JPS5969151A - Spherical ion exchange resin and its production and adsorptive treatment - Google Patents

Spherical ion exchange resin and its production and adsorptive treatment

Info

Publication number
JPS5969151A
JPS5969151A JP57180469A JP18046982A JPS5969151A JP S5969151 A JPS5969151 A JP S5969151A JP 57180469 A JP57180469 A JP 57180469A JP 18046982 A JP18046982 A JP 18046982A JP S5969151 A JPS5969151 A JP S5969151A
Authority
JP
Japan
Prior art keywords
ion exchange
resin
exchange resin
metal hydroxide
spherical ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57180469A
Other languages
Japanese (ja)
Other versions
JPH0356783B2 (en
Inventor
Yoshiaki Echigo
良彰 越後
Yoshiyuki Suematsu
末松 義之
Tadashi Ishikura
石倉 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP57180469A priority Critical patent/JPS5969151A/en
Priority to EP83306108A priority patent/EP0111999B1/en
Priority to DE8383306108T priority patent/DE3380554D1/en
Priority to CA000438687A priority patent/CA1212368A/en
Priority to US06/541,646 priority patent/US4576969A/en
Publication of JPS5969151A publication Critical patent/JPS5969151A/en
Publication of JPH0356783B2 publication Critical patent/JPH0356783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/17Organic material containing also inorganic materials, e.g. inert material coated with an ion-exchange resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/18Macromolecular compounds
    • B01J39/19Macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/018Granulation; Incorporation of ion-exchangers in a matrix; Mixing with inert materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Abstract

PURPOSE:To produce inexpensively a spherical ion exchange resin which is fast in the rate of adsorption and stable, by subjecting phenols and aldehydes to condensation polymn. under addition of salts or oxide of metals in the presence of an acid catalyst then treating the same with an alkali agent. CONSTITUTION:Phenols such as phenol or the like and aldehydes such as formaldehydes are subjected to condensation polymn. in the presence of an acid catalyst such as hydrochloric acid and while the reacting liquid maintains fluidity, salts or oxides of metals such as titanium are added thereto and further the reacting liquid obtd. by dispersing the same in a medium such as carbon tetrachloride or the like is stirred to form a suspended state, whereby the condensation polymn. reaction is completed. The resulted resin is subjected to an immersion treatment with an aq. soln. of an alkali agent after filtering and air drying, whereby the spherical ion exchange resin wherein the metallic hydroxide is coated and linked with the phenolic resin and which maintains the initial excellent adsorptive separating power without causing any deterioration with repeated use is obtd.

Description

【発明の詳細な説明】 本発明は1球状イオン交換樹脂とその製造法及び吸着処
理法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a spherical ion exchange resin, its manufacturing method, and adsorption treatment method.

従来、溶液からイオンを分離する方法としては。Conventionally, the method for separating ions from a solution is

カチオン又はアニオン交換樹脂を使用する方法が広く用
いられ、特に金属イオンに対しては一般にカチオン交換
樹脂が用いられている。しかし、カチオン交換樹脂は一
般にすべてのカチオンと交換するので、多種類のカチオ
ンが含まれる溶液から特定の金属イオンのみを分離する
には適しない。
Methods using cation or anion exchange resins are widely used, particularly for metal ions, cation exchange resins are generally used. However, since cation exchange resins generally exchange all cations, they are not suitable for separating only specific metal ions from a solution containing many types of cations.

また、アニオン交換樹脂が、ある種の金属イオンに対し
て吸着現象を呈することは知られているが。
Furthermore, it is known that anion exchange resins exhibit an adsorption phenomenon for certain metal ions.

従来のアニオン交換樹脂は金属イオンの吸着性が小さく
、これを用いて金属イオンの分離を工業的に行なうこと
は困難である。
Conventional anion exchange resins have low adsorption properties for metal ions, and it is difficult to use them to perform industrial separation of metal ions.

一方、これらの中でも鉄やチタン等多価金属の水酸化物
は、特定のイオンを交換する能力が有り。
On the other hand, among these, hydroxides of polyvalent metals such as iron and titanium have the ability to exchange specific ions.

この性質を利用して従来より安価なイオン交換体物は1
通常は、粉末状であるため、カラム操作が不可能であり
、工業的に用いるには問題があった。
Taking advantage of this property, ion exchange materials that are cheaper than conventional ones are 1
Since it is usually in powder form, it is impossible to operate it in a column, which poses a problem for industrial use.

このため、この粉末を粒状又は球状に成型する方法も種
々提案されており1例えば、ポリビニルアルコールやポ
リアクリルアミドと、金属水酸化物とを混合して成型す
る方法が提案されているが、これらの成型物では1強度
が弱く、<す返しの使用に耐えないことや親水性が悪く
、吸着速度が遅い等の欠点があり、商品化はなされてい
ないのが実状である。
For this reason, various methods have been proposed for molding this powder into granular or spherical shapes.1 For example, a method has been proposed in which polyvinyl alcohol, polyacrylamide, and metal hydroxide are mixed and molded. Molded products have disadvantages such as low strength, inability to withstand repeated use, poor hydrophilicity, and slow adsorption speed, and the reality is that they have not been commercialized.

従って当業界では、特に水中に微量に存在する特定イオ
ンのみを効率よく分離し、又は除去することができる安
価なイオン交換樹脂の出現が望まれている。
Therefore, there is a desire in the art for an inexpensive ion exchange resin that can efficiently separate or remove specific ions that exist in trace amounts in water.

そこで本発明者らは、これらの実状に鑑み、鋭意研究し
た結果、金属水酸化物をフェノール樹脂で被い且つ連結
してなる球状イオン交換樹脂が。
In view of these circumstances, the inventors of the present invention have conducted extensive research and have developed a spherical ion exchange resin in which a metal hydroxide is covered with a phenol resin and connected to the metal hydroxide.

微量に存在する特定イオンのみを効率よく分離し、又は
除去することができ、しかも吸着速度が速く、金属水酸
化物が離脱することなく、くり返しの使用に耐えうるも
のであることを見い出し、本発明を完成した。
We discovered that it is possible to efficiently separate or remove specific ions that exist in trace amounts, that the adsorption rate is fast, that metal hydroxides do not separate, and that it can withstand repeated use. Completed the invention.

