JP5590835B2 - Conductive sheet - Google Patents

Conductive sheet Download PDF

Info

Publication number
JP5590835B2
JP5590835B2 JP2009205417A JP2009205417A JP5590835B2 JP 5590835 B2 JP5590835 B2 JP 5590835B2 JP 2009205417 A JP2009205417 A JP 2009205417A JP 2009205417 A JP2009205417 A JP 2009205417A JP 5590835 B2 JP5590835 B2 JP 5590835B2
Authority
JP
Japan
Prior art keywords
particles
conductive
weight
parts
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009205417A
Other languages
Japanese (ja)
Other versions
JP2011056668A (en
Inventor
朋子 照井
公登 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lonseal Corp
Original Assignee
Lonseal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonseal Corp filed Critical Lonseal Corp
Priority to JP2009205417A priority Critical patent/JP5590835B2/en
Publication of JP2011056668A publication Critical patent/JP2011056668A/en
Application granted granted Critical
Publication of JP5590835B2 publication Critical patent/JP5590835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、IT工場、病院の手術室、コンピューター室等の静電気による障害(電算機の誤作動、塵埃の付着等)を防止するために使用する導電性シートに関する。       The present invention relates to a conductive sheet used for preventing troubles caused by static electricity (malfunction of a computer, adhesion of dust, etc.) in an IT factory, a hospital operating room, a computer room, and the like.

導電性シートに関する検討は多くなされている。例えば、熱可塑性樹脂に導電性酸化亜鉛、導電性酸化チタン、導電性酸化スズ等の導電性酸化物を70〜90重量%含有させたシートとカーボン繊維層を積層したシートが提案されている(特許文献1)。このシートは表面抵抗が10〜10Ωと電気性能に優れたものである。また、導電性繊維を含有した導電性樹脂ペーストを海成分とし導電性または非導電性チップを島成分とした導電性シートが提案されている(特許文献2)。このシートは電気性能に優れ、海成分と島成分の色調を変えることができるため意匠性に富んだものである。 Many studies on conductive sheets have been made. For example, a sheet in which a sheet containing 70 to 90% by weight of a conductive oxide such as conductive zinc oxide, conductive titanium oxide, and conductive tin oxide in a thermoplastic resin and a carbon fiber layer are laminated has been proposed ( Patent Document 1). This sheet has a surface resistance of 10 6 to 10 7 Ω and excellent electrical performance. In addition, a conductive sheet has been proposed in which a conductive resin paste containing conductive fibers is used as a sea component, and a conductive or non-conductive chip is used as an island component (Patent Document 2). This sheet is excellent in electrical performance and rich in design because it can change the color tone of the sea component and the island component.

特開昭60−6454JP 60-6454 特開平4−289373JP-A-4-289373

しかしながら、特許文献1のシートは、多量の導電性酸化物を含有するためシート成形時の加工性が劣っている。特許文献2のシートは、導電性繊維を含有した導電性樹脂ペーストをコーティング加工しその上に合成樹脂ペレットを散布し押圧・固化させるので生産性(生産速度)が劣っているうえ、海島構造とした場合、意匠はインレイド調に限られたものとなり表面状態が均一なシートは得られないものであった。また、導電性樹脂ペーストと合成樹脂ペレットをカレンダー成形、押出成形のような溶融賦形法による成形方法で行うと導電性樹脂ペーストと合成樹脂ペレットはともに成形加工温度で溶融し均一になり、溶融した樹脂と共に導電性繊維も成形方向に配向するため、導電性繊維同士のつながりが少なくなり電気性能が劣るという問題点があった。 However, since the sheet of Patent Document 1 contains a large amount of conductive oxide, the processability at the time of sheet molding is inferior. The sheet of Patent Document 2 is coated with a conductive resin paste containing conductive fibers, sprayed with synthetic resin pellets on it, pressed and solidified, so the productivity (production speed) is inferior, In this case, the design is limited to an inlaid tone, and a sheet having a uniform surface state cannot be obtained. In addition, when conductive resin paste and synthetic resin pellets are molded by a melt molding method such as calendering and extrusion, both conductive resin paste and synthetic resin pellets melt and become uniform at the molding temperature. Since the conductive fibers are oriented in the molding direction together with the resin, there is a problem in that the connection between the conductive fibers is reduced and the electrical performance is inferior.

本発明は上記問題点に鑑みてなされたもので、カレンダー成形、押出成形のような溶融賦形法による成形方法から得られるシートでも良好な導電性を発揮し、かつインレイド調とは異なる意匠を有する導電性シートを提供することである。   The present invention has been made in view of the above problems, and exhibits good conductivity even in a sheet obtained from a molding method by a melt shaping method such as calendar molding and extrusion molding, and has a design different from an inlaid tone. It is providing the electroconductive sheet which has.

上記目的を達成する本発明の導電性シートは、熱可塑性樹脂100重量部に対して、導電性繊維20〜100重量部と粒子A20〜100重量部とを含有する熱可塑性樹脂組成物をカレンダー成形により成形してなり、上記粒子Aは公称目開き1mmのふるいを通過し公称目開き106μmのふるいを通過せず、前記粒子Aの長径が前記導電性繊維及び前記粒子Aを含有する熱可塑性樹脂層の厚みに対し20〜350%であり、上記カレンダー成形による成形中に粒子Aが形状を保持していることを特徴とする導電性シートとしたことであり(請求項1)、前記熱可塑性樹脂が塩化ビニル樹脂であり、前記粒子Aが塩化ビニル樹脂、架橋塩化ビニル樹脂、ポリエステル系樹脂より選ばれる一種以上であること(請求項2)、また導電性シートの厚みが0.3mm〜0.6mmであること(請求項3)を特徴としたことである。また、導電性材料を含有する導電基材層に、上記の導電性シートを表面層として積層した複層導電性シートとすることもできる(請求項4)。
The conductive sheet of the present invention that achieves the above object is formed by calendering a thermoplastic resin composition containing 20 to 100 parts by weight of conductive fibers and 20 to 100 parts by weight of particles A with respect to 100 parts by weight of thermoplastic resin. The particle A passes through a sieve having a nominal aperture of 1 mm and does not pass through a sieve having a nominal aperture of 106 μm, and the major axis of the particle A is a thermoplastic resin containing the conductive fibers and the particles A. It is 20 to 350% with respect to the thickness of the layer, and the conductive sheet is characterized in that the particles A retain the shape during molding by the calendar molding (claim 1), and the thermoplastic resin is a vinyl chloride resin, the particles a are vinyl chloride resins, cross-linked vinyl chloride resin, it is one or more selected from a polyester resin (claim 2), also conductive sheet The thickness is that which is characterized by a 0.3 mm to 0.6 mm (claim 3). Moreover, it can also be set as the multilayer electroconductive sheet which laminated | stacked said electroconductive sheet as a surface layer on the electroconductive base material layer containing an electroconductive material (Claim 4).

