JP5581111B2 - 光情報再生装置および光情報再生方法 - Google Patents

光情報再生装置および光情報再生方法 Download PDF

Info

Publication number
JP5581111B2
JP5581111B2 JP2010109786A JP2010109786A JP5581111B2 JP 5581111 B2 JP5581111 B2 JP 5581111B2 JP 2010109786 A JP2010109786 A JP 2010109786A JP 2010109786 A JP2010109786 A JP 2010109786A JP 5581111 B2 JP5581111 B2 JP 5581111B2
Authority
JP
Japan
Prior art keywords
reference light
light
angle
optical information
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010109786A
Other languages
English (en)
Other versions
JP2011238317A (ja
Inventor
悠介 中村
堅一 嶋田
利樹 石井
誠 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Consumer Electronics Co Ltd
Original Assignee
Hitachi Consumer Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Consumer Electronics Co Ltd filed Critical Hitachi Consumer Electronics Co Ltd
Priority to JP2010109786A priority Critical patent/JP5581111B2/ja
Priority to US13/088,462 priority patent/US8520484B2/en
Priority to CN201110105719.8A priority patent/CN102243878B/zh
Publication of JP2011238317A publication Critical patent/JP2011238317A/ja
Application granted granted Critical
Publication of JP5581111B2 publication Critical patent/JP5581111B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

