JP5591513B2 - 断熱材及びその製造方法 - Google Patents

断熱材及びその製造方法 Download PDF

Info

Publication number
JP5591513B2
JP5591513B2 JP2009239326A JP2009239326A JP5591513B2 JP 5591513 B2 JP5591513 B2 JP 5591513B2 JP 2009239326 A JP2009239326 A JP 2009239326A JP 2009239326 A JP2009239326 A JP 2009239326A JP 5591513 B2 JP5591513 B2 JP 5591513B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
dry
curing
silica fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009239326A
Other languages
English (en)
Other versions
JP2011085216A (ja
Inventor
泰男 伊藤
嘉彦 後藤
勇美 阿部
茂 中間
高弘 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP2009239326A priority Critical patent/JP5591513B2/ja
Priority to US12/903,531 priority patent/US20110089363A1/en
Priority to CN201010511714.0A priority patent/CN102040367B/zh
Priority to KR1020100100974A priority patent/KR101608497B1/ko
Publication of JP2011085216A publication Critical patent/JP2011085216A/ja
Application granted granted Critical
Publication of JP5591513B2 publication Critical patent/JP5591513B2/ja
Priority to US15/192,194 priority patent/US9982831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/028Composition or method of fixing a thermally insulating material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/20Mortars, concrete or artificial stone characterised by specific physical values for the density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values
    • C04B2201/32Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values for the thermal conductivity, e.g. K-factors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Architecture (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Description