すなわち、本発明は、フェノール樹脂と金属水酸化物と
からなり、該金属水酸化物をフェノール樹脂で被い且つ
連結してなる球状イオン交換樹脂及びフェノール類とア
ルデヒド類とを酸触媒下で重縮合させ1反応液が流動性
を保持している間に金属の塩化物又は酸化物を添加して
媒体中に分散させ、分散させtこ反応液を懸濁状態で重
縮合反応を完結させた後、アルカリ剤で処理することを
特徴とするフェノール樹脂と金属水酸化物とからなり、
該金属水酸化物をフェノール樹脂で被い且つ連結してな
る球状イオン交換樹脂の製造法並びにかかるイオン交換
樹脂を用いて溶液中のイオンを選択的に吸着させること
を特徴とする吸着処理法である。
That is, the present invention provides a spherical ion exchange resin consisting of a phenol resin and a metal hydroxide, the metal hydroxide being covered and connected with a phenol resin, and a spherical ion exchange resin made of a phenol resin and an aldehyde, which are polymerized under an acid catalyst. The polycondensation reaction was completed while the reaction solution was in a suspended state by adding a metal chloride or oxide and dispersing it in the medium. It consists of a phenolic resin and a metal hydroxide, which is then treated with an alkali agent.
A method for producing a spherical ion exchange resin by covering and connecting the metal hydroxide with a phenol resin, and an adsorption treatment method characterized by selectively adsorbing ions in a solution using the ion exchange resin. be.

本発明の球状イオン交換樹脂は、金属水酸化物をフェノ
ール樹脂で被い且つ連結しているため。
This is because the spherical ion exchange resin of the present invention covers and connects metal hydroxide with phenol resin.

従来の混合して成型したものと比べて金属水酸化物の離
脱が極めて起り難くなっている。
Compared to the conventional mixture and molding method, separation of metal hydroxides is extremely difficult to occur.

本発明の球状イオン交換樹脂を製造するには。To produce the spherical ion exchange resin of the present invention.

例えば、次のような方法を採用することができる。For example, the following method can be adopted.

すなわち、まずフェノール樹脂を得ることが必要である
。そのためには1例えば、フェノール類とアルデヒド類
とを酸触媒下で重縮合すればよし)。
That is, it is first necessary to obtain a phenolic resin. For this purpose, for example, phenols and aldehydes may be polycondensed under an acid catalyst).

そのフェノール類としては、フェノール性水酸基を含有
する化合物であれば、いかなる化合物を用いてもよいが
1例えば、フェノール、クレゾール。
As the phenol, any compound containing a phenolic hydroxyl group may be used, such as phenol and cresol.

キシレノール、レゾルシノール、カテコール、α−ナフ
トール7ビスフエノールA、p−ヒドロキシフェニルア
ラニン、チロシン、チロシン−N、N−ビス(メチレン
ホスホン酸)、サリチルアミン。
Xylenol, resorcinol, catechol, α-naphthol 7-bisphenol A, p-hydroxyphenylalanine, tyrosine, tyrosine-N, N-bis(methylenephosphonic acid), salicylamine.

オキシン、2−メチルオキシン等のフェノール性水酸基
をもつ化合物があげられ、これらを単独あるいは混合し
て用いることが出来る。アルデヒド類としては、例えば
、ホルムアルデヒド、ノ文うホルムアルデヒド、ヘキサ
メチレンテトラミンなどのアルデヒド誘導体、アセトア
ルデヒド、プロl/オンアルデヒドなどの脂肪族アルデ
ヒド、ベンズアルデヒドに代表される芳香族アルデヒド
、フルフラールなどの異部環アルデヒドなどがあげられ
これらを単独あるいは混合して使用してもよ0゜又、フ
ェノール類とアルデヒド類との反応の酸触媒として、例
えば、塩酸、硫酸などの鉱酸、ギ酸。
Examples include compounds having a phenolic hydroxyl group such as oxine and 2-methyloxine, and these can be used alone or in combination. Examples of aldehydes include formaldehyde, formaldehyde, aldehyde derivatives such as hexamethylenetetramine, aliphatic aldehydes such as acetaldehyde and pro-l/on aldehyde, aromatic aldehydes such as benzaldehyde, and heterocyclic aldehydes such as furfural. Examples include aldehydes, and these may be used alone or in combination.Also, examples of acid catalysts for the reaction between phenols and aldehydes include mineral acids such as hydrochloric acid and sulfuric acid, and formic acid.

蓚酸などの有機酸、ベンゼンスルホン酸等のプロトン酸
が挙げられ、これらを単独あるいは混合して用いること
が出来る。又、酸性触媒下でアルデヒド類とフェノール
類とを反応させる条件としては、アルデヒド類とフェノ
ール類とのモル比を1.0〜8.0.温度を20℃〜7
0℃が好まし0゜次に、反応液が流動性を保持している
間に金属の塩化物又は酸化物を添加する。その金属の塩
化物又は酸化物としては、金属水酸化物が少くともpH
6〜8の間で水難溶性の水酸化物を形成するものであれ
ば、いかなるものを用いてもよい。その具体例として1
例えば、チタン、鉄、アルミニウム、ジルコニウム、ス
ズ、銀、亜鉛、水銀、ビスマス、銅、アンチモン、タン
グステン、モリブデン等があげられ、これらを単独ある
いは混合して用いることができる。また、金属の塩化物
又は酸化物の添加量を全フェノール類に対して0.5〜
200wt%、%j+c10〜100wt%が好ましい
Examples include organic acids such as oxalic acid and protonic acids such as benzenesulfonic acid, and these can be used alone or in combination. Further, as conditions for reacting aldehydes and phenols under an acidic catalyst, the molar ratio of aldehydes and phenols is 1.0 to 8.0. Temperature 20℃~7
The temperature is preferably 0°C. Next, the metal chloride or oxide is added while the reaction solution maintains its fluidity. As the metal chloride or oxide, the metal hydroxide has a pH of at least
Any material may be used as long as it forms a poorly water-soluble hydroxide between 6 and 8. As a specific example, 1
Examples include titanium, iron, aluminum, zirconium, tin, silver, zinc, mercury, bismuth, copper, antimony, tungsten, molybdenum, and the like, and these can be used alone or in combination. In addition, the amount of metal chlorides or oxides added should be 0.5 to 0.5 to
200wt%, %j+c10-100wt% is preferable.