本発明は、ホログラフィを用いて、光情報記録媒体から情報を再生する装置およびその方法に関する。
現在、青紫色半導体レーザを用いた、Blu−ray Disc(BD)規格などにより、民生用においても50GB程度の記録密度を持つ光ディスクの商品化が可能となっている。
今後は、光ディスクでも100GB〜1TBというHDD(Hard Disc Drive)容量と同程度まで大容量化が実用化される。
しかしながら、このような超高密度を光ディスクで実現するためには、今までの様な短波長化と対物レンズ高NA化による従来の高密度技術のトレンドとは異なった新しいストレージ技術が必要となる。
次世代のストレージ技術に関する研究が行われる中、ホログラフィを利用してデジタル情報を記録するホログラム記録技術がある。
ホログラム記録技術として、例えば特開2004−272268号公報(特許文献1)がある。本公報には、信号光束をレンズで光情報記録媒体に集光すると同時に、平行光束の参照光を照射して干渉させてホログラムの記録を行い、さらに参照光の光記録媒体への入射角度を変えながら異なるページデータを空間光変調器に表示して多重記録を行う、いわゆる角度多重記録方式が記載されている。さらに本公報には、信号光をレンズで集光してそのビームウエストに開口(空間フィルタ)を配することにより、隣接するホログラムの間隔を短くすることができ、従来の角度多重記録方式に比べて記録密度/容量を増大させる技術が記載されている。
特開2004−272268号公報
ところで特許文献1の方法において、集光光束である信号光と、平行光束である参照光をメディア内部で干渉させて記録を行うため、再生には記録時と同じ角度から平行光束を参照光として照射する必要がある。しかし、形成されたホログラムからの回折光である再生光はこの参照光角度の選択性が厳しく、参照光角度制御に極めて高い精度が要求されることからホログラフィックメモリの実用化を阻害する一因にもなっている。
そこで本発明の目的は、再生時の参照光角度制御の精度を緩めても再生可能なホログラム再生技術を提供することにある。
本発明の目的は、その一例として複数の参照光角度で参照光を同時に媒体に照射して再生することで達成できる。
本発明によれば、再生時の参照光角度制御の要求精度に余裕が生まれることから、角度制御の安定性や、メディアの膨張・収縮による角度補償精度を緩めることが可能であり、再生参照光角度マージンの拡大、角度制御に要する時間の短縮などに繋がる。
光情報再生装置の実施例を表す概略図 光情報再生装置内のピックアップの実施例を表す概略図 光情報再生装置の動作フローの実施例を表すフローチャート 光情報再生装置の再生参照光角度に対する回折効率を表す図 光情報再生装置の再生参照光角度θnにおける再生像を表す図 光情報再生装置の再生参照光角度θn+δにおける再生像を表す図 光情報再生装置の位相共役光学系に対する制御回路の実施例を表す図 光情報再生装置の再生参照光角度変化に対する露光タイミングの実施例を表す図 光情報再生装置の再生参照光角度に対する回折効率を表す図 光情報再生装置の実施例における再生像の例を表す図 光情報再生装置の実施例におけるSNRの再生参照光角度依存性を表す図 光情報再生装置の位相共役光学系に対する制御回路の実施例を表す図 光情報再生装置の再生参照光角度変化に対する露光タイミングの実施例を表す図 光情報再生装置の再生参照光角度変化に対する露光タイミングの実施例を表す図 光情報再生装置の再生参照光角度変化に対する露光タイミングの実施例を表す図 光情報再生装置の位相共役光学系の実施例を表す図 光情報再生装置の位相共役光学系の実施例を表す図 光情報再生装置の再生参照光角度に対する回折効率を表す図 光情報再生装置の位相共役光学系の実施例を表す図 光情報再生装置の位相共役光学系の実施例を表す図 光情報再生装置の再生参照光角度変化に対する露光タイミングの実施例を表す図 光情報再生装置における複数再生画像の加算回路の実施例を表す図 光情報再生装置における複数再生画像の加算回路の実施例を表す図 光情報再生装置のページデータ再生の実施例を表すフローチャート
以下、本発明の実施例について説明する。
図1はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録再生装置の全体的な構成を示したものである。
光情報記録再生装置10は、ピックアップ11、位相共役光学系12、ディスクCure光学系13、ディスク回転角度検出用光学系14ならびに回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。
ピックアップ11は、参照光と信号光を光情報記録媒体1に出射してホログラフィを利用してデジタル情報を記録する役割を果たす。
この際、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の後述する空間光変調器に送り込まれ、信号光は該空間光変調器によって変調される。
光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光の位相共役光を位相共役光学系12によって生成する。ここで位相共役光とは、入力光と同一の波面を保ちながら逆方向に進む光波のことである。該位相共役光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。
光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内の後述するシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。
ディスクCure光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。ここでプリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、該所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程の事である。またポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程の事である。
ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。
光源駆動回路82からは所定の光源駆動電流がピックアップ11、ディスクCure光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。
また、ピックアップ11、位相共役光学系12、ディスクCure光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。
ところでホログラフィを利用した記録技術は、超高密度な情報を記録可能な技術であるがゆえに、例えば光情報記録媒体1の傾きや位置ずれに対する許容誤差が極めて小さくなる傾向がある。それゆえピックアップ11内に、例えば光情報記録媒体1の傾きや位置ずれ等、許容誤差が小さいずれ要因のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えても良い。
またピックアップ11、位相共役光学系12、ディスクCure光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。
図2は、光情報記録再生装置10におけるピックアップ11の光学系構成の一例を示したものである。光源201を出射した光ビームはコリメートレンズ202を透過し、シャッタ203に入射する。シャッタ203が開いている時は、光ビームはシャッタ203を通過した後、例えば2分の1波長板などで構成される光学素子204によってP偏光とS偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム205に入射する。
PBSプリズム205を透過した光ビームは、ビームエキスパンダ209によって光ビーム径が拡大された後、位相マスク211、リレーレンズ210、そして、PBSプリズム207を透過して空間光変調器208に入射する。
空間光変調器208によって情報が付加された信号光ビームは、PBSプリズム207を反射し、リレーレンズ212ならびに空間フィルタ213を伝播する。その後、信号光ビームは対物レンズ225によって光情報記録媒体1に集光する。
一方、PBSプリズム205を反射した光ビームは参照光ビームとして働き、偏光方向変換素子224によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー214ならびにミラー215を経由してガルバノミラー216に入射する。ガルバノミラー216はアクチュエータ217によって角度を調整可能のため、レンズ219とレンズ220を通過した後に情報記録媒体1に入射する参照光ビームの入射角度を、所望の角度に設定することができる。
このように信号光ビームと参照光ビームを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また、ガルバノミラー216によって光情報記録媒体1に入射する参照光ビームの入射角度を変化させることができるため、角度多重による記録が可能である。
記録した情報を再生する場合は、前述したように参照光ビームを光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームをガルバノミラー221にて反射させることで、その位相共役光を生成する。
この位相共役光によって再生された再生光ビームは、対物レンズ225、リレーレンズ212ならびに空間フィルタ213を伝播する。その後、再生光ビームはPBSプリズム207を透過して光検出器218に入射し、記録した信号を再生することができる。
なお、ピックアップ11の光学系構成は図2に限定されるものではない。
図3は、光情報記録再生装置10における記録、再生の動作フローを示したものである。 図3(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、図3(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、図3(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。
図3(a)に示すように媒体を挿入すると(S301)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかディスク判別を行う(S302)。
ディスク判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する(S303)。
コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理を行い(S304)、光情報記録再生装置10は、記録または再生の準備が完了する(S305)。
準備完了状態から情報を記録するまでの動作フローは図3(b)に示すように、まず記録するデータを受信して、該データに応じた情報をピックアップ11内の空間光変調器に送り込む(S306)。
その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて各種学習処理を事前に行い(S307)、シーク動作(S308)ならびにアドレス再生(S309)を繰り返しながらピックアップ11ならびにディスクCure光学系13の位置を光情報記録媒体の所定の位置に配置する。
その後、ディスクCure光学系13から出射する光ビームを用いて所定の領域をプリキュアし(S310)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(S311)。
データを記録した後は、必要に応じてデータをベリファイし(S312)、ディスクCure光学系13から出射する光ビームを用いてポストキュアを行う(S313)。
準備完了状態から記録された情報を再生するまでの動作フローは図3(c)に示すように、光情報記録媒体から高品質の情報を再生できるように、必要に応じて各種学習処理を事前に行う(S314)。その後、シーク動作(S315)ならびにアドレス再生(S316)を繰り返しながらピックアップ11ならびに位相共役光学系12の位置を光情報記録媒体の所定の位置に配置する。その後、ピックアップ11から参照光を出射し、光情報記録媒体に記録された情報を読み出す(S317)。
上述の記録方法において、図2ガルバノミラー216によって光情報記録媒体1に入射する参照光ビームの入射角度を変化させることができるため、角度多重による記録が可能である。
ここで、本実施例を用いない場合に、再生時に参照光角度が目標からずれた場合に生じる影響を図4、図5、図6を用いて説明する。
図4はθn−1、θn、θn+1の参照光角度でメディアに記録した場合の回折効率の参照光角度依存性を示している。この図より記録した時と同一の角度、例えばθnで再生した場合には最大強度の回折効率が得られるが、少しずれた場合には急速に効率が悪化してしまうことが判る。図5は参照光角度θnによる再生像をシミュレーションした結果であり、記録時と同一の参照光角度θnによる再生では、全領域に亘って一様な輝度での再生が行われている。それに対し、図6は参照光角度θnから微小角度δずれた参照光による再生像をシミュレーションした結果であり、記録時とずれた参照光角度θn+δによる再生では、再生像の輝度が一様ではなく画像の端の領域では正常に再生出来ないであろうことが容易に推測できる。このように参照光角度制御には極めて高い精度が要求される。
次に本実施例の参照光角度制御方法について、図7、図8、図9、図10、図11を用いて説明する。
前述したように、記録した情報を再生する場合は、参照光ビームを光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームをガルバノミラー221にて反射させることでその位相共役光を生成し、この位相共役光によって再生された再生光ビームが最終的に光検出器218に入射し、記録した信号を再生することができる。
図7は図2における位相共役光学系12に対する制御回路を示している。まず、コントローラ89から制御目標となる目標参照光角度を与え、これと位相共役光学系12で算出された現在の参照光角度を示す参照光角度検出信号を減算回路701に入力する。減算回路701で2入力の差分である参照光角度誤差信号を生成し、サーボ信号生成回路83、アクセス制御回路81を経由する過程で、誤差信号をフィルタリングするなどしてアクチュエータ222を制御するのに適切な参照光角度制御信号へと処理する。この参照光角度制御信号を用いてアクチュエータ222を動作させ、ガルバノミラー221の角度を変化させ、その誤差をまたフィードバックする制御を繰り返すことで所望の目標参照光角度へと近づける。なお、図7では回路として動作を示しているが、同等の機能をソフトウェアで実現してもよい。さらに、参照光角度制御方法は図7に限定するものではなく、目標となる角度にガルバノミラー221を調整出来さえすれば、どのような方式でもよい。
図8に参照光角度の変化に対する光検出器218の露光(撮影)タイミングを示す。本実施例は、図8に示すように目標とした参照光角度θnを中心に微小角度δだけずれた参照光角度θn−δからθn+δまでガルバノミラー221が変化するのに対応する期間(t0からt1)において、光検出器218に入射された再生光を露光することを特徴とする。
これにより、図4に示すように再生参照光角度θnだけで再生するのではなく、図9のように幅を持った参照光角度θn−δからθn+δまでで再生可能となり、例えθnから制御がずれたとしても±δの範囲にθnが入ってさえすれば再生が可能となる。
図10に本実施例による参照光角度θn−δからθn+δまでによる再生像をシミュレーションした結果を示す。図10のように輝度の斑は生じるものの図6と比較して再生出来ていない領域は格段に減少する。またこの輝度の斑も、輝度の平均値を均一化するような画像補正を実施すれば実際上問題ではなくなる。図11にこのような信号処理を施した場合のSNR(Signal to Noise Ratio)の参照角度依存性をシミュレーションした結果を示す。このシミュレーションは、参照光角度40°で記録したホログラムに対して参照光角度を変化させたものであり、微小角度δは0.008°としている。
Figure 0005581111

