JP5580307B2 - クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法 - Google Patents

クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法 Download PDF

Info

Publication number
JP5580307B2
JP5580307B2 JP2011519565A JP2011519565A JP5580307B2 JP 5580307 B2 JP5580307 B2 JP 5580307B2 JP 2011519565 A JP2011519565 A JP 2011519565A JP 2011519565 A JP2011519565 A JP 2011519565A JP 5580307 B2 JP5580307 B2 JP 5580307B2
Authority
JP
Japan
Prior art keywords
engine
power
generator
command signal
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011519565A
Other languages
English (en)
Other versions
JPWO2010146854A1 (ja
Inventor
範之 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Material Handling Systems Co Ltd
Original Assignee
Sumitomo Heavy Industries Material Handling Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Material Handling Systems Co Ltd filed Critical Sumitomo Heavy Industries Material Handling Systems Co Ltd
Priority to JP2011519565A priority Critical patent/JP5580307B2/ja
Publication of JPWO2010146854A1 publication Critical patent/JPWO2010146854A1/ja
Application granted granted Critical
Publication of JP5580307B2 publication Critical patent/JP5580307B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/005Straddle carriers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control And Safety Of Cranes (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、クレーン用ハイブリッ電源装置およびクレーン用ハイブリッ電源装置の制御方法に関する。ガントリークレーンやタイヤマウント式ジブクレーンなどのエンジン発電機を動力源として有するクレーン等では、エンジン発電機とバッテリ等の蓄電装置とを備えたハイブリッ電源によりモータ等を駆動させる機構を備えたものが開発されている。
本発明は、かかるガントリークレーン等の設備に使用されるクレーン用ハイブリッ電源装置およびクレーン用ハイブリッ電源装置の制御方法に関する。
従来、クレーン等におけるモータやポンプ等の電動機を駆動させる電力源には、ディーゼルエンジン等を備えたエンジン発電機が使用されている。かかるクレーン等では、エンジン発電機が発生する電力をコンバータとインバータを介して電動機に供給しており、この電動機に電力を供給する回線には、バッテリ等の蓄電器もインバータと並列に設けられている(例えば、特許文献1,2)。
かかる特許文献1,2の技術では、電動機が必要とする電力が小さいときには余剰電力を蓄電器に蓄えておくことができるから、エネルギの効率を高くできる。そして、電動機が必要とする電力が大きいときには、エンジン発電機と蓄電器の両方から電動機に電力を供給できるので、エンジン発電機を小型化できるという利点がある。
特開平11−217193号 特開平11−285165号
しかし、特許文献1,2の技術では、電動機が必要とする電力に比例してエンジン発電機に加わる負荷が変動する。このため、電動機が必要とする電力が変動すると、エンジン発電機の作動状態も変動するため、エンジン発電機の運転状態を最適に保つことは難しい。つまり、エンジン発電機を燃費の良い状態で運転させることが困難である。
本発明は上記事情に鑑み、エンジン発電機の燃費を常時良好な状態に維持することができるクレーン用ハイブリッ電源装置およびクレーン用ハイブリッ電源装置の制御方法を提供することを目的とする。
(電源装置)
