JP5583152B2 - Lithium secondary battery electrode composition and lithium secondary battery - Google Patents

Lithium secondary battery electrode composition and lithium secondary battery Download PDF

Info

Publication number
JP5583152B2
JP5583152B2 JP2012013261A JP2012013261A JP5583152B2 JP 5583152 B2 JP5583152 B2 JP 5583152B2 JP 2012013261 A JP2012013261 A JP 2012013261A JP 2012013261 A JP2012013261 A JP 2012013261A JP 5583152 B2 JP5583152 B2 JP 5583152B2
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
lithium secondary
active material
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012013261A
Other languages
Japanese (ja)
Other versions
JP2013152861A (en
Inventor
邦夫 阿波賀
浩史 吉川
光浩 上村
一敬 信原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Fuji Silysia Chemical Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Fuji Silysia Chemical Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Fuji Silysia Chemical Ltd, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2012013261A priority Critical patent/JP5583152B2/en
Publication of JP2013152861A publication Critical patent/JP2013152861A/en
Application granted granted Critical
Publication of JP5583152B2 publication Critical patent/JP5583152B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池電極用組成物、及びリチウム二次電池に関する。 The present invention relates to a composition for a lithium secondary battery electrode and a lithium secondary battery.

携帯電話やポータブル電子機器の市場拡大に伴い、これらに用いられるエネルギー密度が大きく高出力の電池に対する要求が高まっている。この要求に応えるために、リチウムイオン等のアルカリ金属イオンを荷電担体とし、その電荷授受に伴う電気化学反応を利用した二次電池が開発され、特に、エネルギー密度の大きなリチウムイオン二次電池は現在広く普及している。   With the expansion of the market for mobile phones and portable electronic devices, there is an increasing demand for batteries with high energy density and high output used for these. In order to meet this demand, secondary batteries using alkali metal ions such as lithium ions as charge carriers and utilizing the electrochemical reaction associated with the charge transfer are developed. In particular, lithium ion secondary batteries with high energy density are currently available. Widely used.

このリチウムイオン二次電池は、活物質として、正極にリチウムを含有するCoやMn、Ni等の遷移金属酸化物、負極に炭素材料が用いられており、これらの活物質に対するリチウムイオンの挿入反応、および脱離反応を利用して充放電が行われている。しかしながら、リチウムイオン二次電池では、遷移金属酸化物結晶中のリチウムイオンの移動が律速となるため、大きな電流で充放電を行うと利用率が低くなる。このため、リチウムイオン二次電池では出力が制限され、また、充電時間も長いという問題があった。   This lithium ion secondary battery uses, as active materials, transition metal oxides such as Co, Mn, and Ni containing lithium in the positive electrode, and carbon materials in the negative electrode. The insertion reaction of lithium ions into these active materials And charging / discharging is performed using the elimination reaction. However, in the lithium ion secondary battery, the movement of lithium ions in the transition metal oxide crystal is rate-limiting, so that the utilization rate is lowered when charging / discharging with a large current. For this reason, the lithium ion secondary battery has a problem that the output is limited and the charging time is long.

そこで、導電性高分子や有機硫黄化合物等の有機化合物を電極活物質に用いた電池が提案されている。例えば、特許文献1には、導電性高分子を正極または負極の活物質とする電池が開示されている。また、特許文献2にはジスルフィド結合を有する有機化合物を正極に用いた電池が開示されている。また、有機ラジカル化合物を電極反応の反応物、もしくは生成物とする二次電池が提案されており、例えば、特許文献3、および特許文献4には窒素ラジカル化合物、ニトロキシドラジカル化合物、オキシラジカル化合物を活物質とする二次電池が開示されている。また、特許文献5には、配位子を介して遷移金属が結合した金属錯体クラスター分子を正極活物質とする分子クラスター電池が開示されている。   Therefore, a battery using an organic compound such as a conductive polymer or an organic sulfur compound as an electrode active material has been proposed. For example, Patent Document 1 discloses a battery using a conductive polymer as a positive electrode or negative electrode active material. Patent Document 2 discloses a battery using an organic compound having a disulfide bond as a positive electrode. Further, secondary batteries using an organic radical compound as a reaction product or product of an electrode reaction have been proposed. For example, Patent Document 3 and Patent Document 4 include a nitrogen radical compound, a nitroxide radical compound, and an oxy radical compound. A secondary battery as an active material is disclosed. Patent Document 5 discloses a molecular cluster battery in which a metal complex cluster molecule in which a transition metal is bonded via a ligand is used as a positive electrode active material.

米国特許第4,442,187号公報U.S. Pat.No. 4,442,187 米国特許第4,833,048号公報U.S. Pat.No. 4,833,048 特開2004-207249号公報JP 2004-207249 A 特開2004-193004号公報JP 2004-193004 A 特開2008-204668号公報JP 2008-204668 Gazette

しかしながら、上述した公知の電池は、容量やサイクル特性の点で必ずしも充分ではない。本発明は以上の点に鑑みなされたものであり、上述した課題の少なくともいずれかを解決できるリチウム二次電池電極用組成物、及びリチウム二次電池を提供することを目的とする。 However, the above-described known batteries are not always sufficient in terms of capacity and cycle characteristics. This invention is made | formed in view of the above point, and it aims at providing the composition for lithium secondary battery electrodes which can solve at least any one of the subject mentioned above, and a lithium secondary battery.

(1)本発明のリチウム二次電池電極用組成物
本発明のリチウム二次電池電極用組成物は、配位子を介して遷移金属イオンが結合した金属錯体クラスター分子と、炭素材料と多孔質シリカとの共分散体である導電性多孔質体と、を含み、前記配位子が、(a)酸素原子、又は(b)カルコゲン原子もしくは窒素原子を含む有機化合物、又はその誘導体であることを特徴とする。
(1) a lithium secondary battery electrode composition a lithium secondary battery electrode composition of the present invention of the present invention comprises a metal complex cluster molecules that transition metal ions are bound via a ligand, carbon material and the porous seen containing a conductive porous body is a co-dispersion of silica, wherein the ligand is the (a) an oxygen atom, or (b) an organic compound containing a chalcogen atom or a nitrogen atom, or a derivative thereof It is characterized by that.

本発明のリチウム二次電池電極用組成物は、例えば、リチウム二次電池の正極に含まれる正極活物質として使用することができる。この場合、リチウム二次電池の容量が増大する、又はサイクル特性が向上するという効果が得られる。また、導電性多孔質体が電解液を吸収するので、電解液の漏れが生じにくく、リチウム二次電池の安全性が向上する。 The composition for lithium secondary battery electrodes of the present invention can be used, for example, as a positive electrode active material contained in the positive electrode of a lithium secondary battery. In this case, the effect that the capacity | capacitance of a lithium secondary battery increases or cycling characteristics improve is acquired. Further, since the conductive porous body absorbs the electrolytic solution, the electrolytic solution is hardly leaked, and the safety of the lithium secondary battery is improved.

前記配位子(a)酸素原子、又は(b)カルコゲン原子もしくは窒素原子を含む有機化合物、又はその誘導体である。また、このような配位子のうち、特に、遷移金属イオンと電荷移動等によって相互作用することができる有機化合物や有機元素からなる置換基が好ましく、例えば、CH3COO-、C6H5COO-、CH3COO-、C4H3SCOO-等が挙げられる。また、配位子としては、1個の酸素原子により遷移金属イオンに配位するものが好ましい。 The ligand is (a) an oxygen atom, or (b) an organic compound containing a chalcogen atom or a nitrogen atom, or a derivative thereof . Among such ligands, an organic compound or a substituent composed of an organic element that can interact with a transition metal ion by charge transfer or the like is particularly preferable. For example, CH 3 COO , C 6 H 5 COO , CH 3 COO , C 4 H 3 SCOO − and the like. Moreover, as a ligand, what is coordinated to a transition metal ion by one oxygen atom is preferable.

前記遷移金属イオンとしては、例えば、第5、6、7、8、9、10、11、12族のいずれかの族に属する遷移金属のイオンが好ましい。金属錯体クラスター分子に含まれる遷移金属イオンは、1種であってもよいし、2種以上であってもよい。また、前記遷移金属イオンとしては、例えば、Mn、Co、Ni、Fe、Cr、Cu, Mo, W, 及びVから成る群から選ばれる1以上の遷移金属のイオンが好ましい。   As the transition metal ion, for example, a transition metal ion belonging to any one of the fifth, sixth, seventh, eighth, ninth, tenth, eleventh, and twelfth groups is preferable. The transition metal ions contained in the metal complex cluster molecule may be one type or two or more types. Further, as the transition metal ion, for example, one or more transition metal ions selected from the group consisting of Mn, Co, Ni, Fe, Cr, Cu, Mo, W, and V are preferable.

前記配位子を介して遷移金属イオンが結合した金属錯体クラスター分子とは、分子構造中に遷移金属イオンを有し、配位子と相互作用している化合物と定義される。このような金属錯体クラスター分子としては、下記のものが挙げられるが、これらに限定されることはない。   The metal complex cluster molecule in which transition metal ions are bonded via the ligand is defined as a compound having a transition metal ion in the molecular structure and interacting with the ligand. Examples of such metal complex cluster molecules include, but are not limited to, the following.

Mn12O12(O2CCH3)16(H2O)4、Mn12O12(O2CC6H5)16(H2O)4、Mn12O12(O2CCH2CH3)16(H2O)4、Mn12O12(O2CC4H3S)16(H2O)4、Mn12O12(O2CCH2(CH3)3)16(H2O)4、Mn12O12(O2CCHCl2)16(H2O)4、Mn12O12(O2CCH2Br)16(H2O)4、Mn11CrO12(O2CCH3)16(H2O)4、Mn8Fe4O12(O2CCH3)16(H2O)4
[P(C6H5)4]2[Mn12O12(O2CC6H5)16(H2O)4]
[(C4H9)4N]3PMo12O40
[V4O2(O2C(CH2)CH3)7(bipyridine)2]ClO4
[Fe8O2(OH)12(tacn)6]Br8・9H2O tacn=1, 4, 7-triazacyclononane
[Cu7(OH)6Cl2(pn)6(H2O)2](C(CN)3)4Cl2 pn=1, 3-diaminopropane
前記金属錯体クラスター分子は、同種または異種の金属が複数集まって特定の構造単位を形成したものであり、特に配位子を含む数個から数十個の金属イオンを含む化合物である。金属錯体クラスター分子の合成方法は特に限定されず、従来公知の方法で行うことができる。例えば、Mn12O12(O2CCH3)16(H2O)4の場合は、酢酸マンガン(II)を酢酸水溶液に溶かした後、過マンガン酸カリウムを少しずつ加えて撹拌することで得られる。また、ポリオキソメタレート[(C4H9)4N]3PMo12O40の場合は、酸化モリブデンMoO3とリン酸から作成することが出来る。
Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 , Mn 12 O 12 (O 2 CC 6 H 5 ) 16 (H 2 O) 4 , Mn 12 O 12 (O 2 CCH 2 CH 3 ) 16 (H 2 O) 4 , Mn 12 O 12 (O 2 CC4H3S) 16 (H 2 O) 4 , Mn 12 O 12 (O 2 CCH 2 (CH 3 ) 3 ) 16 (H 2 O) 4 , Mn 12 O 12 (O 2 CCHCl 2 ) 16 (H 2 O) 4 , Mn 12 O 12 (O 2 CCH 2 Br) 16 (H 2 O) 4 , Mn 11 CrO 12 (O 2 CCH 3 ) 16 (H 2 O ) 4 , Mn 8 Fe 4 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 ,
[P (C 6 H 5 ) 4 ] 2 [Mn 12 O 12 (O 2 CC 6 H 5 ) 16 (H 2 O) 4 ]
[(C 4 H 9 ) 4 N] 3 PMo 12 O 40
[V 4 O 2 (O 2 C (CH 2 ) CH 3 ) 7 (bipyridine) 2 ] ClO 4
[Fe 8 O 2 (OH) 12 (tacn) 6 ] Br 8 ・ 9H 2 O tacn = 1, 4, 7-triazacyclononane
[Cu 7 (OH) 6 Cl 2 (pn) 6 (H 2 O) 2 ] (C (CN) 3 ) 4 Cl 2 pn = 1, 3-diaminopropane
The metal complex cluster molecule is a compound containing a plurality of the same or different metals to form a specific structural unit, and particularly a compound containing several to several tens of metal ions including a ligand. The method for synthesizing the metal complex cluster molecule is not particularly limited and can be performed by a conventionally known method. For example, in the case of Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 , after dissolving manganese (II) acetate in an acetic acid aqueous solution, potassium permanganate is added little by little and stirred. It is done. In the case of polyoxometalate [(C 4 H 9 ) 4 N] 3 PMo 12 O 40 , it can be prepared from molybdenum oxide MoO 3 and phosphoric acid.