として算出している。
この結果より本実施例を適用することで大幅なSNRの改善を得ることが可能であることが判る。この変化させる微小角度δをより大きく取ることでより再生参照光角度マージンを拡大させることも可能であるが、隣接ページデータとのクロストークを抑圧するためには該当ページデータを記録した参照光角度θnと、隣接ページデータを記録した参照光角度θn−1との中間値である(θn−θn−1)/2までとする方が好ましい。ただし、微小角度δをこの角度に限定するものではない。
また、この微小角度δは再生中一定値を取る必要はなく、記録時にページデータ毎に参照光角度間隔を変えている場合などは、寧ろその間隔に応じて微小角度δの量を変える方が隣接ページデータとのクロストークを抑圧するためには効果的である。
また、上記の説明において参照光角度を変化させるのに使用したのはガルバノミラー221であったがこれに限定するものではなく、図2のガルバノミラー216も同時に制御するなど、参照光角度制御に関するいくつか、または全ての構成要素に対して適用してもよい。
さらに、図8にはt0からt1における参照光角度変化を1次関数で図示しているが、参照光角度の制御をこれに限定するものではなく、露光期間中に角度が変化してさえいればよい。
以上のことは、以降の実施例においても同様に適用可能である。
実施例1と相違するのは、図7に示した参照光角度制御方法、および図8に示した参照光角度の変化に対する光検出器218の露光タイミングである。
実施例1では露光期間中の参照光角度を時間と共に増加(減少)させていたのに対し、本実施例では微小角度δで振動させながら再生することを特徴とする。
図12に本実施例における参照光角度制御方法を示す。
まず、コントローラ89から制御目標となる目標参照光角度を与える。さらに角度走査信号を決定するため、目標参照光角度に対応する角度走査信号の振幅(A)、および角周波数(ω)をコントローラ89から角度走査信号生成回路1201に入力する。このAおよびωは一定値でもよいが、前述したように記録時に参照光角度間隔を変えている場合などは微小角度δの量を変える方が好ましいため、コントローラ89からそれに対応した値を与える。角度走査信号生成回路1201ではAおよびωから正弦波(Asinωt)を出力し、加算回路1202において目標参照光角度と加算する。この加算結果と、位相共役光学系12で算出された現在の参照光角度を示す参照光角度検出信号を、減算回路701に入力する。減算回路701で2入力の差分である参照光角度誤差信号を生成し、サーボ信号生成回路83、アクセス制御回路81を経由する過程で、誤差信号をフィルタリングするなどしてアクチュエータ222を制御するのに適切な参照光角度制御信号へと処理する。この参照光角度制御信号を用いてアクチュエータ222を動作させ、ガルバノミラー221の角度を変化させ、その誤差をまたフィードバックする制御を繰り返すことで所望の目標参照光角度へと近づける。但し、角度走査信号を印加しているため目標参照光角度に一致することはなく、目標参照光角度を中心に参照光角度が振動することとなる。なお、図12では回路として動作を示しているが、同等の機能をソフトウェアで実現してもよい。また、参照光角度制御方法は図12に限定するものではなく、目標となる角度を中心に微小角度δだけガルバノミラー221を振動出来さえすれば、どのような方式でもよい。例えば、角度走査信号を加算するのも目標参照光角度ではなく、減算回路1203出力に対してでもよい。
図13に参照光角度の変化に対する光検出器218の露光タイミングを示す。
上述の参照光角度制御により参照光角度θn−δからθn+δの間でガルバノミラー221が振動しており、振動中心となる参照光角度が目標参照光角度に達した後、振動の1/2周期(π/ω)以上の期間(t2からt3)において、光検出器218に入射された再生光を露光する。
なお、上記の説明では常に角度走査信号を目標参照光角度に加算しているが、参照光角度が目標参照光角度θnに到達後、もしくは目標参照光角度をθn−1からθnへと変化させた一定時間後に角度走査信号を目標参照光角度に加算するように変更してもよい。
本実施例によれば、光検出器218の露光期間が角度走査信号の周期と比較して充分長い場合において、従来のシステムに角度走査信号を印加するだけで簡単に再生参照光角度マージンを拡大することが可能となる。
実施例1と相違するのは、図8に示した参照光角度変化および光検出器218の露光タイミングである。
実施例1では露光期間中の参照光角度を時間と共に増加(減少)させていたのに対し、本実施例では参照光角度制御における過渡応答期間中に再生することを特徴とする。
図14に本実施例における参照光角度の変化に対する光検出器218の露光タイミングを示す。
実施例1に示した参照光角度制御において、図14に示すように目標参照光角度をθn−1からθnに変化させる場合、実際にはガルバノミラー221が応答する参照光角度は図14の参照光角度に示すように暫くは安定しない。この応答特性は、アクチュエータ222とガルバノミラー221の特性より算出することが可能であり、参照光角度θn+δからθn−δ’までガルバノミラー221が変化するのに対応する期間(t4からt5)において、光検出器218に入射された再生光を露光する。
なお、図14では露光期間(t4からt5)を角度振動の1/2周期程度としているが、これに限定するものではなく過渡応答期間中に露光してさえいればよい。
本実施例によれば、角度が安定する前の過渡応答期間中に露光が可能であり、角度制御の精度および安定性の要求値は小さくて済むことから、角度変化に要する時間を短縮でき、高速転送速度が実現可能となる。
実施例1と相違するのは、図8に示した参照光角度変化および光検出器218の露光タイミングである。
実施例1では参照光角度を非連続的に動作させていたのに対し、本実施例では参照光角度を連続的に変化させ、該当角度範囲のみ露光し再生することを特徴とする。
図15に本実施例における参照光角度の変化に対する光検出器218の露光タイミングを示す。
図15のように参照光角度変化を連続的に変化させ、例えばθnで記録したページデータを再生する際には、参照光角度θn−δからθn+δまでガルバノミラー221が変化するのに対応する期間(t6からt7)において、光検出器218に入射された再生光を露光する。
なお、図15に示した参照光角度変化は1次関数で描いているがこれに限定するものではなく、例えばθn−1+δからθn−δの速度に対して、θn−δからθn+δでは減速させるなどしてもよい。
本実施例によれば、急激な角度変化を行う必要がないことから制御の安定性が向上し、角度が安定するまでの時間を待つ必要が減少することから、高速転送速度が実現可能となる。