第1発明のクレーン用ハイブリッド電源装置は、エンジン発電機と、蓄電装置と、該蓄電装置および前記エンジン発電機を制御する制御装置と、を備えたクレーン用ハイブリッド電源装置であって、前記エンジン発電機は、エンジンと該エンジンの出力軸に接続された発電機を有する発電部とからなり、前記エンジン発電機は、前記要求電力の増加割合が所定の値を超えると、該エンジンが予め定められたエンジン回転数に到達するまで、前記発電機により前記エンジンをアシスト運転し、該エンジンが予め定められたエンジン回転数に到達すると、前記エンジンのアシスト運転から前記エンジンによる発電運転へ切り替わるものであり、前記制御装置は、外部負荷からの要求電力と前記蓄電装置の充電電力とに基づきエンジン負担電力を算出する負担電力算出部と前記エンジン負担電力に対し、燃費の良い状態で発電し得る前記エンジン発電機の出力トルク及び回転数を算出し、前記エンジン発電機に対して前記出力トルクを指令するトルク指令信号と前記回転数を指令する回転数指令信号とを送信する指令信号送信部と、を備えていることを特徴とする。
第2発明のクレーン用ハイブリッド電源装置は、第1発明において、所定のエンジン発電機出力を得るために必要な出力トルク及び回転数の変化に応じて変化するエンジンの燃費を、所定の値ごとに複数の燃費領域として分けた場合、前記指令信号送信部は、複数の前記燃費領域の中から最も燃費が良い燃費領域に対応する出力トルク及び回転数を選択して、前記エンジン負担電力に対応したエンジン発電機出力を得るために必要な出力トルク及び回転数を算出し、前記算出した出力トルクを指令するトルク指令信号と、前記算出した回転数を指令する回転数指令信号と、を送信する機能を有していることを特徴とする
発明のクレーン用ハイブリッド電源装置は、第1または第2発明において、前記外部負荷には主装置と補助装置とが含まれており、前記エンジンの回転数は、前記主装置からの主装置要求動力が有る状態のエンジンの回転数より、該主装置からの主装置要求動力が無い待機状態のエンジンの回転数の方が低いことを特徴とする。
発明のクレーン用ハイブリッド電源装置は、第1〜第3発明において、前記エンジンは、エンジン本体及び該エンジン本体の作動を制御するエンジン制御部を備え、前記指令信号送信部は、前記エンジンの回転数を指示する情報を含んだ前記回転数指令信号を前記エンジン制御部に送信し、前記発電部の発電機に発生させるトルクを指示する情報を含んだ前記トルク指令信号を前記発電機制御部に送信することを特徴とする。
発明のクレーン用ハイブリッド電源装置は、第発明において、前記指令信号送信部は、前記要求電力の増加割合が所定の値を超えると、前記要求電力が最大電力値となったときに前記エンジン発電機が要求される前記エンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように前記発電部の発電機を加速させる回転数の時間変動データを算出し、該回転数の時間変動データに基づいて生成される前記回転数指令信号を、前記エンジン制御部および前記発電機制御部に送信することを特徴とする。
発明のクレーン用ハイブリッド電源装置は、第1〜第3発明において、前記エンジンは、エンジン本体及び該エンジン本体の作動を制御するエンジン制御部を備え、前記制御装置の指令信号送信部は、前記エンジンの出力トルクを指示する情報を含んだ前記トルク指令信号を前記エンジン制御部に送信し、前記発電部の発電機の回転数を指示する情報を含んだ前記回転数指令信号を前記発電機制御部に送信することを特徴とする。
発明のクレーン用ハイブリッド電源装置は、第発明において、前記指令信号送信部は、前記要求電力の増加割合が所定の値を超えると、前記要求電力が最大電力値となったときに前記エンジン発電機が要求される前記エンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように前記発電部の発電機を加速させる回転数の時間変動データを算出して、該回転数の時間変動データに基づいて生成される前記回転数指令信号を、前記発電機制御部に送信し、前記発電部の発電機の加速期間において、燃焼状態が悪化しない程度で加速し得る出力トルクを算出し、該出力トルクに基づいて生成される前記トルク指令信号を前記エンジン制御部に送信することを特徴とする。
発明のクレーン用ハイブリッド電源装置は、第1〜第7発明において、前記電源装置に対して外部から電力が供給される状態となると、前記制御装置は、前記エンジンが、前記発電部の発電機によってモータリング状態で駆動されるように制御することを特徴とする。
(制御方法)
発明のクレーン用ハイブリッド電源装置の制御方法は、エンジンと該エンジンの出力軸に接続された発電機を有する発電部とからなるエンジン発電機と、蓄電装置と、を備えたクレーン用ハイブリッド電源装置の制御方法であって、前記エンジン発電機が、外部負荷からの要求電力の増加割合が所定の値を超えると、前記エンジンが予め定められたエンジン回転数に到達するまで、該エンジンを前記発電機によりアシスト運転し、該エンジンが予め定められたエンジン回転数に到達すると、前記エンジンのアシスト運転から前記エンジンによる発電運転へ切り替わるものであり、外部負荷からの要求電力と前記蓄電装置の充電電力とに基づきエンジン負担電力を算出し、エンジン負担電力に対し、燃費の良い状態で発電し得る前記エンジン発電機の出力トルクおよび回転数を算出し、前記エンジン発電機に対して前記出力トルクを指令するトルク指令信号と前記回転数を指令する回転数指令信号とを送信することを特徴とする。
