海水中に含まれるM
2+が反応し、Mg(OH)2を生成させる。一方、海
水中に含まれるCO3 2-がCa2+と反応しCaCO3を生
成させる。港湾工事において製鋼スラグを沈設させた場
合、沈設スラグ表面および沈降中の粒径の小さいスラグ
表面でMg(OH)2およびCaCO3が多量に生成し、
沈設工区が白濁する場合がある。Mg(OH)2および
CaCO3自体は無害であるが、工事期間中の白濁現象
は、外観上の問題から港湾工事を進める上での障害とな
ることがある。また、多量の白濁発生は、石灰の溶解に
よるpHの上昇を示唆しており、環境上、留意しなけれ
ばならない。一方、最近の製鋼プロセスにおいては、脱
珪、脱硫、脱燐および脱炭工程の効率的な分割化が進
み、多種多様な製鋼スラグが発生しており、その形状、
組織は多岐にわたり、製鋼スラグの石灰の溶解挙動も複
雑となっている。
As described above, the lime (CaO) of the steelmaking slag reacts with water to obtain slaked lime (Ca (O).
H) 2 ), which dissolves in seawater as Ca 2+ and OH to raise the pH, and the M contained in this OH and seawater
The g 2+ reacts to form Mg (OH) 2 . On the other hand, CO 3 2- contained in seawater reacts with Ca 2+ to produce CaCO 3 . When steelmaking slag is deposited in port construction, a large amount of Mg (OH) 2 and CaCO 3 are produced on the surface of the deposited slag and the surface of the slag with a small particle size during sedimentation,
The subsidence area may become cloudy. Although Mg (OH) 2 and CaCO 3 themselves are harmless, the white turbidity phenomenon during the construction period may be an obstacle to the progress of the port construction due to problems in appearance. In addition, the occurrence of a large amount of white turbidity suggests an increase in pH due to the dissolution of lime, which must be taken into consideration in the environment. On the other hand, in recent steelmaking processes, efficient division of desiliconization, desulfurization, dephosphorization and decarburization processes has progressed, and various types of steelmaking slag have been generated.
There are various structures, and the melting behavior of lime in steelmaking slag is also complicated.

【0006】本発明はかかる事情に鑑みてなされたもの
であって、クラッシングプラント等で破砕した状態で白
濁を発生しない港湾工事用製鋼スラグを提供することを
目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steelmaking slag for harbor construction which does not generate cloudiness when crushed in a crushing plant or the like.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく種々の製鋼スラグについて研究を行った結
果、製鋼スラグの組成を適切に規定した上で、粒度、開
気孔率、それを海水に浸漬させた際の海水のpHのいず
れかを規定することで、港湾土木用資材として使用する
際の白濁を防止することができることを見出した。さら
に、本発明者らは、製鋼スラグを海水に浸漬させた際の
濁りを定量的に測定し、その値を規定することで港湾土
木用資材として使用する際の白濁を防止することができ
ることを見出した。
Means for Solving the Problems As a result of research on various steelmaking slags in order to solve the above problems, the present inventors have appropriately specified the composition of the steelmaking slag, and have a grain size, an open porosity, It was found that by defining any of the pH values of seawater when it is immersed in seawater, it is possible to prevent clouding when used as a material for port civil engineering. Furthermore, the present inventors quantitatively measure the turbidity when the steelmaking slag is immersed in seawater, and by defining the value, it is possible to prevent cloudiness when used as a material for port civil engineering. I found it.

【0008】本発明はこのような知見に基づいてなされ
たものであり、以下の(1)〜(5)を提供するもので
ある。
The present invention has been made based on such findings, and provides the following (1) to (5).

【0009】(1)遊離石灰分が0〜10.0質量%、
硫黄分が0〜1.0質量%の範囲であり、かつ、粒径1
0mm未満の粒子が25質量%以下であることを特徴と
する港湾工事用製鋼スラグ。
(1) 0 to 10.0% by mass of free lime,
Sulfur content is in the range of 0 to 1.0 mass% and particle size is 1
Steelmaking slag for port construction, characterized in that particles less than 0 mm are 25 mass% or less.

【0010】(2)遊離石灰分が0〜10.0質量%、
硫黄分が0〜1.0質量%の範囲であり、かつ、粒径5
mm以上であることを特徴とする港湾工事用製鋼スラ
グ。
(2) 0 to 10.0% by mass of free lime,
Sulfur content is in the range of 0 to 1.0% by mass, and the particle size is 5
Steelmaking slag for port construction characterized by having a diameter of at least mm.

【0011】(3)遊離石灰分が0〜10.0質量%、
硫黄分が0〜1.0質量%の範囲であり、かつ、開気孔
率が15%以下であることを特徴とする港湾工事用製鋼
スラグ。
(3) 0 to 10.0% by mass of free lime,
A steelmaking slag for port construction, which has a sulfur content in the range of 0 to 1.0 mass% and an open porosity of 15% or less.

【0012】(4)遊離石灰分が0〜10.0質量%、
硫黄分が0〜1.0質量%の範囲である港湾工事用製鋼
スラグであって、2倍の質量比の海水に浸漬させて3時
間経過した際における海水のpHが10.5以下となる
ことを特徴とする港湾工事用製鋼スラグ。
(4) 0 to 10.0% by mass of free lime,
It is a steelmaking slag for port construction with a sulfur content in the range of 0 to 1.0% by mass, and the pH of the seawater after immersion for 3 hours in seawater having a double mass ratio becomes 10.5 or less. Steelmaking slag for port construction, which is characterized by that.

【0013】(5)製鋼スラグを2倍の質量比の海水に
浸漬させ、3時間経過した際における海水のJIS K
0101に規定される透過光濁度が50濁度カオリン未
満になることを特徴とする港湾工事用製鋼スラグ。
(5) The steelmaking slag is immersed in seawater having a double mass ratio, and JIS K of seawater after 3 hours has passed
A steelmaking slag for port construction, which has a transmitted light turbidity specified by 0101 of less than 50 turbidity kaolin.

【0014】[0014]

【発明の実施の形態】以下、本発明について具体的に説
明する。まず、本発明者らの見出した基本的な知見とし
て、クラッシングプラント等で破砕後の製鋼スラグは、
粒度ないし開気孔率の程度にかかわらず、遊離石灰分が
10.0質量%を超え、かつ、硫黄分が1.0質量%を
超える範囲にあると、海水中での石灰の溶解量が増加
し、同時に海水中のOH-も増加するためpHが上昇
し、海水中に含まれるMg2+およびCa2+と反応して生
成するMg(OH)2およびCaCO3が多く、白濁は避
けられず、また、硫黄分が高いため、単体硫黄の生成も
促し、白濁を助長することが挙げられる。すなわち、港
湾土木用資材として使用する製鋼スラグは遊離石灰分が
0〜10.0質量%、硫黄分が0〜1.0質量%の範囲
であることが必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, as a basic finding found by the present inventors, the steelmaking slag after crushing in a crushing plant, etc.
Regardless of the particle size or the degree of open porosity, if the free lime content exceeds 10.0 mass% and the sulfur content exceeds 1.0 mass%, the amount of lime dissolved in seawater increases. and, OH in seawater at the same time - to increase pH to increase also be generated by reaction with Mg 2+ and Ca 2+ contained in seawater Mg (OH) number 2 and CaCO 3, clouding is avoided In addition, since the sulfur content is high, the production of elemental sulfur is promoted to promote clouding. That is, the steelmaking slag used as a material for port civil engineering must have a free lime content of 0 to 10.0 mass% and a sulfur content of 0 to 1.0 mass%.

【0015】以上のことを前提に、本発明の第1の実施
形態では、港湾工事用製鋼スラグとして粒径10mm未
満の粒子が25質量%以下とする。このような粒度の製
鋼スラグを用いると、海水との接触面積が小さくなるた
め海水中での石灰の溶解が少なくなり、同時に海水中の
OH-の増加も少なくなり、Mg(OH)2およびCaC
3の生成は極めて少なく実質的な白濁は生じない。
Based on the above, in the first embodiment of the present invention, the steelmaking slag for harbor construction contains 25% by mass or less of particles having a particle size of less than 10 mm. When the steelmaking slag having such a grain size is used, the contact area with seawater is reduced, so that the dissolution of lime in seawater is reduced, and at the same time, the increase of OH in seawater is reduced, and Mg (OH) 2 and CaC are reduced.
Generation of O 3 is extremely small, and substantial white turbidity does not occur.

【0016】第2の実施形態においても、第1の実施形
態と同様、遊離石灰分が0〜10.0質量%、硫黄分が
0〜1.0質量%の範囲であることを前提にした上で、
さらに粒径5mm未満の微粒を除いて粒径を5mm以上
とする。このように微粒を除くことにより、Mg(O
H)2およびCaCO3の生成は極めて少なく実質的な白
濁は生じない。
In the second embodiment as well, similar to the first embodiment, it is premised that the free lime content is in the range of 0 to 10.0 mass% and the sulfur content is in the range of 0 to 1.0 mass%. Above,
Further, the particle size is set to 5 mm or more excluding fine particles having a particle size of less than 5 mm. By removing fine particles in this way, Mg (O
The formation of H) 2 and CaCO 3 is extremely small and practical white turbidity does not occur.

【0017】なお、上述の粒径は、スラグを乾燥した後
に篩分けをし、粒度分析を行った結果に基づいている。
したがって、本実施形態のようにスラグの粒度調整を行
う必要がある場合には、転炉や取鍋から溶融スラグを排
出・冷却固化後にクラッシングプラント等で破砕し、振
動篩やグリズリー等の選別機の篩分け効率を勘案して製
造する必要がある。
The above-mentioned particle size is based on the results of particle size analysis after slag drying and sieving.
Therefore, when it is necessary to adjust the particle size of the slag as in the present embodiment, the molten slag is discharged from the converter or the ladle, crushed in a crushing plant or the like after being cooled and solidified, and a vibrating screen or grizzly is selected. It is necessary to manufacture in consideration of the screening efficiency of the machine.