実施例1と相違するのは、図7に示した参照光角度制御方法である。
実施例1では微小角度δを変化させるためにアクチュエータ222を使用したのに対し、本実施例ではピエゾ素子など別の手段を用いて変化させることを特徴とする。
図16に本実施例における参照光角度の微小角度変化方法について示す。
図16のガルバノミラー221の背面に第1ピエゾ素子1601および第2ピエゾ素子1602を配する。ピエゾ素子とは電圧を印加することで微小な変位を実現するものであり、印加する電圧および周波数を変化させることで任意の変位量、振動周期を得ることが可能である。
図16の構成を用いた参照光角度制御方法について説明する。
例えば参照光角度θnで記録したページデータを再生する際には、アクチュエータ222を動作させることで参照光角度が目標参照光角度θnに到達した後、もしくは目標参照光角度をθn−1からθnへと変化させた一定時間後に、第1ピエゾ素子1601に周期的に変動する電圧を印加し、第2ピエゾ素子1602に第1ピエゾ素子1601に印加したのと逆相に周期的に変動する電圧を印加し、ガルバノミラー221を振動させる。その振動を与えている期間、光検出器218に入射された再生光を露光する。
なお、図16では第1ピエゾ素子1601および第2ピエゾ素子1602の2個を使用する構成を示しているが、ピエゾ素子の数をこれに限定するものではなく、1つだけ、または複数個用いて振動させてもよい。
また、図16ではガルバノミラー221を振動させる手段としてピエゾ素子を用いた例を示したが、これに限定するものではなく、アクチュエータ222とは別の手段でガルバノミラー221を振動できさえすればよい。
また、周期的に変動する電圧をピエゾ素子に常に印加し、振動させたままアクチュエータ222の制御を行ってもよい。
さらに、上記の説明において第1ピエゾ素子1601および第2ピエゾ素子1602を設置したのはガルバノミラー221であったが、これに限定するものではなく、図2のガルバノミラー216に設置するなど、参照光角度制御に関するいくつか、または全ての構成要素に対して適用してもよい。
本実施例によれば、微小角度δを変化させる周期がアクチュエータ222の性能に縛られず、より高速に変化させられることから露光時間の設定自由度が大きくなり、高速転送速度が実現可能となる。
実施例1と相違するのは、図7に示した参照光角度制御方法である。
実施例1では微小角度δを変化させるためにアクチュエータ222を使用したのに対し、本実施例では参照光に収差を与えるなど波面を変化させて実現することを特徴とする。
図17に本実施例における参照光角度の微小角度変化方法について示す。
図17では図7などのガルバノミラー221の代わりにデフォーマブルミラー1701を配する。またアクチュエータ222はデフォーマブルミラー1701の角度だけでなく位置も変位させることが可能なものに変更する。デフォーマブルミラーとは、薄い鏡を複数のアクチュエータで保持し、各アクチュエータを制御することでミラー形状を任意に変形させるものであり、反射光の波面を自由に設定可能である。
図17の構成を用いた参照光角度制御方法について説明する。
記録時には、デフォーマブルミラー1701のミラー形状は平面とし、通常通り単一の参照光角度で記録する。再生時には、例えば参照光角度θnで記録したページデータを再生する際には、アクチュエータ222を動作させることで参照光角度が目標参照光角度θnに到達した後、光情報記録媒体1中に記録されているホログラム1702の大きさLの分だけ前後(±L)に振動させる。さらにデフォーマブルミラー1701のミラー形状は、例えばホログラム1702の中心と端における差分角度がδとなる発散光もしくは収束光を与える形状としておく。以上の動作によりホログラム1702の全領域において±δの範囲の光線を照射することが可能となり、実施例1と同様の効果を得ることが可能となる。
なお、図17では参照光の波面を変化させる手段としてデフォーマブルミラー1701を用いた例を示したが、これに限定するものではなく、液晶ホログラフィック光学素子を用いるなど参照光の波面を変化できさえすればよい。
実施例1と相違するのは、図7に示した参照光角度制御方法、および図9に示した露光する参照光角度範囲である。
図18に本実施例における露光する参照光角度について示す。
実施例1から6では、参照光角度を微小角度δだけ連続的に変化させることで参照光角度マージンの拡大を行ったのに対し、図18に示すように本実施例では、θn−δ’m、θn、θn+δ’m(m:自然数)のように離散的な角度での露光を特徴とする。
図19に本実施例における参照光角度の微小角度変化方法について示す。
図19では図7などのガルバノミラー221の代わりに反射型回折格子1901を配する。反射型回折格子1901の制御は、例えば参照光角度θnで記録したページデータを再生する際には、アクチュエータ222を動作させることで反射型回折格子1901の0次回折光が参照光角度θnとなるように制御しさえすればよい。ただし、例えばm=1の場合などは反射型回折格子1901の1次回折角がδ’となるように回折格子の格子ピッチを設計しておく必要はある。
なお、図19では回折光を発生させる手段として反射型回折格子1901を用いた例を示したが、これに限定するものではなく、液晶ホログラフィック光学素子を用いるなど回折光を発生できさえすればよい。
本実施例によれば、微小角度δを変化させるための制御を実施する必要がなく、従来と同様の参照光角度制御技術を使用して参照光角度マージンを拡大可能であり、高速転送速度が実現可能となる。
実施例7と相違するのは、図19に示した参照光角度の微小角度変化方法である。
実施例7では異なる参照光角度を同時に与えるために回折格子を用いていたのに対し、本実施例では多層構造体を用いることを特徴とする。
図20に本実施例における参照光角度の微小角度変化方法について示す。
図20では図7などのガルバノミラー221の代わりに多層構造体を配する。この多層構造体は、第1反射層2001、第2反射層2002、第3反射層2003から構成される。多層構造体の制御は、例えば参照光角度θnで記録したページデータを再生する際には、アクチュエータ222を動作させることで多層構造体の第1反射層2001からの反射光が参照光角度θnとなるように制御しさえすればよい。ただし、第1反射層2001と第2反射層2002、第1反射層2001と第3反射層2003、の反射面は夫々−δ、+δとなるように設計しておく。また夫々の反射層からの反射光の位相を揃えるために、第1反射層2001と第2反射層2002の中心での距離d0、および第2反射層2002と第3反射層2003の中心での距離d1は、n+1/2波長程度(n:自然数)とすることが望ましい。ただし、距離d0、d1をこの長さに限定するものではない。