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第発明において、所定のエンジン発電機出力を得るために必要な出力トルク及び回転数の変化に応じて変化するエンジンの燃費を、所定の値ごとに複数の燃費領域として分けた場合、複数の前記燃費領域の中から最も燃費が良い燃費領域に対応する出力トルク及び回転数を選択して、前記エンジン負担電力に対応したエンジン発電機出力を得るために必要な出力トルク及び回転数を算出し、前記エンジン発電機に対して前記算出した出力トルクを指令するトルク指令信号と、前記算出した回転数を指令する回転数指令信号と、を送信することを特徴とする
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第9または第10発明において、前記外部の負荷には主装置と補助装置とが含まれており、前記エンジンの回転数は、
前記主装置からの主装置要求電力がある状態のエンジンの回転数より、該主装置からの主装置要求電力が無い待機状態のエンジンの回転数の方が低くなるように制御されていることを特徴とする。
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第第11発明において、前記エンジンの回転数と前記発電部の発電機に発生させるトルクとを制御して、前記エンジン発電機の発電する電力を調整することを特徴とする。
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第1発明において、 前記要求電力の増加割合が所定の値を超えると、前記要求電力が最大電力値となったときに前記エンジン発電機が要求される前記エンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように、前記エンジンの調速機を機能させた状態で前記エンジンを加速し、該エンジンと同じ速度で前記発電部の発電機を加速することを特徴とする。
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第第11発明のいずれか一発明において、前記エンジンの出力トルクと前記発電部の発電機の回転数とを制御して、前記エンジン発電機の発電する電力を調整する
ことを特徴とする。
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第1発明において、前記要求電力の増加割合が所定の値を超えると、燃焼状態が悪化しない程度の出力トルクを発生するように前記エンジンを制御し、前記要求電力が最大電力値となったときに前記エンジン発電機が要求されるエンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように、前記発電部の発電機を加速させることを特徴とする。
第1発明のクレーン用ハイブリッド電源装置の制御方法は、第第15発明のいずれか一発明において、外部から電力が供給される状態となると、前記発電部の発電機によって前記エンジンをモータリング状態で駆動することを特徴とする。
(電源装置)
第1発明によれば、つぎの効果を奏する。
a)エンジン発電機を、エンジン負担電力を発電する上で最も燃費の良い状態で作動させることができるので、最も効率よく電力を外部に供給することができる。
b)エンジンが予め定められたエンジン回転数に到達するまで、エンジンを加速するときに、その加速を発電部の発電機によってアシストすることができるので、エンジンの加速期間を短くすることができる。しかも、発電部の発電機がエンジンの加速をアシストするので、加速期間中であっても、燃焼状態が異常な状態とならないようにエンジンを作動させることができる。よって、負荷が急上昇しても、エンジン発電機から十分な電力を供給でき、しかも、エンジン発電機の燃費の悪化や黒煙の発生を防ぐことができる。
第2発明によれば、燃費が最も良い燃費領域に対応する出力トルク及び回転数を選択して指令するので、燃費の最も良い状態でエンジン発動機を作動させることができる。
発明によれば、待機状態のエンジン回転数が低いので、待機状態におけるエンジン発電機の燃費を向上させることができる。
発明によれば、発電部の発電機に発生させるトルクを変化させるだけで、エンジン発電機の作動状態を、外部に電力を供給する発電状態と外部からの電力により駆動される状態との間で切り換えることができる。よって、外部に供給する電力が若干変動しても、エンジンの運転状態を安定した状態に維持しておくことができる。
発明によれば、負荷の増加割合が所定の値を超えたときにおいて、エンジン負担電力を供給できる回転数までエンジンを加速するときに、その加速を発電部の発電機によってアシストすることができるので、エンジンの加速期間を短くすることができる。しかも、発電部の発電機がエンジンの加速をアシストするので、加速期間中であっても、燃焼状態が異常な状態とならないようにエンジンを作動させることができる。よって、負荷が急上昇しても、エンジン発電機から十分な電力を供給でき、しかも、エンジン発電機の燃費の悪化や黒煙の発生を防ぐことができる。
発明によれば、発電部の発電機の回転数を変化させるだけで、エンジン発電機の作動状態を、外部に電力を供給する発電状態と外部からの電力により駆動される状態との間で切り換えることができる。よって、外部に供給する電力が若干変動しても、エンジンの運転状態を安定した状態に維持しておくことができる。