本発明の導電性シートは、熱可塑性樹脂100重量部に対して、導電性繊維20〜100重量部と粒子A20〜100重量部とを含有する熱可塑性樹脂組成物を溶融賦形法により成形してなり、上記粒子Aが上記溶融賦形法による成形中に溶融することなく形状を保持している導電性シートとしたことにより、粒子Aの近傍では、導電性繊維の流れ方向が変化し、絡み合う状態になるので導電性繊維同士がより繋がり易くなり良好な電気性能が得られる。粒子Aの大きさは公称目開き1mmのふるいを通過し公称目開き106μmのふるいを通過しないものとし、短径と長径の比が1:1〜1:5または1:5〜1:100となる形状とすることで、電気性能がより向上する。また溶融賦形法による成形を行うためシート表面がインレイド調ではなく均一な状態となるものであり、カーボンブラックと比較して淡色な導電性繊維を用いることができるため任意に着色することが可能である。 The conductive sheet of the present invention is formed by molding a thermoplastic resin composition containing 20 to 100 parts by weight of conductive fibers and 20 to 100 parts by weight of particles A with respect to 100 parts by weight of a thermoplastic resin. In the vicinity of the particles A, the flow direction of the conductive fibers is changed by forming the conductive sheet that retains the shape without melting during the molding by the melt shaping method. Since it is in an intertwined state, the conductive fibers are more easily connected to each other, and good electrical performance is obtained. The size of the particle A is such that it passes through a sieve having a nominal aperture of 1 mm and does not pass through a sieve having a nominal aperture of 106 μm, and the ratio of minor axis to major axis is 1: 1 to 1: 5 or 1: 5 to 1: 100. By adopting such a shape, the electrical performance is further improved. In addition, since the sheet is molded by the melt shaping method, the sheet surface is not inlaid, but is in a uniform state. Compared with carbon black, light conductive fibers can be used, so it can be arbitrarily colored. It is.

本発明の導電性シートの1実施形態を示す拡大断面図。The expanded sectional view which shows one Embodiment of the electroconductive sheet of this invention. 短径と長径の比が1:1である粒子Aのイメージを示す図。(a)は斜視図、(b)は平面図。The figure which shows the image of the particle | grains A whose ratio of a minor axis and a major axis is 1: 1. (A) is a perspective view, (b) is a plan view. 短径と長径の比が1:5である粒子Aのイメージを示す図。(c)は斜視図、(d)は平面図。The figure which shows the image of the particle | grains A whose ratio of a minor axis and a major axis is 1: 5. (C) is a perspective view, (d) is a plan view. 短径と長径の比が1:100である粒子Aのイメージを示す図。(e)、(f)は斜視図。The figure which shows the image of the particle | grains A whose ratio of a minor axis and a major axis is 1: 100. (E), (f) is a perspective view.

本発明の導電性シートは、熱可塑性樹脂、導電性繊維、粒子Aを含有してなる熱可塑性樹脂組成物を溶融賦形法により成形して得られるものである。     The conductive sheet of the present invention is obtained by molding a thermoplastic resin composition containing a thermoplastic resin, conductive fibers, and particles A by a melt shaping method.

本発明で云う溶融賦形法とは、熱可塑性樹脂組成物を加熱溶融し混練して賦形後冷却固化する成形方法で、押出成形、カレンダー成形、射出成形、ブロー成形、インフレーション成形等が挙げられる。加熱溶融混練の過程を含まないペースト等液状樹脂のコーティング法、粉体樹脂の焼結法は含まない。これらコーティング法、焼結法では電気特性の向上は図れない。
本発明では、導電性繊維、粒子Aを含有しているため加工性を考慮すると、溶融賦形法の中でも、押出成形、カレンダー成形が好ましい。
The melt shaping method referred to in the present invention is a molding method in which a thermoplastic resin composition is heated and melted, kneaded, shaped and then cooled and solidified, and examples thereof include extrusion molding, calender molding, injection molding, blow molding, inflation molding and the like. It is done. It does not include the coating method of liquid resin such as paste which does not include the process of heat-melt kneading and the sintering method of powder resin. These coating methods and sintering methods cannot improve electrical characteristics.
In the present invention, since conductive fibers and particles A are contained, in consideration of workability, extrusion molding and calendar molding are preferable among the melt shaping methods.

溶融賦形法の成形によって熱可塑性樹脂は溶融し、その熱可塑性樹脂中に導電性繊維、粒子Aが存在している状態である。成形時に熱可塑性樹脂の流動の影響を受けて熱可塑性樹脂とともに導電性繊維は成形方向に配向しようとするが、熱可塑性樹脂の成形温度では粒子Aは流動せず、導電性繊維の配向を阻害する作用を及ぼす。この効果により導電性繊維は図1のように互いに繋がり、表面抵抗値、体積固有抵抗値等の電気特性が向上する。       The thermoplastic resin is melted by the molding of the melt shaping method, and the conductive fibers and particles A are present in the thermoplastic resin. Under the influence of the flow of the thermoplastic resin during molding, the conductive fibers and the thermoplastic resin try to orient in the molding direction, but at the molding temperature of the thermoplastic resin, the particles A do not flow and inhibit the orientation of the conductive fibers. To act. Due to this effect, the conductive fibers are connected to each other as shown in FIG. 1, and electrical characteristics such as surface resistance and volume resistivity are improved.

本発明に用いられる熱可塑性樹脂としては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、ポリブテン(PB)、エチレンプロピレンゴム、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸メチル共重合体(EEA)、エチレン−メタクリル酸メチル共重合体(EMMA)、スチレン系共重合体[例えば、スチレン−エチレン−スチレンブロック共重合体(SES)、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)等]、水素添加スチレン系共重合体[例えば、スチレン−エチレン・プロピレン−スチレンブロック共重合体(SEPS)、スチレン−エチレン・ブチレン−スチレンブロック共重合体(SEBS)、水素添加スチレン−ブタジエンゴム(HSBR)等]、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、塩化ビニル樹脂、塩素化ポリエチレン樹脂、アクリロニトリル−ブタジエン−スチレン共重合体(ABS)等が挙げられる。これらを1種または2種以上を組み合わせて使用してもよい。       Examples of the thermoplastic resin used in the present invention include high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polypropylene (PP), and polybutene (PB). ), Ethylene propylene rubber, ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EEA), ethylene-methyl methacrylate copolymer (EMMA), styrene copolymer [for example, styrene -Ethylene-styrene block copolymer (SES), styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), etc.], hydrogenated styrene copolymer [for example, Styrene-ethylene propylene-styrene block Copolymer (SEPS), Styrene-Ethylene / Butylene-Styrene Block Copolymer (SEBS), Hydrogenated Styrene-Butadiene Rubber (HSBR)], Olefin Thermoplastic Elastomer, Styrenic Thermoplastic Elastomer, Urethane Thermoplastic Examples include elastomers, vinyl chloride resins, chlorinated polyethylene resins, acrylonitrile-butadiene-styrene copolymers (ABS), and the like. These may be used alone or in combination of two or more.