さらに、図20では反射層を3つとしている例を示したが、これに限定するものではない。
本実施例によれば、微小角度δを変化させるための制御を実施する必要がなく、従来と同様の参照光角度制御技術を使用して参照光角度マージンを拡大可能であり、高速転送速度が実現可能となる。
実施例1と相違するのは、図8に示した光検出器218の露光タイミングである。
実施例1では微小角度δを変化させる間、光検出器218を露光し続けていたのに対し、本実施例では複数回に分けて露光することを特徴とする。上記で説明した実施例では参照光角度θnで記録したページデータを再生するのに微小角度δを変化させて再生していたが、これにより厳密には再生像の位置、倍率などが微小ながらも変化する。よって複数回に分けて露光し、夫々の再生画像に対して画像歪みを補正する処理をした後、合成すればよりSNRを向上させることが可能となる。
図21に本実施例における光検出器218の露光タイミングを示し、図22に本実施例における複数画像の加算方法を示す。
図21に示すように目標とした参照光角度θnを中心に微小角度δだけずれた参照光角度θn−δからθn+δまでガルバノミラー221が変化するのに対応して、第1の期間(t8からt9)、第2の期間(t10からt11)、第3の期間(t12からt13)において、光検出器218に入射された再生光を露光する。なお、ここでは3つの期間で説明しているが、これに限定するものではない。
以下に図22を用いてこれらの再生画像の合成方法について説明する。
これら3つの期間で撮影された画像は光検出器218から出力され、デマルチプレクサ回路2201で夫々の時間に対応した回路に振り分けられる。第1の期間で撮影された画像は第1補正回路2202で歪みを補正し、第1画像メモリ2205で保存する。同様に、第2の期間に対しては、第2補正回路2203、第2画像メモリ2206を使用し、第N(N:自然数)の期間に対しては、第N補正回路2203、第N画像メモリ2206を使用する。参照光角度θn−δからθn+δまで撮影し終えると、各画像メモリに格納されている画像を加算回路2208で加算し、規格化回路2209で輝度を規格化した後、信号処理回路85で元のユーザーデータに復号する処理が行われる。
なお、画像の補正は必ずしも実施する必要はなく、また補正を実施しない場合は信号処理にて画像を合成せずとも、第1から第Nの期間まで露光を継続させればよい。
また、本実施例の適用先として実施例1を例に説明したが、これに限定するものではなく、実施例1から実施例6までのいずれに対しても適用可能である。
さらに、図22では回路として動作を示しているが、同等の機能をソフトウェアで実現してもよい。
本実施例によれば、目標となる参照光角度からずれることによる再生像の歪みを低減でき、さらなるSNRの改善が可能となる。
実施例9と相違するのは、図22に示した複数画像の加算方法である。
実施例9では補正回路および画像メモリを露光回数分必要としていたが、本実施例では夫々1つで実施可能であることを特徴とする。
図23に本実施例における複数画像の加算方法を示し、図24に本実施例における再生フローチャートを示す。
以下に本実施例における再生動作について説明する。
例えば参照光角度θnで記録したページデータを再生する際には、まず画像メモリ2303を初期化する(S2401)。次に、アクチュエータ222を動作させることで参照光角度をθn−δへと移動し(S2402)、光検出器218を露光して再生画像を取得(S2403)、補正回路2301で歪みを補正し(S2404)、補正画像と画像メモリ2303の出力を加算回路2302で加算(S2405)した結果を画像メモリ2303に格納する(S2406)。この時、現在の参照光角度が微小変化終了角度であるθn+δに到達したかを判断し(S2407)、到達していなければさらに微小角度δ’(δよりも小さい)だけ移動させS2403の処理からS2407までの処理を繰り返す。S2407でθn+δに到達したと判断した場合は、加算回路2302出力を規格化回路2209に入力し輝度を規格化(S2409)した後、信号処理回路85で元のユーザーデータに復号する処理が行われる(S2410)。
なお、図23では回路として動作を示しているが、同等の機能をソフトウェアで実現してもよい。
本実施例によれば、目標となる参照光角度からずれることによる再生像の歪みを低減でき、さらなるSNRの改善が可能となる。また、回路規模を抑圧して実装することが可能である。
1・・・光情報記録媒体、10・・・光情報記録再生装置、11・・・ピックアップ、
12・・・位相共役光学系、13・・・ディスクCure光学系、
14・・・ディスク回転角度検出用光学系、50・・・回転モータ、
81・・・アクセス制御回路、82・・・光源駆動回路、83・・・サーボ信号生成回路、
84・・・サーボ制御回路、85・・・信号処理回路、86・・・信号生成回路、
87・・・シャッタ制御回路、88・・・ディスク回転モータ制御回路、
89・・・コントローラ、
201・・・光源、202・・・コリメートレンズ、203・・・シャッタ、
204・・・光学素子、205・・・偏光ビームスプリッタ、
206・・・信号光、207・・・偏光ビームスプリッタ、208・・・空間光変調器、
209・・・ビームエキスパンダ、210・・・リレーレンズ、
211・・・フェーズ(位相)マスク、212・・・リレーレンズ、
213・・・空間フィルタ、214・・・ミラー、215・・・ミラー、
216・・・ミラー、217・・・アクチュエータ、218・・・光検出器、
219・・・レンズ、220・・・レンズ、221・・・ミラー、222・・・アクチュエータ、
223・・・参照光、224・・・偏光方向変換素子、225・・・対物レンズ、
701・・・減算回路、
1201・・・角度走査信号生成回路、1202・・・加算回路、1203・・・減算回路、
1601・・・第1ピエゾ素子、1602・・・第2ピエゾ素子、
1701・・・デフォーマブルミラー、1702・・・ホログラム、
1901・・・反射型回折格子、
2001・・・第1反射層、2002・・・第2反射層、2003・・・第3反射層、
2201・・・デマルチプレクサ回路、
2202・・・第1補正回路、2203・・・第2補正回路、2204・・・第N補正回路、
2205・・・第1画像メモリ、2206・・・第2画像メモリ、
2207・・・第N画像メモリ、2208・・・加算回路、2209・・・規格化回路、
2301・・・補正回路、2302・・・加算回路、2303・・・画像メモリ