次に本発明では、上記で得た反応液を懸濁状態でM縮合
反応を完結させる。この懸濁重縮合の際に用いられる媒
体としては、水と共沸混合物を作ることができ、かつ重
縮合反応に対して不活性であればいかなる媒体でも差支
えないが、工業的操作の点から不fまたは難燃性で水と
の互溶性が少なく、比重が大きく、かつ廉価であること
が望ましい。それにはハロゲン化炭化水素1例えば、四
塩化炭素、クロロホルム、二塩化メタン、トリクロロエ
チレン、1.2−ジクロロエタン、1−クロロペンタン
、クロロベンゼン等が望才しい。また、ハロケン化炭化
水素の他にハロゲン化エーテル。
Next, in the present invention, the M condensation reaction is completed while the reaction solution obtained above is in a suspended state. The medium used in this suspension polycondensation may be any medium as long as it can form an azeotrope with water and is inert to the polycondensation reaction, but from the point of view of industrial operations. It is desirable that the material be flame retardant, have low compatibility with water, have a high specific gravity, and be inexpensive. For this purpose, halogenated hydrocarbons such as carbon tetrachloride, chloroform, methane dichloride, trichloroethylene, 1,2-dichloroethane, 1-chloropentane, chlorobenzene, etc. are preferable. In addition to halogenated hydrocarbons, halogenated ethers.

飽和又は不飽和炭化水素なども使用出来る。また、懸濁
重縮合時の温度としては、70℃〜150 ℃、特ニ9
0℃〜180℃が好ましく1反応時間としては1時間〜
10時間程度が好ましく、常圧、減圧、加圧いずれにお
いても実施出来る。さらに懸濁重縮合の際、D濁系を安
定させる助剤として1分散安定剤を用いてもよい。
Saturated or unsaturated hydrocarbons can also be used. In addition, the temperature during suspension polycondensation is 70°C to 150°C,
0°C to 180°C is preferable, and one reaction time is 1 hour to
It is preferably about 10 hours, and can be carried out under normal pressure, reduced pressure, or increased pressure. Further, during suspension polycondensation, a dispersion stabilizer may be used as an auxiliary agent to stabilize the D-turbid system.

このようにして懸濁重縮合が終了した後、@脂を単離し
、アルカリ剤で処理する。そのアルカリ剤としては、例
えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウ
ム、アンモニア水、炭酸アンモニウム等が用いられる。
After the suspension polycondensation is completed in this way, the fat is isolated and treated with an alkaline agent. As the alkaline agent, for example, sodium hydroxide, potassium hydroxide, sodium carbonate, aqueous ammonia, ammonium carbonate, etc. are used.

又、処理条件としては、処理後の液のpHが4〜10程
度になるようにアルカリ濃度を調整することが望ましく
、又処理温度としては、室温〜80℃が好ましい。
As for the treatment conditions, it is desirable to adjust the alkali concentration so that the pH of the solution after treatment is about 4 to 10, and the treatment temperature is preferably room temperature to 80°C.

本発明によれば、金属水酸化物をフェノール樹脂で被い
且つ連結してなる球状イオン交換樹脂を容易にかつ安価
に製造することが出来、又、本発明によって得られたイ
オン交換樹脂は、樹脂内部に歪や亀裂が生じ歎<、シた
がって樹脂の膨潤。
According to the present invention, it is possible to easily and inexpensively produce a spherical ion exchange resin in which a metal hydroxide is covered with a phenol resin and connected to each other, and the ion exchange resin obtained by the present invention is Distortion and cracks occur inside the resin, which causes the resin to swell.

収縮による崩壊がなく、1lii1摩耗性もすぐれてい
るので繰り返し使用に充分耐える特徴を有している。
It does not collapse due to shrinkage and has excellent abrasion resistance, so it has the characteristics of being able to withstand repeated use.

本発明で得られた球状イオン交換樹脂は5通常のイオン
交換樹脂やキレート梅脂と同様に取り扱うことが出来、
カラム法又はバッチ法で液中の特定のイオンの吸着1分
離を行うことがu1米る。
The spherical ion exchange resin obtained in the present invention can be handled in the same way as ordinary ion exchange resins and chelated plum fat.
It is possible to adsorb and separate specific ions in a liquid using a column method or a batch method.

この場合のイオン含有溶液の温度として、5℃〜95℃
の間が適当で%15℃〜50℃の間が好ましく。
In this case, the temperature of the ion-containing solution is 5°C to 95°C.
The temperature is preferably between 15°C and 50°C.

又イオン含有溶液を樹脂に接触させる時間として、1分
〜50時間の間が適当で、10分〜2時間の間が好まし
い。次に本発明のイオン交換樹脂からイオンを回収する
には、一般市販のキレート樹脂やイオン交換樹脂と同じ
ように、鉱酸水溶液またはアルカリ性水溶液と接触させ
ることにより容易に行われる。この場合の再生剤含有液
の温度として、5℃〜95℃の間が適当で、15℃〜5
0℃の間が好ましく、又再生剤含有液を本発明のイオン
交換樹脂に接触させる時間として、1分〜50時間の間
が適当で、10分〜2時間の間が好ましい。この方法に
より再生された樹脂は、何回もくり返し使用可能である
The time period for which the ion-containing solution is brought into contact with the resin is suitably between 1 minute and 50 hours, preferably between 10 minutes and 2 hours. Next, ions can be easily recovered from the ion exchange resin of the present invention by bringing it into contact with a mineral acid aqueous solution or an alkaline aqueous solution, in the same way as with commercially available chelate resins and ion exchange resins. In this case, the appropriate temperature of the regenerant-containing liquid is between 5°C and 95°C, and between 15°C and 5°C.
The temperature is preferably between 0°C, and the time for contacting the regenerant-containing liquid with the ion exchange resin of the present invention is suitably between 1 minute and 50 hours, preferably between 10 minutes and 2 hours. The resin regenerated by this method can be used repeatedly.