本発明のリチウム二次電池電極用組成物において、金属錯体クラスター分子と導電性多孔質体との合計量を100重量部としたとき、金属錯体クラスター分子の重量は、1〜30重量部の範囲内にあることが好ましく、5〜30重量部の範囲内にあることが一層好ましく、10〜30重量部の範囲内にあることが特に好ましい。 In the composition for a lithium secondary battery electrode of the present invention, when the total amount of the metal complex cluster molecules and the conductive porous body is 100 parts by weight, the weight of the metal complex cluster molecules is in the range of 1 to 30 parts by weight. It is preferably within the range, more preferably within the range of 5 to 30 parts by weight, and particularly preferably within the range of 10 to 30 parts by weight.

前記導電性多孔質体は、例えば、疎水性を示す微粒子状炭素を、多孔質体(例えば、多孔質シリカ、グラファイト等)の骨格の内部に均一に分散させることにより、高い比表面積、大きい細孔容積、及び高い電気伝導性を有する。金属錯体クラスター分子を導電性多孔質体にナノレベルで分散させるために、導電性多孔質体を、アミノ基、4級アンモニウム基などの塩基性官能基などで表面処理することも必要に応じてできる。塩基性官能基は、導電性多孔質体がシリカ・炭素複合多孔質体である場合、シリカゲルの表面シラノール基を改質することでシリカ・炭素複合多孔質体に固定化される。このような塩基性官能基として第一アミン、第二アミン、第三アミン、第四アミン、ニトリルなどが挙げられる。   The conductive porous body has, for example, a high specific surface area and a large fine particle by uniformly dispersing fine particulate carbon having hydrophobicity inside the skeleton of the porous body (for example, porous silica, graphite, etc.). Has pore volume and high electrical conductivity. In order to disperse the metal complex cluster molecules in the conductive porous material at the nano level, the conductive porous material may be surface-treated with a basic functional group such as an amino group or a quaternary ammonium group as necessary. it can. When the conductive porous body is a silica / carbon composite porous body, the basic functional group is immobilized on the silica / carbon composite porous body by modifying the surface silanol group of the silica gel. Examples of such basic functional groups include primary amines, secondary amines, tertiary amines, quaternary amines, and nitriles.

前記導電性多孔質体素材料と多孔質シリカとの共分散体である、シリカ・炭素複合多孔質体である。シリカ・炭素複合多孔質体は、例えば、疎水性を示す微粒子状炭素をシリカ骨格の内部に均一に分散させることにより、高い比表面積、大きい細孔容積、及び高い電気伝導性を有する。シリカ・炭素複合多孔質体は、ケイ酸エステル又はその重合体をシリカ原料として、当該シリカ原料中に微粒子状の炭素を添加、混合して、その混合物中で前記シリカ原料を加水分解することにより、シリカと炭素の共分散体を作製して、当該共分散体中に含まれるシリカをゲル化させることにより、前記共分散体が多孔質化されてなるものであってもよいし(有機シリケート法)、もしくは、界面活性剤によって水に分散させた微粒子状の炭素と、アルカリ金属ケイ酸塩水溶液と、鉱酸とを混合することにより、アルカリ金属ケイ酸塩と前記鉱酸との反応生成物であるシリカヒドロゾルと前記微粒子状の炭素が均一に分散した共分散体を作製して、当該共分散体中に含まれるシリカヒドロゾルをゲル化させることにより、前記共分散体が多孔質化されてなるもの(ケイ酸塩法)であってもよい。シリカ・炭素複合多孔質体の比表面積は、20〜1000m2/g、細孔容積は、0.3〜2.0ml/g、平均細孔径は2〜100nmに調製されていることが好ましい。 The conductive porous body, the covariance of the carbon material charge and the porous silica, silica-carbon composite porous body. The silica-carbon composite porous body has a high specific surface area, a large pore volume, and a high electrical conductivity by, for example, uniformly dispersing fine particulate carbon having hydrophobicity inside the silica skeleton. The silica-carbon composite porous body is obtained by using a silicate ester or a polymer thereof as a silica raw material, adding and mixing particulate carbon in the silica raw material, and hydrolyzing the silica raw material in the mixture. The co-dispersion may be made porous by preparing a co-dispersion of silica and carbon and gelling the silica contained in the co-dispersion (organic silicate). Method), or by mixing fine particles of carbon dispersed in water with a surfactant, an alkali metal silicate aqueous solution, and a mineral acid to produce a reaction between the alkali metal silicate and the mineral acid. By preparing a co-dispersion in which the silica hydrosol, which is a product, and the fine-particulate carbon are uniformly dispersed, and gelling the silica hydrosol contained in the co-dispersion, the co-dispersion is increased. It may be those formed by structure formation (silicate method). The specific surface area of the silica / carbon composite porous body is preferably 20 to 1000 m 2 / g, the pore volume is 0.3 to 2.0 ml / g, and the average pore diameter is preferably 2 to 100 nm.

シリカ・炭素複合多孔質体には、界面活性剤が含まれていても含まれていなくてもよいが、界面活性剤を含まないシリカ・炭素複合多孔質体が必要であれば、前記共分散体が多孔質化された後、更に焼成することにより、前記界面活性剤を除去することができる。この場合、前記焼成が、温度条件200〜500℃、焼成時間0.5〜2時間の範囲内で実施されたものであると好ましい。   The silica / carbon composite porous body may or may not contain a surfactant. However, if a silica / carbon composite porous body containing no surfactant is required, the co-dispersion After the body is made porous, the surfactant can be removed by further baking. In this case, it is preferable that the baking is performed within a temperature condition of 200 to 500 ° C. and a baking time of 0.5 to 2 hours.

上述した有機シリケート法では、ケイ酸エステル又はその重合体をシリカ原料として利用する。このようなシリカ原料の代表的な例としては、エチルシリケート、メチルシリケート、及びその一部加水分解物などを挙げることができる。もちろん、これら以外のケイ酸エステルであってもよい。   In the organic silicate method described above, a silicate ester or a polymer thereof is used as a silica raw material. Typical examples of such silica raw materials include ethyl silicate, methyl silicate, and a partially hydrolyzed product thereof. Of course, other silicate esters may be used.

また、上述したケイ酸塩法では、前記共分散体は、前記微粒子状の炭素を、前記アルカリ金属ケイ酸塩水溶液及び前記鉱酸のうち、いずれか一方に添加、混合してから、更に他方を添加、混合することによって作製されたものであると好ましい。あるいは、前記共分散体は、前記アルカリ金属ケイ酸塩水溶液及び前記鉱酸を混合することによってシリカヒドロゾルを作製してから、更に前記微粒子状の炭素を、前記シリカヒドロゾルに添加、混合することによって作製されたものであってもよい。   In the silicate method described above, the co-dispersion is added to and mixed with the particulate carbon in one of the alkali metal silicate aqueous solution and the mineral acid, and then the other. It is preferable that it is produced by adding and mixing. Alternatively, in the co-dispersion, a silica hydrosol is prepared by mixing the alkali metal silicate aqueous solution and the mineral acid, and then the particulate carbon is further added to and mixed with the silica hydrosol. It may be produced by this.

また、シリカ・炭素複合多孔質体は、炭素含有量が1〜50%(望ましくは5〜35%)に調製されていると好ましい。また、微粒子状の炭素としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等を含むカーボンブラック類、天然黒鉛、人造黒鉛、膨張黒鉛などの黒鉛類、カーボンファイバー、及びカーボンナノチューブなどを挙げることができる。   The silica / carbon composite porous body is preferably prepared so that the carbon content is 1 to 50% (desirably 5 to 35%). Examples of fine carbon particles include carbon blacks including furnace black, channel black, acetylene black, thermal black, graphites such as natural graphite, artificial graphite, and expanded graphite, carbon fibers, and carbon nanotubes. Can do.

共分散体を多孔質化する際には、表面積が20〜1000m2/g(望ましくは100〜800m2/g)、細孔容積が0.3〜2.0ml/g(望ましくは0.3〜1.5ml/g)、平均細孔径が2〜100nm(望ましくは3〜50nm)に調製される。このような数値範囲で示されるシリカ・炭素複合多孔質体よりも多孔質度が低下すると、シリカ・炭素複合多孔質体としての効果が小さくなる。また、金属錯体クラスター分子が約1〜数nmという大きさを有していることからも、このような平均細孔径が望ましい。 When the co-dispersion is made porous, the surface area is 20 to 1000 m 2 / g (desirably 100 to 800 m 2 / g), and the pore volume is 0.3 to 2.0 ml / g (desirably 0.3). To 1.5 ml / g) and an average pore diameter of 2 to 100 nm (desirably 3 to 50 nm). When the porosity is lower than that of the silica / carbon composite porous body shown in such a numerical range, the effect as the silica / carbon composite porous body is reduced. In addition, since the metal complex cluster molecule has a size of about 1 to several nm, such an average pore diameter is desirable.

本発明のリチウム二次電池電極用組成物の製造方法は特に限定されず、例えば、多孔質材料に物質を吸着させる、公知の方法を用いることができる。例えば、金属錯体クラスター分子がポリオキソメタレート[(C4H9)4N]3PMo12O40であり、導電性多孔質体が15重量%の炭素を含んだ多孔質シリカ(平均細孔径12nm)の場合には、多孔質シリカのアセトニトリル懸濁液にポリオキソメタレートのアセトニトリル溶液を加えることでリチウム二次電池電極用組成物を得ることができる。 The manufacturing method of the composition for lithium secondary battery electrodes of this invention is not specifically limited, For example, the well-known method of making a porous material adsorb | suck a substance can be used. For example, the metal complex cluster molecule is polyoxometalate [(C 4 H 9 ) 4 N] 3 PMo 12 O 40 , and the conductive porous body contains porous silica containing 15 wt% carbon (average pore diameter In the case of 12 nm), a composition for a lithium secondary battery electrode can be obtained by adding an acetonitrile solution of polyoxometalate to an acetonitrile suspension of porous silica.