Claims (8)

  1. 信号光と参照光とを重ね合わせた時に生じる干渉パターンが記録された媒体を再生することが可能な、ホログラフィを利用して情報を再生する光情報再生方法において、
    情報の再生時に、参照光を複数の角度に回折させる光学素子により複数の角度に回折された参照光を同時に媒体に照射し、
    前記照射された参照光が前記干渉パターンで回折されて再生光を生成し、
    前記再生光を光検出器で検出し、
    前記検出器で検出された信号を信号処理することで情報を再生する、
    光情報再生方法。
  2. 信号光と参照光とを重ね合わせた時に生じる干渉パターンが記録された媒体を再生することが可能な、ホログラフィを利用して情報を再生する光情報再生方法において、
    情報の再生時に、参照光を複数の角度に反射する光学素子により複数の角度に反射された参照光を同時に媒体に照射し、
    前記照射された参照光が前記干渉パターンで回折されて再生光を生成し、
    前記再生光を光検出器で検出し、
    前記検出器で検出された信号を信号処理することで情報を再生する、
    光情報再生方法。
  3. 信号光と参照光とを重ね合わせた時に生じる干渉パターンが記録された媒体を再生することが可能な、ホログラフィを利用して情報を再生する光情報再生方法において、
    情報の再生時に、参照光波面を記録時と異なる波面にすることにより複数の角度成分を有する参照光を同時に媒体に照射し、
    前記照射された参照光が前記干渉パターンで回折されて再生光を生成し、
    前記再生光を光検出器で検出し、
    前記検出器で検出された信号を信号処理することで情報を再生する、
    光情報再生方法。
  4. 請求項記載の光情報再生方法であって、
    情報の再生時には、参照光を媒体に照射する位置を振動させることを特徴とする、光情報再生方法。
  5. 信号光と参照光とを重ね合わせた時に生じる干渉パターンが記録された媒体を再生することが可能な、ホログラフィを利用して情報を再生する光情報再生装置において、
    参照光を生成するレーザ光源と、
    情報の再生時に、参照光を複数の角度に回折させ、複数の角度に回折された参照光を同時に媒体に導く光学素子と、
    前記媒体に導かれた参照光が該媒体に照射されることにより得られる再生光を検出する光検出器と、
    前記光検出器の出力を信号処理する信号処理回路と、
    を有する、光情報再生装置。
  6. 信号光と参照光とを重ね合わせた時に生じる干渉パターンが記録された媒体を再生することが可能な、ホログラフィを利用して情報を再生する光情報再生装置において、
    参照光を生成するレーザ光源と、
    情報の再生時に、参照光を複数の角度に反射させ、該反射された複数の角度成分を有する参照光を同時に媒体に導く光学素子と、
    前記媒体に導かれた参照光が該媒体に照射されることにより得られる再生光を検出する光検出器と、
    前記光検出器の出力を信号処理する信号処理回路と、
    を有する、光情報再生装置。
  7. 信号光と参照光とを重ね合わせた時に生じる干渉パターンが記録された媒体を再生することが可能な、ホログラフィを利用して情報を再生する光情報再生装置において、
    参照光を生成するレーザ光源と、
    情報の再生時に、参照光波面を記録時と異なる波面にすることにより、複数の角度成分を有する参照光を同時に媒体に導く光学素子と、
    前記媒体に導かれた参照光が該媒体に照射されることにより得られる再生光を検出する光検出器と、
    前記光検出器の出力を信号処理する信号処理回路と、
    を有する、光情報再生装置。
  8. 請求項記載の光情報再生装置であって、
    情報の再生時には、参照光を媒体に照射する位置を振動させる、光情報再生装置。
JP2010109786A 2010-05-12 2010-05-12 光情報再生装置および光情報再生方法 Expired - Fee Related JP5581111B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010109786A JP5581111B2 (ja) 2010-05-12 2010-05-12 光情報再生装置および光情報再生方法
US13/088,462 US8520484B2 (en) 2010-05-12 2011-04-18 Optical information reproduction apparatus and optical information reproduction method
CN201110105719.8A CN102243878B (zh) 2010-05-12 2011-04-21 光信息再现装置和光信息再现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109786A JP5581111B2 (ja) 2010-05-12 2010-05-12 光情報再生装置および光情報再生方法