本発明に適用できるイオンとしては、カチオン。Ions applicable to the present invention include cations.

アニオンいずれも可能であり、例えば、アニオンとして
は、フッ素イオン、亜ヒ酸イオン、ヒ酸イオン、リン酸
イオン等があげられ、また、カチオンとして例えば、ウ
ラニルイオン、リチウムイオン、ラジウムイオン等が挙
げられる。これらのイオンに対する選択性は、金属水酸
化物の種類により異ってくるので、吸着されるイオンの
種類に応じて、金属水酸化物の種類を適宜使いわけるこ
とが望まれる。金属水酸化物のイオン交換の選択性につ
いては1分析化学28巻1254頁〜1285頁Cl9
74年】に詳しく記載されており、これらのデータを参
考にすることが出来る。
Any anion is possible. Examples of anions include fluorine ions, arsenite ions, arsenate ions, phosphate ions, etc., and examples of cations include uranyl ions, lithium ions, radium ions, etc. It will be done. Since the selectivity for these ions varies depending on the type of metal hydroxide, it is desirable to use the type of metal hydroxide as appropriate depending on the type of ion to be adsorbed. Regarding the selectivity of ion exchange of metal hydroxides, see 1 Analytical Chemistry, Vol. 28, pp. 1254-1285, Cl9.
1974], and these data can be used as a reference.

本発明のイオン交換樹脂は、水中に微量に存在するイオ
ンを効率良く、回収することが出来るので、あらゆる、
イオン含有水溶液に対して適用可能であり、例えば、海
水からの有価物の回収、非鉄製練工場や原子力発電所の
各種廃液の浄化などに用いることが出来る。
The ion exchange resin of the present invention can efficiently recover ions that exist in trace amounts in water, so it can
It is applicable to ion-containing aqueous solutions, and can be used, for example, to recover valuables from seawater, purify various waste liquids from non-ferrous smelting factories and nuclear power plants, etc.

次に本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

なお、実施例中の部及び%は1重量部及び重量%を表わ
す。
Note that parts and % in the examples represent 1 part by weight and % by weight.

実施例1 p−ヒドロキシフェニルアラニン16.7 部、フェノ
ール18.8部、87%ホルマリン87.5部、85%
塩酸41.7部の混合液を、50℃で1時間加熱攪拌を
続けた後、室温に冷却した。この液に30%硫酸チタン
溶液37.5部を加え、室温で30分間攪拌し、硫酸チ
タンを含有する樹脂液を得た。続いて、四塩化炭素、モ
ノクロルベンゼン混合媒体と上記の樹脂液を容量1eの
容器に入れ回転攪拌しながら、120℃で水を溜去しつ
つ3時間懸濁重縮合を続けて樹脂を得た。この樹脂をP
別、風乾燥、5%NaOH溶液に、室温で1時間浸漬処
理を行い、続いて、水洗し、20〜50メツシユの球状
のイオン交換樹脂を得た。
Example 1 p-hydroxyphenylalanine 16.7 parts, phenol 18.8 parts, 87% formalin 87.5 parts, 85%
A mixed solution of 41.7 parts of hydrochloric acid was heated and stirred at 50° C. for 1 hour, and then cooled to room temperature. 37.5 parts of a 30% titanium sulfate solution was added to this liquid and stirred at room temperature for 30 minutes to obtain a resin liquid containing titanium sulfate. Subsequently, carbon tetrachloride, monochlorobenzene mixed medium and the above resin liquid were placed in a container with a capacity of 1e, and while rotating and stirring, suspension polycondensation was continued for 3 hours while water was distilled off at 120°C to obtain a resin. . This resin is P
Separately, it was air-dried and immersed in a 5% NaOH solution at room temperature for 1 hour, followed by washing with water to obtain a spherical ion exchange resin with 20 to 50 meshes.

このイオン交換樹脂の亜比酸イオン吸着能は1.8ミリ
当量/I、イオン交換樹脂であり、又ウラニルイオン吸
着能は1.2ミリ当量/fイオン交換樹′脂であった。
The ion exchange resin had an adsorption capacity of 1.8 meq/I, an ion exchange resin, and a uranyl ion adsorption capacity of 1.2 meq/f, an ion exchange resin.

次に上記で得た樹脂50ccを内径ICm0カラムに充
填した。このカラムに食塩8%含有し、かつ。
Next, 50 cc of the resin obtained above was packed into a column with an inner diameter of ICm0. This column contains 8% salt, and.

亜比酸をAsとして100 ppm含有する 水溶液(
p。
Aqueous solution containing 100 ppm of As
p.

H2O)を25℃で250 c c/h r  の速度
で15部通液した。
15 parts of H2O) was passed through the solution at a rate of 250 c c/hr at 25°C.

1eMを通液した時点でのカラム通過液のAs濃度は%
0.lppm以下であり1選択的にAsが、カラムに吸
着されていた。
The As concentration of the column passing liquid at the time of passing 1eM is %
0. 1ppm or less, and As was selectively adsorbed on the column.

次いで、樹脂を水洗後、 ZNNaOH溶液250cc
続イテ、水250ccを通液し樹脂に吸着されていたA
sを溶離した。溶離液中のAs濃度は約8000ppm
であり、はぼ定量的に溶離されていた。
Next, after washing the resin with water, add 250 cc of ZNNaOH solution.
Continuing, 250cc of water was passed through and A was adsorbed to the resin.
s was eluted. As concentration in the eluent is approximately 8000 ppm
and was eluted almost quantitatively.

又、この溶離液中のチタン濃度を測定したところ、01
ppm  以下であり、樹脂からのチタンの脱落は認め
られなかった。
In addition, when the titanium concentration in this eluent was measured, it was found to be 01
ppm or less, and no dropout of titanium from the resin was observed.

