JP5595779B2 - Si powder for electronic component materials - Google Patents

Si powder for electronic component materials Download PDF

Info

Publication number
JP5595779B2
JP5595779B2 JP2010095630A JP2010095630A JP5595779B2 JP 5595779 B2 JP5595779 B2 JP 5595779B2 JP 2010095630 A JP2010095630 A JP 2010095630A JP 2010095630 A JP2010095630 A JP 2010095630A JP 5595779 B2 JP5595779 B2 JP 5595779B2
Authority
JP
Japan
Prior art keywords
powder
thermal conductivity
film
electronic component
packing density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010095630A
Other languages
Japanese (ja)
Other versions
JP2011225391A (en
Inventor
俊之 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2010095630A priority Critical patent/JP5595779B2/en
Priority to PCT/JP2011/053265 priority patent/WO2011102376A1/en
Priority to TW100105253A priority patent/TW201200472A/en
Publication of JP2011225391A publication Critical patent/JP2011225391A/en
Application granted granted Critical
Publication of JP5595779B2 publication Critical patent/JP5595779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粉末充填体としての電流遮断性と熱伝導性が高く、かつ充填密度の高い、安価な電子部品材料用Si粉末に関するものである。   The present invention relates to an inexpensive Si powder for electronic component materials, which has high current interruption and thermal conductivity as a powder filler, and has a high packing density.

一般に、Siは半導体元素であり固有抵抗が高いことが大きな特徴であり、FeやNiなどの金属と比較すると、2〜5桁も大きい特徴を有しており、様々な電子部品に使用されている。しかしながら、Siの固有抵抗は不純物の影響を大きく受ける。特にFeはSiと化合物を生成し、固有抵抗を下げてしまう不純物的元素である。通常、電子部品などに使用するSi粉末は、母材として半導体や太陽電池に使用されるSiウェハーなど、高純度のバルク体を粉砕して製造されることから、Feを主体とした不純物の量は低いが、製造コストはかなり高価である。これらのSiウェハーの純度は一般的に5N以上にもなる。   In general, Si is a semiconductor element and has a large characteristic that it has a high specific resistance. Compared to metals such as Fe and Ni, Si has a characteristic that is 2 to 5 orders of magnitude larger and is used in various electronic components. Yes. However, the resistivity of Si is greatly affected by impurities. In particular, Fe is an impurity element that forms a compound with Si and lowers the specific resistance. Usually, Si powder used for electronic parts is manufactured by crushing high-purity bulk materials such as Si wafers used for semiconductors and solar cells as a base material, so the amount of impurities mainly composed of Fe Is low, but the manufacturing costs are quite expensive. The purity of these Si wafers is generally 5N or more.

そこで発明者は、高純度Siの原料としては通常は使用されることのない、安価なSi原料である主に鉄鋼材料を製造する際に添加材として使用されるSi原料に着目したが、安価ではあるが純度が98〜99%程度と極めて低く、特に不純物としてFeを多く含有しているので、これを原料として粉砕したSi粉末では高い固有抵抗は期待できなかった。このように、安価なSi原料を使用して、高い固有抵抗を有するSi粉末を作製することは従来困難であった。   Therefore, the inventor paid attention to Si raw materials that are not usually used as high-purity Si raw materials and are mainly used as additives when manufacturing steel materials that are inexpensive Si raw materials. However, the purity is as low as about 98 to 99%, and since a large amount of Fe is contained as an impurity, high specific resistance cannot be expected with Si powder pulverized using this as a raw material. Thus, it has been difficult in the past to produce Si powder having high specific resistance by using an inexpensive Si raw material.

また、一般に市販されているSi粉末はSiウェハーなどのバルク体を粉砕したものであり不定形状である。そのため、充填密度が低い。Si粉末の充填体を絶縁性ヒートシンク体として使用する場合、熱伝導性が重要になるが、この熱伝導性はSi粉末の充填密度の影響が大きい。これは、一定の体積中に熱を伝えるSi粉末を多く充填することにより、充填体の熱伝導性が良好になるものと推測される。しかしながら、バルク体の粉砕粉末では、タップ密度は真密度のおよそ60%以下と低く、熱伝導性が低い。このように、安価なSi原料からなり、その充填体の電流遮断性と熱伝導性が高いSi粉末が望まれているが、十分な特性を有するSi粉末が実現されていないのが現状である。   In addition, commercially available Si powder is obtained by pulverizing a bulk body such as a Si wafer and has an indefinite shape. Therefore, the packing density is low. When the Si powder filling body is used as an insulating heat sink body, the thermal conductivity becomes important, but this thermal conductivity is greatly influenced by the filling density of the Si powder. This is presumed that the thermal conductivity of the filler is improved by filling a large volume of Si powder that conducts heat into a certain volume. However, in the bulk pulverized powder, the tap density is as low as about 60% or less of the true density, and the thermal conductivity is low. Thus, Si powder made of an inexpensive Si raw material and having a current blocking property and high thermal conductivity of the filler is desired, but the present situation is that a Si powder having sufficient characteristics has not been realized. .

このようなSi粉末は、例えば特開2005−60830号公報(特許文献1)に開示されいるように、軟磁性粉末表面に、Si粉末を被覆する電子部品などに使用される。
特開2005−60830号公報
Such a Si powder is used for an electronic component that covers the surface of a soft magnetic powder as disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-60830 (Patent Document 1).
JP 2005-60830 A

しかしながら、上記した特許文献1に記載されているような絶縁に用いるSi粉末や、ヒートシンク体として用いるSi粉末として、電流遮断性と熱伝導性について十分な特性には至っていない。   However, the Si powder used for insulation as described in Patent Document 1 described above and the Si powder used as a heat sink body do not have sufficient characteristics for current interruption and thermal conductivity.

上述したような問題を解消するために、発明者は鋭意開発を進めた結果、粉末充填体としての電流遮断性と熱伝導性が高く、かつ充填密度の高い安価なSi粉末を提供するものである。その発明の要旨とするところは、
Fe:0.01〜2質量%含み、残部Siおよび不可避的不純物からなり、内部に生成する膜状不純相の厚さが2μm以下である、球形状もしくは概ね球形状であることを特徴とした電子部品材料用Si粉末にある。
In order to solve the problems described above, the inventor has made extensive developments, and as a result, provides an inexpensive Si powder having a high current interruption and thermal conductivity as a powder filler and a high packing density. is there. The gist of the invention is that
Fe: 0.01-2% by mass, consisting of the balance Si and inevitable impurities, and the thickness of the film-like impurity phase formed inside is 2 μm or less, characterized in that it is spherical or approximately spherical It is in Si powder for electronic component materials.

上述したように、本発明により、粉末充填体としての電流遮断性と熱伝導性が高く、かつ充填密度の高い安価なSi粉末を提供できる。   As described above, according to the present invention, it is possible to provide an inexpensive Si powder having a high current interruption and thermal conductivity as a powder filler and a high packing density.

以下、本発明について詳細に説明する。
発明者らはまず、充填密度の高い粉末として、市販されている不定形状の粉砕粉末ではなく、概ね球形状の粉末が作製されるガスアトマイズ法に着目した。実際、ガスアトマイズ法で作製したSi粉末は、概ね球状をしており、後述する実施例の通り充填密度に優れた。これは一般的なFeやNiなどのガスアトマイズ粉末の特徴と同様である。
Hereinafter, the present invention will be described in detail.
The inventors first focused on the gas atomization method in which a generally spherical powder was produced as a powder having a high packing density, rather than a commercially available pulverized powder having an irregular shape. Actually, the Si powder produced by the gas atomization method has a substantially spherical shape, and is excellent in packing density as in the examples described later. This is the same as the characteristics of general gas atomized powders such as Fe and Ni.

しかしながら、ガスアトマイズ法で作製したSi粉末は、さらに、Siならではの下記の特徴を有していることを見出した。ガスアトマイズ法によるSi粉末と粉砕法によるSi粉末を詳細に調査した結果、ガスアトマイズSi粉末は同程度のFeを不純物として含んでいるバルク体粉砕粉末と比較し、電流遮断性に優れていることがわかった。   However, it was found that the Si powder produced by the gas atomization method has the following characteristics unique to Si. As a result of a detailed investigation of Si powder by the gas atomization method and Si powder by the pulverization method, it was found that the gas atomization Si powder is superior in current blocking performance compared to bulk pulverized powder containing the same amount of Fe as impurities. It was.

この現象について詳細な要因は不明であるが、次のことが推測される。Feは単にSiとの化合物の固有抵抗が低いだけでなく、Si−Fe系2元状態図からわかるように、Si固体相中に全く固溶しないため、わずかなFe量を不純物として含んでいるだけでも、Siの溶湯を凝固させる際、まず、Feを残湯部に排出しながらSiの結晶が固体として晶出し、FeがSiの結晶間に濃縮され、Si結晶間に厚く膜状に化合物を生成してしまう。   Although the detailed factor about this phenomenon is unknown, the following is estimated. Fe is not only low in resistivity of the compound with Si, but also contains a slight amount of Fe as an impurity because it does not dissolve at all in the Si solid phase, as can be seen from the Si-Fe binary phase diagram. However, when solidifying the molten Si, first, the Si crystals crystallize as a solid while discharging Fe to the remaining hot metal part, the Fe is concentrated between the Si crystals, and the compound is formed into a thick film between the Si crystals. Will be generated.

このようにSi中のFeは、不純物としての量だけでなく化合物が膜状に生成しやすいことも固有抵抗に影響を及ぼしやすい要因になっていると考えられる。ここで、ガスアトマイズ粉末は噴霧ガスにより急冷凝固されているため、同程度のFeを不純物として含み、したがって、同程度の量の膜状化合物を生成したとしても、比較的膜厚が薄く、分散されていることにより、高い固有抵抗を示すと推測される。   As described above, it is considered that Fe in Si is not only an amount as an impurity but also that a compound is easily formed in a film shape, which is a factor that easily affects the specific resistance. Here, since the gas atomized powder is rapidly solidified by the atomizing gas, it contains the same amount of Fe as an impurity. Therefore, even if a similar amount of film-like compound is produced, the film thickness is relatively thin and dispersed. Therefore, it is estimated that a high specific resistance is exhibited.

以下、本発明に係る規制した理由について説明する。
Feを0.01〜2質量%とした理由は、本発明においては、Feは不純物的な悪影響を与える元素(以下、Fe不純物という)であることから、そのFe量が0.01%未満のSi原料は高価であり、また、2%を超えると電流遮断性が悪くなることから、0.01〜2質量%とした。好ましくは0.01〜1.0質量%とする。
Hereinafter, the reason for the regulation according to the present invention will be described.
The reason why Fe is 0.01 to 2% by mass is that, in the present invention, Fe is an element that has an adverse effect on impurities (hereinafter referred to as Fe impurity), and therefore the Fe content is less than 0.01%. The Si raw material is expensive, and if it exceeds 2%, the current interrupting property is deteriorated. Preferably it is 0.01-1.0 mass%.

内部に生成する膜状不純相の厚さが2μm以下とした理由は、内部に生成する膜状不純相(主としてFe不純物を含有する相)の厚さが2μmを超えると、電流遮断性が悪くなることから、その上限を2μmとした。また、球形状もしくは概ね球形状とした理由は、バルク体からの粉砕粉のような不定形状の粉末では熱伝導性が悪くなることから、球形状もしくは概ね球形状とした。このような粉末はガスアトマイズ法や回転ディスクアトマイズ法などの方法で得られる。   The reason why the thickness of the film-like impurity phase generated inside is 2 μm or less is that the current blocking property is poor when the thickness of the film-like impurity phase generated inside (mainly the phase containing Fe impurities) exceeds 2 μm. Therefore, the upper limit was set to 2 μm. Further, the reason for the spherical shape or the substantially spherical shape is that the powder has an irregular shape such as a pulverized powder from a bulk body, so that the thermal conductivity is deteriorated. Such powder can be obtained by a method such as a gas atomizing method or a rotating disk atomizing method.

以下、本発明について実施例によって具体的に説明する。
表1に示す供試粉末の製造として、内部に生成する膜状不純相の厚さが異なる数種類のSi粉末を作製するために、Fe含有量の異なるSi原料を黒鉛坩堝で溶解し、Si粉末をガスアトマイズ法により作製し、異なる粒度に分級した。また、比較として、Fe含有量の異なるSi原料を同様に溶解し、そのまま凝固させたインゴットを、粉砕、分級し、異なる粒度に分級した。粉砕は、金属製ハンマーで約5mm以下に粗粉砕した後、更にこれを乳鉢を用いて微粉砕した。これらの供試粉末について、以下の評価を行なった。その結果を表1に示す。すなわち、供試粉末の製造工程、内部の膜状不純相の厚さ、充填体の電流遮断性、充填体の熱伝導性、充填密度の評価結果を示す。また、表1では、例えば150μm以下の粒度を−150μmと記す。
Hereinafter, the present invention will be specifically described with reference to examples.
In order to produce several types of Si powders with different thicknesses of film-like impure phases generated inside, the raw materials shown in Table 1 were prepared by dissolving Si raw materials having different Fe contents in a graphite crucible. Were prepared by gas atomization and classified into different particle sizes. For comparison, ingots obtained by similarly dissolving and solidifying Si raw materials having different Fe contents were pulverized and classified, and classified into different particle sizes. The pulverization was roughly pulverized to about 5 mm or less with a metal hammer, and further pulverized using a mortar. These test powders were evaluated as follows. The results are shown in Table 1. That is, the evaluation results of the production process of the test powder, the thickness of the internal impure film phase, the current blocking property of the filler, the thermal conductivity of the filler, and the packing density are shown. In Table 1, for example, a particle size of 150 μm or less is described as −150 μm.

Si粉末の外観としては、SEM観察により評価し、球状もしくは概ね球状のものを○、不定形状のものを×とした。また、Si粉末の内部の膜状不純相の厚さについては、供試粉末を樹脂埋め研磨し、ランダムに選んだ10粒の粉末のCompo像を撮影し、各粉末における膜状不純相の最大厚さを測定し、この平均が2μm以下であるものを○、2μmを超えるものを×とした。このように撮影したCompo像の例を図1に示す。すなわち、図1は、Si粉末の断面Compo像を示す顕微鏡写真で、図1(a)は低倍率、図1(b)は高倍率のものである。   The appearance of the Si powder was evaluated by SEM observation. In addition, regarding the thickness of the film-like impurity phase inside the Si powder, the test powder was resin-filled and polished, a Compo image of 10 randomly selected powders was taken, and the maximum of the film-like impurity phase in each powder Thicknesses were measured, and those having an average of 2 μm or less were rated as “good” and those exceeding 2 μm as “x”. An example of a Compo image taken in this way is shown in FIG. That is, FIG. 1 is a photomicrograph showing a cross-sectional Compo image of Si powder, FIG. 1 (a) is a low magnification, and FIG. 1 (b) is a high magnification.

充填体の電流遮断性については、直径30mm、厚さ2mmの銅製の円盤を2枚用意し、上下に配置したこの円盤の間に0.5gの各供試粉末を挟み込み、上円盤に100gのおもりを載せた。この状態で上下の銅円盤に端子を接続し、10Vの電圧を掛けたときの電流値が1μA未満であったものを○、1μA以上であったものを×として評価した。   Regarding the current interrupting property of the packing body, two copper discs having a diameter of 30 mm and a thickness of 2 mm were prepared, and 0.5 g of each test powder was sandwiched between the discs arranged at the top and bottom, and 100 g of the upper disc was sandwiched between them. A weight was placed. In this state, the terminals were connected to the upper and lower copper disks, and when the voltage of 10 V was applied, the current value was less than 1 μA, and the case where it was 1 μA or more was evaluated as x.

充填体の熱伝導性については、外径60mm、内径50mm、高さ50mmの銅製容器に供試粉末を振動充填し、これを100℃に加熱したホットプレートの上に置いた。さらに、Si粉末充填部中央に温度計を挿入し温度を測定し、昇温速度の早さで充填体の熱伝導性を評価した。粉末充填体中に挿入した温度計が70℃になるまでの時間が表1のNo.1の供試粉末より遅い粉末を×、No.1と同等もしくは早い粉末を○とした。   Regarding the thermal conductivity of the filler, the test powder was vibrated and filled in a copper container having an outer diameter of 60 mm, an inner diameter of 50 mm, and a height of 50 mm, and this was placed on a hot plate heated to 100 ° C. Furthermore, a thermometer was inserted in the center of the Si powder filling portion, the temperature was measured, and the thermal conductivity of the filling body was evaluated by the speed of the heating rate. The time required for the thermometer inserted into the powder filler to reach 70 ° C. is No. A powder slower than the test powder of No. 1, x, No. A powder equal to or faster than 1 was marked with ◯.