Publications (2)

Publication Number Publication Date
JP2011238317A JP2011238317A (ja) 2011-11-24
JP5581111B2 true JP5581111B2 (ja) 2014-08-27

Family

ID=44911674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109786A Expired - Fee Related JP5581111B2 (ja) 2010-05-12 2010-05-12 光情報再生装置および光情報再生方法

Country Status (3)

Country Link
US (1) US8520484B2 (ja)
JP (1) JP5581111B2 (ja)
CN (1) CN102243878B (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5707147B2 (ja) * 2011-01-24 2015-04-22 日立コンシューマエレクトロニクス株式会社 光情報再生方法および光情報再生装置
JP5753767B2 (ja) * 2011-11-18 2015-07-22 日立コンシューマエレクトロニクス株式会社 光情報記録再生装置、光情報記録再生方法、光情報記録媒体
JP5726816B2 (ja) * 2012-06-19 2015-06-03 日立コンシューマエレクトロニクス株式会社 ホログラム用光ピックアップ装置、光情報記録再生装置、光情報記録再生方法、及び光情報装置
JPWO2014091531A1 (ja) * 2012-12-10 2017-01-05 日立コンシューマエレクトロニクス株式会社 光情報再生装置及び光情報再生方法
CN105122364A (zh) * 2013-04-08 2015-12-02 日立民用电子株式会社 光信息再现装置和调整方法
JP2015056194A (ja) * 2013-09-13 2015-03-23 株式会社日立エルジーデータストレージ 光情報再生装置、及び参照光調整方法
CN105487245B (zh) * 2016-01-21 2017-09-29 四川大学 基于全息光学元件的悬浮式集成成像3d显示