本発明は、断熱材及びその製造方法に関し、特に、断熱材の強度の向上に関する。
従来、熱伝導性が低く、断熱性能に優れた断熱材として、低熱伝導性材料であるシリカ微粒子と無機繊維と結合剤とを混合し、プレス成形を行った後、機械加工することによって得られる断熱材があった(例えば、特許文献1,2)。
特表平11−513349号公報 特表平10−514959号公報
しかしながら、上記従来技術においては、結合剤を使用するため、例えば、脱脂を行う必要があり、この脱脂によって断熱材の強度が低下するという問題があった。また、結合剤の使用によって環境への負荷が増大する。このように、結合剤を使用する場合には、脱脂等に伴う工程数や所要時間及びエネルギーの増大といった問題があった。
これに対し、結合剤を使用することなく、プレス圧を調整して断熱材の密度を増加させることによって強度を高めることも可能である。しかしながら、この場合、例えば、密度の増加に伴い固体伝熱も増加するため、当該断熱材の断熱性能が低下するという問題があった。
本発明は、上記課題に鑑みて為されたものであって、優れた断熱性能と強度とを兼ね備えた断熱材及びその製造方法を提供することをその目的の一つとする。
上記課題を解決するための本発明の一実施形態に係る断熱材の製造方法は、平均粒径50nm以下のシリカ微粒子と補強繊維とを含む乾式加圧成形体を相対湿度70%以上で養生することを特徴とする。本発明によれば、優れた断熱性能と強度とを兼ね備えた断熱材の製造方法を提供することができる。
また、前記乾式加圧成形体は、結合剤を含まないこととしてもよい。また、前記乾式加圧成形体は、50〜98質量%の前記シリカ微粒子と、2〜20質量%の前記補強繊維と、を含むこととしてもよい。
また、前記乾式加圧成形体は、アルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含むこととしてもよい。この場合、前記乾式加圧成形体は、前記シリカ微粒子と前記補強繊維とを含む断熱材原料100重量部に対して、0.1〜10重量部の前記アルカリ土類金属水酸化物及び前記アルカリ金属水酸化物の一方又は両方を含むこととしてもよい。
上記課題を解決するための本発明の一実施形態に係る断熱材は、前記いずれかの製造方法により製造されたことを特徴とする。本発明によれば、優れた断熱性能と強度とを兼ね備えた断熱材を提供することができる。
上記課題を解決するための本発明の一実施形態に係る断熱材は、平均粒径50nm以下のシリカ微粒子と補強繊維とを含み、嵩密度が190〜600kg/mであり、圧縮強度が0.65MPa以上であることを特徴とする。本発明によれば、優れた断熱性能と強度とを兼ね備えた断熱材を提供することができる。
また、前記断熱材は、結合剤を含まないこととしてもよい。また、前記断熱材は、50〜98質量%の前記シリカ微粒子と、2〜20質量%の前記補強繊維と、を含むこととしてもよい。
また、前記断熱材は、前記シリカ微粒子及び前記補強繊維以外に、アルカリ土類金属及びアルカリ金属の一方又は両方を含むこととしてもよい。この場合、前記断熱材は、前記シリカ微粒子と前記補強繊維とを含む断熱材原料100重量部に対して、0.1〜10重量部の前記アルカリ土類金属及び前記アルカリ金属の一方又は両方を含むこととしてもよい。また、前記断熱材は、600℃における熱伝導率が0.05W/(m・K)以下であることとしてもよい。
本発明によれば、優れた断熱性能と強度とを兼ね備えた断熱材及びその製造方法を提供することができる。
本発明の一実施形態に係る断熱材の製造方法の一例に含まれる主な工程を示す説明図である。 本発明の一実施形態に係る断熱材の製造方法における養生によって断熱材の強度が向上する機構についての説明図である。 本発明の一実施形態に係る実施例において、養生条件を変えて断熱材の圧縮強度を検討した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において得られた断熱材の電子顕微鏡写真の一例を示す説明図である。 本発明の一実施形態に係る実施例において得られた断熱材のX線回折結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において得られた断熱材について、X線回折におけるピーク値と圧縮強度との相関関係を示す説明図である。 本発明の一実施形態に係る実施例において、水酸化カルシウムの添加量を変えて断熱材の圧縮強度を検討した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において、養生時間を変えて断熱材の圧縮強度を検討した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において、養生温度を変えて断熱材の圧縮強度を検討した結果の一例を示す説明図である。 本発明の一実施形態に係る実施例において得られた断熱材の電子顕微鏡写真の他の例を示す説明図である。 本発明の一実施形態に係る実施例において、アルカリ土類金属水酸化物の種類を変えて断熱材の圧縮強度を検討した結果の一例を示す説明図である。
以下に、本発明の一実施形態について説明する。なお、本発明は、本実施形態に限られるものではない。
まず、本実施形態に係る断熱材の製造方法(以下、「本方法」という。)について説明する。本方法は、平均粒径50nm以下のシリカ微粒子と補強繊維とを含む乾式加圧成形体を相対湿度70%以上で養生する、断熱材の製造方法である。
図1は、本方法の一例に含まれる主な工程を示す説明図である。図1に示す例において、本方法は、乾式加圧成形体を準備する準備工程S1と、当該乾式加圧成形体を高湿養生する養生工程S2と、養生後の当該乾式加圧成形体を乾燥させる乾燥工程S3と、を含む。
準備工程S1においては、シリカ微粒子と補強繊維とを含む断熱材原料を準備する。シリカ微粒子は、平均粒径が50nm以下のものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。
すなわち、シリカ微粒子としては、例えば、気相法で製造された乾式シリカ微粒子(無水シリカ微粒子)や湿式法で製造された湿式シリカ微粒子を使用することができ、中でも乾式シリカ微粒子を好ましく使用することができる。具体的に、例えば、気相法で製造されたフュームドシリカ微粒子を好ましく使用することができ、中でも親水性フュームドシリカ微粒子を好ましく使用することができる。
シリカ微粒子の平均粒径は、より具体的には、例えば、5nm以上、50nm以下とすることができる。シリカ微粒子のシリカ(SiO)含有量は、例えば、95重量%以上であることが好ましい。シリカ微粒子の25℃における熱伝導率は、例えば、0.01W/(m・K)以下であることが好ましい。シリカ微粒子のBET法による比表面積は、例えば、50m/g以上であることが好ましく、より具体的には、例えば、50m/g以上、400m/g以下とすることができ、より好ましくは100m/g以上、300m/g以下とすることができる。
補強繊維としては、断熱材を補強できるものであれば特に限られず、無機繊維及び有機繊維の一方又は両方を使用することができる。
無機繊維としては、補強繊維として使用できるものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。具体的に、無機繊維としては、例えば、シリカ−アルミナ繊維、シリカ繊維、アルミナ繊維、ジルコニア繊維、ケイ酸アルカリ土類金属塩繊維、ガラス繊維、ロックウール、バサルト繊維からなる群より選択される1種以上を使用することができる。なお、ケイ酸アルカリ土類金属塩繊維は、生体溶解性の無機繊維である。すなわち、無機繊維としては、非生体溶解性無機繊維及び生体溶解性無機繊維の一方又は両方を使用することができる。
無機繊維の400℃における熱伝導率は、例えば、0.08W/(m・K)以下であることが好ましく、0.04W/(m・K)以下であることがより好ましい。このような低熱伝導性の無機繊維としては、例えば、シリカ−アルミナ繊維やシリカ繊維等のシリカ系繊維を好ましく使用することができる。
無機繊維の繊維長は、例えば、1mm以上、10mm以下であることが好ましく、1mm以上、7mm以下であることがより好ましく、3mm以上、5mm以下であることが特に好ましい。繊維長が1mm未満である場合には、無機繊維を適切に配向させることができないことがあり、その結果、断熱材の機械的強度が不足することがある。繊維長が10mmを超える場合には、成形時の粉体流動性が損なわれて成形性が低下すると共に、密度ムラにより加工性が低下することがある。
無機繊維の平均繊維径は、例えば、15μm以下であることが好ましく、より具体的には、例えば、5μm以上、15μm以下であることが好ましい。平均繊維径が15μmを超える場合には、無機繊維が折れやすくなることがあり、その結果、断熱材の強度が不足することがある。したがって、無機繊維としては、例えば、繊維長が1mm以上、10mm以下であって、且つ平均繊維径が15μm以下であるものを好ましく使用することができる。
有機繊維としては、補強繊維として使用できるものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。具体的に、有機繊維としては、例えば、アラミド繊維、ポリエチレン繊維、ポリプロピレン繊維、ポリオレフィン繊維からなる群より選択される1種以上を使用することができる。
有機繊維の繊維長は、例えば、1mm以上、10mm以下であることが好ましく、2mm以上、7mm以下であることがより好ましく、3mm以上、5mm以下であることが特に好ましい。繊維長が1mm未満である場合には、有機繊維を適切に配向させることができないことがあり、その結果、断熱材の機械的強度が不足することがある。繊維長が10mmを超える場合には、成形時の粉体流動性が損なわれて成形性が低下すると共に、密度ムラにより加工性が低下することがある。
有機繊維の平均繊維径は、例えば、15μm以下であることが好ましく、より具体的には、例えば、5μm以上、15μm以下であることが好ましい。平均繊維径が15μmを超える場合には、有機繊維が折れやすくなることがあり、その結果、断熱材の強度が不足することがある。したがって、有機繊維としては、例えば、繊維長が1mm以上、10mm以下であって、且つ平均繊維径が15μm以下であるものを好ましく使用することができる。
乾式加圧成形体は、上述したようなシリカ微粒子と補強繊維とを乾式で混合することにより乾式混合物を作製し、次いで、当該乾式混合物を乾式で加圧成形することにより作製することができる。
具体的に、例えば、シリカ微粒子の乾燥粉体と補強繊維の乾燥粉体とを含む断熱材原料を、所定の混合装置を使用して乾式混合し、次いで、得られた乾式混合物を所定の成形型に充填し乾式プレス成形することにより、乾式加圧成形体を作製する。なお、混合及び成形を乾式で行うことにより、湿式の場合に比べて、原料や成形体の管理が容易であり、また、製造に要する時間を効果的に短縮することができる。
乾式加圧成形体は、例えば、50〜98質量%のシリカ微粒子と2〜20質量%の補強繊維とを含むことができ、65〜80質量%のシリカ微粒子と5〜18質量%の補強繊維とを含むことができる。補強繊維の含有量が2質量%未満の場合には、断熱材の強度が不足することがある。補強繊維の含有量が20質量%を超える場合には、成形時の粉体流動性が損なわれて成形性が低下すると共に、密度ムラにより加工性が低下することがある。
また、乾式加圧成形体は、シリカ微粒子及び補強繊維のみを含む場合には、例えば、80〜98質量%のシリカ微粒子と2〜20質量%の補強繊維とを合計が100質量%となるように含むことができ、好ましくは82〜98質量%のシリカ微粒子と2〜18質量%の補強繊維とを合計が100質量%となるように含むことができ、より好ましくは85〜97質量%のシリカ微粒子と3〜15質量%の補強繊維とを合計が100質量%となるように含むことができる。補強繊維の含有量が2質量%未満の場合には、断熱材の強度が不足することがある。補強繊維の含有量が20質量%を超える場合には、成形時の粉体流動性が損なわれて成形性が低下すると共に、密度ムラにより加工性が低下することがある。
また、乾式加圧成形体は、結合剤を含まないものとすることができる。すなわち、本方法においては、後述する養生処理によって断熱材の強度を効果的に向上させることができるため、結合剤を使用する必要がない。この場合、乾式加圧成形体は、水ガラス接着剤等の無機結合剤や、樹脂等の有機結合剤といった、従来使用されていた結合剤を実質的に含有しない。したがって、結合剤の使用に伴う従来の問題を確実に回避することができる。また、この場合、乾式加圧成形は、特に制限はないが、例えば、5℃以上、60℃以下の温度で行うことができる。
また、乾式加圧成形体は、アルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含むこともできる。アルカリ土類金属水酸化物は、強塩基として使用することができるものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。具体的に、アルカリ土類金属水酸化物としては、例えば、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム及び水酸化バリウムからなる群より選択される1種以上を使用することができ、中でも水酸化カルシウムを好ましく使用することができる。
アルカリ金属水酸化物は、強塩基として使用することができるものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。具体的に、アルカリ金属水酸化物としては、例えば、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群より選択される1種以上を使用することができる。
乾式加圧成形体は、例えば、シリカ微粒子と補強繊維とを含む断熱材原料100重量部に対して、0.1〜10重量部のアルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含むことができる。すなわち、この場合、乾式加圧成形体は、0.1〜10重量部のアルカリ土類金属水酸化物又はアルカリ金属水酸化物を含むことができ、また、アルカリ土類金属水酸化物とアルカリ金属水酸化物とを合計で0.2〜20重量部含むこともできる。アルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方の含有量は、さらに、例えば、1〜7重量部とすることができ、2〜5重量部とすることもできる。
そして、乾式加圧成形体は、シリカ微粒子の乾燥粉体と、補強繊維の乾燥粉体と、アルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方の乾燥粉体と、を乾式混合し、次いで、得られた乾式混合物を乾式加圧成形することにより作製することができる。
また、乾式加圧成形体は、さらに他の成分を含むこともできる。すなわち、乾式加圧成形体は、例えば、輻射散乱材を含むこともできる。輻射散乱材は、輻射による伝熱を低減することのできるものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。
具体的に、輻射散乱材としては、例えば、炭化珪素、ジルコニア及びチタニアからなる群より選択される1種以上を使用することができる。また、輻射散乱材は、例えば、平均粒径が50μm以下、より具体的には1〜50μmであることが好ましく、また、1μm以上の波長の光に対する比屈折率が1.25以上であることが好ましい。
輻射散乱材を使用する場合、乾式加圧成形体は、例えば、50〜93質量%のシリカ微粒子と、2〜20質量%の補強繊維と、5〜40質量%の輻射散乱材と、を含むことができ、より好ましくは65〜80質量%のシリカ微粒子と、5〜18質量%の補強繊維と、15〜30質量%の輻射散乱材と、を含むことができる。
続く養生工程S2においては、準備工程S1で準備された乾式加圧成形体を、相対湿度70%以上という高湿度で養生する。養生における相対湿度は、例えば、75%以上とすることができ、80%以上とすることができ、85%以上とすることもできる。さらに、養生は、85%より高い相対湿度で行うこともできる。
養生は、乾式加圧成形体を上述のような高湿度の環境下で所定時間保持することにより行う。具体的に、例えば、温度及び湿度が所定値に設定された恒温恒湿器の内部や、到達温度が所定値に設定されたオートクレーブの内部に乾式加圧成形体を載置し、所定時間放置することにより、当該乾式加圧成形体を高湿養生することができる。
養生を行う温度は、当該養生の効果が得られる範囲で任意に設定することができる。具体的に、養生温度は、例えば、40℃以上とすることができ、60℃以上とすることが好ましく、80℃以上とすることがより好ましく、90℃以上とすることが特に好ましい。養生温度を高めることによって、効果が得られるまでの養生時間を短縮することができる。養生温度の上限は特に限られないが、例えば、95℃以下とすることができる。なお、乾式加圧成形体がアルカリ土類金属水酸化物を含有する場合、養生温度は、100℃以下又は100℃未満とすることが好ましいことがある。また、養生温度は、例えば、40℃未満とすることもできる。
また、養生は、加圧条件下で行うこともできる。この場合、養生温度は、養生の効果が得られる範囲で任意に設定することができる。具体的に、加圧条件下での養生温度は、例えば、100〜200℃とすることができ、120〜170℃とすることもできる。こうした加圧条件下で養生を行うことにより、効果が得られるまでの養生時間を短縮することが期待される。