本発明で使用する導電性繊維としては、ステンレス繊維、アルミニウム繊維、銅繊維等の各種金属の繊維、炭素繊維、カーボンナノチューブ等が挙げられ、さらにこれらの表面をインジウムドープ酸化スズ(ITO)、アンチモンドープ酸化スズ(ATO)等の導電性材料で被覆されたものも使用することができる。また、ガラス繊維、ポリエステル繊維等の繊維の材質自体には導電性を持たない繊維にITO、ATO等の導電性材料を被覆したものも使用できる。これらを1種、または2種以上を組み合わせて使用してもよい。取り扱い性、加工性の面から導電性繊維はステンレス繊維、炭素繊維が好ましい。
導電性繊維は、繊維径0.005〜1mm、繊維長さ0.1〜5mm、アスペクト比(繊維長さ/繊維径)5〜1000のものが使用でき、成形加工中での分散性、絡み易さの面から繊維径0.01〜0.1mm、繊維長さ0.5〜2mm、アスペクト比20〜200のものが好ましい。導電性繊維の絡み易さの面から形状は湾曲しているものが好ましい。
導電性繊維の添加量は20〜100重量部であり、20重量部未満であると導電性繊維同士の繋がりが少なくなるため導電性が劣り、100重量部を超えると加工性が悪くなる。導電性繊維の添加量は、導電性、加工性の面から30〜80重量部が好ましい。
Examples of the conductive fibers used in the present invention include fibers of various metals such as stainless fibers, aluminum fibers, and copper fibers, carbon fibers, carbon nanotubes, and the like. Further, these surfaces are coated with indium-doped tin oxide (ITO), antimony. Those coated with a conductive material such as doped tin oxide (ATO) can also be used. Moreover, what coated the electroconductive material, such as ITO and ATO, can also be used for the fiber itself, such as glass fiber and polyester fiber, which has no electrical conductivity. These may be used alone or in combination of two or more. From the viewpoints of handleability and processability, the conductive fibers are preferably stainless fibers or carbon fibers.
Conductive fibers having a fiber diameter of 0.005 to 1 mm, a fiber length of 0.1 to 5 mm, and an aspect ratio (fiber length / fiber diameter) of 5 to 1000 can be used. In view of easiness, those having a fiber diameter of 0.01 to 0.1 mm, a fiber length of 0.5 to 2 mm, and an aspect ratio of 20 to 200 are preferable. From the viewpoint of easy entanglement of the conductive fibers, it is preferable that the shape is curved.
The addition amount of the conductive fiber is 20 to 100 parts by weight. When the amount is less than 20 parts by weight, the connection between the conductive fibers is reduced, so that the conductivity is inferior. When the amount exceeds 100 parts by weight, the workability is deteriorated. The addition amount of the conductive fiber is preferably 30 to 80 parts by weight from the viewpoint of conductivity and workability.

本発明でいう粒子Aとは、本発明で使用する熱可塑性樹脂組成物の溶融賦形法による成形中に形状、大きさをほぼ保持している粒子のことであり、形状、大きさが多少変化してもよい。例えば、長径が1mmで厚さ20μmの鱗片状粒子が成形加工中に折れ曲がる程度であれば粒子Aであるが、成形加工中に溶融してしまい導電性繊維よりも大きさが小さくなるものは粒子Aには該当しない。
粒子Aとしては、前述した本発明に用いられる熱可塑性樹脂と同種のものからなる粒子、架橋された樹脂(例えば、架橋塩化ビニル樹脂、部分架橋アクリル樹脂、完全架橋アクリル樹脂等)からなる粒子、ゴム(天然ゴム、NBR、SBR、クロロプレンゴム、ブタジエンゴム、ウレタンゴム等)からなる粒子、加硫したゴムからなる粒子、ポリエステルチップ等の合成樹脂製チップ、木粉などが挙げられ、熱可塑性樹脂との密着性の面から好ましくは熱可塑性樹脂と組成的に近似した成分のものがよい。例えば、熱可塑性樹脂として、塩化ビニル樹脂100重量部(重合度700)に可塑剤のDOP50〜70重量部を添加した塩化ビニル系樹脂(1)を使用する場合、粒子Aとしては、塩化ビニル樹脂(重合度1300)100重量部に可塑剤のDOP20〜30重量部を添加した塩化ビニル系樹脂(2)から得られる粒子が好適に使用できる。塩化ビニル系樹脂(1)の成形加工温度は150〜160℃であり、この温度では成形温度が180〜190℃である塩化ビニル系樹脂(2)は成形中に溶融しづらく形状を保持することができる。
また、熱可塑性樹脂が塩化ビニル系樹脂の場合、粒子Aとしては、架橋塩化ビニル樹脂からなる粒子、ポリエステル系の樹脂からなる粒子がよい。ポリエステル系の樹脂からなる粒子は、ポリ塩化ビニル系樹脂の加工温度において溶融せず、また任意の粒子径に容易に粉砕することができるため、導電性繊維の配向を阻害し導電性を向上しかつ導電性シートの表面に顕著に露出し外観不良とならない最適な粒子径をもった粒子Aを簡便に製造することができる。さらに、ポリエステル系の樹脂からなる粒子は、任意に着色することができ本発明の導電性シートの意匠性を向上させることが可能となる。以上の点からポリエステル系の樹脂からなる粒子は、粒子Aとして好適に用いることができる。
このように粒子Aは、ベースとなる熱可塑性樹脂の成形温度で溶融しないものを選定する必要がある。
The particle A in the present invention is a particle that substantially retains its shape and size during molding of the thermoplastic resin composition used in the present invention by the melt shaping method. It may change. For example, if the scaly particles having a major axis of 1 mm and a thickness of 20 μm are bent during the molding process, the particles are A, but the particles that melt during the molding process and become smaller in size than the conductive fibers are particles. Not applicable to A.
As the particles A, particles made of the same kind as the thermoplastic resin used in the present invention described above, particles made of a crosslinked resin (for example, a crosslinked vinyl chloride resin, a partially crosslinked acrylic resin, a completely crosslinked acrylic resin, etc.), Thermoplastic resins include particles made of rubber (natural rubber, NBR, SBR, chloroprene rubber, butadiene rubber, urethane rubber, etc.), particles made of vulcanized rubber, chips made of synthetic resin such as polyester chips, and wood powder. From the viewpoint of adhesiveness, a component having a composition approximate to that of a thermoplastic resin is preferable. For example, when a vinyl chloride resin (1) in which DOP 50 to 70 parts by weight of a plasticizer is added to 100 parts by weight of a vinyl chloride resin (degree of polymerization 700) is used as the thermoplastic resin, the particles A include vinyl chloride resin. (Polymerization degree 1300) The particle | grains obtained from the vinyl chloride resin (2) which added DOP20-30 weight part of the plasticizer to 100 weight part can use it conveniently. The molding temperature of the vinyl chloride resin (1) is 150 to 160 ° C. At this temperature, the vinyl chloride resin (2) having a molding temperature of 180 to 190 ° C. has a shape that is difficult to melt during molding. Can do.
When the thermoplastic resin is a vinyl chloride resin, the particles A are preferably particles made of a crosslinked vinyl chloride resin or particles made of a polyester resin. Particles made of polyester resin do not melt at the processing temperature of polyvinyl chloride resin and can be easily pulverized to an arbitrary particle size, thereby inhibiting the orientation of conductive fibers and improving conductivity. And the particle | grains A with the optimal particle diameter which is notably exposed on the surface of an electroconductive sheet and does not become an external appearance defect can be manufactured simply. Furthermore, the particle | grains which consist of polyester-type resin can be colored arbitrarily, and it becomes possible to improve the designability of the electroconductive sheet of this invention. From the above points, particles made of a polyester-based resin can be suitably used as the particles A.
Thus, it is necessary to select the particles A that do not melt at the molding temperature of the thermoplastic resin as the base.