発明によれば、負荷の増加割合が所定の値を超えたときにおいて、エンジン負担電力を供給できる回転数までエンジンを加速するときに、その加速を発電部の発電機によってアシストすることができるので、エンジンの加速期間を短くすることができる。しかも、発電部の発電機がエンジンの加速をアシストするので、加速期間中であっても、燃焼状態が異常な状態とならないようにエンジンを作動させることができる。よって、負荷が急上昇しても、エンジン発電機から十分な電力を供給でき、しかも、エンジン発電機の燃費の悪化や黒煙の発生を防ぐことができる。
発明によれば、エンジンブレーキを機能させることができるので、外部から供給される電力を発電部で消費することができる。また、エンジンブレーキを機能させている間は、エンジンに供給する燃料をカットすることもできるので、エンジンで消費する燃料を抑えることができる。
(制御方法)
発明によれば、つぎの効果を奏する。
a)エンジン発電機を、エンジン負担電力を発電する上で最も燃費の良い状態で作動させることができるので、最も効率よく電力を外部に供給することができる。
b)エンジンが予め定められたエンジン回転数に到達するまで、エンジンを加速するときに、その加速を発電部の発電機によってアシストすることができるので、エンジンの加速期間を短くすることができる。しかも、発電部の発電機がエンジンの加速をアシストするので、加速期間中であっても、燃焼状態が異常な状態とならないようにエンジンを作動させることができる。よって、負荷が急上昇しても、エンジン発電機から十分な電力を供給でき、しかも、エンジン発電機の燃費の悪化や黒煙の発生を防ぐことができる。
第­1発明によれば、燃費が最も良い燃費領域に対応する出力トルク及び回転数を選択して指令するので、燃費の最も良い状態でエンジン発動機を作動させることができる。
第1発明によれば、待機状態のエンジン回転数が低いので、待機状態におけるエンジン発電機の燃費を向上させることができる。
第1発明によれば、発電部の発電機に発生させるトルクを変化させるだけで、エンジン発電機の作動状態を、外部に電力を供給する発電状態と外部からの電力により駆動される状態との間で切り換えることができる。よって、外部に供給する電力が若干変動しても、エンジンの運転状態を安定した状態に維持しておくことができる。
第1発明によれば、負荷の増加割合が所定の値を超えたときにおいて、エンジン負担電力を供給できる回転数まで発電部の発電機を加速するときに、その加速を発電部の発電機によってアシストすることができるので、エンジンの加速期間を短くすることができる。しかも、発電部の発電機がエンジンの加速をアシストするので、調速機を作動させて加速しても燃焼状態が異常な状態とならないようにエンジンを作動させることができる。よって、負荷が急上昇しても、エンジン発電機から十分な電力を供給でき、しかも、エンジン発電機の燃費の悪化や黒煙の発生を防ぐことができる。
第1発明によれば、発電部の発電機の回転数を変化させるだけで、エンジン発電機の作動状態を、外部に電力を供給する発電状態と外部からの電力により駆動される状態との間で切り換えることができる。よって、外部に供給する電力が若干変動しても、エンジンの運転状態を安定した状態に維持しておくことができる。
第1発明によれば、負荷の増加割合が所定の値を超えたときにおいて、エンジン負担電力を供給できる回転数まで発電部の発電機を加速するときに、その加速を発電部の発電機によってアシストすることができるので、エンジンの加速期間を短くすることができる。しかも、発電部の発電機がエンジンの加速をアシストするので、加速期間中であっても、燃焼状態が異常な状態とならないようにエンジンを作動させることができる。よって、負荷が急上昇しても、エンジン発電機から十分な電力を供給でき、しかも、エンジン発電機の燃費の悪化や黒煙の発生を防ぐことができる。
第1発明によれば、エンジンブレーキを機能させることができるので、外部から供給される電力を発電部で消費することができる。また、エンジンブレーキを機能させている間は、エンジンに供給する燃料をカットすることもできるので、エンジンで消費する燃料を抑えることができる。
本実施形態のクレーン用ハイブリッ電源装置1を採用した設備の概略ブロック図である。 本実施形態のクレーン用ハイブリッ電源装置1の起動および通常運転のフローチャートである。 エンジン20を回転数ベースで制御している場合において、負荷が急激に増加したときにおける運転状態のフローチャートである。 エンジン20を回転数ベースで制御している場合において、負荷が急激に増加したときにおける運転状態の他のフローチャートである。 主装置MPが回生運転している状態における運転状態のフローチャートである。 エンジン20をトルクベースで制御している場合において、負荷が急激に増加したときにおける運転状態のフローチャートである。 エンジン発電機10のエンジン20の特性図の一例を示した図である。 巻上用モータMMの速度の時間変化(図8(A))、巻上用モータMMを駆動した際の要求電力の時間変化(図8(B))、エンジン回転数の時間変化(図8(C))、エンジン発電機10の発電電力の時間変化(図8(D))、蓄電装置40からの放電電力の時間変化(図8(E))、及び、エンジン20のみの出力と発電機30からのアシスト出力の時間変化(図8(F))を示した図である。 本実施形態のクレーン用ハイブリッ電源装置1が設けられる門形クレーンCの概略説明図であって、(A)は正面図であり、(B)は側面図である。