養生を行う時間は、当該養生の効果が得られる範囲で任意に設定することができる。具体的に、養生時間は、例えば、2時間以上とすることができ、6時間以上とすることが好ましい。養生時間を長くすることによって、養生の効果を高めることができる。
より具体的に、乾式加圧成形体がアルカリ土類金属水酸化物及びアルカリ金属水酸化物のいずれも含まない場合には、養生時間は、長いことが好ましい。また、乾式加圧成形体が比較的少ない量(例えば、シリカ微粒子と補強繊維とを含む断熱材原料100重量部に対して、0.1〜2重量部)のアルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含む場合には、養生時間は、6時間以上、100時間以下とすることが好ましい。また、乾式加圧成形体が比較的多い量(例えば、シリカ微粒子と補強繊維とを含む断熱材原料100重量部に対して、2重量部を超え、20重量部以下)のアルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含む場合には、養生時間は、12時間以下とすることが好ましく、6時間以下とすることがより好ましい。
なお、養生の条件は、上述の例に限られず、当該養生の効果が得られる範囲で任意に設定することができる。すなわち、養生条件は、例えば、本方法により製造される断熱材の強度(例えば、圧縮強度)や熱伝導率が、後述するような所定の範囲となるよう適宜調節することができる。また、例えば、養生時間は、上記の例に限られず、温度や湿度等の他の養生条件に応じて適宜決定することができる。
続く乾燥工程S3においては、養生工程S2において養生された乾式加圧成形体を乾燥させる。すなわち、乾燥工程S3においては、養生時に乾式加圧成形体に浸み込んだ、蒸気に由来する水分を除去する。乾燥の方法は、乾式加圧成形体から不要な水分を除去できる方法であれば特に限られない。すなわち、例えば、乾式加圧成形体を100℃以上の温度で保持することにより、当該乾式加圧成形体を効率よく乾燥させることができる。
本方法においては、こうして、最終的に、養生及び乾燥後の乾式加圧成形体を、断熱材として得る。本方法によれば、優れた断熱性能と強度とを兼ね備えた断熱材を製造することができる。すなわち、本方法によれば、密度を高めることなく、断熱材の強度を効果的に向上させることができる。また、本方法によれば、結合剤を使用することなく、十分な強度を備えた断熱材を製造することができる。
図2は、本方法における高湿養生によって断熱材の強度が向上する機構についての説明図である。ここでは、図2に示すように、乾式加圧成形体に含まれるシリカ微粒子のうち、隣接する2つのシリカ微粒子P1,P2に着目して説明する。高湿養生によって断熱材の強度が向上する機構としては、次のようなことが考えられる。
すなわち、まず、養生前の乾式加圧成形体に含まれるシリカ微粒子P1,P2間には、図2Aに示すように、極めて微細な空隙V(例えば、数nm程度の超微細孔)が形成されている。次に、この乾式加圧成形体を高湿度雰囲気下に保持する養生を開始すると、図2Bに示すように、水蒸気の毛管凝縮によって、シリカ微粒子P1,P2間に凝縮した水を主成分とする液体からなる架橋構造Bが形成される。
さらに、乾式加圧成形体を高湿度雰囲気下で保持し続けると、図2Cに矢印で示すように、シリカ微粒子P1,P2からシリカが溶出し、当該シリカ微粒子P1,P2間に当該溶出したシリカを含む架橋構造Bが形成される。なお、シリカの溶出反応としては、次のようなケイ酸塩反応が考えられる:「SiO+2HO→HSiO→H+HSiO 」。
そして、養生後の乾式加圧成形体を乾燥することにより、シリカ微粒子P1,P2間に形成された架橋構造Bが硬化される。このような架橋構造Bの形成によって断熱材の強度を効果的に高めることができる。なお、シリカ微粒子と補強繊維との間にも同様の架橋構造が形成される。
また、乾式加圧成形体がアルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含有する場合には、上述のような強度向上を促進することができ、養生時間を効果的に短縮することができる。これは、アルカリ土類金属水酸化物又はアルカリ金属水酸化物の存在により、乾式加圧成形体内部において、シリカ微粒子P1,P2からのシリカ溶出に適した塩基性の高い環境が形成されるためと考えられる。
すなわち、アルカリ土類金属水酸化物又はアルカリ金属水酸化物といった強塩基の使用によって、養生におけるシリカ微粒子P1,P2からのシリカの溶出が促進され、その結果、短時間で断熱材の強度向上を達成できると考えられる。なお、この場合、シリカ微粒子P1,P2間には、シリカに加えてアルカリ土類金属及びアルカリ金属の一方又は両方を含有する架橋構造Bが形成されることとなる。
本実施形態に係る断熱材(以下、「本断熱材」という。)は、このような本方法により好ましく製造することができる。本断熱材は、比較的低い密度で、十分な強度を備えることができる。すなわち、本断熱材は、例えば、平均粒径50nm以下のシリカ微粒子と補強繊維とを含み、嵩密度が190〜600kg/mであり、圧縮強度が0.65MPa以上である断熱材とすることができる。
本断熱材の嵩密度は、例えば、190〜450kg/mとすることもでき、190〜300kg/mとすることもできる。本断熱材の圧縮強度は、例えば、0.7MPa以上とすることもでき、0.75MPa以上とすることもできる。なお、圧縮強度は、所定の圧縮試験装置、例えば、市販の万能試験装置(テンシロン RTC−1150A、株式会社オリエンテック)を用いて測定することができる。具体的に、例えば、寸法30mm×30mm×15mmに加工した試験片のプレス面(30mm×30mm)に対して垂直方向に荷重を負荷し、当該試験片が破壊したときの荷重(MPa)を圧縮強度として得る。この圧縮強度は、本断熱材が板状である場合、その厚さ方向における圧縮強度(すなわち、長手方向に延びる面積の最も大きな一対の面を圧縮した時の破断強度)として評価することができる。
本断熱材は、例えば、50〜98質量%のシリカ微粒子と2〜20質量%の補強繊維とを含むことができ、65〜80質量%のシリカ微粒子と5〜18質量%の補強繊維とを含むことができる。補強繊維の含有量が2質量%未満の場合には、本断熱材の強度が不足することがある。補強繊維の含有量が20質量%を超える場合には、成形時の粉体流動性が損なわれて成形性が低下すると共に、密度ムラにより加工性が低下することがある。
また、本断熱材は、シリカ微粒子及び補強繊維のみを含む場合には、例えば、80〜98質量%のシリカ微粒子と2〜20質量%の補強繊維とを合計が100質量%となるように含むことができ、好ましくは82〜98質量%のシリカ微粒子と2〜18質量%の補強繊維とを合計が100質量%となるように含むことができ、より好ましくは85〜97質量%のシリカ微粒子と3〜15質量%の補強繊維とを合計が100質量%となるように含むことができる。補強繊維の含有量が2質量%未満の場合には、断熱材の強度が不足することがある。補強繊維の含有量が20質量%を超える場合には、成形時の粉体流動性が損なわれて成形性が低下すると共に、密度ムラにより加工性が低下することがある。
また、本断熱材は、結合剤を含まないものとすることができる。すなわち、本断熱材は、上述のとおり、養生によって十分な強度を達成できるため、結合剤を使用する必要がない。この場合、本断熱材は、水ガラス接着剤等の無機結合剤や、樹脂等の有機結合剤といった、従来使用されていた結合剤を実質的に含有しない。したがって、結合剤の使用に伴う従来の問題を確実に回避することができる。
また、本断熱材は、シリカ微粒子及び補強繊維以外に、アルカリ土類金属及びアルカリ金属の一方又は両方を含むことができる。すなわち、本断熱材は、養生で使用されたアルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方に由来する金属を含むことができる。
具体的に、本断熱材は、例えば、カルシウム、マグネシウム、ストロンチウム及びバリウムからなる群より選択される1種以上を含むことができ、中でもカルシウムを含むことが好ましい。また、本断熱材は、例えば、ナトリウム、カリウム及びリチウムからなる群より選択される1種以上を含むことができる。
本断熱材は、例えば、シリカ微粒子と補強繊維とを含む断熱材原料100重量部に対して、0.1〜10重量部のアルカリ土類金属及びアルカリ金属の一方又は両方を含むことができる。すなわち、この場合、本断熱材は、例えば、0.1〜10重量部のアルカリ土類金属又はアルカリ金属を含むことができ、また、アルカリ土類金属とアルカリ金属とを合計で0.2〜20重量部含むことができる。アルカリ土類金属及びアルカリ金属の一方又は両方の含有量は、さらに、例えば、1〜7重量部とすることができ、2〜5重量部とすることもできる。