この操作を5回くり返し、カラムのくり返し吸脱着能を
測定したところ、いずれの場合も、15部通液時点での
As濃度は0.lppm以下であり、くり返しの吸脱着
によるカラムの性能劣化は起こらなかった。
This operation was repeated 5 times and the adsorption/desorption capacity of the column was repeatedly measured. In each case, the As concentration was 0.0. 1 ppm or less, and no deterioration of column performance due to repeated adsorption and desorption occurred.

比較例1 水酸化チタンのスラリー100部に、ホルマリン50部
、アクリルアミド80部を加え、よく攪拌し。
Comparative Example 1 50 parts of formalin and 80 parts of acrylamide were added to 100 parts of titanium hydroxide slurry and stirred well.

さらに過硫酸アンモニウム1fを加え、再び攪拌後、6
0℃で熱処理をし、得られた固形物を20〜50メツシ
ユに砕き、0石規定の塩酸で処理することにより水酸化
チタンを混合したポリアクリルアミドイオン交換樹脂を
得た。
Furthermore, 1f of ammonium persulfate was added, and after stirring again, 6
A heat treatment was carried out at 0° C., and the obtained solid material was crushed into 20 to 50 meshes and treated with 0 stone normal hydrochloric acid to obtain a polyacrylamide ion exchange resin mixed with titanium hydroxide.

このイオン交換樹脂の亜比酸イオンIJ’Hf能は1.
1ミリ当量/fイオン交換樹脂であった。
This ion exchange resin has a specific acid ion IJ'Hf capacity of 1.
It was a 1 meq/f ion exchange resin.

次にこのイオン交換樹脂を実施例1と同様のカラムに充
填し、実施例1と同様の亜砒酸含有液を実施例1と同様
の条件で通液した。
Next, this ion exchange resin was packed into a column similar to that in Example 1, and the same arsenous acid-containing liquid as in Example 1 was passed through the column under the same conditions as in Example 1.

その結果、8eを通液した時点で、カラム通過後の液の
Asm度は、1 pI)mとなりこのイオン交換樹脂の
吸着速度は非常に遅いことが明らかである。
As a result, when 8e was passed through the column, the Asm degree of the liquid after passing through the column was 1 pI)m, and it is clear that the adsorption rate of this ion exchange resin was extremely slow.

この時点で1通液を中止し、実施例1と同様にして溶離
剤である2NNaOH溶欣を通液し、イオン交換樹脂に
吸着されていた砒素を溶離した。
At this point, one liquid passage was stopped, and in the same manner as in Example 1, a 2N NaOH solution as an eluent was passed through to elute the arsenic adsorbed on the ion exchange resin.

この操作をくり返したところ、3回目の吸着時カラ、カ
ラム中にイオン交換樹脂が崩壊したものと考えられる微
粉が生じ、カラム通Mが不可能となった。
When this operation was repeated, during the third adsorption, fine powder, which was thought to be due to the collapse of the ion exchange resin, was generated in the column, making it impossible to pass it through the column.

比較例2 市販の強塩基性アニオン交換樹脂(ce−型、 20〜
50メツシユ) 50ccを実施例1と同様のカラムに
充填し、実施例1と同様の条件で、砒素含有液を通液し
た。
Comparative Example 2 Commercially available strong basic anion exchange resin (CE-type, 20~
The same column as in Example 1 was filled with 50 cc (50 mesh), and the arsenic-containing liquid was passed through it under the same conditions as in Example 1.

その結果、0.1eを通液した時点で、カラム通過液の
砒素濃度は、 65ppmとなり、砒素は殆んど吸着さ
れていないことが明らかである。
As a result, the arsenic concentration of the column-passing liquid was 65 ppm when 0.1e was passed, and it is clear that almost no arsenic was adsorbed.

実施例2 実施例1と同様にしてp−ヒドロキシアラニン。Example 2 p-hydroxyalanine in the same manner as in Example 1.

フェノールホルマリン縮金物を含有する塩酸溶液を得た
。この液に20%才キシ塩化ジルコニウム溶液40部を
加え、室温で80分間攪拌し、ジルコニウムを含有する
樹脂液を得た。この液を実施例1と同様の懸濁重縮合及
びアルカリ処理を行い20〜5oメツシユの球状のイオ
ン交換樹脂を得た。
A hydrochloric acid solution containing a phenol-formalin metal condensate was obtained. 40 parts of a 20% zirconium oxychloride solution was added to this liquid, and the mixture was stirred at room temperature for 80 minutes to obtain a resin liquid containing zirconium. This liquid was subjected to suspension polycondensation and alkali treatment in the same manner as in Example 1 to obtain a spherical ion exchange resin having a mesh size of 20 to 5 degrees.

このイオン交換体のフッ素イオン吸着能は、0.8ミリ
当量/fイオン交換樹脂であった。
The fluorine ion adsorption capacity of this ion exchanger was 0.8 meq/f ion exchange resin.

次に上記で得た樹脂50ccを、内径ICmのカラムに
充填し、このカラムに食塩3%を含有し、かつ、フッ化
ナトリウムをFとして10ppm含有する水溶液(p、
H,6)を26℃で250cc/hrの速度で2oeA
液した。
Next, 50 cc of the resin obtained above was packed into a column with an inner diameter of ICm, and this column was filled with an aqueous solution (p,
H,6) at 26°C at a rate of 250cc/hr to 2oeA
It liquefied.

20gを通液した時点での、カラム通過液のF濃度ハ、
0.1p pm  以下であり1選択的にFがカラムに
吸着されていた。
The F concentration of the column-passing liquid at the time when 20 g of liquid is passed through the column,
It was 0.1 p pm or less, and F was selectively adsorbed on the column.

次いで樹脂を水洗後、2NNaOH溶液250cc続い
て、水250ccを通液し、樹脂に吸着されていたフッ
素を溶離した。
Next, after washing the resin with water, 250 cc of a 2N NaOH solution and then 250 cc of water were passed through the resin to elute the fluorine adsorbed on the resin.

その結果、溶離液中のF濃度は400 ppmであり。As a result, the F concentration in the eluent was 400 ppm.

はぼ定量的に溶離されていた。was eluted almost quantitatively.

この操作を5回くり返したが、樹脂の吸脱着能の性能劣
化は認められなかった。
This operation was repeated five times, but no deterioration in the adsorption/desorption ability of the resin was observed.