粒子Aの大きさは、JIS Z 8801−1「試験用ふるい−第1部:金属製網ふるい」に規定される公称目開き1mmを通過し、公称目開き106μmを通過しないものがよい。公称目開き106μmを通過するもの(公称目開き106μmよりも小さいもの)では導電性繊維の向きを変え難くなり、公称目開き1mmを通過しないもの(公称目開き1mmより大きいもの)ではシート表面に粒子Aによる凹凸が発生し外観を損ねてしまう可能性がある。
このように粒子Aは、その近傍において導電性繊維の成形方向への配向を乱し、導電性繊維の絡み合いを形成させるために添加されるものである。また、粒子Aが大きすぎると外観不良を起こすこととなる。このような粒子Aの作用は導電性シートの厚み寸法に対する粒子Aの大きさが影響すると考えられるため、導電性繊維の絡み合い効果と導電性シートの外観を考慮すると、導電性繊維および粒子Aを含有する熱可塑性樹脂層の厚みに対し、粒子Aの長径を20〜350%とすることが好ましい。
The size of the particle A is preferably such that it passes through a nominal opening of 1 mm as defined in JIS Z8801-1 “Test sieve—Part 1: Metal mesh sieve” and does not pass through a nominal opening of 106 μm. It is difficult to change the direction of the conductive fiber if it passes through the nominal opening of 106 μm (those smaller than the nominal opening of 106 μm), and if it does not pass through 1 mm of the nominal opening (greater than 1 mm of the nominal opening), There is a possibility that irregularities due to the particles A occur and the appearance is impaired.
As described above, the particles A are added to disturb the orientation of the conductive fibers in the molding direction in the vicinity thereof to form the entanglement of the conductive fibers. On the other hand, if the particle A is too large, an appearance defect is caused. Since the action of the particles A is considered to be affected by the size of the particles A with respect to the thickness dimension of the conductive sheet, the conductive fibers and the particles A are considered in consideration of the entanglement effect of the conductive fibers and the appearance of the conductive sheet. The major axis of the particles A is preferably 20 to 350% with respect to the thickness of the thermoplastic resin layer contained.

粒子Aの形状は球形、円柱形、円錐形、多角柱状、多面体、板状、フィルム状、不定形など特に限定されることはない。粒子Aの短径と長径の比が1:1〜1:5となる場合、粒子Aの形状は図2、3に示すような球形、円柱形、多面体など立体形状であり、短径と長径の比が1:5〜1:100となる場合、粒子Aの形状は図3、4に示すような板状、フィルム状、鱗片状など扁平な形状である。
ここで、粒子Aの短径と長径の比が1:5〜1:100であり、粒子Aが扁平な形状となる場合、粒子Aが導電性繊維および粒子Aを含有する熱可塑性樹脂層において層状に位置することがあり、この層状に位置した粒子Aによって、粒子Aの層間の導電性繊維の繋がりが断絶されるおそれがある。したがって、この場合、粒子Aの長径が大きくなる(公称目開き1mmを通過しないもの)と導電性が低下する要因となる。
The shape of the particle A is not particularly limited, such as a sphere, a cylinder, a cone, a polygonal column, a polyhedron, a plate, a film, and an indefinite shape. When the ratio of the minor axis to the major axis of the particle A is 1: 1 to 1: 5, the shape of the particle A is a three-dimensional shape such as a sphere, a cylinder, or a polyhedron as shown in FIGS. When the ratio is 1: 5 to 1: 100, the shape of the particles A is a flat shape such as a plate shape, a film shape, or a scale shape as shown in FIGS.
Here, when the ratio of the minor axis to the major axis of the particle A is 1: 5 to 1: 100 and the particle A has a flat shape, in the thermoplastic resin layer in which the particle A contains the conductive fiber and the particle A. In some cases, the particles A are positioned in layers, and the conductive fibers between the particles A may be disconnected by the particles A positioned in the layers. Therefore, in this case, if the major axis of the particle A becomes large (one that does not pass through a nominal opening of 1 mm), the conductivity decreases.

粒子Aの添加量は20〜100重量部がよい。20重量部未満の場合は導電性繊維の配向を阻害する部分が少ないため導電性繊維の絡んでいる部分が少なくなることで電気性能が劣り、100重量部を超えると加工性が悪くなる。粒子Aの短径と長径の比が1:1〜1:5である場合、電気性能、加工性の面から好ましくは30〜80重量部である。粒子Aの短径と長径の比が1:5〜1:100である場合、粒子がかさ高く見かけ比重が小さくなることから、短径と長径の比が1:1〜1:5の場合よりも添加量を少なくすることができ、また70重量部を超えると加工性が低下する傾向にあるため30〜70重量部が好ましい。       The amount of particles A added is preferably 20 to 100 parts by weight. When the amount is less than 20 parts by weight, there are few portions that impede the orientation of the conductive fibers, so that the portion where the conductive fibers are entangled decreases, resulting in poor electrical performance. When the ratio of the minor axis to the major axis of the particles A is 1: 1 to 1: 5, it is preferably 30 to 80 parts by weight from the viewpoint of electrical performance and workability. When the ratio of the minor axis to the major axis of the particles A is 1: 5 to 1: 100, the particles are bulky and the apparent specific gravity is reduced, so that the ratio of the minor axis to the major axis is 1: 1 to 1: 5. The amount added can be reduced, and if it exceeds 70 parts by weight, the workability tends to decrease, so 30 to 70 parts by weight is preferred.

粒子Aには電気性能を向上させるために導電性高分子(ポリチオフェン、ポリピロール、ポリアニリン等)、ITO、ATO等の導電性材料を被覆することもできる。   The particles A may be coated with a conductive material such as a conductive polymer (polythiophene, polypyrrole, polyaniline, etc.), ITO, ATO or the like in order to improve electrical performance.

本発明の導電性シートは導電性繊維および粒子Aを含有する熱可塑性樹脂を溶融賦形法により成形するため、シート表面はインレイド調にはならず均一な状態となる。また導電性材料にはカーボンブラックなどの黒色単色となってしまう材料ではなく淡色な導電性繊維を用いることができるため、ベース樹脂を任意に着色することが可能である。粒子Aをベース樹脂と同色にすることでシートの外観を単色にすることができ、逆に粒子Aをベース樹脂とは異なる色にすることで意匠性を向上させることもできる。なお、ここでいうベース樹脂とは、本発明に係る配合成分を含有した熱可塑性樹脂組成物から導電性繊維および粒子Aを除いた部分をいう。   In the conductive sheet of the present invention, a thermoplastic resin containing conductive fibers and particles A is formed by a melt shaping method, so that the sheet surface is not inlaid and is in a uniform state. In addition, since the conductive material can be a light-colored conductive fiber rather than a black-colored material such as carbon black, the base resin can be arbitrarily colored. By making the particles A the same color as the base resin, the appearance of the sheet can be made a single color, and conversely, the design can be improved by making the particles A a color different from the base resin. In addition, the base resin here means the part remove | excluding electroconductive fiber and particle | grains A from the thermoplastic resin composition containing the compounding component which concerns on this invention.

本発明においては、導電性シートを表面層として、導電基材層と積層して複層導電性シートとすることもできる。ここで、上記導電基材層に配合される導電性材料は、カーボンブラック、ケッチェンブラック、帯電防止剤等があげられるが、少なくともカーボンブラック、ケッチェンブラック等を配合することが導電性の面から好ましい。   In the present invention, a conductive sheet may be used as a surface layer and laminated with a conductive base material layer to form a multilayer conductive sheet. Here, examples of the conductive material blended in the conductive base material layer include carbon black, ketjen black, antistatic agent, and the like. However, blending at least carbon black, ketjen black, etc. is a conductive surface. To preferred.