【0018】第3の実施形態においても、遊離石灰分が
0〜10.0質量%、硫黄分が0〜1.0質量%の範囲
であることを前提にした上で、さらに開気孔率が15%
以下であるという規定が加わっている。開気孔率を15
%以下にすれば、当該製鋼スラグ粒子の表面が稠密であ
るため、石灰の溶解が進行し難く、Mg(OH)2およ
びCaCO3の生成は極めて少なく実質的な白濁は生じ
ないことから、粒度にかかわらず港湾工事に用いること
ができる。なお、開気孔率は、水銀ポロシメータ等で測
定した値を用いればよい。
Also in the third embodiment, it is assumed that the free lime content is in the range of 0 to 10.0 mass% and the sulfur content is in the range of 0 to 1.0 mass%, and the open porosity is further increased. 15%
The following is added: Open porosity 15
% Or less, since the surface of the steelmaking slag particles is dense, the dissolution of lime is difficult to proceed, the production of Mg (OH) 2 and CaCO 3 is extremely small, and substantial white turbidity does not occur. Can be used for port construction regardless. The open porosity may be a value measured by a mercury porosimeter or the like.

【0019】ところで、製鋼スラグの石灰の溶解にとも
ないMg(OH)2およびCaCO3が生成することは既
に述べたが、例えば、ビーカー等の容器に海水とスラグ
とを入れ、長時間にわたり十分に攪拌させながら反応さ
せた場合、Mg(OH)2およびCaCO3は、海水中の
MgおよびHCO3とスラグの石灰とのいずれかが消費
されるまで生成する。そして、これらが生成後、石灰が
残存する場合には、平衡論的には溶解する石灰によって
pHが13程度に収斂するから、上述のようなビーカー
試験ではどのようなスラグを用いてもpHが13程度に
収斂してしまい、種々の製鋼スラグを実際に使用した際
のMg(OH)2およびCaCO3の生成にともなう白濁
有無を把握することは困難である。
By the way, although it has already been described that Mg (OH) 2 and CaCO 3 are produced with the dissolution of lime in the steelmaking slag, for example, seawater and slag are put in a container such as a beaker, and they are sufficiently charged for a long time. When reacted with stirring, Mg (OH) 2 and CaCO 3 are produced until either Mg or HCO 3 in seawater or lime slag is consumed. Then, when lime remains after these are produced, the pH is converged to about 13 due to the equilibrium dissolution of lime. Therefore, in the beaker test as described above, the pH is maintained by any slag. It converges to about 13, and it is difficult to grasp the presence or absence of cloudiness associated with the production of Mg (OH) 2 and CaCO 3 when various steelmaking slags are actually used.

【0020】実際に多種多様の製鋼スラグをビーカー内
で反応させた場合のMg(OH)2およびCaCO3生成
量は海水とスラグの比率およびスラグ形状・構造に起因
する石灰の溶解速度にほぼ従うから、本来的にはこのよ
うな石灰の溶解速度を解析して白濁の有無を把握すれば
よい。なお、海水中のMgおよびHCO3の濃度は、そ
れぞれ、概ね1.29および0.142(g/kg)で
あり、主たる生成物はMg(OH)2と考えてよい。
Actually, the amounts of Mg (OH) 2 and CaCO 3 produced when a wide variety of steelmaking slags are reacted in a beaker substantially follow the ratio of seawater to slag and the lime dissolution rate due to the slag shape and structure. Therefore, it is essentially necessary to analyze the dissolution rate of such lime to grasp the presence or absence of white turbidity. The concentrations of Mg and HCO 3 in seawater are approximately 1.29 and 0.142 (g / kg), respectively, and the main product may be considered to be Mg (OH) 2 .

【0021】しかしながら、実際の港湾工事においては
潮流があり、スラグを取り巻く海水は更新されることな
どから、海水とスラグとの比率を決定することは極めて
困難であり、石灰の溶解速度を解析することは現実的で
はない。
However, it is extremely difficult to determine the ratio of seawater to slag because there is a tidal current in actual port construction and the seawater surrounding the slag is renewed. Therefore, the dissolution rate of lime is analyzed. That is not realistic.

【0022】そこで本発明者らは、簡易的にビーカー内
で多種多様の製鋼スラグを海水に浸漬させ、一定比率お
よび一定時間反応させたときのpHと実際の白濁につい
て調査した。当該調査に係る試験と類似した試験として
は、土質工学基準 JSFT 211―1990「土の
pH試験方法」において、試料の炉乾燥質量に対する水
の質量比が2〜3になるように蒸留水を加え、撹拌棒で
懸濁液状態にし、30分以上、3時間以内静置したもの
を試料液としてpH測定を行うとしている。
Therefore, the present inventors have investigated pH and actual white turbidity when a wide variety of steelmaking slags are simply immersed in seawater in a beaker and reacted at a fixed ratio for a fixed time. As a test similar to the test relating to the survey, distilled water was added so that the mass ratio of water to the furnace dry mass of the sample was 2-3 in the soil engineering standard JSFT 211-1990 “Soil pH test method”. It is said that pH measurement is performed by using a sample solution that is in a suspension state with a stirring rod and left standing for 30 minutes or more and 3 hours or less.