実施例3 オキシン7.3部、フェノール23.5部、37%ポル
マリン37.5部、85%塩酸41.7部の混合液を5
0℃で2時間加熱攪拌を続けた後、室温に冷却した。こ
の液に80%硫酸アルミニウム浴液40部を加え、室温
で30分間攪拌しアルミニウムを含有する樹脂液を得た
。続いて、二塩化エチレン、四塩化炭素混合媒体と上記
の樹脂液とを容量1eの容器に入れ。
Example 3 A mixed solution of 7.3 parts of oxine, 23.5 parts of phenol, 37.5 parts of 37% Polmarin, and 41.7 parts of 85% hydrochloric acid was
After heating and stirring at 0° C. for 2 hours, the mixture was cooled to room temperature. 40 parts of an 80% aluminum sulfate bath solution was added to this solution, and the mixture was stirred at room temperature for 30 minutes to obtain a resin solution containing aluminum. Subsequently, ethylene dichloride, carbon tetrachloride mixed medium and the above resin liquid were placed in a container with a capacity of 1e.

回転撹拌しながら100℃で水を溜去しつつ、5時間懸
濁重縮合を続けて樹脂を得た。この樹脂を瀘別、風乾後
、5%アンモニア水に室温で1時間浸漬処理を行い、2
0〜50メツシユの球状のイオン交換樹脂を得た。
Suspension polycondensation was continued for 5 hours while water was distilled off at 100°C with rotational stirring to obtain a resin. After filtering and air drying, this resin was immersed in 5% ammonia water at room temperature for 1 hour.
A spherical ion exchange resin having 0 to 50 meshes was obtained.

このイオン交換樹脂のリチウムイオン吸着能は05ミリ
当4/pイオン交換樹脂であった。
The lithium ion adsorption capacity of this ion exchange resin was 4/p ion exchange resin per 0.5 mm.

実施例4 実施例3と同様にして、オキシン、フェノール。Example 4 Oxine and phenol were added in the same manner as in Example 3.

ホルマリン縮合物を含有する塩酸溶液を得た。この液に
30%塩化第2鉄水溶液40部を加え、室温で30分間
攪拌し1鉄を含有する樹脂液を得た。この液を実施例3
と同様の懸濁重縮合及びアルカリ処理を行い、20〜5
0メツシユの球状のイオン交換樹脂を得た。
A hydrochloric acid solution containing a formalin condensate was obtained. 40 parts of a 30% ferric chloride aqueous solution was added to this liquid, and the mixture was stirred at room temperature for 30 minutes to obtain a resin liquid containing 1 iron. Example 3
Perform suspension polycondensation and alkali treatment in the same manner as above, and obtain 20 to 5
A spherical ion exchange resin with 0 mesh was obtained.

このイオン交換樹脂のリン酸イオン吸着能は、0.9ミ
リ当量/fイオン交換樹脂であった。
The phosphate ion adsorption capacity of this ion exchange resin was 0.9 meq/f ion exchange resin.

特許出願人 ユニチカ株式会社 手続補正書く自発) 昭和58年 3月26日 特許庁長官  殿 1、事件の表示 特願昭57−180469号 2、発明の名称 球状イオン交換樹脂とその製造法及び吸着処理法 3、補正をする者 事件との関係  特許出願人 住所  尼崎市東本町1丁目50番地 〒541 住所  大阪市東区北久太部町4丁目68番地名称  
ユ ニ チ カ 株式会社 特許部電話 06−281
−5258  (ダイヤルイン)4、補正の対象 明細書の特許請求の範囲の欄及び発明の詳細な説明の欄 5、補正の内容 (11明細書の特許請求の範囲を別紙のとおり訂正する
Patent applicant: Unitika Co., Ltd. Voluntary amendment to the procedure) March 26, 1980 Commissioner of the Japan Patent Office (1) Indication of the case Patent application No. 180469/1982 (2) Name of the invention Spherical ion exchange resin and its manufacturing method and adsorption treatment Law 3, Relationship with the case of the person making the amendment Patent applicant address: 1-50 Higashihonmachi, Amagasaki City 541 Address: 4-68 Kitakyutabe-cho, Higashi-ku, Osaka City Name
Unichika Co., Ltd. Patent Department Phone: 06-281
-5258 (Dial-in) 4. Scope of Claims and Detailed Description of the Invention of the Specification Subject to Amendment 5. Contents of Amendment (11. The scope of claims of the specification is corrected as shown in the attached sheet.

(2)同書第4頁第8行目の「金属の塩化物又は酸化物
」を「金属の塩類又は金属の酸化物」と訂正する。
(2) "Metal chlorides or oxides" in page 4, line 8 of the same book is corrected to "metal salts or metal oxides."

(3)同書第6頁第11〜12行目及び第12〜13行
目の「金属の塩化物又は酸化物」を[金属の塩類又は金
属の酸化物」と訂正する。
(3) "Metal chlorides or oxides" in lines 11-12 and 12-13 on page 6 of the same book are corrected to "metal salts or metal oxides."

(4)同書同頁第15行目の「いかなるものを用いても
よい。」を「いかなるものを用いてもよく。
(4) On the 15th line of the same page in the same book, "Anything may be used." is changed to "Anything may be used."

金属の塩類としては1例えば塩酸塩、オキシ塩酸塩、硫
酸塩、硝酸塩、酢酸塩があげられる。」と訂正する。
Examples of metal salts include hydrochloride, oxyhydrochloride, sulfate, nitrate, and acetate. ” he corrected.

(5)同書第6頁第20行目〜第7頁第1行目の「金属
の塩化物又は酸化物」を「金属の塩類又は金膝の酸化物
」と訂正する。
(5) "Metal chlorides or oxides" on page 6, line 20 to page 7, line 1 of the same book are corrected to "metal salts or metal oxides."

特許請求の範囲 (1)フェノール樹脂と金属水酸化物とからなり、該金
属水酸化物をフェノール樹脂で被い、かつ連結してなる
球状イオン交換樹脂。
Claims (1) A spherical ion exchange resin consisting of a phenol resin and a metal hydroxide, the metal hydroxide being covered and connected with the phenol resin.