充填密度の評価としては、供試粉末のタップ密度をSiの真密度である2.33Mg/m3で割り、100を掛けた相対密度(%)が65%以上のものを○、65%未満のものを×とした。 For evaluation of packing density, the tap density of the test powder is divided by 2.33 Mg / m 3 which is the true density of Si, and multiplied by 100, the relative density (%) is 65% or more. Was marked with x.

Figure 0005595779
表1に示すように、No.1〜9は本発明例であり、No.10〜20は比較例である。
Figure 0005595779
As shown in Table 1, no. 1 to 9 are examples of the present invention. 10-20 are comparative examples.

比較例No.10〜18はいずれも鋳造方法にて製造されたインゴットを、粉砕、分級し、異なる粒度に分級したもので、比較例No.10〜13は、形状が不定形状で、内部の膜状不純相の厚さが厚いために、電流遮断性、熱伝導性および充填密度が劣る。比較例No.14は、形状が不定形状のために、熱伝導性および充填密度が劣る。   Comparative Example No. In Nos. 10 to 18, all of the ingots produced by the casting method were pulverized and classified, and classified into different particle sizes. Nos. 10 to 13 have an indefinite shape, and the thickness of the internal film-like impure phase is large, so that the current blocking properties, thermal conductivity, and packing density are inferior. Comparative Example No. No. 14 is inferior in thermal conductivity and packing density because of its indefinite shape.

比較例No.15は、比較例No.14と同様に、形状が不定形状のために、熱伝導性および充填密度が劣る。比較例No.16、17、18は、形状が不定形状で、内部の膜状不純相の厚さが厚いために、電流遮断性、熱伝導性および充填密度が劣る。比較例No.19は、内部の膜状不純相の厚さが厚いために、電流遮断性が劣る。比較例No.20は、Fe含有量が多く、内部の膜状不純相の厚さが厚いために、電流遮断性が劣る。   Comparative Example No. 15 is Comparative Example No. Similar to 14, the shape is indefinite, so the thermal conductivity and packing density are poor. Comparative Example No. Nos. 16, 17, and 18 have an indefinite shape, and the thickness of the inner impure film phase is thick, so that the current blocking property, thermal conductivity, and packing density are inferior. Comparative Example No. No. 19 is inferior in current interruption due to the thick film-like impure phase inside. Comparative Example No. No. 20 has a high Fe content and a large thickness of the internal film-like impure phase, so that the current blocking property is inferior.

以上のように、本発明による原料のFe含有量を0.01〜2質量%に規制すると共に、アトマイズ法により、球形状もしくは概球形状としたSi粉末とすることにより、充填密度の高い、安価なSi原料でも固有抵抗を高くすることができ、また、Si粉末内部のFeを主体とした不純相の膜厚を2μm以下とすることで、固有抵抗を高くすることができる、電子部品に使用する絶縁性ヒートシンク材などに用いるSi粉末を提供することができる。   As described above, the Fe content of the raw material according to the present invention is regulated to 0.01 to 2% by mass, and by making the Si powder into a spherical shape or a substantially spherical shape by the atomization method, the packing density is high. An electronic component that can increase the specific resistance even with an inexpensive Si raw material, and can increase the specific resistance by making the film thickness of the impurity phase mainly composed of Fe inside the Si powder 2 μm or less. Si powder used for an insulating heat sink material or the like to be used can be provided.

Si粉末の断面Compo像を示す写真である。It is a photograph which shows the cross-sectional Compo image of Si powder.

Claims (1)

Fe:0.01〜2質量%含み、残部Siおよび不可避的不純物からなり、内部に生成する膜状不純相の厚さが2μm以下である、球形状もしくは概ね球形状であることを特徴とした電子部品材料用Si粉末。 Fe: 0.01-2% by mass, consisting of the balance Si and inevitable impurities, and the thickness of the film-like impurity phase formed inside is 2 μm or less, characterized in that it is spherical or approximately spherical Si powder for electronic component materials.
JP2010095630A 2010-02-17 2010-04-19 Si powder for electronic component materials Active JP5595779B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010095630A JP5595779B2 (en) 2010-04-19 2010-04-19 Si powder for electronic component materials
PCT/JP2011/053265 WO2011102376A1 (en) 2010-02-17 2011-02-16 Si POWDER AND METHOD FOR PRODUCING SAME
TW100105253A TW201200472A (en) 2010-02-17 2011-02-17 Si powder and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010095630A JP5595779B2 (en) 2010-04-19 2010-04-19 Si powder for electronic component materials

Publications (2)

Publication Number Publication Date
JP2011225391A JP2011225391A (en) 2011-11-10
JP5595779B2 true JP5595779B2 (en) 2014-09-24

Family

ID=45041271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010095630A Active JP5595779B2 (en) 2010-02-17 2010-04-19 Si powder for electronic component materials

Country Status (1)

Country Link
JP (1) JP5595779B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109455726A (en) * 2018-12-14 2019-03-12 江苏联瑞新材料股份有限公司 A kind of preparation method of ball-shaped silicon micro powder used for electronic packaging

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127916A (en) * 1992-10-16 1994-05-10 Tonen Chem Corp Production of spherical high-purity polycrystalline silicon
JPH10182125A (en) * 1996-12-20 1998-07-07 Kawasaki Steel Corp Production of powdery high-purity silicon
JPH10182130A (en) * 1996-12-26 1998-07-07 Kawasaki Steel Corp Refining of silicon
JP2004203652A (en) * 2002-12-25 2004-07-22 Clean Venture 21:Kk Manufacturing apparatus for semiconductor particle or metal particle
CN101919090B (en) * 2007-11-12 2014-04-16 三洋电机株式会社 Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silcon particle as active ingredient of rechargeable battery negative electrode material

Also Published As

Publication number Publication date
JP2011225391A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
Douglas et al. Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications
Li et al. Fine‐Grained and Nanostructured AgPbmSbTem+ 2 Alloys with High Thermoelectric Figure of Merit at Medium Temperature
JP5737566B2 (en) Manufacturing method of magnesium silicide sintered body and manufacturing method of thermoelectric conversion element using the same
JP6390662B2 (en) Method for manufacturing thermoelectric material
JP5641474B2 (en) Method for producing thermoelectric material comprising Mg2Si based compound
JP2002285274A (en) Mg-Si BASED THERMOELECTRIC MATERIAL AND PRODUCTION METHOD THEREFOR
WO2012005323A1 (en) Clathrate compound, thermoelectric material, and method for producing thermoelectric material
JP2008091461A (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP4726452B2 (en) Magnesium-metal compound
JP4496365B2 (en) Thermoelectric material and manufacturing method thereof
JP6471603B2 (en) Fe-based amorphous alloy composition
JP2009094497A (en) p-TYPE THERMOELECTRIC MATERIAL AND ITS MANUFACTURING METHOD
JP5099976B2 (en) Method for producing thermoelectric conversion material
Choi et al. Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure
JP5595779B2 (en) Si powder for electronic component materials
Lee et al. Synthesis of Bi-Sb-Te thermoelectric material by the plasma arc discharge process
WO2011102376A1 (en) Si POWDER AND METHOD FOR PRODUCING SAME
JP5563024B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
TWI615482B (en) Platinum-alloy target
JP2016213343A (en) Production method for thermoelectric conversion material and manufacturing method for thermoelectric conversion element
JP2004363541A (en) Phase change recording film high in electric resistance, and sputtering target for forming the film
JP7449549B2 (en) Thermoelectric element and its manufacturing method
JP5705640B2 (en) Clathrate compound, thermoelectric conversion material, and method for producing thermoelectric conversion material
KR101597570B1 (en) SiFeMo based nagative electrode material for lithium ion battery, and manufacturing method of the same
WO2016052643A1 (en) Powder for conductive fillers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5595779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250