本発明のリチウム二次電池電極用組成物は、さらに、炭素材料を含んでいてもよい。炭素材料により、例えば、正極中の金属錯体クラスター分子の濃度を、リチウム二次電池の動作が好適となる範囲に調整することができる。前記炭素材料としては、例えば、グラファイト、カーボンブラック、アセチレンブラック等の炭素質微粒子、気相成長炭素繊維(VGCF)、カーボンナノチューブ等の炭素繊維等が挙げられる。本発明のリチウム二次電池電極用組成物において、これらの炭素材料を単独で、または2種類以上混合して用いることもできる。電極100重量部における炭素材料の量は、例えば、10〜90重量部とすることができる。
(2)本発明のリチウム二次電池
本発明のリチウム二次電池は、正極、及び負極を備える充放電可能なリチウム二次電池であって、前記正極に含まれる正極活物質が、上述したリチウム二次電池電極用組成物であることを特徴とする。
The composition for a lithium secondary battery electrode of the present invention may further contain a carbon material. With the carbon material, for example, the concentration of the metal complex cluster molecules in the positive electrode can be adjusted to a range in which the operation of the lithium secondary battery is suitable. Examples of the carbon material include carbonaceous fine particles such as graphite, carbon black, and acetylene black, carbon fibers such as vapor grown carbon fiber (VGCF), and carbon nanotube. In the composition for a lithium secondary battery electrode of the present invention, these carbon materials can be used alone or in admixture of two or more. The amount of the carbon material in 100 parts by weight of the electrode can be, for example, 10 to 90 parts by weight.
(2) Lithium secondary battery of the present invention The lithium secondary battery of the present invention is a chargeable / dischargeable lithium secondary battery comprising a positive electrode and a negative electrode, wherein the positive electrode active material contained in the positive electrode is the above-described lithium It is a composition for secondary battery electrodes .

本発明のリチウム二次電池は、正極活物質として、上述したリチウム二次電池電極用組成物を用いることにより、電子の授受を伴う酸化還元反応を安定かつ円滑に進行させることができる。また、本発明のリチウム二次電池は、容量が大きい、又はサイクル特性において優れているという効果を奏する。 In the lithium secondary battery of the present invention, by using the above-described composition for a lithium secondary battery electrode as a positive electrode active material, an oxidation-reduction reaction involving the transfer of electrons can be stably and smoothly advanced. In addition, the lithium secondary battery of the present invention has an effect that the capacity is large or the cycle characteristics are excellent.

本発明のリチウム二次電池は、例えば、それぞれ活物質を含む電極層を集電板上に形成し、両者を、セパレーターを介して対向させて電解液を含漬させ、封止したものとすることができる。具体的には、例えば、図1に示すように、正極層1、正極集電体2、負極集電体3、負極層4、電解質を含むセパレーター5、負極端子6、正極端子7、及び外装フィルム8を備え、正極層1と負極層4とを電解質を含むセパレーター5を介して重ね合わせた構成を有するものとすることができる。この正極層1に用いられる正極活物質を、上述したリチウム二次電池電極用組成物とすることができる。正極層1、および負極層4の積層方法は特に限定されず、交互に多層積層したり、セパレーターを介して対向させて巻回したりすることができる。 In the lithium secondary battery of the present invention, for example, an electrode layer containing an active material is formed on a current collector plate, both are opposed to each other through a separator, and an electrolyte is impregnated and sealed. be able to. Specifically, for example, as shown in FIG. 1, a positive electrode layer 1, a positive electrode current collector 2, a negative electrode current collector 3, a negative electrode layer 4, a separator 5 containing an electrolyte, a negative electrode terminal 6, a positive electrode terminal 7, and an exterior The film 8 may be provided, and the positive electrode layer 1 and the negative electrode layer 4 may be superposed via a separator 5 containing an electrolyte. The positive electrode active material used for the positive electrode layer 1 can be the above-described composition for a lithium secondary battery electrode . The method of laminating the positive electrode layer 1 and the negative electrode layer 4 is not particularly limited, and the positive electrode layer 1 and the negative electrode layer 4 can be alternately laminated in multiple layers or wound while facing each other via a separator.

本発明のリチウム二次電池では、リチウム二次電池電極用組成物に含まれる金属錯体クラスター分子を安定に何度も電気化学的に酸化還元することが可能となる。図2に、一例とし て、(PMo12O40)、(分子構造(1)、(2)以下、POMクラスター)において起こりうる酸化還元反応を示す。この場合、遷移金属であるMoが酸化されて価数が増大することにより充電反応が進行し、逆に還元されて価数が減少することで放電反応が進行する。 In the lithium secondary battery of the present invention, the metal complex cluster molecules contained in the composition for a lithium secondary battery electrode can be electrochemically oxidized and reduced many times stably. As an example, FIG. 2 shows a possible redox reaction in (PMo 12 O 40 ), (molecular structure (1), (2), hereinafter, POM cluster). In this case, the transition metal, Mo, is oxidized to increase the valence, and the charge reaction proceeds. On the other hand, the transition reaction is reduced to decrease the valence, and the discharge reaction proceeds.

本発明のリチウム二次電池では、電極の各構成材料間の結びつきを強めるために、結着剤を用いることもできる。この結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリプロピレン、ポリエチレン、ポリイミド、各種ポリウレタン等の樹脂バインダーが挙げられる。これらの樹脂バインダーは、単独でまたは2種類以上混合して用いることもできる。電極中のバインダーの割合は特に限定されないが、例えば5〜30質量%とすることができる。 In the lithium secondary battery of the present invention, a binder can also be used to strengthen the connection between the constituent materials of the electrode. As this binder, polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene / butadiene copolymer rubber, polypropylene, polyethylene, polyimide And resin binders such as various polyurethanes. These resin binders can be used alone or in admixture of two or more. Although the ratio of the binder in an electrode is not specifically limited, For example, it can be 5-30 mass%.

本発明のリチウム二次電池において、正極活物質とは、充電反応および放電反応等の電極反応に直接寄与する物質のことであり、電池システムの中心的役割を果たすものである。本発明のリチウム二次電池では、正極物質として、上述したリチウム二次電池電極用組成物を用いる。 In the lithium secondary battery of the present invention, the positive electrode active material is a material that directly contributes to electrode reactions such as charging reaction and discharging reaction, and plays a central role in the battery system. The lithium secondary battery of the present invention, as the positive electrode active material, a lithium secondary battery electrode composition as defined above.

本発明のリチウム二次電池において、正極層の形成は、例えば、上述のリチウム二次電池電極用組成物、バインダー、及び炭素材料をそのまま用いて成型したり、適当な溶剤に溶解、もしくは分散させて混合し、溶液やスラリを塗工して乾燥させる等の方法で行うことができる。 In the lithium secondary battery of the present invention, the positive electrode layer can be formed, for example, by using the above-described composition for lithium secondary battery electrode , binder, and carbon material as they are, or by dissolving or dispersing in an appropriate solvent. Mixing, and applying a solution or slurry and drying.

また、上述したリチウム二次電池電極用組成物と種々の添加物を組み合わせて用いることもできる。この場合、溶剤としては一般の有機溶剤であれば特に限定されず、ジメチルスルホキシド、ジメチルホルムアミド、N−メチルピロリドン、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、γ−ブチロラクトン等の塩基性溶媒、アセトニトリル、テトラヒドロフラン、ニトロベンゼン、アセトン等の非水溶媒、メチルアルコール、エチルアルコール等のプロトン性溶媒等を挙げることができる。また、組み合わせる添加剤としては、バインダーや粘度調整剤として作用するポリエチレンやポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリアクリレート、アルキルナフタレンスルホン酸、ナフタレンスルホン酸のホルムアルデヒド縮合物、ポリエチレンオキサイド、カルボキシメチルセルロースなどの樹脂を挙げることができる。 Moreover, it can also use combining the composition for lithium secondary battery electrodes mentioned above and various additives. In this case, the solvent is not particularly limited as long as it is a general organic solvent. Basic solvents such as dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone, propylene carbonate, diethyl carbonate, dimethyl carbonate, and γ-butyrolactone, acetonitrile, tetrahydrofuran And non-aqueous solvents such as nitrobenzene and acetone, and protic solvents such as methyl alcohol and ethyl alcohol. Additives to be combined include polyethylene, polyvinylidene fluoride, polyhexafluoropropylene, polytetrafluoroethylene, polyacrylate, alkylnaphthalenesulfonic acid, formaldehyde condensate of naphthalenesulfonic acid, polyethylene oxide, which act as a binder and viscosity modifier And resins such as carboxymethylcellulose.

本発明のリチウム二次電池では塗工方法も特に限定されない。この場合において、溶剤の種類、上述したリチウム二次電池電極用組成物との配合比、添加剤の種類とその添加量等は、リチウム二次電池の要求特性等を考慮すると共に製造工程における製造のし易さ等も考慮して、任意に設定される。 In the lithium secondary battery of the present invention, the coating method is not particularly limited. In this case, the type of solvent, the blending ratio with the above-described composition for lithium secondary battery electrodes , the type of additive and the amount of additive, etc. are considered in the required characteristics of the lithium secondary battery and manufactured in the manufacturing process. It is arbitrarily set in consideration of ease of operation.

本発明のリチウム二次電池において、上述したリチウム二次電池電極用組成物、炭素、バインダー等の混合比は、リチウム二次電池の要求特性に応じて適宜変わり、リチウム二次電池として安定に動作する比率とする。
本発明のリチウム二次電池において、負極集電体、正極集電体として、例えば、ニッケル、アルミニウム、銅、金、銀、アルミニウム合金、ステンレス、炭素等からなる箔、金属平板、メッシュ状などの形状のものを用いることができる。
In the lithium secondary battery of the present invention, a lithium secondary battery electrode composition as defined above, carbon, the mixing ratio of such binder, suitably vary depending on the required characteristics of the lithium secondary battery, stable operation as a lithium secondary battery The ratio to be used.
In the lithium secondary battery of the present invention, as the negative electrode current collector and the positive electrode current collector, for example, a foil made of nickel, aluminum, copper, gold, silver, aluminum alloy, stainless steel, carbon, etc., a metal flat plate, a mesh shape, etc. Shaped ones can be used.

本発明のリチウム二次電池では、従来のリチウムイオン二次電池と同様に正極と負極を隔てる目的でセパレーターを利用することができる。これらのセパレーターとしては多孔質のポリエチレンやポリプロピレンなどのポリオレフィンフィルムが挙げられ、複数の種類を組み合わせて使用することもできる。 In the lithium secondary battery of the present invention, a separator can be used for the purpose of separating the positive electrode and the negative electrode as in the conventional lithium ion secondary battery. Examples of these separators include polyolefin films such as porous polyethylene and polypropylene, and a plurality of types can be used in combination.