(2)フェノール類とアルデヒド類とを酸触媒下で重縮
合させ1反応液が流動性を保持している間に金属の塩延
又は金属の酸化物を添加して媒体中に分散させ2分散さ
せた反応液を懸濁状態で重縮合反応を完結さぜた援、ア
ルカリ剤で処理することを特徴とするフェノール樹脂と
金属水酸化物とからなり、該金属水酸化物をフェノール
樹脂で被い。
(2) Phenols and aldehydes are polycondensed under an acid catalyst. 1) While the reaction liquid maintains fluidity, a metal salt or metal oxide is added and dispersed in the medium. 2) Dispersion The reaction solution is treated with an alkaline agent to complete the polycondensation reaction in a suspended state, and the metal hydroxide is covered with the phenol resin. stomach.

かつ連結してなる球状イオン交換樹脂の製造法。A method for producing a spherical ion exchange resin comprising:

(3)フェノール樹脂と金属水酸化物とからなり、該金
属水酸化物をフェノール樹脂で被い、かつ連綴してなる
球状イオン交換樹脂を用いて溶液中のイオンを選択的に
吸着させることを特徴とする吸着処理法。
(3) Selectively adsorbing ions in a solution using a spherical ion exchange resin consisting of a phenolic resin and a metal hydroxide, the metal hydroxide being covered with a phenol resin and connected in series. Characteristic adsorption treatment method.

Claims (2)

【特許請求の範囲】[Claims] (1)フェノール樹脂と金属水酸化物とからなり、該金
属水酸化物をフェノール樹脂で被い且つ連結してなる球
状イオン交換樹脂。
(1) A spherical ion exchange resin consisting of a phenol resin and a metal hydroxide, the metal hydroxide being covered and connected with the phenol resin.
(2)フェノール類とアルデヒド類とを酸触媒下で重縮
合させ1反応液が流動性を保持している間に金属の塩化
物又は酸化物を添加して媒体中に分散させ1分散させた
反応液を懸濁状態で重縮合反応を完結させた後、アルカ
リ剤で処理することを特徴とするフェノール樹脂と金属
水酸化物とからなり、該金属水酸化物をフェノール樹脂
で被い且つ連結してなる球状イオン交換樹脂の製造法。 (3ンフエノール樹脂と金属水酸化物とからなり、該金
属水酸化物をフェノール樹脂で被い且つ連続じてなる球
状イオン交換樹脂を用いて溶液中のイ処理法。
(2) Phenols and aldehydes were polycondensed under an acid catalyst, and while the reaction solution remained fluid, a metal chloride or oxide was added and dispersed in the medium. A process consisting of a phenolic resin and a metal hydroxide, characterized in that the polycondensation reaction is completed in a suspended state, and then treated with an alkali agent, and the metal hydroxide is covered with a phenol resin and connected. A method for producing a spherical ion exchange resin. (A treatment method in a solution using a spherical ion exchange resin consisting of a tertiary phenol resin and a metal hydroxide, the metal hydroxide being covered and continuous with a phenol resin.
JP57180469A 1982-10-13 1982-10-13 Spherical ion exchange resin and its production and adsorptive treatment Granted JPS5969151A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57180469A JPS5969151A (en) 1982-10-13 1982-10-13 Spherical ion exchange resin and its production and adsorptive treatment
EP83306108A EP0111999B1 (en) 1982-10-13 1983-10-10 Spherical ion exchange resin, method for producing the same and method for adsorption treatment using the same
DE8383306108T DE3380554D1 (en) 1982-10-13 1983-10-10 Spherical ion exchange resin, method for producing the same and method for adsorption treatment using the same
CA000438687A CA1212368A (en) 1982-10-13 1983-10-11 Spherical ion exchange resin, method for producing the same and method for adsorption treatment using the same
US06/541,646 US4576969A (en) 1982-10-13 1983-10-13 Spherical ion exchange resin having matrix-bound metal hydroxide, method for producing the same and method for adsorption treatment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180469A JPS5969151A (en) 1982-10-13 1982-10-13 Spherical ion exchange resin and its production and adsorptive treatment

Publications (2)

Publication Number Publication Date
JPS5969151A true JPS5969151A (en) 1984-04-19
JPH0356783B2 JPH0356783B2 (en) 1991-08-29

Family

ID=16083759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180469A Granted JPS5969151A (en) 1982-10-13 1982-10-13 Spherical ion exchange resin and its production and adsorptive treatment

Country Status (5)