また、本断熱材は、さらに他の成分を含むこともできる。すなわち、本断熱材は、例えば、輻射散乱材を含むこともできる。輻射散乱材は、輻射による伝熱を低減することのできるものであれば特に限られず、任意の1種を単独で又は2種以上を任意に組み合わせて使用することができる。
具体的に、輻射散乱材としては、例えば、炭化珪素、ジルコニア及びチタニアからなる群より選択される1種以上を使用することができる。また、輻射散乱材は、例えば、平均粒径が50μm以下、より具体的には1〜50μmであることが好ましく、また、1μm以上の波長の光に対する比屈折率が1.25以上であることが好ましい。
輻射散乱材を使用する場合、本断熱材は、例えば、50〜93質量%のシリカ微粒子と、2〜20質量%の補強繊維と、5〜40質量%の輻射散乱材と、を含むことができ、より好ましくは65〜80質量%のシリカ微粒子と、5〜18質量%の補強繊維と、15〜30質量%の輻射散乱材と、を含むことができる。
また、本断熱材は、優れた断熱性能を備えることができる。すなわち、本断熱材は、従来のように密度を高めることなく十分な強度を達成しているため、固体伝熱の増加による断熱性能の低下を効果的に回避することができている。具体的に、本断熱材は、600℃における熱伝導率が0.05W/(m・K)以下である断熱材とすることができる。本断熱材の600℃における熱伝導率は、好ましくは0.04W/(m・K)以下とすることもできる。
なお、本断熱材は、平均粒径50nm以下のシリカ微粒子の一次粒子が、分子間力等により会合して二次粒子を形成し、当該二次粒子が補強繊維間に散在した構造を有している。そして、本断熱材は、シリカ微粒子の使用によって、その内部に、空気分子の平均自由行程よりも小さいナノポア構造を保持することで、低温域から高温域までの幅広い温度範囲で優れた断熱性能を発揮することができる。
また、本断熱材は、高湿養生で形成された特有の構造を有するものとすることができる。すなわち、本断熱材は、例えば、平均粒径50nm以下のシリカ微粒子と補強繊維とを含み、当該シリカ微粒子間にシリカを含む架橋構造が形成されている断熱材とすることができる。この架橋構造は、上述したように、水蒸気の毛管凝縮により形成され、シリカ微粒子から溶出したシリカを含むものである。
また、この架橋構造は、アルカリ土類金属及びアルカリ金属の一方又は両方を含むこともできる。すなわち、この場合、架橋構造は、上述したように、養生時に使用されたアルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方に由来する、アルカリ土類金属及びアルカリ金属の一方又は両方を含む。
また、本断熱材は、ケイ酸カルシウムを含むことができる。すなわち、例えば、本断熱材が、水酸化カルシウムを添加した高湿養生を経て製造された場合には、当該本断熱材の内部において、シリカ微粒子から溶出したシリカ成分と当該水酸化カルシウムとの化学反応により、ケイ酸カルシウムが生成され得る。このため、本断熱材は、シリカ微粒子間に形成された架橋構造又はその他の部分に、高湿養生により生成されたケイ酸カルシウムを含み得る。
このように、本断熱材は、比較的低い密度で、優れた断熱性能と高い強度を兼ね備えることができる。したがって、本断熱材は、例えば、加工を要する一般工業炉用断熱材や、燃料電池の改質器用の断熱材として好ましく利用することができる。
次に、本実施形態に係る具体的な実施例について説明する。
[断熱材の製造]平均1次粒子径が約13nmで、熱伝導率(25℃)が0.01W/(m・K)の無水シリカ微粒子(親水性フュームドシリカ微粒子)と、平均繊維径10μm、平均繊維長3mmの耐熱性ガラス繊維と、を含む乾式加圧成形体を作製した。
すなわち、90質量%のシリカ微粒子及び10質量%のガラス繊維を含む断熱材原料100重量部と、0、1、3、5又は10重量部の水酸化カルシウム(試薬1級、和光純薬工業株式会社)と、を混合装置に投入し、乾式混合した。
そして、得られた乾式混合粉体から、乾式プレス成形により、100mm×150mm×厚さ15mmの板状の乾式成形体を作製した。具体的に、まず、乾式混合粉体を、所定の脱気機構が付属した成形型に適量充填した。そして、所望の嵩密度が得られるように、乾式プレス成形を行った。すなわち、乾式プレス成形においては、乾式成形体の嵩密度が250kg/mとなるようにプレス圧を調節した。成形後は、乾式加圧成形体を速やかに成形型から取り出した。
次に、乾式成形体を、温度80℃、相対湿度90%の恒温恒湿器内で3〜400時間保持することにより、又は温度170℃のオートクレーブ内で6時間保持することにより、高湿養生を行った。そして、養生後の乾式成形体を105℃で乾燥し、断熱材を得た。
[圧縮強度の評価]各断熱材の圧縮強度を、万能試験装置(テンシロン RTC−1150A、株式会社オリエンテック)を用いて測定した。すなわち、寸法30mm×30mm×15mmに加工した試験片のプレス面(30mm×30mm)に対して垂直方向に荷重を負荷し、当該試験片が破壊したときの荷重を圧縮強度(MPa)とした。
図3には、各断熱材の製造条件と圧縮強度とを対応させて示す。養生された断熱材の圧縮強度は、養生されていない断熱材の圧縮強度(0.25MPa)に比べて、顕著に増加した。
すなわち、水酸化カルシウムを添加せず(0重量部)、80℃、90RH%で養生した場合には、養生時間が増加するに従って圧縮強度が向上した。具体的に、圧縮強度は、3時間の養生により0.40MPaまで増加し、400時間の養生により1.08MPaに達した。
また、水酸化カルシウムを添加せず、オートクレーブで養生した場合(0重量部、A/C)には、6時間養生された断熱材の圧縮強度は、0.97MPaであった。なお、図3には示していないが、水酸化カルシウムを添加せず、120℃又は200℃のオートクレーブで養生した場合にも、6時間の養生によって、同様の圧縮強度の増加が確認された。
また、水酸化カルシウムを添加した場合には、水酸化カルシウムを添加しない場合に比べて、より短時間で圧縮強度を高めることができた。また、水酸化カルシウムの添加量の増加に伴って、より短時間で圧縮強度を高めることができる傾向が確認された。
すなわち、1重量部の水酸化カルシウムを添加して、80℃、90RH%で養生した場合には、圧縮強度は、3時間の養生により0.83MPaまで増加し、48時間の養生により1.13MPaに達した。
3重量部の水酸化カルシウムを添加して、80℃、90RH%で養生した場合には、圧縮強度は、3時間の養生により0.89MPaまで増加し、6時間の養生により1.03MPaに達した。
5重量部の水酸化カルシウムを添加して、80℃、90RH%で養生した場合には、圧縮強度は、3時間の養生により0.91MPaまで増加し、6時間の養生により1.08MPaに達した。
10重量部の水酸化カルシウムを添加して、80℃、90RH%で養生した場合には、圧縮強度は、3時間の養生により0.93MPaに達した。
一方、水酸化カルシウムを添加して、オートクレーブで養生した場合(1〜10重量部、A/C)には、80℃、90RH%で養生した場合に比べて、圧縮強度の増加の程度は低かった。
[電子顕微鏡観察]図4には、水酸化カルシウムを添加せず且つ養生することなく製造された断熱材(図4A及びB)と、3重量部の水酸化カルシウムを添加し且つ80℃、90RH%で24時間養生して製造された断熱材(図4C及びD)と、のそれぞれを走査型電子顕微鏡(SEM)で観察した結果の一例を示す。
図4Aに示すように、水酸化カルシウムを添加せず且つ養生していない断熱材の表面には、凹凸が明確に観察されたのに対し、図4Cに示すように、水酸化カルシウムを添加し且つ養生した断熱材の表面は、比較的平坦となっていた。これは、図4Aに示す断熱材においては、各々のシリカ微粒子が単に凝集しているだけであるのに対し、図4Cに示す断熱材においては、シリカ微粒子から溶出したシリカ成分によってシリカ微粒子間に架橋構造が形成され、その結果、内部構造が緻密化されたためと考えられた。
また、図4Bに示すように、水酸化カルシウムを添加せず且つ養生していない断熱材の表面においては、シリカ微粒子の境界がぼやけて観察されたのに対し、図4Dに示すように、水酸化カルシウムを添加し且つ養生した断熱材の表面においては、シリカ微粒子の境界が明瞭に観察された。これは、図4Dに示す断熱材においては、シリカ微粒子から溶出したシリカ成分によってシリカ微粒子間に架橋構造が形成された結果、導電性が高められ、電子線をより高い感度で検出できたためと考えられた。