【0023】発明者らは、有姿で種々の製鋼スラグに対
し、その質量の2倍の質量比になるように海水を加え、
撹拌棒で懸濁液状態にし、静置したものを試料液として
pH測定したところ、pHはほぼ3時間程度でスラグそ
れぞれの固有の値で一定となり、その後、数十時間かけ
て、徐々に上昇することを確認した。pHの一定域は、
石灰の海水へ溶解反応とMg(OH)2およびCaCO3
生成反応が拮抗し、スラグ組成・形状・粒経および構造
に応じたpHを示す領域と推察され、その後の緩慢なp
H上昇は、この拮抗反応が終了し、徐々に石灰が溶解し
ていることを示していると考えてよい。すなわち、本発
明者らは、製鋼スラグの組成・形状・粒径等の性状が及
ぼす海水中でのpH挙動を把握するには、有姿の製鋼ス
ラグを、その2倍の質量比の海水に浸漬させて3時間経
過した際における海水のpHを測定することが妥当と考
え、これら種々の製鋼スラグの実際の白濁状況と照らし
合わせたところ、当該pHが10.5以下であれば実際
に白濁が生じないことを見出した。
The inventors of the present invention added seawater to various steelmaking slags in a tangible form so as to have a mass ratio of twice the mass,
When the pH was measured by using a stirring rod as a suspension and leaving it as a sample solution, the pH became constant at the specific value of each slag in about 3 hours, and then gradually increased over several tens of hours. Confirmed to do. The constant pH range is
Dissolution reaction of lime in seawater and Mg (OH) 2 and CaCO 3
It is presumed that the production reaction is antagonized, and the pH shows a region depending on the slag composition, shape, grain size, and structure.
It can be considered that the increase in H indicates that this antagonism has ended and that lime is gradually dissolved. That is, in order to understand the pH behavior in seawater that the properties such as the composition, shape, and particle size of the steelmaking slag affect, the present inventors convert the steelmaking slag into a seawater having twice its mass ratio. It was considered appropriate to measure the pH of seawater after 3 hours of immersion, and when compared with the actual white turbidity of these various steelmaking slags, if the pH was 10.5 or less, it actually became cloudy. It has been found that does not occur.

【0024】そこで、第4の実施形態では、遊離石灰分
が0〜10.0質量%、硫黄分が0〜1.0質量%の範
囲である製鋼スラグであって、その2倍の質量比の海水
に浸漬させて3時間経過した際における海水のpHが1
0.5以下となるものとする。
Therefore, in the fourth embodiment, the steelmaking slag has a free lime content in the range of 0 to 10.0 mass% and a sulfur content in the range of 0 to 1.0 mass%, and has a mass ratio twice as high. The pH of seawater after immersion for 3 hours in seawater is 1
It shall be 0.5 or less.

【0025】一方、海水中における製鋼スラグからの石
灰の溶解挙動は、粒度や開気孔率のみですべてを把握で
きるものではなく、また、白濁の主な原因であるMg
(OH)2およびCaCO3生成量は、pHに従って変化
するものの、生成速度や生成時の海水の状態など複雑な
要因により、当該生成物質の凝集挙動は異なってくると
考えられ、これに応じ海水中での白濁の度合も変化する
ことが予想される。したがって、粒度やpH等の間接的
な物性の規定だけでは、白濁を完全に回避できない場合
が予想される。そこで、本発明者らは、白濁の度合を室
内試験において定量化するために、JIS K0101
「工業用水試験法」で規定される透過光濁度の測定法に
準拠し、2倍の質量比の海水に浸漬させて3時間経過し
た際における海水の透過光濁度を種々の製鋼スラグにつ
いて測定した。その結果を種々の製鋼スラグの実際の白
濁状況と照らし合わせたところ、当該透過光濁度が50
濁度カオリン未満であれば実際に白濁が生じないことを
見出した。
On the other hand, the dissolution behavior of lime from steelmaking slag in seawater cannot be grasped only by the particle size and open porosity, and the main cause of cloudiness is Mg.
Although the amounts of (OH) 2 and CaCO 3 produced change according to pH, it is considered that the agglomeration behavior of the product is different due to complex factors such as the production rate and the state of seawater at the time of production. It is expected that the degree of cloudiness inside will also change. Therefore, it is expected that cloudiness cannot be completely avoided only by indirect physical properties such as particle size and pH. Therefore, in order to quantify the degree of white turbidity in the laboratory test, the present inventors have set forth JIS K0101.
According to the measurement method of transmitted light turbidity specified in "Industrial water test method", the transmitted light turbidity of seawater after immersion for 3 hours in seawater having a double mass ratio was measured for various steelmaking slags. It was measured. When the results were compared with the actual white turbidity of various steelmaking slags, the transmitted light turbidity was 50%.
It was found that cloudiness does not actually occur when the turbidity is less than kaolin.

【0026】そこで、第5の実施形態では、製鋼スラグ
を2倍の質量比の海水に浸漬させ、3時間経過した際に
おける海水のJIS K0101に規定される透過光濁
度が50濁度カオリン未満になるような港湾工事用製鋼
スラグとする。
Therefore, in the fifth embodiment, the steelmaking slag is immersed in seawater having a mass ratio of 2 times and the transmitted light turbidity of seawater after 3 hours has been defined by JIS K0101 is less than 50 turbidity kaolin. The steelmaking slag for port construction will be

【0027】[0027]

【実施例】多種多様の製鋼スラグを種々の粒度に調整
し、水深2m程の浅い閉鎖海域内に1mほどの高さに沈
設させ、沈設直後からおよそ24時間で、目視により白
濁の発生を観察した。なお、沈設直後の製鋼スラグの微
粉による濁りは、白濁とは明らかに異なり、数時間で沈
降することから観察の上では無視した。
[Example] Various types of steelmaking slags were adjusted to various grain sizes, and they were submerged at a height of about 1 m in a shallow closed water area of about 2 m in water depth, and visually observed for white cloudiness for about 24 hours immediately after the deposition. did. The turbidity of the steelmaking slag immediately after the deposition due to the fine powder is clearly different from white turbidity and settles in several hours, so it was ignored for observation.

【0028】その結果を表1に示す。表1に示すよう
に、試料No.1〜4までの製鋼スラグは、遊離石灰分
が10.0質量%を超え、かつ硫黄分が1.0質量%を
超えており、白濁が認められた。なお、これら4種の製
鋼スラグの粒径5mm未満のものの割合は0.0〜2
5.3質量%、粒径10mm未満のものの割合は0.0
〜58.0質量%の範囲にあり、開気孔率は10.1〜
14.8%の範囲であった。
The results are shown in Table 1. As shown in Table 1, the sample No. The steelmaking slags 1 to 4 had a free lime content of more than 10.0% by mass and a sulfur content of more than 1.0% by mass, and white turbidity was observed. The ratio of these four types of steelmaking slags having a particle size of less than 5 mm is 0.0 to 2
5.3 mass%, the ratio of particles having a particle size of less than 10 mm is 0.0
To 58.0% by mass, and the open porosity is 10.1 to 10.
It was in the range of 14.8%.

【0029】一方、No.1〜4を除くNo.5〜30
までの26種類の製鋼スラグに注目すると、開気孔率が
15.0%未満のNo.5,8,10〜14,16,2
6〜28は白濁が認められなかった。なお、No.5〜
30までの26種類の製鋼スラグの粒径5mm未満のも
のの割合は0.0〜89.0質量%、粒径10mm未満
のものの割合は0.0〜100質量%の範囲であった。
On the other hand, No. No. except 1 to 4 5-30
Focusing on the 26 types of steelmaking slags up to, No. 1 with open porosity of less than 15.0%. 5,8,10-14,16,2
No white turbidity was observed in 6 to 28. In addition, No. 5-
The ratio of 26 types of steelmaking slags up to 30 having a particle size of less than 5 mm was 0.0 to 89.0 mass%, and the ratio of those having a particle size of less than 10 mm was in the range of 0.0 to 100% by mass.

【0030】また、上記No.5〜30までの26種類
の製鋼スラグにおいて、粒径10mm未満のものの割合
が25質量%以下のNo.18〜20の3種類は白濁が
認められなかった。なお、これら3種類の製鋼スラグの
粒径5mm未満のものの割合は5.2〜6.9質量%、
開気孔率は16.6〜18.6%の範囲であった。
In addition, the above No. Among the 26 types of steelmaking slags of 5 to 30, the ratio of those having a particle size of less than 10 mm is 25% by mass or less. No cloudiness was observed in the three types of 18 to 20. The ratio of these three types of steelmaking slags having a particle size of less than 5 mm is 5.2 to 6.9% by mass,
The open porosity was in the range of 16.6 to 18.6%.

【0031】さらに、上記No.5〜30までの26種
類の製鋼スラグにおいて、粒径5mm未満のものの割合
が0.0質量%、つまり全て粒径が5mm以上であるN
o.21〜28の8種類は白濁が認められなかった。な
お、これら8種類の製鋼スラグの粒径10mm未満のも
のの割合は0.0〜5.6質量%、開気孔率は5.0〜
23.0%の範囲であった。
Further, the above No. In 26 kinds of steelmaking slags of 5 to 30, the ratio of those having a particle size of less than 5 mm is 0.0% by mass, that is, N having a particle size of 5 mm or more.
o. No white turbidity was observed in the eight types 21 to 28. The ratio of these eight types of steelmaking slags having a particle size of less than 10 mm is 0.0 to 5.6 mass% and the open porosity is 5.0 to
It was in the range of 23.0%.

【0032】上記No.1〜30の製鋼スラグ1.0k
gを自然海水2.0kgに浸漬し、3.0時間経過後の
pHを測定した。その結果を表1に併記する。この結果
と上記閉鎖海域での白濁観察結果と照らし合わせると、
3.0時間経過後のpHが概ね10.5以下の製鋼スラ
グは白濁が認められないことが確認された。
The above No. 1-30 steelmaking slag 1.0k
g was immersed in 2.0 kg of natural seawater, and the pH after 3.0 hours was measured. The results are also shown in Table 1. When comparing this result with the cloudiness observation result in the closed sea area,
It was confirmed that no cloudiness was observed in the steelmaking slag having a pH of about 10.5 or less after 3.0 hours.

【0033】[0033]

【表1】 [Table 1]

【0034】表2に試料No.1〜30までの平均粒径
と透過光濁度を示す。試料No.1〜30までの30種
類の製鋼スラグの平均粒径は3.1〜41.0mmの範
囲にあり、当該製鋼スラグにおいて透過光濁度が5〜4
8濁度カオリンの範囲にあるNo.5,8,10〜1
4,16,18〜30の製鋼スラグは表1に示すように
白濁が認められず、透過光濁度が55〜78濁度カオリ
ンの範囲にあるNo.1〜4,6,7,9,15,17
の製鋼スラグは表1に示すように白濁が認められた。
Table 2 shows sample No. The average particle diameter from 1 to 30 and the transmitted light turbidity are shown. Sample No. The average particle size of 30 types of steelmaking slags 1 to 30 is in the range of 3.1 to 41.0 mm, and the transmitted light turbidity is 5 to 4 in the steelmaking slag.
No. 8 in the range of turbidity kaolin. 5,8,10-1
No turbidity was observed in the steelmaking slags of Nos. 4, 16 and 18 to 30 as shown in Table 1, and the transmitted light turbidity was in the range of 55 to 78 turbidity kaolin. 1-4, 6, 7, 9, 15, 17
As shown in Table 1, white turbidity was observed in the steelmaking slag of No. 2.

【0035】[0035]

【表2】 [Table 2]

【0036】次に、表3に示す試料No.31〜34の
製鋼スラグを水深2m程の浅い閉鎖海域内に1mほどの
高さに沈設させ、沈設直後からおよそ24時間で、目視
により白濁の発生を観察した。表3に示す試料No.3
1〜34の製鋼スラグは、遊離石灰分が2.98〜4.
10質量%、硫黄分が0.26〜0.46質量%、開気
孔率は12.0〜16.0%の範囲であり、当該製鋼ス
ラグ1.0kgを自然海水2.0kgに浸漬し、3.0
時間経過後のpHを測定した結果、pHは10.30〜
10.42の範囲あった。試料No.31〜34の製鋼
スラグは当該閉鎖海域での白濁観察結果、いずれも白濁
が認められた。表4に試料No.31〜34の製鋼スラ
グの平均粒径と当該スラグ1.0kgを自然海水2.0
kgに浸漬し、3.0時間経過後の液試料の透過光濁度
を示す。当該製鋼スラグの平均粒径は、22.6〜2
5.7mmの範囲にあり、透過光濁度は54〜59濁度
カオリンの範囲にあった。
Next, the sample No. shown in Table 3 was used. The steelmaking slags 31 to 34 were sunk to a height of about 1 m in a shallow closed sea area of a water depth of about 2 m, and the occurrence of white turbidity was visually observed for about 24 hours immediately after the slag. Sample No. shown in Table 3 Three
The steelmaking slags 1 to 34 have a free lime content of 2.98 to 4.
10 mass%, sulfur content is 0.26 to 0.46 mass%, open porosity is in the range of 12.0 to 16.0%, 1.0 kg of the steelmaking slag is immersed in 2.0 kg of natural seawater, 3.0
As a result of measuring the pH after the elapse of time, the pH is 10.30.
The range was 10.42. Sample No. As for the steelmaking slags 31 to 34, white turbidity was observed in all of the observation results of white turbidity in the closed sea area. Table 4 shows sample No. The average particle size of the steelmaking slags 31 to 34 and 1.0 kg of the slag are taken from natural seawater 2.0.
The transmitted light turbidity of the liquid sample after 3.0 hours of immersion in kg is shown. The average particle size of the steelmaking slag is 22.6 to 2
It was in the range of 5.7 mm and the transmitted light turbidity was in the range of 54-59 turbidity kaolin.

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】図1は、横軸にpH値をとり、縦軸に透過
光濁度をとって、表1および表3に示す製鋼スラグ1.
0kgを自然海水2.0kgに浸漬し、3.0時間経過
した後におけるpHと当該製鋼スラグの透過光濁度との
関係を示す図である。この図からpHが高くなると透過
光濁度も高くなり、ほぼ、pHが10.5を超えると白
濁が発生することがわかる。しかしながら、pHが1
0.5付近には、白濁が発生する製鋼スラグと発生しな
い製鋼スラグが存在する。
In FIG. 1, the horizontal axis represents the pH value and the vertical axis represents the transmitted light turbidity.
It is a figure which shows the relationship between pH and the transmitted light turbidity of the said steelmaking slag after immersing 0 kg in 2.0 kg of natural seawater for 3.0 hours. From this figure, it can be seen that as the pH increases, the turbidity of transmitted light also increases, and almost when the pH exceeds 10.5, white turbidity occurs. However, the pH is 1
In the vicinity of 0.5, there are steelmaking slag that produces cloudiness and steelmaking slag that does not.