本発明のクレーン用ハイブリッ電源装置は、ラバータヤードガントリークレーンやタイヤマウント式ジブクレーン等の機械において、ウインチや横走行装置等の作業用アクチュエータに電力を供給するための装置であって、エンジン発電機と蓄電装置とを有し、エンジン発電機の運転を適切に制御することによって、負荷の変動に係わらず、エンジン発電機を燃費の良い状態で運転できるようにしたことに特徴を有している。
まず、本実施形態のクレーン用ハイブリッ電源装置1の説明する前に、本実施形態のクレーン用ハイブリッ電源装置1が設けられるクレーンの構成を、門形クレーンを代表として簡単に説明する。
図9において、符号Cは門形クレーンを示している。図9(A)は門型クレーンCの正面を示し、図9(B)は門型クレーンCの側面を示している。この門形クレーンCは、桁Kとこの桁K支える柱Hを備えた門形のフレームFと、このフレームFにおける柱Hの下端に設けられた一対の走行部R,Rとを備えている。この一対の走行部R,Rは、それぞれ車輪Sとこの車輪Sを駆動する走行モータRMを備えており、この走行モータRMを駆動させれば、門形クレーンCが走行できるように構成されている。
一方、フレームFの桁には、この桁上を走行するトロリーTが設けられている。このトロリーは、トロリーTを横行移動させる横行用モータTMと、荷物などを釣り上げる巻上機Mが設けられている。この巻上機Mは、先端に荷物を吊り下げるためのフック等の吊り下げ具TAが取り付けられたワイヤーを巻き上げ繰り出しする巻き上げモータMMを備えている。
また、フレームFには、上述した走行モータRM、横行用モータTMおよび巻き上げモータMMに電力を供給する、本実施形態のクレーン用ハイブリッ電源装置1が設けられている。
つぎに、本実施形態のクレーン用ハイブリッ電源装置1の概略を説明する。
図1において、符号MPは、本実施形態のクレーン用ハイブリッ電源装置1が設けられている門形クレーンC等(以下、設備という)の主装置を示している。この主装置MPは、上述した走行部Rの走行用モータRMや、トロリーTの横行用モータTM、巻き上げ用モータMM等の門形クレーンCにおける作業用アクチュエータが含まれる。
また、図1において、符号SPは、設備における主装置MP以外の装置(補助装置)を示している。この補助装置SPは、設備における主装置MP以外の装置、例えば、制御用電源や照明・保安用電源、その他の補機電動機等を示している。
なお、主装置MPに含まれる各モータは、各モータに供給する交流電力を制御するインバータをそれぞれ備えている。
また、補助装置SPも、補助装置SPに供給する交流電力を制御する補助装置インバータを備えている。補助装置SPも後述する直流母線Laに接続されているので、エンジン発電機の電圧変動に起因して、直流母線Laから供給される交流電力が変動する可能性がある。しかし、補助装置SPを、補助装置インバータを介して直流母線Laに接続しているので、補助装置SPに供給する交流電力は、補助装置インバータにより、安定した電圧に制御される。
ここで、主装置MPと補助装置SPとは、外部負荷となる。
図1において、符号Laは、本実施形態のクレーン用ハイブリッ電源装置1から外部に直流電力を供給する直流母線を示している。この直流母線Laは、前記主装置MPおよび前記補助装置SPに接続されており、これらの装置にクレーン用ハイブリッ電源装置1からの電力を供給できるようになっている。
逆に、主装置MPの各モータが回生発電させることによって発生した電力も、直流母線Laを通して、補助装置SPやクレーン用ハイブリッ電源装置1に対して供給できるようにもなっている。
なお、この直流母線Laは、設備が稼動している状態では、本実施形態のクレーン用ハイブリッ電源装置1所定の運転電圧となるように調整されている。
(クレーン用ハイブリッ電源装置1の構成説明)
図1に示すように、本実施形態のクレーン用ハイブリッ電源装置1は、エンジン発電機10と、蓄電装置40と、エンジン発電機10および蓄電装置40の作動を制御する制御装置2とを備えている。
(エンジン発電機10の説明)
まず、エンジン発電機10は、エンジン20と、このエンジン20の出力軸に連結された発電機31を有する発電部30とを備えている。
(エンジン20の説明)
エンジン20は、ターボチャージャー等の過給機構を備えたディーゼルエンジンであり、エンジン本体21とこのエンジン本体21の作動を制御するエンジン制御部22とを備えている。エンジン制御部22は、制御装置2からの指令に基づいて、エンジン本体21の運転状態を制御するものである。
なお、エンジン20は、上記のごときターボチャージャー等の過給機構を備えたディーゼルエンジンに限られないのはいうまでもなく、過給機構を有しないディーゼルエンジン等も含まれる。
(発電部30の説明)
発電部30は、発電機31と、発電機31の作動を制御するインバータ等の発電機制御部32とを備えている。
発電機31は、例えば、磁石内蔵型同期モータ(IPMモータ)等を備えたものであるが、発電機としての機能に加えて、モータ機能も有するものであればとくに限定されない。この発電機31の主軸はエンジン20の出力軸と直結されている。つまり、発電機31は、その回転数とエンジン20の出力軸の回転数(つまり、エンジン20の回転数)とが、常に同じ(または常に一定の比)となるように連結されているのである。