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173469A (ja) * 1991-12-20 1993-07-13 Dainippon Printing Co Ltd ホログラム及びホログラム記録情報読み取り方法
US7092133B2 (en) 2003-03-10 2006-08-15 Inphase Technologies, Inc. Polytopic multiplex holography
JP4377209B2 (ja) * 2003-11-28 2009-12-02 Tdk株式会社 ホログラフィックメモリ再生方法及び装置
JP2006084526A (ja) 2004-09-14 2006-03-30 Sony Corp ホログラム再生装置及びホログラム再生方法
TW200622522A (en) 2004-09-13 2006-07-01 Sony Corp Hologram reproducing apparatus and hologram reproducing method
JP2006235109A (ja) * 2005-02-23 2006-09-07 Fujitsu Ltd 光記録媒体、情報記録方法、情報再生方法、情報記録再生装置
JP2006251675A (ja) * 2005-03-14 2006-09-21 Fujitsu Ltd 光記録媒体の再生装置、記録再生装置、再生方法
JP2007240581A (ja) * 2006-03-06 2007-09-20 Fujitsu Ltd ホログラム記録装置
US8120829B1 (en) * 2006-04-24 2012-02-21 Oracle America, Inc. System and method for real time holographic data recording and readout
WO2008001416A1 (fr) * 2006-06-26 2008-01-03 Fujitsu Limited Dispositif d'enregistrement d'hologramme et procédé d'enregistrement/reproduction d'hologramme
JP2008027490A (ja) * 2006-07-19 2008-02-07 Fujifilm Corp 情報記録再生装置及び情報再生方法
JP4919790B2 (ja) * 2006-12-15 2012-04-18 シャープ株式会社 波長制御方法、ホログラム情報処理装置およびホログラム記録媒体
JP2008152009A (ja) * 2006-12-18 2008-07-03 Fujitsu Ltd ホログラム記録再生装置
JP2009070475A (ja) * 2007-09-13 2009-04-02 Hitachi Ltd 光情報記録再生装置
JP2009080890A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 光情報記録再生装置及び光学的に情報を記録再生する方法
JP2009080888A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 光情報記録再生装置及びその再生方法
JP2009146542A (ja) * 2007-12-17 2009-07-02 Toshiba Corp 光情報記録装置および方法

Also Published As

Publication number Publication date
CN102243878B (zh) 2014-08-13
CN102243878A (zh) 2011-11-16
US20110280112A1 (en) 2011-11-17
JP2011238317A (ja) 2011-11-24
US8520484B2 (en) 2013-08-27

Similar Documents

Publication Publication Date Title
JP5081741B2 (ja) 光情報記録装置、光情報記録方法、光情報記録再生装置および光情報記録再生方法
JP5581111B2 (ja) 光情報再生装置および光情報再生方法
JP5037391B2 (ja) 光ピックアップ、光情報記録再生装置および光学的情報記録再生方法
JP2009087448A (ja) ホログラム記録再生装置及びホログラム記録再生方法
JP5753768B2 (ja) 光情報記録装置、光情報再生装置、光情報記録再生装置、光情報記録方法、光情報再生方法および光情報記録再生方法
JP5096191B2 (ja) 光ピックアップおよび、それを用いた光情報再生装置および光情報記録再生装置
JP5183667B2 (ja) 再生装置および再生方法
JP4881914B2 (ja) 光情報記録再生装置及び光情報記録方法
JP2006154163A (ja) ホログラム記録装置、ホログラム再生装置、ホログラム記録方法及びホログラム再生方法
US20060285470A1 (en) Hologram device and hologram recording/reproducing method
JP2010129110A (ja) 光情報再生装置、光情報記録再生装置
US9081364B2 (en) Optical information recording/reproducing apparatus, optical information recording/reproducing method, and optical information recording medium
JP5104695B2 (ja) 情報記録装置
JP5557787B2 (ja) 光情報再生装置、光情報記録再生装置
JPWO2014199504A1 (ja) 光情報記録再生装置、及び調整方法
JP2010181760A (ja) 光情報記録方法および記録装置
JP6077110B2 (ja) 光情報再生装置および調整方法
JPWO2015198407A1 (ja) 光情報記録再生装置、及び光情報記録再生方法
JP2012069207A (ja) ホログラフィを用いたホログラフィックメモリ
JPWO2015068250A1 (ja) ホログラム記録装置
JP5414861B2 (ja) 光情報記録装置、光情報記録方法、光情報記録再生装置および光情報記録再生方法
WO2016208046A1 (ja) 光情報記録再生装置、光情報記録装置及び光情報記録再生方法
JP2017126390A (ja) 光情報記録装置、及び光情報記録方法
WO2020012551A1 (ja) 光記録装置、導光板及び光記録方法
JP2012133879A (ja) 情報記録装置、情報再生装置および記録媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5581111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees