JP5622426B2 - Production method of ion exchanger - Google Patents

Production method of ion exchanger Download PDF

Info

Publication number
JP5622426B2
JP5622426B2 JP2010094206A JP2010094206A JP5622426B2 JP 5622426 B2 JP5622426 B2 JP 5622426B2 JP 2010094206 A JP2010094206 A JP 2010094206A JP 2010094206 A JP2010094206 A JP 2010094206A JP 5622426 B2 JP5622426 B2 JP 5622426B2
Authority
JP
Japan
Prior art keywords
ion exchanger
liquid
acid
treated
metal ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010094206A
Other languages
Japanese (ja)
Other versions
JP2011224430A (en
Inventor
恒雄 大村
恒雄 大村
寛史 岡部
寛史 岡部
中村 秀樹
秀樹 中村
和夫 鵜木
和夫 鵜木
大崎 正彦
正彦 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010094206A priority Critical patent/JP5622426B2/en
Publication of JP2011224430A publication Critical patent/JP2011224430A/en
Application granted granted Critical
Publication of JP5622426B2 publication Critical patent/JP5622426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/02Processes using inorganic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/10Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)

Description

本発明は、原子力発電プラント、火力発電プラント又はその他一般産業において使用される液体を浄化するイオン交換体の製造方法に関する。 The present invention relates to a nuclear power plant, producing how the ion exchanger for purifying the liquid to be used in thermal power plants, or other general industries.

例えば、原子力発電プラントにおいて、一次冷却水が循環する配管などの部材から溶出した微量の金属イオンが炉心で放射化され、放射性核種を生成することが知られている。このために、イオン交換樹脂を用いて、一次冷却水に溶出した金属イオンを分離回収することが行われている。   For example, in a nuclear power plant, it is known that a small amount of metal ions eluted from a member such as a pipe through which primary cooling water circulates is activated in a reactor core to generate a radionuclide. For this reason, metal ions eluted in the primary cooling water are separated and recovered using an ion exchange resin.

しかし、イオン交換樹脂は、被処理水が高温になると交換基が外れ、金属イオンの回収性能が大幅に低下する性質を有している。このために、高温条件でイオン交換樹脂の使用が困難であるために、一次冷却水を冷却してから導入する必要がある。さらに、浄化後の一次冷却水を再加熱する必要もあるために、多量のエネルギーが消費される課題がある。このような課題に対し、無機物質であるニオブ酸カリウムをイオン交換体に用いて金属イオンの不純物を一次冷却水から分離回収する浄化技術が提案されている(例えば、特許文献1)。   However, the ion exchange resin has such a property that when the water to be treated becomes high temperature, the exchange group is removed, and the recovery performance of the metal ions is greatly reduced. For this reason, since it is difficult to use an ion exchange resin under a high temperature condition, it is necessary to introduce after cooling the primary cooling water. Furthermore, since it is necessary to reheat the primary cooling water after purification, there is a problem that a large amount of energy is consumed. In order to solve such a problem, there has been proposed a purification technique for separating and recovering metal ion impurities from the primary cooling water using potassium niobate, which is an inorganic substance, as an ion exchanger (for example, Patent Document 1).

特開2007−98371号公報JP 2007-98371 A

ところで、ニオブ酸カリウムをイオン交換体に用いる従来技術は、確かに一次冷却水を冷却することなく高温のまま不純物(コバルトイオン)を除去することができる。しかし、イオン交換体中のカリウムが金属イオンとして処理済液に排出され、新たな不純物が混入する課題が生じる。   By the way, the prior art using potassium niobate as an ion exchanger can remove impurities (cobalt ions) at a high temperature without cooling the primary cooling water. However, the potassium in an ion exchanger is discharged | emitted by the processed liquid as a metal ion, and the subject that a new impurity mixes arises.

本発明は、上述した事情を考慮してなされたもので、新たな不純物を混入させることなく温度調整することもなく高温の液体を浄化するイオン交換体の製造方法を提供することを目的とする。 The present invention has been made in consideration of the above circumstances, and aims to provide a manufacturing how the ion exchanger for purifying the hot liquid without also temperature control without mixing new impurities To do.