発電機制御部32は、制御装置2からの指令信号に基づいて、発電機31の作動、例えば、発電機31に発生させるトルクや発電機31の回転数等を制御する機能を有している。具体的には、発電機制御部32は、制御装置2から送信される指令に基づいて発電機31に与える電圧や周波数を決定して、発電機31の回転速度や発生トルクが指令値と一致するように制御する。
そして、発電機制御部32は、発電機31に発生させるトルクや発電機31の回転数等を制御することによって、発電機31が発生した電力を直流母線Laに供給する状態と、直流母線Laからの電力供給を受けて発電機31を作動させる状態とを切り換えている。
(蓄電装置40の説明)
図1に示すように、前記直流母線Laには、前記エンジン発電機10と並列となるように、蓄電装置40が接続されている。この蓄電装置40は、昇降圧コンバータ42と充放電が可能なバッテリやキャパシタ等の蓄電器41とを備えており、昇降圧コンバータ42を介して蓄電器41が直流母線Laに接続されている。つまり、蓄電装置40は、昇降圧コンバータ42と直流母線Laを通して、主装置MPやエンジン発電機10に対して蓄電器41から電力を供給したり、逆に、主装置MPやエンジン発電機10からの電力を蓄電器41に充電したりすることができるようになっている。
また、蓄電装置40は、蓄電制御部43も備えている。この蓄電制御部43は、蓄電器41の充電率を監視する機能と、昇降圧コンバータ42の作動を制御する機能とを有している。昇降圧コンバータ42の作動を制御する機能とは、制御装置2から送信される電力指令信号に基づいて、昇圧動作と、降圧動作と、遮断動作と、を切り換えるように制御する機能である。
昇圧動作とは、蓄電器41から供給される直流電力の電圧(以下、蓄電器側電圧という)を昇圧して所望のタイミングに所望の時間だけ直流母線Laに出力させる動作である。
降圧動作とは、直流母線Laの電圧を降圧して、蓄電器41に直流母線Laから電力を供給する動作であり、遮断動作とは、蓄電器41と直流母線Laとの間を電気的に遮断する動作である。
以上のごとき構成を有するので、昇降圧コンバータ42が昇圧動作をするように制御すれば、所望のタイミングに所望の時間だけ、言い換えれば、所望のタイミングに所望の量だけ、蓄電器側電圧よりも高い電圧の直流電力を蓄電器41から直流母線Laに供給することができる。
逆に、昇降圧コンバータ42が降圧動作をするように制御すれば、直流母線Laから蓄電器41側に電力を出力することができるから、蓄電器41に直流電力を供給して、蓄電器41を充電することができる。
なお、蓄電制御部43は、通常は、直流母線Laの電圧が所定の運転電圧を維持するように制御している。つまり、直流母線Laの電圧が所定の運転電圧より高くなると蓄電器41を充電し、逆に、直流母線Laの電圧が所定の運転電圧より低くなると蓄電器41が電力を供給するよう制御しているのである。
(制御装置2の説明)
制御装置2は、上述したエンジン発電機10および蓄電装置40の作動を制御するものである。
なお、制御装置2に入力される情報(入力情報)は、例えば、前記主装置MPや補助装置SPの作動状況に関する情報、つまり、主装置MPや補助装置SPに供給されている電力(電流値等)に関する情報や、蓄電装置40の充電率や電池電流値、電池電圧値等の電池情報、発電機制御部32から直流母線Laに供給されている電流値、エンジン20の運転状態(回転数や燃料噴射量)などであるが、これらに限定されないのは、いうまでもない。
この制御装置2は、エンジン発電機10および蓄電装置40が負担する電力を算出する負担電力算出部2aと、エンジン発電機10に送信する指令信号を作成し送信する指令信号送信部2bとを有している。
(負担電力算出部2aの説明)
負担電力算出部2aは、前記入力情報に基づいて、エンジン発電機10および蓄電装置40から直流母線Laに対して供給しなければならない全電力を算出する機能を有している。つまり、エンジン発電機10および蓄電装置40から直流母線Laに供給すべき直流電力(以下、要求電力という)を算出する機能を有している。要求電力は、具体的には、主装置MPの各モータの作動に必要な電力を合わせた電力(主装置要求電力)と、クレーン用ハイブリッ電源装置1(アシスト要求電力)および補助装置SPの作動に必要な電力(補助装置要求電力)とを合わせた電力である。
また、負担電力算出部2aは、主装置MPが発電している場合には、主装置MPから直流母線Laに供給されている直流電力(以下、外部電力という)、言い換えれば、クレーン用ハイブリッ電源装置1に入力されている電力を算出する機能も有している。
さらに、負担電力算出部2aは、要求電力と、蓄電装置40の蓄電器41の充電率等に基づいて、エンジン発電機10および蓄電装置40がそれぞれ負担する電力の割合を決定する機能を有している。しかも、この負担割合に関する情報を含む電力指令信号を、エンジン発電機10が負担する電力(エンジン負担電力)の情報を含む電力指令信号については指令信号送信部2bに、また、蓄電装置40が負担する電力(蓄電器負担電力)の情報を含む電力指令信号については蓄電制御部43に、それぞれ発信する機能も有している。