Country Link
US (1) US4576969A (en)
EP (1) EP0111999B1 (en)
JP (1) JPS5969151A (en)
CA (1) CA1212368A (en)
DE (1) DE3380554D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192340A (en) * 1985-02-21 1986-08-26 Asahi Chem Ind Co Ltd Fluorine complex ion adsorbent
JP2011224430A (en) * 2010-04-15 2011-11-10 Toshiba Corp Ion exchanger, method of manufacturing the same, cleaning apparatus, and cleaning method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL145676B1 (en) * 1985-08-30 1988-10-31 Inst Chemii Tech Jadrowej Method of obtaining composite ion exchangers
AU627630B2 (en) * 1989-10-18 1992-08-27 United States of America, as represented by the Secretary, U.S. Department of Commerce, The Polymer bead containing immobilized metal extractant
US4968504A (en) * 1989-10-19 1990-11-06 Gte Laboratories Incorporated Recovery of scandium and uranium
US5364856A (en) * 1991-03-28 1994-11-15 Eli Lilly And Company 6-heterocyclic-4-amino-1,3,4,5-tetrahydrobenz[CD]indoles
GB9115018D0 (en) * 1991-07-11 1991-08-28 Bradtec Ltd Purification of solutions
CA2093676C (en) * 1993-04-08 2004-08-31 K. Anwer Mehkeri Method for ultra-trace level analysis of water
US6383395B1 (en) * 2000-01-04 2002-05-07 Luxfer Group Limited Water treatment method and apparatus
GB0019417D0 (en) 2000-08-09 2000-09-27 Mat & Separations Tech Int Ltd Mesoporous carbons
US8591855B2 (en) * 2000-08-09 2013-11-26 British American Tobacco (Investments) Limited Porous carbons
US7393466B2 (en) 2001-06-25 2008-07-01 Applied Intellecutal Capital, Inc. Compositions and methods for anion absorbent metal hydroxides
US7368412B2 (en) * 2003-09-04 2008-05-06 Battelle Energy Alliance, Llc High capacity adsorption media and method of producing
US7807606B2 (en) * 2003-09-04 2010-10-05 Battelle Energy Alliance, Llc High capacity adsorption media and method of producing
US20050067341A1 (en) * 2003-09-25 2005-03-31 Green Dennis H. Continuous production membrane water treatment plant and method for operating same
EP1568660B1 (en) 2004-02-24 2010-12-15 Rohm And Haas Company Method for removal of arsenic from water
US8207391B2 (en) * 2004-06-07 2012-06-26 National Institute For Materials Science Adsorbent for radioelement-containing waste and method for fixing radioelement
CA2606190A1 (en) * 2005-04-27 2006-11-02 Hw Process Technologies, Inc. Treating produced waters
CA2579031C (en) * 2006-03-03 2011-03-29 Rohm And Haas Company Method for producing an arsenic-selective resin
US20080069748A1 (en) * 2006-09-20 2008-03-20 Hw Advanced Technologies, Inc. Multivalent iron ion separation in metal recovery circuits
US20080128354A1 (en) * 2006-11-30 2008-06-05 Hw Advanced Technologies, Inc. Method for washing filtration membranes
US8664150B2 (en) * 2010-03-16 2014-03-04 Battelle Energy Alliance, Llc Methods of producing adsorption media including a metal oxide
TWI434725B (en) * 2011-03-08 2014-04-21 Asia Union Electronical Chemical Corp Method for purifying fluoride etching solution by using hydroxide compound and ion exchange resin absorption
RU2665439C1 (en) 2017-07-17 2018-08-29 Общество С Ограниченной Ответственностью "Аквафор" (Ооо "Аквафор") Hybrid sorbent
CN114452951B (en) * 2021-12-15 2023-12-01 淮阴工学院 Phenol formaldehyde aerogel rubidium/cesium specific adsorbent and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568845A (en) * 1979-07-03 1981-01-29 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS5695343A (en) * 1979-11-19 1981-08-01 Dow Chemical Co Method of improving formation of hydrated alumina dispersed in weak base anion exchange resin
JPS57140644A (en) * 1980-12-15 1982-08-31 Asahi Chem Ind Co Ltd Molded product of composite adsorbent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2460516A (en) * 1943-10-20 1949-02-01 Ohio Commw Eng Co Ion-exchange resin
US2601202A (en) * 1946-05-23 1952-06-17 Dow Chemical Co Anion exchange resins and process
JPS5412909B2 (en) * 1973-12-12 1979-05-26
GB2005019B (en) * 1977-09-28 1982-08-18 Technicon Instr Magnetically attractable material
JPS54148186A (en) * 1978-05-13 1979-11-20 Yasumasa Shigetomi Complex adsorbent for anion
US4362626A (en) * 1979-08-16 1982-12-07 Takeda Chemical Industries, Ltd. Ion exchanger of hydrated oxide of Ti, Zr, or Sn and cured polyester, and exchange method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS568845A (en) * 1979-07-03 1981-01-29 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS5695343A (en) * 1979-11-19 1981-08-01 Dow Chemical Co Method of improving formation of hydrated alumina dispersed in weak base anion exchange resin
JPS57140644A (en) * 1980-12-15 1982-08-31 Asahi Chem Ind Co Ltd Molded product of composite adsorbent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192340A (en) * 1985-02-21 1986-08-26 Asahi Chem Ind Co Ltd Fluorine complex ion adsorbent
JPH0217220B2 (en) * 1985-02-21 1990-04-19 Asahi Chemical Ind
JP2011224430A (en) * 2010-04-15 2011-11-10 Toshiba Corp Ion exchanger, method of manufacturing the same, cleaning apparatus, and cleaning method

Also Published As

Publication number Publication date
DE3380554D1 (en) 1989-10-19
EP0111999A3 (en) 1985-04-10
JPH0356783B2 (en) 1991-08-29
EP0111999A2 (en) 1984-06-27
EP0111999B1 (en) 1989-09-13
US4576969A (en) 1986-03-18
CA1212368A (en) 1986-10-07

Similar Documents

Publication Publication Date Title
JPS5969151A (en) Spherical ion exchange resin and its production and adsorptive treatment
US7504036B2 (en) Method of making and using modified anion exchange materials with metal inside the materials
US3969244A (en) Method of adsorbing heavy metals
JP2001089524A (en) Method for producing new single dispersed-type crosslinked beadlike polymer having thiourea group and use thereof for adsorption of metallic compound
EP3308857B1 (en) Strong basic polyacrylate anion exchangers
US8563622B2 (en) Picolylamine resins
JP2007533789A (en) Chelate exchange resin
US5624567A (en) Process for removing iodine/iodide from aqueous solutions
JPH0242542B2 (en)
JP2001106725A (en) Method for producing monodisperse anion exchanger having strongly basic functional group
US20120107215A1 (en) Method of removing and recovering silica using modified ion exchange materials
JPS60153940A (en) Adsorbent of dissolved fluorine ion
US4477597A (en) Higher density ion exchange resins of metal compound precipitated within pores
US4154801A (en) Process for purifying alkali metal hydroxide or carbonate solutions
US2515609A (en) Method of removing oxygen
JP2928505B1 (en) Radium adsorbent and its production method
CN107735178B (en) Cesium selective resins
CA1112774A (en) Method for removing ammonia from wastewater
JP2911439B1 (en) Radium adsorbent and its production method
Strangfeld The recovery of metal cyanides by ion exchange resins
JPS5836606B2 (en) Adsorption treatment method
Chanda et al. A novel fiber‐coated strong base‐type anion exchanger with superfast kinetics. Removal and recovery of silver thiosulfate from aqueous solutions
JPH0694362B2 (en) How to recover iodine
JPH0522647B2 (en)
JPS5864180A (en) Removal of arsenic in aqueous solution