ここで、複層導電性シートとすることで、導電性シートの厚みを厚くすることが容易となる。すなわち本発明の単層の導電性シートにおいて、導電性シートの厚みを厚くすると表面から裏面までの通電経路が形成されにくくなる傾向にあり、この場合には、本発明の導電性シートと導電基材層を積層した複層導電性シートとすることで、厚みが厚く、意匠性、導電性、耐久性に優れたシートを得ることができる。概ね本発明の導電性シートの厚みを0.3mm以上とする場合には、上記のような複層導電性シートとすることが好ましい実施態様である。本発明の複層導電性シートは、耐久性を要求される用途、例えば建築用シート等に好適に用いられる。   Here, by using a multilayer conductive sheet, it is easy to increase the thickness of the conductive sheet. That is, in the single-layer conductive sheet of the present invention, when the thickness of the conductive sheet is increased, a current-carrying path from the front surface to the back surface tends to be difficult to be formed. By setting it as the multilayer electroconductive sheet which laminated | stacked the material layer, the thickness is thick and the sheet | seat excellent in design property, electroconductivity, and durability can be obtained. In general, when the thickness of the conductive sheet of the present invention is 0.3 mm or more, a multilayer conductive sheet as described above is a preferred embodiment. The multilayer conductive sheet of the present invention is suitably used for applications requiring durability, such as architectural sheets.

さらに、導電基材層と表面層である導電性シートの層間に、ガラスクロスやポリエステル等の合成繊維や天然繊維からなる織布を積層する構造とすることもでき、この場合はシートの寸法安定性や強度が向上するという効果を奏する。
また、複層導電性シートの意匠性を向上させるために、表層である導電シート側にエンボスを施すことができる。
Furthermore, a structure in which a woven fabric made of synthetic fibers such as glass cloth or polyester or natural fibers is laminated between the conductive base layer and the conductive sheet as the surface layer can be used. There is an effect that the property and strength are improved.
Moreover, in order to improve the designability of a multilayer electroconductive sheet, it can emboss on the electroconductive sheet side which is a surface layer.

本発明の導電性シートには性能を害さない範囲で可塑剤、顔料、各種充填材(炭酸カルシウム、タルク、マイカ、水酸化マグネシウム等)、各種安定剤(光安定剤、加工助剤、帯電防止剤等)を添加することができる。       The conductive sheet of the present invention has plasticizers, pigments, various fillers (calcium carbonate, talc, mica, magnesium hydroxide, etc.) and various stabilizers (light stabilizers, processing aids, antistatic agents within a range that does not impair the performance. Agent etc.) can be added.

次に、実施例及び比較例を挙げて本発明を更に具体的に説明する。表1は本発明に係る導電性シートを形成する配合成分を示し、表2は比較例として配合成分を示す。表3は本発明の導電性シートを積層する場合に導電基材層を形成する配合成分を示す。配合成分の配合割合を示す数字の単位は、重量部である。
Next, the present invention will be described more specifically with reference to examples and comparative examples. Table 1 shows blending components that form the conductive sheet according to the present invention, and Table 2 shows blending components as comparative examples. Table 3 shows blending components for forming a conductive base material layer when the conductive sheet of the present invention is laminated. The unit of the number indicating the blending ratio of the blending components is parts by weight.

Figure 0005590835
Figure 0005590835


Figure 0005590835
Figure 0005590835

Figure 0005590835
Figure 0005590835

なお、表1〜2に示す各配合成分は以下のものを使用した。
<熱可塑性樹脂>
(1)PVC 品名:TH−1000(P=1000) 大洋塩ビ(株)製
<導電性繊維>
(2)炭素繊維 (径:0.013mm 長さ:0.7mm)
(3)ステンレス繊維 (径:0.010mm 長さ:0.2mm)
<粒子>
(4)粒子: ポリエステルチップ (短径と長径の比が1:1〜1:5であり、公称目開き1mmのふるいを通過し公称目開き180μmのふるいを通過しないもの。)
(5)粒子: ポリエステルチップ (短径と長径の比が1:5〜1:100であり、公称目開き1mmのふるいを通過し公称目開き180μmのふるいを通過しないもの。)
(6)粒子: 厚み0.3mmのPVC製シート[PVC樹脂(P=1300)100重量部、DOP30重量部、Ba−Zn系安定剤3重量部からなる配合 成形加工温度:200℃]を粉砕機で粉砕して得られた不定形粒子のうち、公称目開き1mmのふるいを通過し公称目開き180μmのふるいを通過せず、短径と長径の比が1:1〜1:5であるもの。
(7)粒子: ポリエステルチップ (短径と長径の比が1:1〜1:5であり、公称目開き1.18mmのふるいを通過し公称目開き1mmのふるいを通過しないもの。)
(8)粒子: ポリエステルチップ (短径と長径の比が1:50〜1:150であり、公称目開き2.8mmのふるいを通過し公称目開き1mmのふるいを通過しないもの。)
(9)粒子: 厚み0.3mmのPVC製シート[PVC樹脂(P=1000)100重量部、DOP50重量部、Ba−Zn系安定剤3重量部からなる配合 成形加工温度:160℃]を粉砕機で粉砕して得られた不定形粒子のうち、公称目開き1mmのふるいを通過し公称目開き180μmのふるいを通過せず、短径と長径の比が1:1〜1:5であるもの。
In addition, the following were used for each compounding component shown in Tables 1-2.
<Thermoplastic resin>
(1) PVC Product name: TH-1000 (P = 1000) manufactured by Taiyo PVC Co., Ltd. <Conductive fiber>
(2) Carbon fiber (diameter: 0.013 mm length: 0.7 mm)
(3) Stainless steel fiber (Diameter: 0.010mm Length: 0.2mm)
<Particle>
(4) Particles: Polyester chip (The ratio of the minor axis to the major axis is 1: 1 to 1: 5 and passes through a sieve having a nominal aperture of 1 mm and does not pass through a sieve having a nominal aperture of 180 μm.)
(5) Particles: Polyester chip (The ratio of the minor axis to the major axis is 1: 5 to 1: 100 and passes through a sieve having a nominal opening of 1 mm and does not pass through a sieve having a nominal opening of 180 μm.)
(6) Particle: A 0.3 mm-thick PVC sheet [compound consisting of 100 parts by weight of PVC resin (P = 1300), 30 parts by weight of DOP, and 3 parts by weight of a Ba-Zn-based stabilizer, molding processing temperature: 200 ° C.] Among the irregular shaped particles obtained by pulverization with a machine, the particles pass through a sieve having a nominal aperture of 1 mm and do not pass through a sieve having a nominal aperture of 180 μm, and the ratio of the minor axis to the major axis is 1: 1 to 1: 5. thing.
(7) Particles: Polyester chip (The ratio of the minor axis to the major axis is 1: 1 to 1: 5, and passes through a sieve having a nominal aperture of 1.18 mm and does not pass through a sieve having a nominal aperture of 1 mm.)
(8) Particles: Polyester chip (The ratio of the minor axis to the major axis is 1:50 to 1: 150, which passes through a sieve with a nominal aperture of 2.8 mm and does not pass through a sieve with a nominal aperture of 1 mm.)
(9) Particles: A 0.3 mm-thick PVC sheet [compound consisting of 100 parts by weight of PVC resin (P = 1000), 50 parts by weight of DOP, and 3 parts by weight of a Ba—Zn-based stabilizer, molding temperature: 160 ° C.] Among the irregular shaped particles obtained by pulverization with a machine, the particles pass through a sieve having a nominal aperture of 1 mm and do not pass through a sieve having a nominal aperture of 180 μm, and the ratio of the minor axis to the major axis is 1: 1 to 1: 5. thing.

<実施例1>
表1に示すNo.1の配合組成を180℃の温度でカレンダー成形して、幅1900、厚み0.5mmの導電性シートを得た。
<Example 1>
No. shown in Table 1. 1 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 and a thickness of 0.5 mm.