なお、各装置が負担する電力の割合は適宜設定すればよいが、例えば、主装置MPが通常運転状態であれば、要求電力のうち、エンジン発電機10、および、蓄電装置40がともに50%ずつ負担するように指示することができる。また、蓄電器41の充電率が高い状態であれば、蓄電器41の負担割合を大きくして、エンジン発電機10の負担を小さくしたりすることができる。この場合には、エンジン発電機10の負担が小さくなるのでエンジン発電機10に省エネルギ運転をさせることができる。逆に、蓄電器41の充電率が低い状態であれば、蓄電器41の負担割合を小さくして、蓄電装置40の充電率の低下を抑制するように作動させることができる。このように、負担電力算出部2aは、外部負荷からの要求電力と前記蓄電装置40の充電電力とに基づきエンジン負担電力を算出する。
そして、負担電力算出部2aは、要求電力の急激な増加が生じることを検出した場合には、将来要求される最大電力(予測最大電力)がどの程度になるか、また、予測最大電力が要求されるタイミングはいつか、について算出する機能も有している。
なお、要求電力が急激に増加する場合とは、クレーンであれば巻上動作を開始する場合等が該当する。また、要求電力の急激な増加が生じることを検出する方法はとくに限定されないが、例えば、クレーンの巻上動作の場合であれば、巻上機を作動させるレバー等がオペレータによってどのように操作されているかを検出することよって検出することができるし、クレーンが巻上動作を開始するときに特徴的に発生する電力の増加率からでも検出することもできる。
予測最大電力は、例えば、クレーンであれば吊り上げる荷物のデータ等を事前に入力しておくことによって、この荷物の重量と電力の増加率に基づいて算出することもできるし、クレーンによって荷物を吊り上げる試験を事前に行っておきそのデータに基づいて推測するようにしてもよく、とくに限定されない。
(指令信号送信部2bの説明)
指令信号送信部2bは、前述した負担電力算出部2aの算出したエンジン負担電力に基づいて、エンジン発電機10に対して運転状態を指示する信号を生成し送信する機能を有している。運転状態を指示する信号とは、エンジン発電機10が発生するトルクを指示するトルク指令信号や、エンジン発電機10の回転数を指示する回転数指令信号等である。
この指令信号送信部2bは、トルク指令信号および回転数指令信号を生成するために、エンジン負担電力に対し、燃費の良い状態で発電し得る出力トルクおよび回転数を算出する機能を有している。この機能が出力トルクおよび回転数を算出する方法はとくに限定されないが、例えば、電力と、この電力を最も燃費の良い状態で発電できるエンジン発電機10の出力トルクとの関係を示したマップ、および、エンジン発電機10の出力トルクと、各出力トルクを最も燃費の良い状態で出力できるエンジン回転数や燃料供給量(ディーゼルエンジンであれば燃料噴射量)との関係を示したマップ、とに基づいて、出力トルクおよび回転数を算出する方法などを挙げることができる。
上記のごときエンジン発電機10の出力トルクおよび回転数の算出に使用することができるマップの一例を図7に示す。
図7はエンジン発電機10の特性図であり、横軸をエンジン回転数、縦軸をエンジントルク(左軸)およびエンジン出力(右軸)としたグラフであり、等出力線P1〜P8を点線で、等燃費線α1〜α5を実線で、示したものである。さらに、等出力線はP1からP8に行くにしたがい出力が大きくなり、等燃費線においてはα5からα1に行くにしたがい燃費が良くなる。また、太い実線は、エンジンの出力し得る能力を示す最大トルク線を示している。
このマップを使用すれば、エンジン負担電力から、最も燃費の良い状態で発電できるエンジントルクおよびエンジン回転数を求めることができる。つまり、要求されるエンジン負担電力がP3の場合であれば、エンジン回転数によって燃費は、α1以下からα5以上まで変化する。すると、エンジントルクとエンジン回転数の交点が、α1で囲まれた領域内に位置するようにエンジン回転数を選択すれば(例えば、エンジントルクτ2とエンジン回転数N2、t1の状態)、燃費の良い状態で発電できる。とくに、この領域内でも、最も燃費の良くなる領域にエンジントルクとエンジン回転数の交点が位置するように両者を選択すれば、最も燃費の良い状態でする発電することができる。
この制御装置2には各装置からの情報が入力されており、制御装置2はこの情報に基づいて、エンジン発電機10および蓄電装置40に指令信号を送信して両装置の作動を制御している。
また、指令信号送信部2bは、通常運転では通常運転モードでの制御を行い、要求電力が急激に増加した場合には、加速モードでの制御を行う機能を有している。
通常運転モードとは、エンジン負担電力に基づいて、燃費が良い状態で発電し得る出力トルク及び回転数でエンジン発電機10を制御する制御モードである。
加速モードとは、主装置MPの要求電力が急激に増加した場合において、予測最大電力となるタイミング(予測タイミング)となる前に、エンジン発電機10の回転数を、エンジン発電機10がエンジン負担電力を最も効率よく発電できる回転数(目標回転数)に到達させる制御が行われる制御モードである。
また、加速モードにおいて上記のごとき制御を行うために、指令信号送信部2bは、回転数の時間変動データを作成し、この回転数の時間変動データに基づいて回転数指令信号を生成し送信する機能を有している。回転数の時間変動データは、予測タイミングまでに、現在の回転数から目標回転数までエンジン発電機10の回転数を上昇させるために使用されるデータであり、例えば、加速モードにおいて、エンジン発電機10の回転数を時間変動させる割合を規定したデータや、所定の時間間隔ごとに回転数が指定されたデータなどであるが、特に限定されない。