発明に係るイオン交換体の製造方法は、K4Nb617・nH2O(n≧0)及びKNbO3・mH2O(m≧0)の一般式で表される化合物のうち少なくとも一種を酸と共に加熱し、カリウムを水素に置換し、吸着される金属イオンを含む被処理液が導入される保持容器に充填することを特徴とする The method for producing an ion exchanger according to the present invention includes at least one of compounds represented by the general formulas of K 4 Nb 6 O 17 .nH 2 O (n ≧ 0) and KNbO 3 .mH 2 O (m ≧ 0). heating one together with acid to replace potassium of hydrogen, characterized that you fill in the holding vessel the liquid to be treated is introduced containing metal ions to be adsorbed.

本発明によれば、新たな不純物を混入させることなく温度調整することもなく高温の液体を浄化するイオン交換体の製造方法が提供される。 According to the present invention, prepared how the ion exchanger for purifying the hot liquid without also temperature control without mixing new impurities are provided.

本発明に係るイオン交換体を備える浄化装置の第1実施形態を示す模式図。The schematic diagram which shows 1st Embodiment of a purification apparatus provided with the ion exchanger which concerns on this invention. 本発明に係るイオン交換体を備える浄化装置の第2実施形態を示す模式図。The schematic diagram which shows 2nd Embodiment of a purification apparatus provided with the ion exchanger which concerns on this invention. 実施例としてイオン交換体の効果を確認するための装置の概略図。The schematic of the apparatus for confirming the effect of an ion exchanger as an Example. 実施例としてイオン交換体の効果を確認した結果を示す表。The table | surface which shows the result which confirmed the effect of the ion exchanger as an Example.

(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1の模式図に示される浄化装置1は、保持容器2にイオン交換体3が充填されている。そして、この浄化装置1の一端(図中左側)には、金属イオンの不純物が混入している被処理液Pをイオン交換体3に供給する供給ライン4が接続されている。また、浄化装置1の他端(図中右側)にはイオン交換体3により金属イオンが除去された処理済液Qを送出する送出ライン5が接続されている。
そして、高温高圧に調整された被処理液Pは、連続的に供給ライン4から保持容器2の内部に導入され、送出ライン5から処理済液Qが連続的に送出されることになる。
(First embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the purification device 1 shown in the schematic diagram of FIG. 1, a holding container 2 is filled with an ion exchanger 3. A supply line 4 is connected to one end (the left side in the figure) of the purification device 1 for supplying the liquid P to be treated, in which metal ion impurities are mixed, to the ion exchanger 3. The other end (right side in the figure) of the purification apparatus 1 is connected to a delivery line 5 for delivering the treated liquid Q from which metal ions have been removed by the ion exchanger 3.
And the to-be-processed liquid P adjusted to high temperature / high pressure is continuously introduce | transduced into the inside of the holding container 2 from the supply line 4, and the processed liquid Q is continuously sent out from the sending line 5. FIG.

イオン交換体3は、H4Nb617・nH2O(n≧0)及びHNbO3・mH2O(m≧0)の一般式で表される化合物のうち少なくとも一種を含んでいる。
つまり、保持容器2に充填されるイオン交換体3は、H4Nb617(六ニオブ酸)を他の化合物に任意の比率で混合させたものや、HNbO3(ニオブ酸)を他の化合物に任意の比率で混合させたものや、H4Nb617(六ニオブ酸)及びHNbO3(ニオブ酸)を任意の比率で混合させたものが採用される。
The ion exchanger 3 contains at least one of the compounds represented by the general formulas of H 4 Nb 6 O 17 .nH 2 O (n ≧ 0) and HNbO 3 .mH 2 O (m ≧ 0).
In other words, the ion exchanger 3 filled in the holding container 2 can be prepared by mixing H 4 Nb 6 O 17 (hexaniobic acid) with other compounds at an arbitrary ratio, or by mixing HNbO 3 (niobic acid) with other compounds. and those mixed in any ratio to the compound, which H 4 Nb 6 O 17 (six niobate) and HNbO 3 a (niobate) were mixed in any ratio is employed.