<実施例2>
表1に示すNo.2の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.4mmの導電性シートを得た。
<Example 2>
No. shown in Table 1. 2 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.4 mm.

<実施例3>
表1に示すNo.3の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.3mmの導電性シートを得た。
<Example 3>
No. shown in Table 1. 3 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.3 mm.

<実施例4>
表1に示すNo.4の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.6mmの導電性シートを得た。
<Example 4>
No. shown in Table 1. 4 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.6 mm.

<実施例5>
表1に示すNo.5の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.5mmの導電性シートを得た。
<Example 5>
No. shown in Table 1. 5 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.5 mm.

<実施例6>
表3に示す配合組成を180℃の温度でカレンダー成形し、幅1500mm、厚み1.6mmの導電基材層を得、さらに表1に示すNo.6の配合組成を180℃の温度で0.4mmにカレンダー成形すると共に得られた上記シートの上に積層して幅1500mm、厚み2.0mmの積層シートを形成した。形成した当該シートに200メッシュのエンボス模様を施し、複層導電性シートを得た。
<実施例7>
表3に示す配合組成を180℃の温度でカレンダー成形し、幅1500mm、厚み1.5mmの導電基材層を得、さらに表1に示すNo.7の配合組成を180℃の温度で0.5mmにカレンダー成形すると共に得られた上記シートの上に積層して幅1500mm、厚み2.0mmの積層シートを形成した。形成した当該シートに200メッシュのエンボス模様を施し、複層導電性シートを得た。
<Example 6>
The composition shown in Table 3 was calendered at a temperature of 180 ° C. to obtain a conductive base material layer having a width of 1500 mm and a thickness of 1.6 mm. The composition of No. 6 was calendered to 0.4 mm at a temperature of 180 ° C. and laminated on the obtained sheet to form a laminated sheet having a width of 1500 mm and a thickness of 2.0 mm. The formed sheet was embossed with 200 mesh to obtain a multilayer conductive sheet.
<Example 7>
The composition shown in Table 3 was calendered at a temperature of 180 ° C. to obtain a conductive base material layer having a width of 1500 mm and a thickness of 1.5 mm. The composition of No. 7 was calendered to 0.5 mm at a temperature of 180 ° C. and laminated on the obtained sheet to form a laminated sheet having a width of 1500 mm and a thickness of 2.0 mm. The formed sheet was embossed with 200 mesh to obtain a multilayer conductive sheet.

<比較例1>
表2に示すNo.8の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.5mmの導電性シートを得た。
<Comparative Example 1>
No. shown in Table 2 8 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.5 mm.

<比較例2>
表2に示すNo.9の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.5mmの導電性シートを得た。
<Comparative example 2>
No. shown in Table 2 9 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.5 mm.

<比較例3>
表2に示すNo.10の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.5mmの導電性シートを得た。
<Comparative Example 3>
No. shown in Table 2 Ten blended compositions were calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.5 mm.

<比較例4>
表2に示すNo.11の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.4mmの導電性シートを得た。
<Comparative example 4>
No. shown in Table 2 11 was calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.4 mm.

<比較例5>
表2に示すNo.12の配合組成を180℃の温度でカレンダー成形して、幅1900mm、厚み0.3mmの導電性シートを得た。
<Comparative Example 5>
No. shown in Table 2 The 12 blended compositions were calendered at a temperature of 180 ° C. to obtain a conductive sheet having a width of 1900 mm and a thickness of 0.3 mm.

<比較例6>
表3に示す配合組成を180℃の温度でカレンダー成形し、幅1500mm、厚み1.5mmの導電基材層を得、さらに表2に示すNo.13の配合組成を180℃の温度で0.4mmにカレンダー成形すると共に得られた上記シートの上に積層して幅1500mm、厚み2.0mmの積層シートを形成した。形成した当該シートに200メッシュのエンボス模様を施し、複層シートを得た。
<Comparative Example 6>
The composition shown in Table 3 was calendered at a temperature of 180 ° C. to obtain a conductive base material layer having a width of 1500 mm and a thickness of 1.5 mm. 13 blended compositions were calendered to 180 mm at a temperature of 180 ° C. and laminated on the obtained sheet to form a laminated sheet having a width of 1500 mm and a thickness of 2.0 mm. The formed sheet was embossed with 200 mesh to obtain a multilayer sheet.

<比較例7>
表3に示す配合組成を180℃の温度でカレンダー成形し、幅1500mm、厚み1.5mmの導電基材層を得、さらに表2に示すNo.14の配合組成を180℃の温度で0.5mmにカレンダー成形すると共に得られた上記シートの上に積層して幅1500mm、厚み2.0mmの積層シートを形成した。形成した当該シートに200メッシュのエンボス模様を施し、複層シートを得た。
<Comparative Example 7>
The composition shown in Table 3 was calendered at a temperature of 180 ° C. to obtain a conductive base material layer having a width of 1500 mm and a thickness of 1.5 mm. The 14 blended compositions were calendered to 0.5 mm at a temperature of 180 ° C. and laminated on the obtained sheet to form a laminated sheet having a width of 1500 mm and a thickness of 2.0 mm. The formed sheet was embossed with 200 mesh to obtain a multilayer sheet.

実施例及び比較例における各導電性シートの評価は、電気性能、加工性、密着性について以下の方法、基準で行った。その結果を表4、表5に示す。
[電気性能]
電気性能の試験はIEC 61340−4−1に準じた方法で行い、以下の基準で評価した。
◎:印加電圧10Vで測定し、体積抵抗値が1.0×10Ω以上、1.0×10Ω未満。
○:印加電圧10Vで測定し、体積抵抗値が1.0×10Ω以上、1.0×10Ω未満。
△:印加電圧100Vで測定し、体積抵抗値が1.0×10Ω以上、1.0×1010Ω未満。
×:印加電圧100Vで測定し、体積抵抗値が1.0×1010Ω以上。
[加工性]
加工性は、カレンダー成形状態を目視で観察し、以下の基準で評価した。
○:バンク回りが安定し、加工上問題がない。
△:バンク回りがやや不安定であるが加工上問題にならない。
×:バンク回りが不安定であり、加工上問題である。
[外観]
シート外観は、成形したシートにプレス加工を施したものを目視で観察し、以下の基準で評価した。ただし実施例6、7、比較例6、7についてはエンボス加工を施すため、プレス加工は施さないものとした。
○:表面が均一で粒子由来の凹凸がない状態。
△:表面に粒子由来の凹凸が部分的にある状態。
×:表面全体に粒子由来の凹凸が広く発生している状態。
[密着性]
粒子とベース樹脂との密着性は、成形したシートを180°に折り曲げた時のシートの折り目部分に発生する粒子周辺の割れについて目視で観察し、以下の基準で評価した。なお、ベース樹脂についての説明は段落0019に記載している。
○:割れが発生しない
△:割れが少し見られる
×:大きな割れが見られる
Evaluation of each electroconductive sheet in an Example and a comparative example was performed with the following method and reference | standard about electrical performance, workability, and adhesiveness. The results are shown in Tables 4 and 5.
[Electrical performance]
The electrical performance test was performed by a method according to IEC 61340-4-1 and evaluated according to the following criteria.
A: Measured at an applied voltage of 10 V, and the volume resistance value is 1.0 × 10 4 Ω or more and less than 1.0 × 10 5 Ω.
○: Measured at an applied voltage of 10 V, and the volume resistance value is 1.0 × 10 5 Ω or more and less than 1.0 × 10 6 Ω.
Δ: Measured at an applied voltage of 100 V, and the volume resistance value is 1.0 × 10 6 Ω or more and less than 1.0 × 10 10 Ω.
×: Measured at an applied voltage of 100 V, and the volume resistance value is 1.0 × 10 10 Ω or more.
[Machinability]
The workability was evaluated based on the following criteria by visually observing the calendar molding state.
○: The bank area is stable and there is no problem in processing.
Δ: Around the bank is slightly unstable, but there is no problem in processing.
X: Around the bank is unstable, which is a problem in processing.
[appearance]
The appearance of the sheet was evaluated by visually observing a formed sheet subjected to press working and by the following criteria. However, since Examples 6 and 7 and Comparative Examples 6 and 7 were embossed, they were not pressed.
○: A state in which the surface is uniform and there are no irregularities derived from particles.
(Triangle | delta): The state which has the unevenness | corrugation derived from particle | grains partially on the surface.
X: A state in which irregularities derived from particles are widely generated on the entire surface.
[Adhesion]
The adhesion between the particles and the base resin was evaluated by the following criteria by visually observing cracks around the particles generated in the crease portion of the sheet when the formed sheet was folded at 180 °. The description of the base resin is described in paragraph 0019.
○: No cracking occurred Δ: Some cracking was observed ×: Large cracking was observed