【0040】図2は、表2および表4をグラフ化したも
のであり、横軸に製鋼スラグの平均粒径をとり、縦軸に
透過光濁度をとって、これらの関係を示す図である。た
だし、図2では、表2および表4のうち平均粒径5mm
以上のもののみを示している。図2に示すように、平均
粒径の変化にかかわらず透過光濁度が50濁度カオリン
を超える製鋼スラグは白濁が確認されることがわかる。
また上記図1から、pHにかかわらず50濁度カオリン
を超える製鋼スラグは白濁が確認されることがわかる。
FIG. 2 is a graph showing Tables 2 and 4, in which the horizontal axis represents the average particle diameter of the steelmaking slag and the vertical axis represents the transmitted light turbidity. is there. However, in FIG. 2, the average particle size of Table 2 and Table 4 is 5 mm.
Only the above is shown. As shown in FIG. 2, it can be seen that white turbidity is confirmed in the steelmaking slag whose transmitted light turbidity exceeds 50 turbidity kaolin regardless of the change in the average particle size.
Further, it can be seen from FIG. 1 that white turbidity is confirmed in the steelmaking slag having a turbidity of more than 50 kaolin regardless of pH.

【0041】[0041]

【発明の効果】以上説明したように、本発明によれば、
護岸・築提・岸壁、地盤改良等の港湾工事において、沈
設工区でクラッシングプラント等で破砕した状態で使用
する際に、白濁を発生しない港湾工事用製鋼スラグを提
供することができる。
As described above, according to the present invention,
It is possible to provide a steelmaking slag for port work that does not cause cloudiness when used in a crushed plant or other crushed state in a sinking area for port work such as revetment, construction, quay, and ground improvement.

【図面の簡単な説明】[Brief description of drawings]

【図1】製鋼スラグ1.0kgを自然海水2.0kgに
浸漬し、3.0時間経過後のpHと透過光濁度の関係を
示す図。
FIG. 1 is a diagram showing the relationship between pH and transmitted light turbidity after immersion of 1.0 kg of steelmaking slag in 2.0 kg of natural seawater for 3.0 hours.

【図2】製鋼スラグ1.0kgを自然海水2.0kgに
浸漬し、3.0時間経過後の透過光濁度と平均粒径の関
係を示す図。
FIG. 2 is a diagram showing the relationship between transmitted light turbidity and average particle diameter after 3.0 hours of immersion of 1.0 kg of steelmaking slag in 2.0 kg of natural seawater.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 延郎 東京都港区港南2丁目15番1号 鋼管鉱業 株式会社内 (72)発明者 西谷 賢治 東京都港区港南2丁目15番1号 鋼管鉱業 株式会社内 Fターム(参考) 4G012 JG03 4K070 AB11 BC15 EA02 EA12 EA14 EA19 EA30    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuo Kobayashi             2-15-1 Konan, Minato-ku, Tokyo Steel pipe mining industry             Within the corporation (72) Inventor Kenji Nishitani             2-15-1 Konan, Minato-ku, Tokyo Steel pipe mining industry             Within the corporation F-term (reference) 4G012 JG03                 4K070 AB11 BC15 EA02 EA12 EA14                       EA19 EA30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 遊離石灰分が0〜10.0質量%、硫黄
分が0〜1.0質量%の範囲であり、かつ、粒径10m
m未満の粒子が25質量%以下であることを特徴とする
港湾工事用製鋼スラグ。
1. Free lime content is in the range of 0 to 10.0% by mass, sulfur content is in the range of 0 to 1.0% by mass, and particle size is 10 m.
Steelmaking slag for port construction, characterized in that particles of less than m are 25 mass% or less.
【請求項2】 遊離石灰分が0〜10.0質量%、硫黄
分が0〜1.0質量%の範囲であり、かつ、粒径5mm
以上であることを特徴とする港湾工事用製鋼スラグ。
2. Free lime content is in the range of 0 to 10.0% by mass, sulfur content is in the range of 0 to 1.0% by mass, and particle size is 5 mm.
The steelmaking slag for port construction characterized by the above.
【請求項3】 遊離石灰分が0〜10.0質量%、硫黄
分が0〜1.0質量%の範囲であり、かつ、開気孔率が
15%以下であることを特徴とする港湾工事用製鋼スラ
グ。
3. A harbor construction characterized by a free lime content of 0 to 10.0 mass% and a sulfur content of 0 to 1.0 mass% and an open porosity of 15% or less. Steel slag for use.
【請求項4】 遊離石灰分が0〜10.0質量%、硫黄
分が0〜1.0質量%の範囲である港湾工事用製鋼スラ
グであって、2倍の質量比の海水に浸漬させて3時間経
過した際における海水のpHが10.5以下となること
を特徴とする港湾工事用製鋼スラグ。
4. A steelmaking slag for port construction having a free lime content of 0 to 10.0% by mass and a sulfur content of 0 to 1.0% by mass, which is soaked in seawater having a double mass ratio. Steel slag for harbor construction, wherein the pH of seawater after 3 hours has reached 10.5 or less.
【請求項5】 製鋼スラグを2倍の質量比の海水に浸漬
させ、3時間経過した際における当該海水のJIS K
0101に規定される透過光濁度が50濁度カオリン未
満になることを特徴とする港湾工事用製鋼スラグ。
5. The steelmaking slag is immersed in seawater having a mass ratio of 2 and JIS K of the seawater after 3 hours has passed
A steelmaking slag for port construction, which has a transmitted light turbidity specified by 0101 of less than 50 turbidity kaolin.
JP2001360741A 2001-05-07 2001-11-27 Method for producing steelmaking slag for harbor construction that does not become cloudy Expired - Lifetime JP3963711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001360741A JP3963711B2 (en) 2001-05-07 2001-11-27 Method for producing steelmaking slag for harbor construction that does not become cloudy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001136314 2001-05-07
JP2001-136314 2001-05-07
JP2001360741A JP3963711B2 (en) 2001-05-07 2001-11-27 Method for producing steelmaking slag for harbor construction that does not become cloudy

Publications (2)

Publication Number Publication Date
JP2003026456A true JP2003026456A (en) 2003-01-29
JP3963711B2 JP3963711B2 (en) 2007-08-22

Family

ID=26614701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001360741A Expired - Lifetime JP3963711B2 (en) 2001-05-07 2001-11-27 Method for producing steelmaking slag for harbor construction that does not become cloudy

Country Status (1)

Country Link
JP (1) JP3963711B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314155A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Granule and its manufacturing process
JP2015074914A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Modified soil strength prediction method
JP2015117544A (en) * 2013-12-19 2015-06-25 Jfeスチール株式会社 Filling material for sand compaction pile, construction method of sand compaction pile and sand compaction pile
JP2016023472A (en) * 2014-07-22 2016-02-08 Jfeスチール株式会社 Environmental improvement material for sea area and environmental improvement method for sea area using the same
JP2016176275A (en) * 2015-03-20 2016-10-06 Jfeスチール株式会社 Sand compaction pile material, sand compaction pile and sand compaction pile developing method
JP2017012958A (en) * 2015-06-29 2017-01-19 Jfeスチール株式会社 Underwater structure and construction method therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005314155A (en) * 2004-04-28 2005-11-10 Jfe Steel Kk Granule and its manufacturing process
JP2015074914A (en) * 2013-10-08 2015-04-20 新日鐵住金株式会社 Modified soil strength prediction method
JP2015117544A (en) * 2013-12-19 2015-06-25 Jfeスチール株式会社 Filling material for sand compaction pile, construction method of sand compaction pile and sand compaction pile
JP2016023472A (en) * 2014-07-22 2016-02-08 Jfeスチール株式会社 Environmental improvement material for sea area and environmental improvement method for sea area using the same
JP2016176275A (en) * 2015-03-20 2016-10-06 Jfeスチール株式会社 Sand compaction pile material, sand compaction pile and sand compaction pile developing method
JP2017012958A (en) * 2015-06-29 2017-01-19 Jfeスチール株式会社 Underwater structure and construction method therefor

Also Published As

Publication number Publication date
JP3963711B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
Fisher et al. The recycling and reuse of steelmaking slags—A review
JP4403095B2 (en) Water environment conservation materials and methods of use
CN109516658B (en) Bottom mud treatment method
JP2006214085A (en) Method for developing shallows and the like
JP2003026456A (en) Steel making slag for port and harbor work
JP2002238401A (en) Method for improving underwater environment
JP2007063923A (en) Sand cover structure and sand cover method for water bottom
JP5818469B2 (en) Treatment method of bottom sediment
JP5596942B2 (en) Treatment method of bottom sediment
JP4872275B2 (en) Covering sand at the bottom of the water
JP5994383B2 (en) Sediment modification and odor reduction method
JP3729160B2 (en) Environmental improvement method and environmental improvement materials for underwater or beach
JP2009150757A (en) Ca2+ ELUTION AMOUNT TEST METHOD OF SLUG, AND EVALUATION METHOD OF SLUG
JP6464904B2 (en) Method for predicting strength of modified soil and method for producing modified soil
JP6269721B2 (en) How to improve dredged soil
JP5742477B2 (en) How to backfill the Ogikubo land
WO2004108624A1 (en) Method for stabilization treatment of steel making slag, stabilized steel making slag, and material and method for environmental preservation of water area using said slag
JP6183621B2 (en) Manufacturing method for civil engineering materials
JP5627283B2 (en) Treatment method of seabed sediment
JP2009203664A (en) Infill for caisson, and caisson, and water area structure
JP2003286711A (en) Method for improving environment of bottom of water
JP6052144B2 (en) Civil engineering materials and methods for manufacturing the same
JP2004223514A (en) Method for improving environment of water bottom
KR100501926B1 (en) Method for stabilization and strength improvement of dredged soil using oyster shell
JP2004000104A (en) Method for improving underwater or environmental water shore

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3963711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term