対向電極(負極)は、導電性材料からなるものであれば特に限定されるものではなく、従来公知のものを採用することができる。例えば、天然黒鉛、石油コークス、石炭コークス、ピッチコークス、カーボンブラック、活性炭、樹脂焼成炭素、有機高分子焼成体、熱分解気相成長炭素繊維、メソカーボンマイクロビーズ、メソフェーズピッチ系炭素繊維、ポリアクリロニトリル系炭素繊維、低温焼成炭素、フラーレン、カーボンナノチューブ等の炭素材料、金属リチウム、リチウム合金、窒化リチウム、Li3-xxN(0<x<1、M=Co、NiまたはCu)及びこれらの混合物が挙げられ、これらの一種単独または二種以上を組み合わせて用いることができる。具体的には黒鉛をバインダー等とともに途工した銅箔、リチウム重ね合わせ銅箔、白金板等を挙げることができる。こうした対向電極は、上述のセパレーターを介して正極と対向させて設けられる。 A counter electrode (negative electrode) will not be specifically limited if it consists of an electroconductive material, A conventionally well-known thing is employable. For example, natural graphite, petroleum coke, coal coke, pitch coke, carbon black, activated carbon, resin-fired carbon, organic polymer fired body, pyrolytic vapor-grown carbon fiber, mesocarbon microbead, mesophase pitch-based carbon fiber, polyacrylonitrile Carbon fiber, carbon material such as low-temperature calcined carbon, fullerene, carbon nanotube, metallic lithium, lithium alloy, lithium nitride, Li 3-x M x N (0 <x <1, M = Co, Ni or Cu) and these These can be used, and these can be used alone or in combination of two or more. Specific examples include copper foils prepared with graphite and a binder, lithium-laminated copper foils, platinum plates, and the like. Such a counter electrode is provided so as to face the positive electrode through the above-described separator.

電解質は、正極層と対向電極との間の荷電担体輸送を行うものである。一般には、室温で10-5〜10-1S/cmのイオン伝導性を有するものが用いられる。電解質としては、例えば、電解質塩を溶剤に溶解した電解液や、電解質塩を含む高分子化合物からなる固体電解質を利用することができる。 The electrolyte performs charge carrier transport between the positive electrode layer and the counter electrode. Generally, those having ion conductivity of 10 −5 to 10 −1 S / cm at room temperature are used. As the electrolyte, for example, an electrolytic solution in which an electrolyte salt is dissolved in a solvent, or a solid electrolyte made of a polymer compound containing the electrolyte salt can be used.

電解液を構成する電解質塩としては、例えば、LiPF6 、LiClO4 、LiBF4 、LiCF3SO3、Li(CF3SO22 N、Li(C25SO22N、Li(CF3SO23 C、Li(C25SO23C等の従来公知の材料を用いることができる。 Examples of the electrolyte salt constituting the electrolytic solution include LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (C 2 F 5 SO 2 ) 2 N, Li ( Conventionally known materials such as CF 3 SO 2 ) 3 C and Li (C 2 F 5 SO 2 ) 3 C can be used.

電解質塩を溶解するための溶剤としては、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、テトラヒドロフラン、ジオキソラン、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン等の有機溶媒を用いることができ、これらを二種以上の混合溶剤として用いることもできる。   Examples of the solvent for dissolving the electrolyte salt include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, tetrahydrofuran, dioxolane, sulfolane, dimethylformamide, dimethylacetamide, and N-methyl-2. Organic solvents such as -pyrrolidone can be used, and these can also be used as a mixed solvent of two or more.

固体電解質を構成する高分子化合物としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−モノフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン三元共重合体等のフッ化ビニリデン系重合体や、アクリロニトリル−メチルメタクリレート共重合体、アクリロニトリル−メチルアクリレート共重合体、アクリロニトリル−エチルメタクリレート共重合体、アクリロニトリル−エチルアクリレート共重合体、アクリロニトリル−メタクリル酸共重合体、アクリロニトリル−アクリル酸共重合体、アクリロニトリル−ビニルアセテート共重合体等のアクリロニトリル系重合体、さらにポリエチレンオキサイド、エチレンオキサイド−プロピレンオキサイド共重合体、これらのアクリレート体やメタクリレート体の重合体などが挙げられる。なお、固体電解質は、これらの高分子化合物に電解液を含ませてゲル状にしたものを用いても、高分子化合物のみでそのまま用いてもよい。   As the polymer compound constituting the solid electrolyte, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-monofluoroethylene copolymer, vinylidene fluoride- Vinylidene fluoride polymers such as trifluoroethylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene terpolymer, and acrylonitrile-methyl methacrylate copolymer Polymer, acrylonitrile-methyl acrylate copolymer, acrylonitrile-ethyl methacrylate copolymer, acrylonitrile-ethyl acrylate copolymer, acrylonitrile-methacrylic acid copolymer, acrylonitrile-acrylic acid copolymer Coalescence, acrylonitrile - acrylonitrile polymers such as vinyl acetate copolymer, further polyethylene oxide, ethylene oxide - propylene oxide copolymers, and polymers of these acrylates body or methacrylate body thereof. The solid electrolyte may be a gel obtained by adding an electrolytic solution to these polymer compounds, or may be used as it is with only the polymer compound.

本発明のリチウム二次電池の形状は特に限定されず、従来の電池で行われている円筒型、角型、コイン型、およびシート型等の形状とすることができる。また、外装方法も特に限定されず、金属ケースや、モールド樹脂、アルミラミネートフィルム等によって行うことができる。また、電極からのリードの取り出し等についても従来公知の方法を用いることができる。 The shape of the lithium secondary battery of the present invention is not particularly limited, and may be a cylindrical shape, a square shape, a coin shape, a sheet shape, or the like, which is performed in a conventional battery. Further, the exterior method is not particularly limited, and it can be performed by a metal case, a mold resin, an aluminum laminate film, or the like. A conventionally known method can also be used for taking out the lead from the electrode.

二次電池の構成を表す説明図である。It is explanatory drawing showing the structure of a secondary battery. 金属錯体クラスター分子の酸化還元反応を表す説明図である。It is explanatory drawing showing the oxidation reduction reaction of a metal complex cluster molecule.

本発明の実施形態を説明する。
1.金属錯体クラスター分子の製造
以下のようにして、金属錯体クラスター分子A1、金属錯体クラスター分子A2、金属錯体クラスター分子A3、及び金属錯体クラスター分子A4をそれぞれ製造した。
(1)金属錯体クラスター分子A1
酢酸マンガン(II)4.00g(=16mmol)を60%/Wの酢酸水溶液40mlに溶かした後、過マンガン酸カリウム1.00g(=3.2mmol)を少しずつ加え、10分程度撹拌した。その後、ろ過をし、酢酸エチル40mlを加え、数日間室温にて放置した。析出した結晶をろ別し、水、アセトンにて洗浄することにより、黒色の板状晶を得た。この黒色の板状晶を、IRスペクトル及び単結晶X線構造解析によって分析したところ、Mn12O12(O2CCH3)16(H2O)4 で表される金属錯体クラスター分子(以下、金属錯体クラスター分子A1とする)であることが確認できた。
(2)金属錯体クラスター分子A2
水70mlにMoO37.2g (50mmol)と85%H3PO4 0.479g(4.2mmol)を加え、還流下で95℃に保ちながら3時間攪拌した。その後、(C4H9)4NBr 4.5g (14mmol)を水5mlに溶かしたものを加えると黄色い固体が析出した。これをろ別し、100mlの熱水を加え、再度ろ過して、水、エタノール、エーテルで洗った。その後アセトンで再結晶をして、黄色板状晶を得た。この黄色板状晶を、IRスペクトル及び単結晶X線構造解析によって分析したところ、[(C4H9)4N]3PMo12O40で表される金属錯体クラスター分子(以下、金属錯体クラスター分子A2とする)であることが確認できた。
(3)金属錯体クラスター分子A3
金属錯体クラスター分子A1の2.0g (1.0mmol)をアセトニトリル75mlに懸濁し、2,2-dimethyl butyric acid(PetCOOH)(Aldrich)3.89ml(27.7mmol)とジクロロメタン25mlの混合物を加え、一晩攪拌した。減圧濃縮後、ジクロロメタン 25mlとPetCOOH 3.89mlを加え三時間攪拌した。その後、ニトロメタン80mlでレイヤリングし、4 ℃で数日間静置した後、黒色の結晶を得た。この黒色の結晶を、IRスペクトル及び単結晶X線構造解析によって分析したところ、[Mn12O12(CH3CH2C(CH3)2COO)16(H2O)4]で表される金属錯体クラスター分子(以下、金属錯体クラスター分子A3とする)であることが確認できた。
(4)金属錯体クラスター分子A4
水70mlにWO3 7.2g(50mmol)と85%H3PO40.479g(4.2mmol)を加え、還流下で95℃に保ちながら3時間攪拌した。その後、(C4H9)4NBr4.5g (14mmol)を水5mlに溶かしたものを加えると黄色い固体が析出した。これをろ別し、100mlの熱水を加え、再度ろ過して、水、エタノール、エーテルで洗った。その後アセトンで再結晶をして、黄色板状晶を得た。この黄色板状晶を、IRスペクトル及び単結晶X線構造解析によって分析したところ、[PW12O40]3-で表される金属錯体クラスター分子(以下、金属錯体クラスター分子A4とする)であることが確認できた。
An embodiment of the present invention will be described.
1. Production of Metal Complex Cluster Molecule Metal complex cluster molecule A1, metal complex cluster molecule A2, metal complex cluster molecule A3, and metal complex cluster molecule A4 were produced as follows.
(1) Metal complex cluster molecule A1
After dissolving 4.00 g (= 16 mmol) of manganese (II) acetate in 40 ml of 60% / W acetic acid aqueous solution, 1.00 g (= 3.2 mmol) of potassium permanganate was added little by little and stirred for about 10 minutes. Thereafter, the mixture was filtered, 40 ml of ethyl acetate was added, and the mixture was allowed to stand at room temperature for several days. The precipitated crystals were separated by filtration and washed with water and acetone to obtain black plate crystals. When this black plate-like crystal was analyzed by IR spectrum and single crystal X-ray structural analysis, a metal complex cluster molecule represented by Mn 12 O 12 (O 2 CCH 3 ) 16 (H 2 O) 4 (hereinafter, It was confirmed that it was a metal complex cluster molecule A1).
(2) Metal complex cluster molecule A2
To 70 ml of water, 7.2 g (50 mmol) of MoO 3 and 0.479 g (4.2 mmol) of 85% H 3 PO 4 were added and stirred for 3 hours while maintaining at 95 ° C. under reflux. Thereafter, a solution obtained by dissolving 4.5 g (14 mmol) of (C 4 H 9 ) 4 NBr in 5 ml of water was added to precipitate a yellow solid. This was filtered off, 100 ml of hot water was added, filtered again and washed with water, ethanol and ether. Thereafter, recrystallization with acetone gave yellow plate crystals. When this yellow plate crystal was analyzed by IR spectrum and single crystal X-ray structural analysis, a metal complex cluster molecule represented by [(C 4 H 9 ) 4 N] 3 PMo 12 O 40 (hereinafter referred to as metal complex cluster). It was confirmed that the molecule was A2.
(3) Metal complex cluster molecule A3
2.0g of the metal complex cluster molecules A1 a (1.0 mmol) was suspended in acetonitrile 75 ml, a mixture of 2,2-dimethyl butyric acid (Pe t COOH) (Aldrich) 3.89ml (27.7mmol) and 25ml of dichloromethane Added and stirred overnight. After concentration under reduced pressure, and stirred 3 hours added to 25ml of dichloromethane and Pe t COOH 3.89ml. Then, after layering with 80 ml of nitromethane and leaving still at 4 degreeC for several days, the black crystal | crystallization was obtained. When this black crystal was analyzed by IR spectrum and single crystal X-ray structural analysis, it was represented by [Mn 12 O 12 (CH 3 CH 2 C (CH 3 ) 2 COO) 16 (H 2 O) 4 ]. It was confirmed that it was a metal complex cluster molecule (hereinafter referred to as metal complex cluster molecule A3).
(4) Metal complex cluster molecule A4
To 70 ml of water, 7.2 g (50 mmol) of WO 3 and 0.479 g (4.2 mmol) of 85% H 3 PO 4 were added and stirred for 3 hours while maintaining at 95 ° C. under reflux. Thereafter, a solution obtained by dissolving 4.5 g (14 mmol) of (C 4 H 9 ) 4 NBr in 5 ml of water was added to precipitate a yellow solid. This was filtered off, 100 ml of hot water was added, filtered again and washed with water, ethanol and ether. Thereafter, recrystallization with acetone gave yellow plate crystals. When this yellow plate crystal was analyzed by IR spectrum and single crystal X-ray structural analysis, it was a metal complex cluster molecule represented by [PW 12 O 40 ] 3− (hereinafter referred to as metal complex cluster molecule A4). I was able to confirm.