Figure 0005590835
Figure 0005590835

Figure 0005590835
Figure 0005590835

表4、表5から実施例1の方が比較例1よりも電気性能が良いことが理解される。 比較例1は熱可塑性樹脂100重量部、導電性繊維10重量部、粒子A60重量部を含有しているが、導電性繊維の添加量が少ないため電気性能が悪い。実施例1は熱可塑性樹脂100重量部、導電性繊維30重量部、粒子A60重量部を含有しており導電性繊維の添加量が適正範囲である効果である。   From Tables 4 and 5, it is understood that Example 1 has better electrical performance than Comparative Example 1. Comparative Example 1 contains 100 parts by weight of thermoplastic resin, 10 parts by weight of conductive fibers, and 60 parts by weight of particles A, but the electrical performance is poor because the amount of conductive fibers added is small. Example 1 is an effect that contains 100 parts by weight of a thermoplastic resin, 30 parts by weight of conductive fibers, and 60 parts by weight of particles A, and the amount of conductive fibers added is within an appropriate range.

表4、表5から実施例3の方が比較例3よりも電気性能が良いことが理解される。比較例3は熱可塑性樹脂100重量部、導電性繊維30重量部、粒子A10重量部を含有しているが、粒子Aの添加量が少ないため電気性能が悪い。実施例3は熱可塑性樹脂100重量部、導電性繊維100重量部、粒子A70重量部を含有しており粒子Aの添加量が適正範囲である効果である。   From Tables 4 and 5, it is understood that Example 3 has better electrical performance than Comparative Example 3. Comparative Example 3 contains 100 parts by weight of a thermoplastic resin, 30 parts by weight of conductive fibers, and 10 parts by weight of particles A, but the electrical performance is poor because the amount of particles A added is small. Example 3 is an effect that contains 100 parts by weight of thermoplastic resin, 100 parts by weight of conductive fibers, and 70 parts by weight of particles A, and the added amount of particles A is within an appropriate range.

表4、表5から実施例2の方が比較例4よりも加工性が良いことが理解される。比較例4は熱可塑性樹脂100重量部、導電性繊維70重量部、粒子A110重量部を含有しているが、短径と長径の比が1:5〜1:100である粒子Aの添加量が多すぎるため加工性が悪い。実施例2は熱可塑性樹脂100重量部、導電性繊維20部、粒子A40部を含有しており導電性繊維および粒子Aの添加量が適正範囲である効果である。   From Tables 4 and 5, it is understood that Example 2 has better workability than Comparative Example 4. Comparative Example 4 contains 100 parts by weight of a thermoplastic resin, 70 parts by weight of conductive fibers, and 110 parts by weight of particles A, but the added amount of particles A whose ratio of minor axis to major axis is 1: 5 to 1: 100. Because of too much, processability is poor. Example 2 is an effect that contains 100 parts by weight of thermoplastic resin, 20 parts of conductive fibers, and 40 parts of particles A, and the addition amount of conductive fibers and particles A is within an appropriate range.

表4、表5から実施例5の方が比較例5よりもシート表面の外観が良いことが理解される。比較例5は熱可塑性樹脂100重量部、導電性繊維60重量部、(7)粒子30部を含有しているが、粒子[(7)粒子は粒子Aには該当しない]の大きさが層厚み0.3mmに対し393%であることによりシート表面に大きく凹凸ができてしまい外観が悪い。実施例5は熱可塑性樹脂100重量部、導電性繊維40重量部、粒子A80重量部を含有しており、粒子Aの長径が層厚み0.5mmに対し200%であるため粒子Aの大きさが適正範囲となる効果である。   From Tables 4 and 5, it is understood that Example 5 has a better appearance on the sheet surface than Comparative Example 5. Comparative Example 5 contains 100 parts by weight of a thermoplastic resin, 60 parts by weight of conductive fibers, and (7) 30 parts of particles, but the size of the particles [(7) Particles do not fall under Particle A] is a layer. When the thickness is 393% with respect to the thickness of 0.3 mm, large irregularities are formed on the sheet surface, and the appearance is poor. Example 5 contains 100 parts by weight of a thermoplastic resin, 40 parts by weight of conductive fibers, and 80 parts by weight of particles A, and the particle A has a major axis of 200% with respect to a layer thickness of 0.5 mm. Is an effect within the proper range.

表4、表5から実施例7の方が比較例7よりも電気性能が良いことが理解される。実施例7は熱可塑性樹脂100重量部、導電性繊維50重量部、(6)粒子90重量部を含有し、比較例7は熱可塑性樹脂100重量部、導電性繊維50重量部、(9)粒子90重量部を含有しており実施例、比較例とも熱可塑性樹脂、導電性繊維、粒子[比較例7では、(9)粒子は粒子Aには該当しない]の添加量は適正範囲である。しかし、比較例7で使用する(9)粒子の成形加工温度は160℃であり、配合No.14の成形加工温度は180℃であるため、成形加工中に(9)粒子が溶融してしまい熱可塑性樹脂の配向を阻害する物が存在しなくなる。そのため、導電性繊維の絡み合いが少なく電気性能が悪くなる。実施例7は粒子Aの組成が適正であるため形状及び大きさを保持しており、その結果電気性能が向上する。 From Tables 4 and 5, it is understood that Example 7 has better electrical performance than Comparative Example 7. Example 7 contains 100 parts by weight of thermoplastic resin, 50 parts by weight of conductive fibers, and (6) 90 parts by weight of particles. Comparative Example 7 has 100 parts by weight of thermoplastic resin, 50 parts by weight of conductive fibers, (9) It contains 90 parts by weight of particles, and the amount of thermoplastic resin, conductive fiber, and particles [in Comparative Example 7, (9) Particles do not fall under Particle A] is in an appropriate range in both Examples and Comparative Examples. . However, the molding temperature of the particles (9) used in Comparative Example 7 is 160 ° C. Since the molding processing temperature of 14 is 180 ° C., (9) the particles are melted during the molding processing, and there is no object that disturbs the orientation of the thermoplastic resin. Therefore, there is little entanglement of the conductive fibers and the electrical performance is deteriorated. In Example 7, since the composition of the particles A is appropriate, the shape and size are maintained, and as a result, the electrical performance is improved.