4Nb617(六ニオブ酸)の製造方法の実施形態について説明する。
10gの酸化ニオブと1Mの水酸化カリウム水溶液100mlとを混合した後、オートクレーブにて200℃で10時間保持する。その後冷却し、オートクレーブ内のスラリーに含まれる反応生成物をろ過し、110℃の電気炉に入れて乾燥させる。これにより、粉末の六ニオブ酸カリウム(K4Nb617)が得られる。
そして、得られた六ニオブ酸カリウム(K4Nb617)の粉末を1Mの塩酸に混ぜて常温で10時間反応させる。これにより生成した反応物を110℃の電気炉に入れて乾燥することにより粉末の六ニオブ酸(H4Nb617)が得られる。
An embodiment of a method for producing H 4 Nb 6 O 17 (hexaniobic acid) will be described.
After mixing 10 g of niobium oxide and 100 ml of 1M aqueous potassium hydroxide solution, the mixture is kept at 200 ° C. for 10 hours in an autoclave. Thereafter, the reaction product is cooled and the reaction product contained in the slurry in the autoclave is filtered, and then dried in an electric furnace at 110 ° C. Thereby, powder potassium hexaniobate (K 4 Nb 6 O 17 ) is obtained.
The obtained potassium hexaniobate (K 4 Nb 6 O 17 ) powder is mixed with 1 M hydrochloric acid and reacted at room temperature for 10 hours. The reaction product thus produced is placed in an electric furnace at 110 ° C. and dried to obtain powdered hexaniobic acid (H 4 Nb 6 O 17 ).

HNbO3(ニオブ酸)の製造方法の実施形態について説明する。
10gのK2NbO3Fと純水100mlとを混合した後、オートクレーブにて350℃で10時間保持する。その後冷却し、オートクレーブ内のスラリーに含まれる反応生成物をろ過し、110℃の電気炉に入れて乾燥すると粉末のニオブ酸カリウム(KNbO3)が得られる。
そして、得られたニオブ酸カリウム(KNbO3)の粉末を1Mの塩酸に混ぜて常温(25℃)で10時間反応させる。これにより生成した反応物を110℃の電気炉に入れて乾燥することにより粉末のニオブ酸(HNbO3)が得られる。
An embodiment of a method for producing HNbO 3 (niobic acid) will be described.
After mixing 10 g of K 2 NbO 3 F and 100 ml of pure water, the mixture is kept at 350 ° C. for 10 hours in an autoclave. After cooling, the reaction product contained in the slurry in the autoclave is filtered, put into an electric furnace at 110 ° C. and dried to obtain powdered potassium niobate (KNbO 3 ).
The obtained potassium niobate (KNbO 3 ) powder is mixed with 1M hydrochloric acid and reacted at room temperature (25 ° C.) for 10 hours. The reaction product thus produced is placed in an electric furnace at 110 ° C. and dried to obtain powdered niobic acid (HNbO 3 ).

なお、六ニオブ酸カリウム(K4Nb617)又はニオブ酸カリウム(KNbO3)のカリウムを水素に置換させて、それぞれ六ニオブ酸(H4Nb617)又はニオブ酸(HNbO3)を生成させる工程は、上述した塩酸以外の他の酸に代替させることも可能である。 さらに、そのような酸を混ぜる際に100℃程度に加熱すると常温で反応させるよりも速く、六ニオブ酸(H4Nb617)又はニオブ酸(HNbO3)を生成させることが可能である。 It should be noted that potassium hexaniobate (K 4 Nb 6 O 17 ) or potassium niobate (KNbO 3 ) is replaced with hydrogen, and hexaniobate (H 4 Nb 6 O 17 ) or niobate (HNbO 3 ), respectively. It is also possible to substitute the other acid other than the above-mentioned hydrochloric acid in the step of generating. Furthermore, when mixing such an acid, it is possible to produce hexaniobic acid (H 4 Nb 6 O 17 ) or niobic acid (HNbO 3 ) faster than reacting at room temperature when heated to about 100 ° C. .