[X線回折]水酸化カルシウムが3、5又は10重量部添加され、80℃、90RH%で0〜24時間養生され又はオートクレーブで6時間養生された断熱材の各々について、X線回折(XRD)により、養生時間の増加に伴う、水酸化カルシウムの含有量及びケイ酸カルシウムの形成量の変化を解析した。
図5には、水酸化カルシウムを3重量部添加して製造された断熱材のXRD測定結果の一例を示す。図5A,Bは、養生していない断熱材、図5C,Dは24時間養生した断熱材の測定結果をそれぞれ示す。図5A〜Dに示すように、養生によって、水酸化カルシウム(Ca(OH))のピークが消失し、新たにケイ酸カルシウム(CSH)のピークが現れた。
図6には、各断熱材について、養生時間と、水酸化カルシウム(Ca(OH))及びケイ酸カルシウム(CSH)のXRDピーク値と、圧縮強度と、を対応付けて示す。図6Aは水酸化カルシウムが3重量部添加された断熱材、図6Bは水酸化カルシウムが5重量部添加された断熱材、図6Cは水酸化カルシウムが10重量部添加された断熱材についての結果をそれぞれ示す。
図6A〜Cに示すように、養生時間の増加に伴って、水酸化カルシウムの含有量が減少し、これに伴い圧縮強度が増加する傾向が見られた。すなわち、水酸化カルシウムの消費量が増加するにつれて、断熱材の圧縮強度が増加する傾向が見られた。
また、養生時間の増加に伴って、ケイ酸カルシウムの新たな生成により、ケイ酸カルシウムの含有量が増加した。ただし、水酸化カルシウムが消費し尽くされた後は、ケイ酸カルシウムの含有量は増加するものの、圧縮強度は低下する傾向が見られた。
すなわち、ケイ酸カルシウムの含有量と、断熱材の圧縮強度の増加と、の間には必ずしも相関は認められず、むしろケイ酸カルシウムの含有量が増加するにつれて圧縮強度が低下する傾向が見られた。
[断熱材の製造]上述の実施例1で使用したシリカ微粒子及びガラス繊維に加え、平均粒子径3μmの炭化珪素をさらに含む乾式加圧成形体を作製した。
すなわち、75質量%のシリカ微粒子、5質量%のガラス繊維及び20質量%の炭化珪素を含む断熱材原料100重量部と、0、3、5又は10重量部の水酸化カルシウムと、を混合装置に投入し、乾式混合した。
得られた乾式混合粉体から、乾式プレス成形により、100mm×150mm×厚さ15mmの板状の乾式成形体を作製した。乾式プレス成形においては、乾式成形体の嵩密度が240、260、280又は300kg/mとなるようにプレス圧を調節した。
次に、水酸化カルシウムを含む乾式成形体を、温度80℃、相対湿度90%の恒温恒湿器内で8時間保持することにより高湿養生を行った。そして、養生後の乾式成形体を105℃で乾燥し、断熱材を得た。また、水酸化カルシウムを含まない乾式加圧成形体については養生を行わなかった。
[圧縮強度及び熱伝導率の評価]各断熱材の圧縮強度を上述の実施例1と同様に測定した。また、各断熱材の200、400又は600℃における熱伝導率を周期加熱法にて測定した。すなわち、試験体内に温度波を伝播させ、その伝播時間から熱拡散率を測定した。そして、この熱拡散率と、別途測定した比熱及び密度と、から熱伝導率を算出した。なお、温度波としては、温度振幅が約4℃、周期が約1時間である温度の波を使用した。また、試験体内の二つの地点を温度波が通過するのに要する時間を伝播時間とした。
図7には、水酸化カルシウムの添加量、嵩密度、圧縮強度及び熱伝導率を対応させて示す。なお、嵩密度は、重量と体積から算出した。すなわち、試験体の実寸法から体積を算出し、当該試験体の重量を当該体積で除した値を当該試験体の嵩密度とした。
図7に示すように、水酸化カルシウムを添加した養生により、断熱材の圧縮強度が増加することが示された。また、嵩密度を一定にした場合の圧縮強度は、水酸化カルシウムの添加量が3重量部である場合に最も高かった。また、養生の有無によって熱伝導率に大きな変化は見られなかった。
[断熱材の製造]上述の実施例2と同様に、シリカ微粒子と、ガラス繊維と、炭化珪素と、を含む乾式加圧成形体を作製した。すなわち、75質量%のシリカ微粒子、5質量%のガラス繊維及び20質量%の炭化珪素を含む断熱材原料100重量部と、0又は3重量部の水酸化カルシウムと、を混合装置に投入し、乾式混合した。
得られた乾式混合粉体から、乾式プレス成形により、100mm×150mm×厚さ15mmの板状の乾式成形体を作製した。乾式プレス成形においては、乾式成形体の嵩密度が240、260、280又は300kg/mとなるようにプレス圧を調節した。
次に、水酸化カルシウムを含有する乾式成形体を、温度80℃、相対湿度90%の恒温恒湿器内で0〜24時間保持することにより高湿養生を行った。そして、養生後の乾式成形体を105℃で乾燥し、断熱材を得た。また、水酸化カルシウムを含まない乾式加圧成形体については養生を行わなかった。
[圧縮強度の評価]各断熱材の圧縮強度を上述の実施例1と同様に測定した。図8には、水酸化カルシウムの添加量、養生時間、嵩密度及び圧縮強度を対応させて示す。
図8に示すように、養生した断熱材の圧縮強度(水酸化カルシウム3重量部添加、養生1〜24時間)は、養生しない場合(水酸化カルシウム添加なし又は3重量部添加、養生0時間)に比べて、顕著に増加した。
また、3重量部の水酸化カルシウムを添加した場合には、養生時間を増加させることで、圧縮強度が増加する傾向が見られた。なお、3重量部の水酸化カルシウムを添加し且つ養生しない場合には、水酸化カルシウムを添加せず養生しない場合よりも圧縮強度が低下した。
[断熱材の製造]上述の実施例2と同様に、シリカ微粒子と、ガラス繊維と、炭化珪素と、を含む乾式加圧成形体を作製した。すなわち、75質量%のシリカ微粒子、5質量%のガラス繊維及び20質量%の炭化珪素を含む断熱材原料100重量部と、3重量部の水酸化カルシウムと、を混合装置に投入し、乾式混合した。
得られた乾式混合粉体から、乾式プレス成形により、100mm×150mm×厚さ15mmの板状の乾式成形体を作製した。乾式プレス成形においては、乾式成形体の嵩密度が240、260又は280kg/mとなるようにプレス圧を調節した。
次に、乾式成形体を、温度40、60又は80℃、相対湿度90%の恒温恒湿器内で24時間保持することにより高湿養生を行った。そして、養生後の乾式成形体を105℃で乾燥し、断熱材を得た。また、水酸化カルシウムを添加せず且つ養生をすることなく製造された断熱材も準備した。
[圧縮強度の評価]各断熱材の圧縮強度を上述の実施例1と同様に測定した。図9には、養生温度、嵩密度及び圧縮強度を対応させて示す。図9に示すように、40℃以上の温度で養生することにより、圧縮強度が顕著に増加した。また、養生温度が高いほど、圧縮強度はより顕著に増加した。
[電子顕微鏡観察]図10には、水酸化カルシウムを添加せず養生することにより製造された断熱材(図10A)と、3重量部の水酸化カルシウムを添加し且つ40℃、90RH%で24時間養生することにより製造された断熱材(図10B)と、のそれぞれを走査型電子顕微鏡で観察した結果の一例を示す。
図10A及びBに示すように、水酸化カルシウムを添加せず養生した断熱材の表面(図10A)に比べて、水酸化カルシウムを添加して養生した断熱材の表面(図10B)は、より平滑化されていた。これは、図10Bに示す断熱材においては、水酸化カルシウムの添加によってシリカ微粒子からのシリカ成分の溶出が促進され、その結果、内部構造がより緻密化されたためと考えられた。
[断熱材の製造]上述の実施例2と同様に、シリカ微粒子と、ガラス繊維と、炭化珪素と、を含む乾式加圧成形体を作製した。すなわち、75質量%のシリカ微粒子、5質量%のガラス繊維及び20質量%の炭化珪素を含む断熱材原料100重量部と、0又は3重量部の水酸化カルシウム又は水酸化マグネシウムと、を混合装置に投入し、乾式混合した。
得られた乾式混合粉体から、乾式プレス成形により、100mm×150mm×厚さ15mmの板状の乾式成形体を作製した。乾式プレス成形においては、乾式成形体の嵩密度が240、260又は280kg/mとなるようにプレス圧を調節した。
次に、乾式成形体を、温度80℃、相対湿度90%の恒温恒湿器内で24時間保持することにより高湿養生を行った。そして、養生後の乾式成形体を105℃で乾燥し、断熱材を得た。また、水酸化物を添加せず且つ養生することなく製造された断熱材も準備した。
[圧縮強度の評価]各断熱材の圧縮強度を上述の実施例1と同様に測定した。図11には、添加した水酸化物の種類、嵩密度及び圧縮強度を対応させて示す。
図11に示すように、水酸化物を添加することなく養生することにより圧縮強度が顕著に増加し、水酸化カルシウムを添加して養生することにより、圧縮強度がより顕著に増加した。また、水酸化マグネシウムを添加して養生することによっても、水酸化物を添加せず且つ養生しない場合に比べて圧縮強度が増加した。
S1 準備工程、S2 養生工程、S3 乾燥工程。