2.導電性多孔質体の製造
以下のようにして、導電性多孔質体B1〜B5を製造した。
(1)導電性多孔質体B1
イオン交換水41.0gに非イオン界面活性剤(製品名:ディスパロンAQ−380、楠本化成社製)2.0gとカーボンブラック(製品名:VALCAN XC−72、キャボット社製)10gを加え、よく攪拌し、カーボンブラック分散溶液を得た。
2. Production of Conductive Porous Body Conductive porous bodies B1 to B5 were produced as follows.
(1) Conductive porous body B1
Add 4 g of ion-exchanged water to 2.0 g of nonionic surfactant (product name: Disparon AQ-380, manufactured by Enomoto Kasei Co., Ltd.) and 10 g of carbon black (product name: VALCAN XC-72, manufactured by Cabot). Stirring to obtain a carbon black dispersion solution.

希硫酸(6mol/L)12gとシリカ濃度25%のケイ酸ソーダ78gを混合して得たシリカゾル100gに、上述のカーボンブラック分散溶液を添加し、更によく攪拌した。   The above-mentioned carbon black dispersion was added to 100 g of silica sol obtained by mixing 12 g of dilute sulfuric acid (6 mol / L) and 78 g of sodium silicate having a silica concentration of 25%, and further stirred.

全体がゲル状の固体(ヒドロゲル)になった後、このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。
洗浄終了後のヒドロゲルにイオン交換水1Lを加え、アンモニア水を使用してpH値を8に調整し、その後85℃で8時間加熱処理を行った。固液分離後180℃で10時間乾燥した。その後、140℃にて72時間水熱重合を行い、続いて180℃で2時間乾燥を行った。更に350℃で2時間焼成を行い、界面活性剤を除去した。その結果、シリカ・炭素複合多孔質体27.2gを得た。
After the whole became a gel-like solid (hydrogel), this hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion-exchanged water 5 times.
1 L of ion-exchanged water was added to the hydrogel after the completion of washing, and the pH value was adjusted to 8 using aqueous ammonia, followed by heat treatment at 85 ° C. for 8 hours. After solid-liquid separation, it was dried at 180 ° C. for 10 hours. Thereafter, hydrothermal polymerization was carried out at 140 ° C. for 72 hours, followed by drying at 180 ° C. for 2 hours. Further, baking was performed at 350 ° C. for 2 hours to remove the surfactant. As a result, 27.2 g of a silica / carbon composite porous body was obtained.

その後、このシリカ・炭素複合多孔質体11.0gを、撹拌機を設置した200ml三つ口フラスコに入れた。トルエン100mlを加えスラリーを撹拌しながら、n-ブチルアミノプロピルトリメトキシシラン0.6gを加え、窒素雰囲気下で110℃にて3時間加熱撹拌した。冷却後スラリーを吸引ろ過し、そこで得られた物質を、トルエン100ml、メチルアルコール100mlで洗浄した後、80℃で12時間乾燥させ、アミノ化した、シリカ・炭素複合多孔質体(以下、導電性多孔質体B1とする)を11.2g得た。   Thereafter, 11.0 g of this silica / carbon composite porous material was placed in a 200 ml three-necked flask equipped with a stirrer. While adding 100 ml of toluene and stirring the slurry, 0.6 g of n-butylaminopropyltrimethoxysilane was added, and the mixture was heated and stirred at 110 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the slurry was suction filtered, and the resulting material was washed with 100 ml of toluene and 100 ml of methyl alcohol, dried at 80 ° C. for 12 hours, and aminated, a silica / carbon composite porous body (hereinafter referred to as conductive material). 11.2 g of porous body B1) was obtained.

導電性多孔質体B1の比表面積は188m2/g、細孔容積は0.73ml/g、平均細孔径は11.9nmであった(窒素吸着測定)。また、導電性多孔質体B1の炭素含有率は22.1%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。また、導電性多孔質体B1の電気伝導度は2.43×10-1S/cmであった。 The specific surface area of the conductive porous body B1 was 188 m 2 / g, the pore volume was 0.73 ml / g, and the average pore diameter was 11.9 nm (nitrogen adsorption measurement). In addition, the carbon content of the conductive porous body B1 was 22.1% (measured with an elemental analyzer “Vario EL III” [manufactured by Elemental)]. Moreover, the electrical conductivity of the conductive porous body B1 was 2.43 × 10 −1 S / cm.

なお、電気伝導度は、次の方法で測定した。試料粉末0.9gにバインダーとしてPTFE粉末(3μm品)0.1gを加え、メノウ乳鉢を用い、よく混合した。その後、少量のイオン交換水を加え、更によく混合した。それを、直径10mmの錠剤成形用ダイスにて1100kg/cm3で圧縮成形、120℃に設定したホットプレートで十分乾燥し、厚さ1.0mm、直径10.0mmの電気伝導性評価用サンプルを得た。電気伝導性は、抵抗率計ロレスタ−GP(三菱化学株式会社製)を使用した四探針法による電気伝導度(S/cm)により評価した。
(2)導電性多孔質体B2
イオン交換水35.5gに陰イオン界面活性剤(製品名:オロタンSN、ダウケミカル社製)1.2gとカーボンブラック(製品名:VALCAN XC−72、キャボット社製)10gを加え、よく攪拌し、カーボンブラック分散溶液を得た。希硫酸(6mol/L)12gとシリカ濃度25%のケイ酸ソーダ78gを混合して得たシリカゾル100gに、上述のカーボンブラック分散溶液を添加し、更によく攪拌した。
The electrical conductivity was measured by the following method. To 0.9 g of the sample powder, 0.1 g of PTFE powder (3 μm product) was added as a binder and mixed well using an agate mortar. Thereafter, a small amount of ion-exchanged water was added and further mixed well. It is compression-molded at 1100 kg / cm 3 with a tablet-forming die having a diameter of 10 mm, sufficiently dried on a hot plate set at 120 ° C., and a sample for evaluating electrical conductivity having a thickness of 1.0 mm and a diameter of 10.0 mm is obtained. Obtained. The electrical conductivity was evaluated by the electrical conductivity (S / cm) by a four-probe method using a resistivity meter Loresta-GP (manufactured by Mitsubishi Chemical Corporation).
(2) Conductive porous body B2
Add 1.2 g of an anionic surfactant (product name: Orotan SN, manufactured by Dow Chemical Co.) and 10 g of carbon black (product name: VALCAN XC-72, manufactured by Cabot) to 35.5 g of ion-exchanged water, and stir well. A carbon black dispersion solution was obtained. The above-mentioned carbon black dispersion was added to 100 g of silica sol obtained by mixing 12 g of dilute sulfuric acid (6 mol / L) and 78 g of sodium silicate having a silica concentration of 25%, and further stirred.

全体がゲル状の固体(ヒドロゲル)になった後、このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。洗浄終了後のヒドロゲルにイオン交換水1Lを加え、アンモニア水を使用してpH値を7に調整し、その後85℃で8時間加熱処理を行った。固液分離後、180℃で10時間乾燥した。また、更に350℃で2時間焼成を行い、界面活性剤を除去した。 After the whole became a gel-like solid (hydrogel), this hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion-exchanged water 5 times. 1 L of ion-exchanged water was added to the hydrogel after the completion of washing, and the pH value was adjusted to 7 using aqueous ammonia, followed by heat treatment at 85 ° C. for 8 hours. After solid-liquid separation, it was dried at 180 ° C. for 10 hours. Further, baking was performed at 350 ° C. for 2 hours to remove the surfactant.

その結果、シリカ・炭素複合多孔質体26.8gを得た。その後、このシリカ・炭素複合多孔質体11.0gを、撹拌機を設置した200ml三つ口フラスコに入れた。トルエン100mlを加えスラリーを撹拌しながら n-ブチルアミノプロピルトリメトキシシラン4.1gを加え窒素雰囲気下で110℃にて3時間加熱撹拌した。冷却後スラリーを吸引ろ過し、そこで得られた物質を、トルエン100ml、メチルアルコール100mlで洗浄した後、80℃で12時間乾燥させ、アミノ化シリカゲル(以下、導電性多孔質体B2とする)13.1gを得た。   As a result, 26.8 g of a silica / carbon composite porous body was obtained. Thereafter, 11.0 g of this silica / carbon composite porous body was placed in a 200 ml three-necked flask equipped with a stirrer. While adding 100 ml of toluene and stirring the slurry, 4.1 g of n-butylaminopropyltrimethoxysilane was added and the mixture was heated and stirred at 110 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the slurry was suction filtered, and the substance obtained there was washed with 100 ml of toluene and 100 ml of methyl alcohol, dried at 80 ° C. for 12 hours, and aminated silica gel (hereinafter referred to as conductive porous body B2) 13. 0.1 g was obtained.

導電性多孔質体B2の比表面積は570m2/g、細孔容積は0.80ml/g、平均細孔径は3.7nmであった(窒素吸着測定)。また、導電性多孔質体B2の炭素含有率は25.5%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。また、導電性多孔質体B2の電気伝導度は1.51×10-1S/cmであった。
(3)導電性多孔質体B3
イオン交換水41.0gに非イオン界面活性剤(製品名:ディスパロンAQ−380、楠本化成社製)2.0gとカーボンブラック(製品名:VALCAN XC−72、キャボット社製)10gを加え、よく攪拌し、カーボンブラック分散溶液を得た。
The conductive porous body B2 had a specific surface area of 570 m 2 / g, a pore volume of 0.80 ml / g, and an average pore diameter of 3.7 nm (nitrogen adsorption measurement). In addition, the carbon content of the conductive porous body B2 was 25.5% (measured with an elemental analyzer “Vario EL III” [manufactured by Elemental)]. Further, the electrical conductivity of the conductive porous body B2 was 1.51 × 10 −1 S / cm.
(3) Conductive porous body B3
Add 4 g of ion-exchanged water to 2.0 g of nonionic surfactant (product name: Disparon AQ-380, manufactured by Enomoto Kasei Co., Ltd.) and 10 g of carbon black (product name: VALCAN XC-72, manufactured by Cabot). Stirring to obtain a carbon black dispersion solution.

希硫酸(6mol/L)12gとシリカ濃度25%のケイ酸ソーダ78gを混合して得たシリカゾル100gに、上述のカーボンブラック分散溶液を添加し、更によく攪拌した。   The above-mentioned carbon black dispersion was added to 100 g of silica sol obtained by mixing 12 g of dilute sulfuric acid (6 mol / L) and 78 g of sodium silicate having a silica concentration of 25%, and further stirred.

全体がゲル状の固体(ヒドロゲル)になった後、このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。洗浄終了後のヒドロゲルにイオン交換水1Lを加え、アンモニア水を使用してpH値を8に調整し、その後85℃で8時間加熱処理を行った。固液分離後180℃で10時間乾燥した。その後、180℃にて72時間水熱重合を行い、続いて180℃で2時間乾燥を行った。更に350℃で2時間焼成を行い、界面活性剤を除去した。 After the whole became a gel-like solid (hydrogel), this hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion-exchanged water 5 times. 1 L of ion-exchanged water was added to the hydrogel after the completion of washing, and the pH value was adjusted to 8 using aqueous ammonia, followed by heat treatment at 85 ° C. for 8 hours. After solid-liquid separation, it was dried at 180 ° C. for 10 hours. Thereafter, hydrothermal polymerization was carried out at 180 ° C. for 72 hours, followed by drying at 180 ° C. for 2 hours. Further, baking was performed at 350 ° C. for 2 hours to remove the surfactant.

その結果、シリカ・炭素複合多孔質体27.2gを得た。その後、このシリカ・炭素複合多孔質体11.0gを、撹拌機を設置した200ml三つ口フラスコに入れた。トルエン100mlを加えスラリーを撹拌しながら n-ブチルアミノプロピルトリメトキシシラン0.3gを加え、窒素雰囲気下で110℃にて3時間加熱撹拌した。冷却後、スラリーを吸引ろ過し、そこで得られた物質を、トルエン100ml、メチルアルコール100mlで洗浄した後、80℃で12時間乾燥させ、アミノ化シリカゲル(以下、導電性多孔質体B3とする)を11.0g得た。   As a result, 27.2 g of a silica / carbon composite porous body was obtained. Thereafter, 11.0 g of this silica / carbon composite porous body was placed in a 200 ml three-necked flask equipped with a stirrer. 100 ml of toluene was added, 0.3 g of n-butylaminopropyltrimethoxysilane was added while stirring the slurry, and the mixture was heated and stirred at 110 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the slurry was suction filtered, and the substance obtained there was washed with 100 ml of toluene and 100 ml of methyl alcohol, dried at 80 ° C. for 12 hours, and aminated silica gel (hereinafter referred to as conductive porous body B3). 11.0g was obtained.

導電性多孔質体B3の比表面積は78m2/g、細孔容積は0.73ml/g、平均細孔径は25.7nmであった(窒素吸着測定)。また、導電性多孔質体B3の炭素含有率は22.1%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。また、導電性多孔質体B3の電気伝導度は3.15×10-1S/cmであった。
(4)導電性多孔質体B4
メチルシリケート(製品名:メチルシリケート51、多摩化学工業株式会社製)100gにメタノール80gを加え攪拌した。この混合溶液を攪拌しながらカーボンブラック(製品名:カーボンECP600JD、ライオン株式会社製)5.1gを添加し、攪拌を続けた。1mol/Lの塩酸水溶液19.1gを添加し、二相に分離した液体を激しく撹拌し、加水分解反応によりゲル状の固体(ヒドロゲル)を得た。このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。
The specific surface area of the conductive porous body B3 was 78 m 2 / g, the pore volume was 0.73 ml / g, and the average pore diameter was 25.7 nm (nitrogen adsorption measurement). In addition, the carbon content of the conductive porous body B3 was 22.1% (measured with an elemental analyzer “Vario EL III” [manufactured by Elemental)]. Moreover, the electrical conductivity of the conductive porous body B3 was 3.15 × 10 −1 S / cm.
(4) Conductive porous body B4
80 g of methanol was added to 100 g of methyl silicate (product name: methyl silicate 51, manufactured by Tama Chemical Industry Co., Ltd.) and stirred. While stirring this mixed solution, 5.1 g of carbon black (product name: carbon ECP600JD, manufactured by Lion Corporation) was added and stirring was continued. A 1 mol / L hydrochloric acid aqueous solution (19.1 g) was added, the liquid separated into two phases was vigorously stirred, and a gel-like solid (hydrogel) was obtained by a hydrolysis reaction. This hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion exchange water 5 times.

洗浄終了後のヒドロゲルをイオン交換水1Lに加え、アンモニア水を使用してpH値を10に調整し、その後加熱して85℃で8時間処理を行った。固液分離後180℃で10時間乾燥し、シリカ・炭素複合多孔質体(以下、導電性多孔質体B4とする)53.1gを得た。   The hydrogel after the washing was added to 1 L of ion-exchanged water, the pH value was adjusted to 10 using ammonia water, and then heated and treated at 85 ° C. for 8 hours. After solid-liquid separation, it was dried at 180 ° C. for 10 hours to obtain 53.1 g of a silica / carbon composite porous body (hereinafter referred to as conductive porous body B4).

導電性多孔質体B4の比表面積は250m2/g、細孔容積は0.68ml/g、平均細孔径は10.9nmであった(窒素吸着測定)。また、導電性多孔質体B4の炭素含有率は8.2%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。また、導電性多孔質体B4の電気伝導度は1.11×10-2S/cmであった。
(5)導電性多孔質体B5
メチルシリケート(製品名:メチルシリケート51、多摩化学工業株式会社製)100gにメタノール80gを加え攪拌した。この混合溶液を攪拌しながらカーボンブラック(製品名:カーボンECP600JD、ライオン株式会社製)7.7gを添加し、攪拌を続けた。1mol/Lの塩酸水溶液19.1gを添加し、二相に分離した液体を激しく撹拌し、加水分解反応によりゲル状の固体(ヒドロゲル)を得た。このヒドロゲルを1cm3程度に砕き、イオン交換水1Lを使用したバッチ洗浄を5回行った。
洗浄終了後のヒドロゲルをイオン交換水1Lに加え、アンモニア水を使用してpH値を10に調整し、その後加熱して85℃で8時間処理を行った。固液分離後180℃で10時間乾燥し、シリカ・炭素複合多孔質体55.7gを得た。その後、このシリカ・炭素複合多孔質体11.0gを、撹拌機を設置した200ml三つ口フラスコに入れた。トルエン100mlを加えスラリーを撹拌しながら、n-ブチルアミノプロピルトリメトキシシラン2.5gを加え、窒素雰囲気下で110℃にて3時間加熱撹拌した。冷却後スラリーを吸引ろ過し、そこで得られた物質を、トルエン100ml、メチルアルコール100mlで洗浄した後、80℃で12時間乾燥させ、アミノ化シリカゲル(以下、導電性多孔質体B5とする)を11.0g得た。
The conductive porous body B4 had a specific surface area of 250 m 2 / g, a pore volume of 0.68 ml / g, and an average pore diameter of 10.9 nm (nitrogen adsorption measurement). In addition, the carbon content of the conductive porous body B4 was 8.2% (measured with an elemental analyzer “Vario EL III” [manufactured by Elemental)]. Further, the electrical conductivity of the conductive porous body B4 was 1.11 × 10 −2 S / cm.
(5) Conductive porous body B5
80 g of methanol was added to 100 g of methyl silicate (product name: methyl silicate 51, manufactured by Tama Chemical Industry Co., Ltd.) and stirred. While stirring this mixed solution, 7.7 g of carbon black (product name: carbon ECP600JD, manufactured by Lion Corporation) was added and stirring was continued. A 1 mol / L hydrochloric acid aqueous solution (19.1 g) was added, the liquid separated into two phases was vigorously stirred, and a gel-like solid (hydrogel) was obtained by a hydrolysis reaction. This hydrogel was crushed to about 1 cm 3 and batch washed with 1 L of ion exchange water 5 times.
The hydrogel after the washing was added to 1 L of ion-exchanged water, the pH value was adjusted to 10 using ammonia water, and then heated and treated at 85 ° C. for 8 hours. The solid-liquid separation was followed by drying at 180 ° C. for 10 hours to obtain 55.7 g of a silica / carbon composite porous body. Thereafter, 11.0 g of this silica / carbon composite porous body was placed in a 200 ml three-necked flask equipped with a stirrer. While adding 100 ml of toluene and stirring the slurry, 2.5 g of n-butylaminopropyltrimethoxysilane was added, and the mixture was heated and stirred at 110 ° C. for 3 hours under a nitrogen atmosphere. After cooling, the slurry was suction filtered, and the material obtained there was washed with 100 ml of toluene and 100 ml of methyl alcohol, and then dried at 80 ° C. for 12 hours, and aminated silica gel (hereinafter referred to as conductive porous body B5) was obtained. 11.0 g was obtained.

導電性多孔質体B5の比表面積は301m2/g、細孔容積は0.81ml/g、平均細孔径は10.7nmであった(窒素吸着測定)。また、導電性多孔質体B5の炭素含有率は11.5%であった(元素分析装置「Vario EL III」〔Elementar社製〕により測定)。また、導電性多孔質体B5の電気伝導度は1.91×10-1S/cmであった。 The conductive porous body B5 had a specific surface area of 301 m 2 / g, a pore volume of 0.81 ml / g, and an average pore diameter of 10.7 nm (nitrogen adsorption measurement). In addition, the carbon content of the conductive porous body B5 was 11.5% (measured with an elemental analyzer “Vario EL III” [manufactured by Elemental)]. Moreover, the electrical conductivity of the conductive porous body B5 was 1.91 × 10 −1 S / cm.

3.正極活物質(組成物)及び二次電池の製造
以下のようにして、正極活物質C1〜7、及び二次電池D1〜D7を製造した。
(1)正極活物質C1、二次電池D1
金属錯体クラスター分子A2(100mg)のアセトニトリル(4ml)溶液を、導電性多孔質体B1(100mg)のアセトニトリル(8ml)懸濁液に加えて、約2時間程度攪拌後、ろ過及び洗浄して複合体を得た。得られた複合体について、IRスペクトルによる同定を行なうとともに、蛍光X線により、複合体中における金属錯体クラスター分子A2の濃度を決定した。同定の結果は、Si:Moの比率が5:1であり、複合体中における金属錯体クラスター分子A2の濃度は20wt%であった。上記のように得られた複合体を、以下では、正極活物質C1とする。
3. Production of Positive Electrode Active Material (Composition) and Secondary Battery Positive electrode active materials C1 to C7 and secondary batteries D1 to D7 were produced as follows.
(1) Positive electrode active material C1, secondary battery D1
A solution of metal complex cluster molecule A2 (100 mg) in acetonitrile (4 ml) is added to a suspension of conductive porous material B1 (100 mg) in acetonitrile (8 ml), stirred for about 2 hours, filtered and washed to form a composite. Got the body. The obtained complex was identified by IR spectrum, and the concentration of the metal complex cluster molecule A2 in the complex was determined by fluorescent X-ray. As a result of the identification, the ratio of Si: Mo was 5: 1, and the concentration of the metal complex cluster molecule A2 in the composite was 20 wt%. The composite obtained as described above is hereinafter referred to as a positive electrode active material C1.

正極活物質C1(500mg)、カーボンブラック粉末(300mg)、ポリテトラフルオロエチレン樹脂バインダー(200mg)をそれぞれ測り採り、均一に混合した。この混合体を、加圧成型して、厚さ約150μmの薄板を得た。この薄板を、真空中室温で1時間乾燥した後、直径12mmの円形に打ち抜き、正極活物質C1を含む電極層とした。   The positive electrode active material C1 (500 mg), carbon black powder (300 mg), and polytetrafluoroethylene resin binder (200 mg) were measured and mixed uniformly. This mixture was pressure-molded to obtain a thin plate having a thickness of about 150 μm. The thin plate was dried at room temperature in vacuum for 1 hour, and then punched into a circle having a diameter of 12 mm to form an electrode layer containing the positive electrode active material C1.

次に、この電極層を電解液に含浸し、電極層中の空隙に電解液を染み込ませた。電解液としては、1.0mol/LのLiPF6電解質塩を含むエチレンカーボネート/ジエチルカーボネート混合溶液(混合体積比3:7)を用いた。電解液を染み込ませた電極層を、コイン型電池を構成する正極集電体上に置き、その上に同じく電解液を含浸させたポリプロピレン多孔質フィルムからなるセパレーターを積層し、さらに負極となるリチウム張り合わせ銅箔を積層した。その後、周囲に絶縁パッキンを配置した状態でコイン型電池のアルミ外装(Hohsen製)を重ね、かしめ機によって加圧し、正極活物質として上述の正極活物質C1、負極活物質として金属リチウムを用いた密閉型のコイン型電池(正極、及び負極を備える充放電可能な二次電池)を作製した。上記のように得られた二次電池を、以下では、二次電池D1とする。
(2)正極活物質C2、二次電池D2
基本的には、正極活物質C1と同様の製造方法であるが、導電性多孔質体B1の代わりに、同量の導電性多孔質体B2を用いて、正極活物質C2を製造した。ただし、正極活物質C2、カーボンブラック粉末、及びポリテトラフルオロエチレン樹脂バインダーの比率は、8:1:1とした。
Next, the electrode layer was impregnated with an electrolytic solution, and the electrolytic solution was infiltrated into voids in the electrode layer. As the electrolytic solution, an ethylene carbonate / diethyl carbonate mixed solution (mixing volume ratio 3: 7) containing 1.0 mol / L LiPF 6 electrolyte salt was used. The electrode layer impregnated with the electrolytic solution is placed on the positive electrode current collector constituting the coin-type battery, and a separator made of a polypropylene porous film impregnated with the electrolytic solution is laminated on the electrode layer, and further lithium that becomes the negative electrode Laminated copper foil was laminated. Thereafter, an aluminum exterior (made by Hohsen) of a coin-type battery is stacked with an insulating packing in the periphery, and pressed by a caulking machine, and the above positive electrode active material C1 is used as the positive electrode active material, and metallic lithium is used as the negative electrode active material. A sealed coin-type battery (chargeable / dischargeable secondary battery including a positive electrode and a negative electrode) was produced. The secondary battery obtained as described above is hereinafter referred to as a secondary battery D1.
(2) Positive electrode active material C2, secondary battery D2
Basically, the manufacturing method was the same as that of the positive electrode active material C1, but the positive electrode active material C2 was manufactured using the same amount of the conductive porous material B2 instead of the conductive porous material B1. However, the ratio of the positive electrode active material C2, the carbon black powder, and the polytetrafluoroethylene resin binder was 8: 1: 1.

また、基本的には、二次電池D1と同様の製造方法であるが、正極活物質C1の代わりに、同量の正極活物質C2を用いて、二次電池D2を製造した。ただし、正極中において、正極活物質C2、カーボンブラック粉末、及びポリテトラフルオロエチレン樹脂バインダーの比率は、8:1:1とし、正極中の金属錯体クラスター分子A2の含有率は20wt%とした。
(3)正極活物質C3、二次電池D3
基本的には、正極活物質C1と同様の製造方法であるが、導電性多孔質体B1の代わりに、同量の導電性多孔質体B3を用いて、正極活物質C3を製造した。
Basically, the manufacturing method is the same as that of the secondary battery D1, but the secondary battery D2 was manufactured using the same amount of the positive electrode active material C2 instead of the positive electrode active material C1. However, in the positive electrode, the ratio of the positive electrode active material C2, the carbon black powder, and the polytetrafluoroethylene resin binder was 8: 1: 1, and the content of the metal complex cluster molecule A2 in the positive electrode was 20 wt%.
(3) Positive electrode active material C3, secondary battery D3
Basically, the manufacturing method was the same as that of the positive electrode active material C1, but the positive electrode active material C3 was manufactured using the same amount of the conductive porous material B3 instead of the conductive porous material B1.

また、基本的には、二次電池D1と同様の製造方法であるが、正極活物質C1の代わりに、同量の正極活物質C3を用いて、二次電池D3を製造した。ただし、正極中において、正極活物質C3、カーボンブラック粉末、及びポリテトラフルオロエチレン樹脂バインダーの比率は、7:1:2とし、正極中の金属錯体クラスター分子A2の含有率は10wt%とした。
(4)正極活物質C4、二次電池D4
基本的には、正極活物質C1と同様の製造方法であるが、金属錯体クラスター分子A2の代わりに、同量の金属錯体クラスター分子A1を用い、また、導電性多孔質体B1の代わりに、同量の導電性多孔質体B4を用いて、正極活物質C4を製造した。
Basically, the manufacturing method is the same as that of the secondary battery D1, but the secondary battery D3 was manufactured using the same amount of the positive electrode active material C3 instead of the positive electrode active material C1. However, in the positive electrode, the ratio of the positive electrode active material C3, the carbon black powder, and the polytetrafluoroethylene resin binder was 7: 1: 2, and the content of the metal complex cluster molecule A2 in the positive electrode was 10 wt%.
(4) Positive electrode active material C4, secondary battery D4
Basically, the manufacturing method is the same as that of the positive electrode active material C1, but instead of the metal complex cluster molecule A2, the same amount of the metal complex cluster molecule A1 is used, and instead of the conductive porous body B1, A positive electrode active material C4 was produced using the same amount of the conductive porous body B4.

基本的には、二次電池D1と同様の製造方法であるが、正極活物質C1の代わりに、同量の正極活物質C4を用いて、二次電池D4を製造した。ただし、正極中において、正極活物質C4とポリテトラフルオロエチレン樹脂バインダーとの比率は、7:3とし、正極中の金属錯体クラスター分子A1の含有率は25wt%とした。
(5)正極活物質C5、二次電池D5
基本的には、正極活物質C1と同様の製造方法であるが、金属錯体クラスター分子A2の代わりに、同量の金属錯体クラスター分子A3を用いて、正極活物質C5を製造した。
Basically, the manufacturing method is the same as that of the secondary battery D1, but the secondary battery D4 was manufactured using the same amount of the positive electrode active material C4 instead of the positive electrode active material C1. However, in the positive electrode, the ratio between the positive electrode active material C4 and the polytetrafluoroethylene resin binder was 7: 3, and the content of the metal complex cluster molecule A1 in the positive electrode was 25 wt%.
(5) Positive electrode active material C5, secondary battery D5
Basically, the production method was the same as that of the positive electrode active material C1, but the positive electrode active material C5 was produced using the same amount of the metal complex cluster molecule A3 instead of the metal complex cluster molecule A2.

また、基本的には、二次電池D1と同様の製造方法であるが、正極活物質C1の代わりに、同量の正極活物質C5を用いて、二次電池D5を製造した。ただし、正極中において、正極活物質C5、カーボンブラック粉末、及びポリテトラフルオロエチレン樹脂バインダーの比率は、6:2:2とし、正極中の金属錯体クラスター分子A3の含有率は10wt%とした。
(6)正極活物質C6、二次電池D6
基本的には、正極活物質C1と同様の製造方法であるが、金属錯体クラスター分子A2の代わりに、同量の金属錯体クラスター分子A4を用いて、正極活物質C6を製造した。
Basically, the manufacturing method is the same as that of the secondary battery D1, but the secondary battery D5 was manufactured using the same amount of the positive electrode active material C5 instead of the positive electrode active material C1. However, in the positive electrode, the ratio of the positive electrode active material C5, the carbon black powder, and the polytetrafluoroethylene resin binder was 6: 2: 2, and the content of the metal complex cluster molecule A3 in the positive electrode was 10 wt%.
(6) Positive electrode active material C6, secondary battery D6
Basically, the production method was the same as that of the positive electrode active material C1, but the positive electrode active material C6 was produced using the same amount of the metal complex cluster molecule A4 instead of the metal complex cluster molecule A2.

また、 基本的には、二次電池D1と同様の製造方法であるが、正極活物質C1の代わりに、同量の正極活物質C6を用いて、二次電池D6を製造した。ただし、正極中において、正極活物質C6、カーボンブラック粉末、及びポリテトラフルオロエチレン樹脂バインダーの比率は、7:1:2とし、正極中の金属錯体クラスター分子A4の含有率は10wt%とした。
(7)正極活物質C7、二次電池D7
基本的には、正極活物質C1と同様の製造方法であるが、導電性多孔質体B1の代わりに、同量の導電性多孔質体B5を用いて、正極活物質C7を製造した。ただし、正極活物質C7、カーボンブラック粉末、及びポリテトラフルオロエチレン樹脂バインダーの比率は、8:1:1とした。
Further, basically, the manufacturing method is the same as that of the secondary battery D1, but the secondary battery D6 was manufactured using the same amount of the positive electrode active material C6 instead of the positive electrode active material C1. However, in the positive electrode, the ratio of the positive electrode active material C6, the carbon black powder, and the polytetrafluoroethylene resin binder was 7: 1: 2, and the content of the metal complex cluster molecule A4 in the positive electrode was 10 wt%.
(7) Positive electrode active material C7, secondary battery D7
Basically, the manufacturing method was the same as that of the positive electrode active material C1, but the positive electrode active material C7 was manufactured using the same amount of the conductive porous body B5 instead of the conductive porous body B1. However, the ratio of the positive electrode active material C7, the carbon black powder, and the polytetrafluoroethylene resin binder was 8: 1: 1.

基本的には、二次電池D1と同様の製造方法であるが、正極活物質C1の代わりに、同量の正極活物質C7を用いて、二次電池D7を製造した。ただし、正極中の金属錯体クラスター分子A2の含有率は20wt%とした。ただし、正極中において、正極活物質C7とポリテトラフルオロエチレン樹脂バインダーとの比率は、8:2とし、正極中の金属錯体クラスター分子A2の含有率は20wt%とした。   Basically, the manufacturing method is the same as that of the secondary battery D1, but the secondary battery D7 was manufactured using the same amount of the positive electrode active material C7 instead of the positive electrode active material C1. However, the content rate of the metal complex cluster molecule A2 in the positive electrode was 20 wt%. However, in the positive electrode, the ratio between the positive electrode active material C7 and the polytetrafluoroethylene resin binder was 8: 2, and the content of the metal complex cluster molecule A2 in the positive electrode was 20 wt%.

4.二次電池の評価
(1)二次電池D1
以上のように作製した二次電池D1は、開放電圧が3.2Vであった。0.1mAの定電流で4.2Vまで充電し、引き続いて同じ電流で1.5Vまで放電したところ、充電、および放電の継続時間は共に2時間となり、この電池が0.2mAhの充放電容量を有する二次電池であることが認められた。このときの電極活物質あたりの放電容量は260mAh/gと計算された。その後、4.2〜1.5Vの電圧範囲で充放電を10回繰り返した。その結果、10回後においても初回の95%以上の容量を有していることが分かった。このように、安定な高出力密度の電池であることが分かった。
(2)二次電池D2
1回目および2回目の放電容量は、後述する比較例における1回目の放電容量150Ah/Kgを大きく上回った。
(3)二次電池D3
二次電池D3を、二次電池D1の場合と同様の方法で評価したところ、1回目のサイクルにおいて正極活物質あたり150mAh/gの放電容量が得られ、10回程度の充放電後も容量は減少することなく、安定なサイクル特性が得られた。
(4)二次電池D4
二次電池D4の開放電圧は3.2Vであった。1mAの定電流で4.2Vまで充電し、引き続いて同じ電流で2.0Vまで放電したところ、正極活物質あたりの放電容量は60mAh/gと計算された。その後、4.2〜2.0Vの電圧範囲で2回目の充放電を行った後も90%以上の容量を有していることが分かった。
(5)二次電池D5
二次電池D5を、二次電池D1の場合と同様の方法で評価したところ、1回目のサイクルにおいて正極活物質あたり150mAh/gの放電容量が得られ、10回目程度の充放電を行った後も80%以上の容量を有していることが分かった。
(6)二次電池D6
二次電池D6を、二次電池D1の場合と同様の方法で評価したところ、1回目のサイクルにおいて正極活物質あたり120mAh/gの放電容量が得られ、2回目の充放電以降、90%以上の容量保持が観測され、安定なサイクル特性が得られた。
(7)二次電池D7
二次電池D7を、二次電池D1と同様の方法で評価したところ、1回目および2回目の放電容量は、後述する比較例における1回目の放電容量150Ah/Kgを大きく上回った。
4). Evaluation of secondary battery (1) Secondary battery D1
The secondary battery D1 manufactured as described above had an open circuit voltage of 3.2V. When charging to 4.2 V with a constant current of 0.1 mA and subsequently discharging to 1.5 V with the same current, the duration of both charging and discharging was 2 hours, and this battery had a charge / discharge capacity of 0.2 mAh. It was confirmed that the secondary battery had The discharge capacity per electrode active material at this time was calculated to be 260 mAh / g. Then, charging / discharging was repeated 10 times in the voltage range of 4.2-1.5V. As a result, it was found that the capacity was 95% or more after the first 10 times. Thus, it turned out that it is a stable high power density battery.
(2) Secondary battery D2
The first and second discharge capacities greatly exceeded the first discharge capacity of 150 Ah / Kg in the comparative example described later.
(3) Secondary battery D3
When the secondary battery D3 was evaluated in the same manner as in the case of the secondary battery D1, a discharge capacity of 150 mAh / g per positive electrode active material was obtained in the first cycle, and the capacity remained after about 10 charge / discharge cycles. Stable cycle characteristics were obtained without reduction.
(4) Secondary battery D4
The open circuit voltage of the secondary battery D4 was 3.2V. When the battery was charged to 4.2 V at a constant current of 1 mA and subsequently discharged to 2.0 V at the same current, the discharge capacity per positive electrode active material was calculated to be 60 mAh / g. Then, it turned out that it has a capacity | capacitance of 90% or more even after performing 2nd charging / discharging in the voltage range of 4.2-2.0V.
(5) Secondary battery D5
When the secondary battery D5 was evaluated by the same method as that of the secondary battery D1, a discharge capacity of 150 mAh / g per positive electrode active material was obtained in the first cycle, and after about 10th charge / discharge. Was found to have a capacity of 80% or more.
(6) Secondary battery D6
When the secondary battery D6 was evaluated by the same method as that for the secondary battery D1, a discharge capacity of 120 mAh / g per positive electrode active material was obtained in the first cycle, and 90% or more after the second charge / discharge. Capacity retention was observed, and stable cycle characteristics were obtained.
(7) Secondary battery D7
When the secondary battery D7 was evaluated by the same method as the secondary battery D1, the first and second discharge capacities greatly exceeded the first discharge capacity 150 Ah / Kg in the comparative example described later.

5.比較例
金属錯体クラスター分子A2(100mg)、カーボンブラック(700mg)、及びバインダーであるPVDF(200mg)からなる正極を作製した。その正極を用い、正極以外の点は、二次電池D1の製造方法と同様にして、コイン型電池を作製した。
5. Comparative Example A positive electrode composed of metal complex cluster molecule A2 (100 mg), carbon black (700 mg), and PVDF (200 mg) as a binder was produced. Using the positive electrode, a coin-type battery was produced in the same manner as the method for manufacturing the secondary battery D1 except for the positive electrode.

このコイン型電池について、上記の方法で評価したところ、10回程度の充放電の後、容量は80%程度に減少し、二次電池D1よりもサイクル特性は不安定であった。
尚、本発明は前記実施の形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
When this coin-type battery was evaluated by the above method, the capacity decreased to about 80% after about 10 charge / discharge cycles, and the cycle characteristics were more unstable than the secondary battery D1.
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.

例えば、金属錯体クラスター分子A1と、導電性多孔質体B1、B2、B3、B5のうちのいずれかとを用いて正極活物質を製造しても、略同様の効果を奏することができる。また、金属錯体クラスター分子A2と、導電性多孔質体B4、B5のうちのいずれかとを用いて正極活物質を製造しても、略同様の効果を奏することができる。また、金属錯体クラスター分子A3、A4のうちのいずれかと、導電性多孔質体B1〜B4のうちのいずれかとを用いて正極活物質を製造しても、略同様の効果を奏することができる。   For example, even when the positive electrode active material is manufactured using the metal complex cluster molecule A1 and any one of the conductive porous bodies B1, B2, B3, and B5, substantially the same effect can be obtained. Moreover, even if a positive electrode active material is produced using the metal complex cluster molecule A2 and any one of the conductive porous bodies B4 and B5, substantially the same effect can be obtained. Moreover, even if a positive electrode active material is produced using any one of the metal complex cluster molecules A3 and A4 and any one of the conductive porous bodies B1 to B4, substantially the same effect can be obtained.

1…正極層
2…正極集電体
3…負極集電体
4…負極層
5…電解質を含むセパレーター
6…負極端子
7…正極端子
8…外装フィルム
DESCRIPTION OF SYMBOLS 1 ... Positive electrode layer 2 ... Positive electrode collector 3 ... Negative electrode collector 4 ... Negative electrode layer 5 ... Separator 6 containing electrolyte ... Negative electrode terminal 7 ... Positive electrode terminal 8 ... Exterior film

Claims (4)

配位子を介して遷移金属イオンが結合した金属錯体クラスター分子と、
炭素材料と多孔質シリカとの共分散体である導電性多孔質体と、
を含み、
前記配位子が、(a)酸素原子、又は(b)カルコゲン原子もしくは窒素原子を含む有機化合物、又はその誘導体であることを特徴とするリチウム二次電池電極用組成物。
A metal complex cluster molecule in which transition metal ions are bonded via a ligand;
A conductive porous body that is a co-dispersion of a carbon material and porous silica ;
Only including,
The composition for a lithium secondary battery electrode , wherein the ligand is (a) an oxygen atom, or (b) an organic compound containing a chalcogen atom or a nitrogen atom, or a derivative thereof.
前記遷移金属イオンが、第5、6、7、8、9、10、11、12族のいずれかの族に属する遷移金属のイオンであることを特徴とする請求項1載のリチウム二次電池電極用組成物。 The transition metal ions, according to claim 1 Symbol placement lithium secondary characterized in that it is a first 5,6,7,8,9,10,11,12 group either of a transition metal belonging to the family ions Battery electrode composition. 前記遷移金属イオンが、Mn、Co、Ni、Fe、Cr、Cu、Mo、 W、 及びVから成る群から選ばれる1以上の遷移金属のイオンであることを特徴とする請求項1又は2に記載のリチウム二次電池電極用組成物。 The transition metal ions, Mn, Co, Ni, Fe , Cr, Cu, Mo, W, and it in claim 1 or 2, characterized in one or more transition metal ions selected from the group consisting of V The composition for lithium secondary battery electrodes as described. 正極、及び負極を備える充放電可能なリチウム二次電池であって、
前記正極に、請求項1〜のいずれか1項に記載のリチウム二次電池電極用組成物を含むことを特徴とするリチウム二次電池。
A rechargeable lithium secondary battery comprising a positive electrode and a negative electrode,
Wherein the positive electrode, a lithium secondary battery, which comprises a lithium secondary battery electrode composition according to any one of Motomeko 1-3.
JP2012013261A 2012-01-25 2012-01-25 Lithium secondary battery electrode composition and lithium secondary battery Active JP5583152B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012013261A JP5583152B2 (en) 2012-01-25 2012-01-25 Lithium secondary battery electrode composition and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012013261A JP5583152B2 (en) 2012-01-25 2012-01-25 Lithium secondary battery electrode composition and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2013152861A JP2013152861A (en) 2013-08-08
JP5583152B2 true JP5583152B2 (en) 2014-09-03

Family

ID=49049058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012013261A Active JP5583152B2 (en) 2012-01-25 2012-01-25 Lithium secondary battery electrode composition and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5583152B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517431B (en) * 2021-06-25 2022-12-13 深圳市博理科技有限公司 Preparation method of positive electrode composite material, positive electrode composite material and secondary battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202687A (en) * 2005-01-24 2006-08-03 Asahi Kasei Corp Electrode catalyst for fuel cell of metal cluster
US20090026085A1 (en) * 2005-06-10 2009-01-29 Nippon Chemi-Con Corporation Method for producing electrode for electrochemical elemetn and method for producing electrochemical element with the electrode
JP5282259B2 (en) * 2007-02-16 2013-09-04 国立大学法人名古屋大学 Molecular cluster secondary battery

Also Published As

Publication number Publication date
JP2013152861A (en) 2013-08-08

Similar Documents

Publication Publication Date Title
JP6732300B2 (en) Sulfur-carbon composite, method for producing the same, and lithium-sulfur battery including the same
JP6423361B2 (en) Negative electrode active material for energy storage
JP6061139B2 (en) Method for producing positive electrode mixture for all-solid-state lithium-sulfur battery
JP4971387B2 (en) Transition metal oxide / multi-wall carbon nanotube nanocomposite and method for producing the same
JP6391244B2 (en) Negative electrode active material, negative electrode employing the same, and lithium battery employing the negative electrode
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
WO2013115390A1 (en) Transition metal oxide containing solid solution lithium, non-aqueous electrolyte secondary battery cathode, and non-aqueous electrolyte secondary battery
JP6241480B2 (en) Highly dispersible graphene composition and method for producing the same, and electrode for lithium ion secondary battery including highly dispersible graphene composition
JP5630673B2 (en) Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery
CN103367742B (en) Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites
KR20160149862A (en) Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same
JP5756781B2 (en) Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery
US10770717B2 (en) Composition for secondary battery negative electrode and negative electrode for secondary battery using the same and secondary battery
TW201306363A (en) Method of producing cathode active material for lithium secondary battery, cathode active material for lithium secondary battery, and lithium secondary battery
JP6531887B2 (en) Positive electrode composite material and all solid lithium-sulfur battery
CN106414326A (en) Nano-silicon material, method for producing same and negative electrode of secondary battery
JP5493330B2 (en) Water-based lithium secondary battery
JP2012204332A (en) Positive electrode material for lithium-sulfur battery, lithium-sulfur battery, and composite and method for manufacturing the same
CN110278709A (en) Hydrogen polysilsesquioxane sintered body-metal oxide complex and its manufacturing method, negative electrode for lithium ion battery active material, negative electrode for lithium ion battery and lithium ion battery containing silicon nano
JP5625028B2 (en) Non-aqueous secondary battery
JP5240808B2 (en) Molecular crystalline secondary battery
JP2016162687A (en) Secondary battery
CN108987670B (en) Solid solution lithium-containing transition metal oxide, positive electrode, and battery
JP2009164023A (en) Active material for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery using the active material
JP5282259B2 (en) Molecular cluster secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5583152

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350