イオン交換体3を直径1mm〜5mmの擬球状に成形することについて説明する。
上述した製造方法により得られた六ニオブ酸(H4Nb617)又はニオブ酸(HNbO3)の粉末体を、所定の形状にくりぬいたゴム型に充填し静水圧を加えて所望のサイズの擬球状の圧粉体に成形する。
The process of forming the ion exchanger 3 into a pseudosphere having a diameter of 1 mm to 5 mm will be described.
A powder body of hexaniobic acid (H 4 Nb 6 O 17 ) or niobic acid (HNbO 3 ) obtained by the above-described production method is filled in a rubber mold hollowed into a predetermined shape, and hydrostatic pressure is applied to obtain a desired size. To form a pseudo-spherical green compact.

このような圧粉体の成形法を冷間静水圧加圧成形法(CIP)といい、粉末体の充填されたゴム型が全方向から均等に水圧を受けることにより、均質な圧粉体を得ることができる。また成形される擬球状のサイズは、充填する粉末体の量を加減することにより調整する。
なお、粉末体を擬球状に成形する方法としては、上述した冷間静水圧加圧成形法(CIP)以外に、例えばホットプレス法(HP)や熱間静水圧成形法(HIP)を採用することができる。
Such a green compact molding method is called cold isostatic pressing (CIP). A rubber mold filled with a powder body receives water pressure uniformly from all directions, so that a homogeneous green compact can be obtained. Can be obtained. The size of the pseudo sphere to be molded is adjusted by adjusting the amount of the powder body to be filled.
In addition to the cold isostatic pressing method (CIP) described above, for example, a hot press method (HP) or a hot isostatic pressing method (HIP) is employed as a method for forming the powder body into a pseudospherical shape. be able to.

(第2実施形態)
図2の模式図は、第2実施形態の浄化装置1を示している。なお、図2において図1と同一又は相当する部分は、同一符号で示し、すでにした記載を援用して、詳細な説明を省略する。
(Second Embodiment)
The schematic diagram of FIG. 2 has shown the purification apparatus 1 of 2nd Embodiment. 2 that are the same as or correspond to those in FIG. 1 are denoted by the same reference numerals, and the detailed description is omitted by using the above description.

この浄化装置1は、保持容器2の内側面に一対の電極12a,12b(電界付与手段)を設け、さらにその内側に設けられる隔膜11a,11bで区画される領域13にイオン交換体3を充填して構成される(図面では、六ニオブ酸3aとニオブ酸3bの混合物が例示されている)。これにより、被処理液Pの流動方向とは垂直方向に電界が付与されることになる。さらに、隔膜11aと電極12aに区画される領域14aは、下流側において排出ライン7aに接続し、隔膜11bと電極12bに区画される領域14bは、下流側において排出ライン7bに接続している。   This purification device 1 is provided with a pair of electrodes 12a and 12b (electric field applying means) on the inner side surface of the holding container 2, and further, the ion exchanger 3 is filled in a region 13 defined by the diaphragms 11a and 11b provided on the inner side. (In the drawing, a mixture of hexaniobic acid 3a and niobic acid 3b is illustrated). As a result, an electric field is applied in a direction perpendicular to the flow direction of the liquid P to be treated. Further, the region 14a partitioned by the diaphragm 11a and the electrode 12a is connected to the discharge line 7a on the downstream side, and the region 14b partitioned by the diaphragm 11b and the electrode 12b is connected to the discharge line 7b on the downstream side.

ここで、被処理液Pに不純物として含まれる金属イオンは、イオン交換体3に吸着した後に、それぞれの極性に従って電極12a又は電極12bの方向に移動する。そして、不純物の金属イオンは、隔膜11a又は隔膜11bを通過して、領域14a又は領域14bに取り込まれ、排出ライン7a又は排出ライン7bから不純物濃縮液R,Sとして排出されることになる。
これにより、イオン交換体3に吸着した不純物を離脱させてイオン交換体3の性能を再生させることができる。
Here, the metal ions contained as impurities in the liquid P to be processed move to the electrode 12a or the electrode 12b in accordance with their polarities after being adsorbed on the ion exchanger 3. The impurity metal ions pass through the diaphragm 11a or the diaphragm 11b, are taken into the region 14a or the region 14b, and are discharged as the impurity concentrates R and S from the discharge line 7a or the discharge line 7b.
As a result, the impurities adsorbed on the ion exchanger 3 can be released to regenerate the performance of the ion exchanger 3.