Claims (5)

  1. 平均粒径50nm以下のシリカ微粒子50〜98質量%と、シリカ系繊維である補強繊維2〜20質量%とを含む乾式加圧成形体を相対湿度70%以上で養生する
    ことを特徴とする断熱材の製造方法。
  2. 前記シリカ微粒子間に前記シリカ微粒子の溶出により形成された架橋構造を有する前記断熱材を製造する
    ことを特徴とする請求項1に記載された断熱材の製造方法。
  3. 前記乾式加圧成形体は、アルカリ土類金属水酸化物及びアルカリ金属水酸化物の一方又は両方を含む
    ことを特徴とする請求項1又は2に記載された断熱材の製造方法。
  4. 前記乾式加圧成形体は、前記シリカ微粒子と前記補強繊維とを含む断熱材原料100重量部に対して、0.1〜10重量部の前記アルカリ土類金属水酸化物及び前記アルカリ金属水酸化物の一方又は両方を含む
    ことを特徴とする請求項3に記載された断熱材の製造方法。
  5. 請求項1乃至4のいずれかに記載された製造方法により製造された
    ことを特徴とする断熱材。
JP2009239326A 2009-10-16 2009-10-16 断熱材及びその製造方法 Active JP5591513B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009239326A JP5591513B2 (ja) 2009-10-16 2009-10-16 断熱材及びその製造方法
US12/903,531 US20110089363A1 (en) 2009-10-16 2010-10-13 Thermal insulation and method of producing the same
CN201010511714.0A CN102040367B (zh) 2009-10-16 2010-10-15 绝热材料及其制造方法
KR1020100100974A KR101608497B1 (ko) 2009-10-16 2010-10-15 단열재 및 그 제조방법
US15/192,194 US9982831B2 (en) 2009-10-16 2016-06-24 Thermal insulation and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009239326A JP5591513B2 (ja) 2009-10-16 2009-10-16 断熱材及びその製造方法