表4、表5から実施例7の方が比較例4よりも粒子の密着性が良いことが理解される。比較例4は熱可塑性樹脂100重量部、導電性繊維70重量部、粒子A110重量部を含有しているが、実施例7は熱可塑性樹脂100重量部、導電性繊維50重量部、粒子A90重量部を含有しておりさらに粒子Aに使用している樹脂が上記熱可塑性樹脂と近い成分であることからより密着性が向上することが分かる。   From Tables 4 and 5, it is understood that Example 7 has better particle adhesion than Comparative Example 4. Comparative Example 4 contains 100 parts by weight of thermoplastic resin, 70 parts by weight of conductive fibers, and 110 parts by weight of particles A, but Example 7 has 100 parts by weight of thermoplastic resin, 50 parts by weight of conductive fibers, and 90 parts by weight of particles A. It can be seen that the adhesion is further improved since the resin used for the particles A is a component close to the thermoplastic resin.

本発明の導電性シートは、カレンダー成形または押出成形により製造しても、良好な電気性能が得られるため、IT工場、病院の手術室、コンピューター室等で床、壁、間仕切り、テーブルトップ、トレーなどの用途に広範に使用することができる。   Even if the conductive sheet of the present invention is manufactured by calendar molding or extrusion molding, good electrical performance can be obtained. Therefore, floors, walls, partitions, table tops, trays in IT factories, hospital operating rooms, computer rooms, etc. It can be used widely for such applications.

1 導電性シート
2 導電性繊維
3 粒子A
4 粒子Aの短径
5 粒子Aの長径
1 Conductive Sheet 2 Conductive Fiber 3 Particle A
4 Short diameter of particle A 5 Long diameter of particle A

Claims (4)

熱可塑性樹脂100重量部に対して導電性繊維20〜100重量部と粒子A20〜100重量部とを含有する熱可塑性樹脂組成物をカレンダー成形により成形してなり、上記粒子Aは公称目開き1mmのふるいを通過し公称目開き106μmのふるいを通過せず、前記粒子Aの長径が前記導電性繊維及び前記粒子Aを含有する熱可塑性樹脂層の厚みに対し20〜350%であり、上記カレンダー成形による成形中に粒子Aが形状を保持していることを特徴とする導電性シート。 A thermoplastic resin composition containing 20 to 100 parts by weight of conductive fibers and 20 to 100 parts by weight of particles A with respect to 100 parts by weight of thermoplastic resin is formed by calender molding , and the particles A have a nominal opening of 1 mm. sieve through a does not pass through the sieve of nominal mesh opening 106 [mu] m, a 20 to 350% relative to the thickness of the thermoplastic resin layer major axis of the particle a contains the conductive fibers and the particles a, the calendar A conductive sheet characterized in that the particles A retain their shape during molding . 前記熱可塑性樹脂が塩化ビニル樹脂であり、前記粒子Aが塩化ビニル樹脂、架橋塩化ビニル樹脂、ポリエステル系樹脂より選ばれる一種以上であることを特徴とする請求項1に記載の導電性シート。 2. The conductive sheet according to claim 1, wherein the thermoplastic resin is a vinyl chloride resin, and the particles A are one or more selected from a vinyl chloride resin, a crosslinked vinyl chloride resin, and a polyester resin . 上記粒子Aの短径と長径の比が1:5〜1:100であることを特徴とする請求項1に記載の導電性シート。
厚みが0.3mm〜0.6mmであることを特徴とする請求項1または2に記載の導電性シート。
2. The conductive sheet according to claim 1, wherein the ratio of the minor axis to the major axis of the particle A is 1: 5 to 1: 100.
The conductive sheet according to claim 1 or 2 , wherein the thickness is from 0.3 mm to 0.6 mm .
導電性材料を含有する導電基材層に、請求項1から3のいずれかに記載の導電性シートを表面層として積層した複層導電性シート。 The multilayer conductive sheet which laminated | stacked the conductive sheet in any one of Claim 1 to 3 as a surface layer on the conductive base material layer containing a conductive material.
JP2009205417A 2009-09-07 2009-09-07 Conductive sheet Active JP5590835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205417A JP5590835B2 (en) 2009-09-07 2009-09-07 Conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205417A JP5590835B2 (en) 2009-09-07 2009-09-07 Conductive sheet

Publications (2)

Publication Number Publication Date
JP2011056668A JP2011056668A (en) 2011-03-24
JP5590835B2 true JP5590835B2 (en) 2014-09-17

Family

ID=43944908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205417A Active JP5590835B2 (en) 2009-09-07 2009-09-07 Conductive sheet

Country Status (1)

Country Link
JP (1) JP5590835B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016156175A (en) * 2015-02-24 2016-09-01 凸版印刷株式会社 Decorative material for floor
JP6966734B2 (en) * 2016-11-04 2021-11-17 公立大学法人秋田県立大学 Method for manufacturing conductive polymer composite material by rolling and its molding method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606454A (en) * 1983-06-24 1985-01-14 タキロン株式会社 Antistatic plastic composite sheet
JPS63286468A (en) * 1987-05-19 1988-11-24 Asahi Chem Ind Co Ltd Carbon fiber composite resin composition
JP2001283878A (en) * 2000-03-30 2001-10-12 Toray Ind Inc Conductive sheet and fuel cell electrode equipped with the sheet
JP2004224829A (en) * 2003-01-20 2004-08-12 Morimura Chemicals Ltd Conductive composition, conductive molded product, and conductive coating

Also Published As

Publication number Publication date
JP2011056668A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP4819347B2 (en) Conductive sheet for packaging of electronic components
JP5590835B2 (en) Conductive sheet
JP2005170514A6 (en) Conductive sheet for packaging of electronic components
JP6504397B2 (en) Flexible container bag consisting of tarpaulins and tarpaulins
CN107075171A (en) Conducting polymer composite material
JP2006328162A (en) Film
WO2008020579A1 (en) Conductive resin composition and conductive sheets comprising the same
JP6686167B2 (en) Surface conductive laminated sheet and electronic component packaging container
WO2008018473A1 (en) Conductive sheet
JP5311618B2 (en) Conductive sheet
JP6325859B2 (en) Conductive resin sheet
JP5775753B2 (en) Impedance adjustment sheet and shielded wiring member
CN207156618U (en) The anti-skidding composite membrane of reclaiming type antistatic
JP2010196052A (en) Polyolefin resin film and laminated sheet
JP2009241388A (en) Antistatic release film
JP7309444B2 (en) RESIN COMPOSITION, RESIN MOLDED PRODUCT, RESIN LAMINATED BODY, CARTRIDGE, IMAGE FORMING APPARATUS, METHOD FOR MANUFACTURING RESIN MOLDED BODY, METHOD FOR MANUFACTURING RESIN LAMINATED BODY, AND METHOD FOR MANUFACTURING CARTRIDGE
JP4939835B2 (en) Cover film
JP3724918B2 (en) Conductive composite plastic sheet
JP2010214607A (en) Conductive laminate
JP2004300279A (en) Flame retardant sheet
JP4813397B2 (en) Conductive sheet and molded product for packaging electronic parts
JPH11353947A (en) Antistatic resin molding and secondary molding thereof
WO2021172425A1 (en) Sheet-like flexible electrode and method for producing same
JP2004091691A (en) Resin composition, sheet and its molded article
JP2001171728A (en) Sheet for embossed carrier tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140729

R150 Certificate of patent or registration of utility model

Ref document number: 5590835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250