図3は、実施例としてイオン交換体の効果を確認するための装置の概略図を示し、図4はその効果の確認結果を示す表を示している。
この装置は、被処理液P及びイオン交換体3を保持するバッチ容器8と、これらを加熱するヒータ6と、から構成されている。なお、このバッチ容器8は、350℃以上に設定された被処理液Pを液体で保持するのに充分な密閉強度を備えている。
FIG. 3 shows a schematic view of an apparatus for confirming the effect of the ion exchanger as an example, and FIG. 4 shows a table showing the result of confirming the effect.
This apparatus includes a batch container 8 that holds the liquid P to be processed and the ion exchanger 3, and a heater 6 that heats them. The batch container 8 has sufficient sealing strength to hold the liquid P to be processed set at 350 ° C. or higher.

(実施例1)
イオン交換体3を0.1gのニオブ酸(HNbO3)として、被処理液Pを0.1M水酸化ナトリウム溶液2.2mlとする。そして、これらを6mlの内容量のバッチ容器8に封入し、ヒータ6を280℃に設定し1時間かけて反応させた。
その結果、図4の上段に示すように、被処理液Pに不純物として含まれるナトリウムのうち74%が除去された。
Example 1
The ion exchanger 3 is 0.1 g of niobic acid (HNbO 3 ), and the liquid P is 2.2 ml of a 0.1 M sodium hydroxide solution. And these were enclosed in the batch container 8 of the internal capacity | capacitance of 6 ml, the heater 6 was set to 280 degreeC, and it was made to react over 1 hour.
As a result, as shown in the upper part of FIG. 4, 74% of the sodium contained as impurities in the liquid P to be treated was removed.

(実施例2)
イオン交換体3を0.1gの六ニオブ酸(H4Nb617)として、被処理液Pを0.1M硫酸コバルト溶液2.2mlとする。そして、これらを6mlの内容量のバッチ容器8に封入し、ヒータ6を280℃に設定し1時間かけて反応させた。
その結果、図4の下段に示すように、被処理液Pに不純物として含まれるコバルトのうち56%が除去された。
(Example 2)
The ion exchanger 3 is 0.1 g of hexaniobic acid (H 4 Nb 6 O 17 ), and the liquid P is 2.2 ml of a 0.1 M cobalt sulfate solution. And these were enclosed in the batch container 8 of the internal capacity | capacitance of 6 ml, the heater 6 was set to 280 degreeC, and it was made to react over 1 hour.
As a result, as shown in the lower part of FIG. 4, 56% of cobalt contained as impurities in the liquid P to be processed was removed.

この実施例における温度設定後の保持時間は、図1又は図2における被処理液Pが供給されてから処理済液Qとして送出されるまでのイオン交換体3における滞留時間に相当する。つまり、図1又は図2の浄化装置1において所望の除去率を達成させるためには、その除去率が得られるバッチ容器8の封入時間に相当する滞留時間となるように、供給する被処理液Pの流速を調整すればよいことになる。
なお、設定温度については、上限が350℃まで、有意な効果が認められた。
The holding time after temperature setting in this embodiment corresponds to the residence time in the ion exchanger 3 from when the liquid to be processed P in FIG. 1 or FIG. That is, in order to achieve a desired removal rate in the purification apparatus 1 of FIG. 1 or FIG. 2, the liquid to be treated that is supplied so as to have a residence time corresponding to the sealing time of the batch container 8 at which the removal rate is obtained. It is sufficient to adjust the flow rate of P.
In addition, about the preset temperature, the significant effect was recognized to the upper limit to 350 degreeC.

本発明は上述した実施形態に限定されるものでなく、共通する技術思想の範囲内において、適宜変形して実施することができる。
例えば、被処理液は、水溶液に限定されるものではなく、エタノール等の有機溶媒が含まれても良く、有機溶媒自体を対象にしても良い。また、被処理液に含まれる不純物は、Na,Co等の金属イオンを例示したが、その他の元素の金属イオンにも有効であり、また除去対象となる不純物は金属イオンに限定されることもない。
さらに、被処理液の対象として原子力発電プラントで使用される一次冷却水を例示して発明の詳細な説明を行ったが、これに限定されず一般産業において使用される液体を浄化する手段として本発明を適用することが可能である。
The present invention is not limited to the above-described embodiments, and can be implemented with appropriate modifications within the scope of the common technical idea.
For example, the liquid to be treated is not limited to an aqueous solution, and may include an organic solvent such as ethanol, or the organic solvent itself. Further, the impurities contained in the liquid to be treated are exemplified by metal ions such as Na and Co. However, they are also effective for metal ions of other elements, and impurities to be removed may be limited to metal ions. Absent.
Further, the present invention has been described in detail by exemplifying primary cooling water used in a nuclear power plant as an object of the liquid to be treated. However, the present invention is not limited to this and is used as a means for purifying liquid used in general industries. The invention can be applied.

1…浄化装置、2…保持容器、3…イオン交換体、4…供給ライン、5…送出ライン、6…ヒータ、7a,7b…排出ライン、8…バッチ容器、11a,11b…隔膜、12a,12b…電極(電界付与手段)、P…被処理液、Q…処理済液、R…不純物濃縮液、S…不純物濃縮液。   DESCRIPTION OF SYMBOLS 1 ... Purification apparatus, 2 ... Holding container, 3 ... Ion exchanger, 4 ... Supply line, 5 ... Delivery line, 6 ... Heater, 7a, 7b ... Discharge line, 8 ... Batch container, 11a, 11b ... Separator, 12a, 12b ... Electrode (electric field applying means), P ... Liquid to be treated, Q ... Liquid treated, R ... Impurity concentrate, S ... Impurity concentrate.

Claims (1)

4Nb617・nH2O(n≧0)及びKNbO3・mH2O(m≧0)の一般式で表される化合物のうち少なくとも一種を酸と共に加熱し、カリウムを水素に置換し、吸着される金属イオンを含む被処理液が導入される保持容器に充填することを特徴とするイオン交換体の製造方法。 At least one of the compounds represented by the general formulas of K 4 Nb 6 O 17 .nH 2 O (n ≧ 0) and KNbO 3 .mH 2 O (m ≧ 0) is heated with an acid, and potassium is replaced with hydrogen. and, the manufacturing method of the ion exchanger, characterized that you fill in the holding container which the treatment liquid containing metal ions to be adsorbed is introduced.
JP2010094206A 2010-04-15 2010-04-15 Production method of ion exchanger Active JP5622426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094206A JP5622426B2 (en) 2010-04-15 2010-04-15 Production method of ion exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094206A JP5622426B2 (en) 2010-04-15 2010-04-15 Production method of ion exchanger

Publications (2)

Publication Number Publication Date
JP2011224430A JP2011224430A (en) 2011-11-10
JP5622426B2 true JP5622426B2 (en) 2014-11-12

Family

ID=45040492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094206A Active JP5622426B2 (en) 2010-04-15 2010-04-15 Production method of ion exchanger

Country Status (1)

Country Link
JP (1) JP5622426B2 (en)