Publications (2)

Publication Number Publication Date
JP2011085216A JP2011085216A (ja) 2011-04-28
JP5591513B2 true JP5591513B2 (ja) 2014-09-17

Family

ID=43878596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009239326A Active JP5591513B2 (ja) 2009-10-16 2009-10-16 断熱材及びその製造方法

Country Status (4)

Country Link
US (2) US20110089363A1 (ja)
JP (1) JP5591513B2 (ja)
KR (1) KR101608497B1 (ja)
CN (1) CN102040367B (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591514B2 (ja) * 2009-10-16 2014-09-17 ニチアス株式会社 断熱材及びその製造方法
JP5372807B2 (ja) * 2010-02-26 2013-12-18 ニチアス株式会社 加熱装置
JP4860005B1 (ja) 2010-12-22 2012-01-25 ニチアス株式会社 断熱材及びその製造方法
JP5876668B2 (ja) * 2011-05-17 2016-03-02 旭化成ケミカルズ株式会社 成形体の製造方法及び切削体の製造方法
JP5775691B2 (ja) * 2010-12-27 2015-09-09 旭化成ケミカルズ株式会社 断熱材及び断熱材の製造方法
CN103044059B (zh) * 2011-10-11 2015-10-21 旭化成化学株式会社 成形体、包覆体、成形体的制造方法及切削体的制造方法
CN103044062B (zh) * 2011-10-11 2016-05-18 旭化成化学株式会社 成形体、包覆体、成形体的制造方法及切削体的制造方法
CN103043998B (zh) * 2011-10-11 2016-01-20 旭化成化学株式会社 绝热材料及其制造方法
CN103043996B (zh) * 2011-10-11 2015-11-25 旭化成化学株式会社 绝热材料及其制造方法
CN103043997B (zh) * 2011-10-11 2016-01-20 旭化成化学株式会社 粉体、成形体、包覆体及粉体的制造方法
CN103044060B (zh) * 2011-10-11 2015-05-20 旭化成化学株式会社 成形体、包覆体及成形体的制造方法
CN103043931B (zh) * 2011-10-11 2015-12-09 旭化成化学株式会社 粉体、成形体、包覆体及粉体的制造方法
DE102012205087A1 (de) 2012-03-29 2013-10-02 Evonik Industries Ag Pulvermetallurgische Herstellung eines thermoelektrischen Bauelements
DE102012205098B4 (de) 2012-03-29 2020-04-02 Evonik Operations Gmbh Thermoelektrische Bauelemente auf Basis trocken verpresster Pulvervorstufen
KR101365657B1 (ko) 2012-08-07 2014-02-24 주식회사 경동원 팽창 퍼라이트를 이용한 저밀도 무기질 파우더 단열재, 이의 제조 방법 및 이의 성형기
CN102942353A (zh) * 2012-11-19 2013-02-27 无锡市明江保温材料有限公司 用于深冷的纳米孔绝热材料及其制备方法
DE102012224201A1 (de) 2012-12-21 2014-07-10 Evonik Industries Ag Vakuumisolierende Fassadenplatte mit verbesserter Handhabbarkeit
JP5863917B1 (ja) 2014-09-22 2016-02-17 ニチアス株式会社 耐火構造及びその使用方法
KR101555463B1 (ko) 2015-06-22 2015-09-23 지오스 에어로겔 리미티드 에어로겔이 함유된 소수성 경량 단열보드 제조방법
DK3196951T3 (en) 2016-01-21 2019-01-21 Evonik Degussa Gmbh RATIONAL PROCEDURE FOR POWDER METAL SURGICAL MANUFACTURING THERMOELECTRIC COMPONENTS
US20200122432A1 (en) * 2018-10-23 2020-04-23 Rocky Research Compositions for dissipating heat
CN111454071B (zh) * 2020-04-10 2022-10-21 中国人民解放军国防科技大学 岩棉纤维增强氧化硅基高强度隔热复合材料及其制备方法
DE202020104960U1 (de) * 2020-08-27 2020-09-09 Va-Q-Tec Ag Temperaturstabiles Vakuumisolationselement
CN113511879B (zh) * 2021-09-09 2021-11-30 长沙科航特种织造有限公司 一种石英纤维增强石英基复合材料及其制造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2754547A (en) * 1951-11-17 1956-07-17 Columbia Southern Chem Corp Heat insulation composition and preparation thereof
US4174331A (en) * 1972-06-23 1979-11-13 The Carborundum Company Refractory moldable composition containing ceramic fiber and colloidal silica
US4221578A (en) * 1979-02-12 1980-09-09 Corning Glass Works Method of making controlled-pore silica structures for high temperature insulation
SE466299B (sv) * 1983-08-04 1992-01-27 Micropore International Ltd Vaermeisolerande kropp och saett att framstaella den, innefattande en armerande bikakestruktur och ett vaermeisolationsmaterial
DE3418637A1 (de) * 1984-05-18 1985-11-21 Wacker-Chemie GmbH, 8000 München Waermedaemmformkoerper mit umhuellung
JPH01145497A (ja) * 1987-11-30 1989-06-07 Komatsu Ltd 強化断熱材料
GB2256192B (en) * 1991-06-01 1994-11-09 Micropore International Ltd Thermal insulation material
US5599759A (en) * 1994-06-22 1997-02-04 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for producing porous silicon oxide material
WO1997010187A1 (de) 1995-09-11 1997-03-20 Hoechst Research & Technology Aerogel- und klebstoffhaltiges verbundmaterial, verfahren zu seiner herstellung sowie seine verwendung
US6887563B2 (en) * 1995-09-11 2005-05-03 Cabot Corporation Composite aerogel material that contains fibres
DE19533564A1 (de) 1995-09-11 1997-03-13 Hoechst Ag Faserhaltiges Aerogel-Verbundmaterial
GB2341607B (en) * 1998-09-15 2000-07-19 Morgan Crucible Co Bonded fibrous materials
US6099749A (en) * 1998-09-25 2000-08-08 Cabot Corporation Method of compacting a fumed metal oxide-containing composition
US6534176B2 (en) * 1999-12-10 2003-03-18 Asahi Glass Company, Limited Scaly silica particles and hardenable composition containing them
DE10151479A1 (de) * 2001-10-18 2003-05-08 Wacker Chemie Gmbh Mikroporöser Wärmedämmformkörper enthaltend Lichtbogenkieselsäure
CN1594197A (zh) * 2004-06-25 2005-03-16 谭旭松 纳米生物二氧化硅绝热材料
JP4716883B2 (ja) * 2006-01-27 2011-07-06 ニチアス株式会社 無機繊維質成形体
JP2008164078A (ja) * 2006-12-28 2008-07-17 Nichias Corp 改質器用断熱材
JP5591514B2 (ja) * 2009-10-16 2014-09-17 ニチアス株式会社 断熱材及びその製造方法

Also Published As

Publication number Publication date
KR20110042019A (ko) 2011-04-22
KR101608497B1 (ko) 2016-04-11
US20160305597A1 (en) 2016-10-20
US20110089363A1 (en) 2011-04-21
CN102040367B (zh) 2014-07-23
US9982831B2 (en) 2018-05-29
CN102040367A (zh) 2011-05-04
JP2011085216A (ja) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5591513B2 (ja) 断熱材及びその製造方法
JP5591514B2 (ja) 断熱材及びその製造方法
JP4860005B1 (ja) 断熱材及びその製造方法
JP5372807B2 (ja) 加熱装置
Huang et al. Facile construction of the aerogel/geopolymer composite with ultra-low thermal conductivity and high mechanical performance
JP5557686B2 (ja) 断熱材および断熱材の製造方法
JPWO2015182768A1 (ja) 真空断熱材
JP2001174163A (ja) 粒子状材料を成形するための粘結剤
JP5871685B2 (ja) けい酸カルシウム成形体およびその製造方法
JP2001287989A (ja) 高体積分率SiC予備成形体の製造方法
JP2015038365A (ja) 断熱材及びその製造方法
JP4800251B2 (ja) けい酸カルシウム保温材の製造方法
JP4676827B2 (ja) 多孔質成形体及びその製造方法
JP2011206941A (ja) けい酸カルシウム材の製造方法
TW202220929A (zh) 氣凝膠複合成形體
CN116457119A (zh) 铸件制造用结构体
WO2016147665A1 (ja) 断熱材及びその製造方法
JP2010111526A (ja) 軽量断熱成型体及びその製造方法
Qureshia et al. Nano reinforced cement paste composite with functionalized graphene and pristine graphene nanoplatelets 2
JP2014129873A (ja) 断熱材及びその製造方法
JP2014088015A (ja) 断熱材および断熱材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20131121

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140730

R150 Certificate of patent or registration of utility model

Ref document number: 5591513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250