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1057947A (en) * 1974-12-06 1979-07-10 Robert G. Dosch Process for solidifying nuclear materials
JPS5969151A (en) * 1982-10-13 1984-04-19 Unitika Ltd Spherical ion exchange resin and its production and adsorptive treatment
JPS59180397A (en) * 1983-03-31 1984-10-13 株式会社東芝 High temperature filter element for light water reactor
JPS61116699A (en) * 1984-11-12 1986-06-04 日揮株式会社 Method and device for regenerating ion exchange resin
JPS61247998A (en) * 1985-04-26 1986-11-05 旭化成株式会社 Method of electrically regenerating ion exchange resin
JPS61247999A (en) * 1985-04-26 1986-11-05 旭化成株式会社 Improved ion exchange resin regeneration method
GB2188919B (en) * 1986-04-11 1990-10-03 Lithium Corp Purification of brines
JPS63171399A (en) * 1987-01-09 1988-07-15 株式会社神戸製鋼所 Processing method of radioactive waste
JP2892811B2 (en) * 1990-10-15 1999-05-17 株式会社東芝 Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JPH04317418A (en) * 1991-04-18 1992-11-09 Toshiba Corp Production of proton-conductive solid electrolyte
JPH06228219A (en) * 1992-12-10 1994-08-16 Mitsubishi Kasei Corp Production of spherical ion-exchange resin
JPH08192149A (en) * 1995-01-17 1996-07-30 Riken Corp Removal of nitrate ions using photolytic catalyst
JPH09230093A (en) * 1996-02-27 1997-09-05 Japan Organo Co Ltd Operating method of filtration/demineralization device in boiling water type nuclear power plant
JPH10192697A (en) * 1997-01-09 1998-07-28 Toagosei Co Ltd Adsorbent for cobalt or manganese ions
JPH10216533A (en) * 1997-02-12 1998-08-18 Daiichi Kigenso Kagaku Kogyo Kk Resin curing inorganic ion exchanger and its production
JP2004532725A (en) * 2001-05-31 2004-10-28 オーストラリアン ニュークリア サイエンス アンド テクノロジー オーガニゼーション Inorganic ion exchanger for removing contaminant metal ions from liquid streams
JP3845720B2 (en) * 2001-10-22 2006-11-15 独立行政法人産業技術総合研究所 Potassium niobate photocatalyst and method for producing the same
JP3927414B2 (en) * 2002-01-15 2007-06-06 独立行政法人科学技術振興機構 Adsorbent composed of layered niobium oxide and ammonium hydrocarbon
JP4210760B2 (en) * 2004-03-10 2009-01-21 独立行政法人産業技術総合研究所 Potassium niobate microcrystals, method for producing the same, and applied products thereof
JP4617476B2 (en) * 2004-08-06 2011-01-26 独立行政法人産業技術総合研究所 Method for removing potassium ions
JP4418884B2 (en) * 2005-10-07 2010-02-24 独立行政法人産業技術総合研究所 Cobalt ion adsorbent
JP4899189B2 (en) * 2007-10-10 2012-03-21 独立行政法人産業技術総合研究所 Cobalt adsorbent and method for producing the same
JP2009233556A (en) * 2008-03-26 2009-10-15 Panasonic Electric Works Co Ltd Method of recycling ion exchange resin

Also Published As

Publication number Publication date
JP2011224430A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
KR101652965B1 (en) Manufacturing method of graphene oxide using ultrasonication and apparatus for the same
KR102177039B1 (en) Manufacturing method of lithium compound
KR101888181B1 (en) Method for manufacturing lithium hydroxide and lithium carbonate
JP7101995B2 (en) Lithium recovery method
JP2013507953A (en) Economic process for the production of xylose from saccharified liquid using electrodialysis and direct recovery methods
CN114477245A (en) Method for preparing lithium carbonate of battery by continuously carbonizing industrial-grade lithium carbonate
CN115243790A (en) Ion exchange system and method for conversion of aqueous lithium solutions
KR20190036751A (en) Method of preparing lithium compound
JP5622426B2 (en) Production method of ion exchanger
CN111362244A (en) Preparation method of optical-grade barium metaphosphate
CN111235591B (en) Method for preparing lithium hydroxide monohydrate from spodumene sulfuric acid leaching solution
CN113453788A (en) Lithium recovery method
CN109055752A (en) A kind of method that calciothermic reduction low price barium oxide prepares vanadium metal
WO2007004516A1 (en) Hydrofluoric acid production apparatus and hydrofluoric acid production method
JP2012532762A (en) Suspension adjustment method
CN109438283A (en) A kind of synthetic method and device of β-aminopropionitrile
JP6783289B2 (en) Manufacturing method of synthetic quartz powder
CN115196635B (en) Method and device for removing carbon-containing impurities and polysilicon production system
CN106467341A (en) Sym-closene production wastewater treatment system and method
CN103086905B (en) A kind of preparation method of DL-phenylglycine
CN111683902A (en) Method for preparing precursor of positive electrode active material for secondary battery and preparation apparatus using the same
CN104291281B (en) A kind of method preparing super-clean high-purity nitric acid
CN107352679A (en) A kind of doctor solution salt extraction technique and its device
KR20110102072A (en) Method for producing potassium phosphate from mixed waste acid occupied in preparing process of liquid crystal display
CN207512005U (en) The processing system of ball-shape nickel hydroxide production process waste water

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20111220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5622426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151