回転数の時間変動データを作成する方法はとくに限定されず、例えば、現在から予測タイミングまでの期間、現在の回転数と目標回転数との回転数差等に基づいて、指令信号送信部2bに記憶されている複数の回転数の時間変動データから、適切なデータを選択する方法を採用することができる。また、現在から予測タイミングまでの期間、現在の回転数、目標回転数等に基づいて、ランプ関数を利用して回転数の時間変動データを作成する方法を採用することもできる。
なお、目標回転数は、予測最大電力の値にかかわらず、エンジン発電機10の定格出力を発生させる回転数としてもよい。この場合、実際の最大電力が予測最大電力を上回った場合や、予測最大電力を算出した時点からさらに負荷が急増した場合でも、エンジン発電機10から供給する電力が不足することを防ぐことができる。そして、負担電力算出部2aが予測タイミングを算出する機能を有していない場合には、目標回転数をエンジン発電機10の定格出力を発生させる回転数とすれば、電力不足が生じることを防ぐことができる。
また、予測タイミングを算出する方法はとくに限定されないが、例えば、クレーンであれば吊り上げる荷物のデータ等を事前に入力しておくことによって、この荷物の重量と電力の増加率に基づいて算出することもできるし、クレーンによって荷物を吊り上げる試験を事前に行っておきそのデータに基づいて推測するようにしてもよく、とくに限定されない。
さらに、負担電力算出部2aが予測タイミングを算出する機能を有していない場合には、要求電力の急激な増加を検出した後、予め定めた期間経過後に目標回転数に到達するように回転数指令信号を形成してもよい。例えば、ターボチャージャー等の過給機構を備えたディーゼルエンジンの場合には、加速開始から過給機構の作動までのタイムラグ(例えば3〜4秒程度)を考慮して、0.5秒程度の期間で目標回転数に到達するように回転数指令信号を形成してもよい。
さらに、指令信号送信部2bは、主装置MPが回生運転を行っている場合には、回生モードでの制御を行う機能を有している。
回生モードとは、エンジン発電機10のエンジン20をエネルギ消費手段として機能させる制御モードである。
回生モードにおいて上記のごとき制御を行うために、制御装置2の指令信号送信部2bは、エンジン20の回転数を指示するエンジン回転数指令信号と、発電部30の発電機31の回転数を指示する発電機回転数指令信号とを作成する機能を有している。
この機能は、例えば、エンジン回転数指令信号として、エンジン20がアイドリング速度で作動するように回転数指令信号(エンジン回転数指令信号)を作成し、発電機回転数指令信号として、エンジン20のアイドリング速度+αの速度で発電機31を作動させるように回転数指令信号(発電機回転数指令信号)を作成する機能である。これにより、エンジンが負荷となるので、エネルギ消費手段として機能する。
なお、エンジン回転数指令信号および発電機回転数指令信号は、上記の回転数に限られず、エンジン回転数指令信号が発電機回転数指令信号よりもわずかに低い回転数であればよい。
(クレーン用ハイブリッ電源装置1の動作)
つぎに、以上のごとき構成を有する本実施形態のクレーン用ハイブリッ電源装置1の作動を説明する。
(1)クレーン用ハイブリッ電源装置1の起動動作
クレーン用ハイブリッ電源装置1の起動を図2に基づいて説明する。
1)エンジン20の起動
本実施形態のクレーン用ハイブリッ電源装置1の起動時には起動スイッチ等によって起動される(ステップS1)。そして、エンジン発電機10のエンジン20が起動される(ステップS2)。なお、起動時には、制御装置2は作動しないように制御されている。
起動されたエンジン20は、エンジン制御部22によってエンジン本体21がアイドリング運転状態となるように制御される。つまり、エンジン本体21の回転数がアイドリング速度となるまで上昇される。
2)補助装置SPの起動
エンジン発電機10のエンジン20が起動されると、発電部30の発電機31によって発電が開始される。そして、発電機31から供給される電力によって、補助装置SPが運転できる最低運転電圧を直流母線Laの電圧が維持できるようになると、補助装置SP内のインバータが起動される(ステップS3)。
なお、発電機制御部32がインバータであれば、発電機31が発電した電力はインバータのダイオードブリッヂにより3相全波整流されて、直流母線Laに接続されているインバータのコンデンサを充電することにも使用される。
また、発電部30の発電機31が、界磁巻き線を有する一般的な発電機である場合には、直流母線Laに供給される電流の急激な増加により生じる問題を防ぐために、発電機制御部32に初期充電電流抑制機能を設けることが必要である。一方、発電機31としてIPMモータを使用すれば、起動時において発電機31の発電電圧はエンジン本体21の回転数の上昇に伴って上昇するので、初期充電電流抑制機能を設けなくてもよいという利点がある。
3)制御装置2の起動
補助装置SP内のインバータが起動すると、クレーン用ハイブリッ電源装置1の制御に必要な電源が確保されるので、クレーン用ハイブリッ電源装置1の制御装置2が起動され、クレーン用ハイブリッ電源装置1が作動する(ステップS4)。
そして、起動された制御装置2によって、エンジン発電機10および蓄電装置40が制御されて、エンジン発電機10と蓄電装置40の両方から供給される電力によって、直流母線Laが所定の運転電圧を維持するように調整される。すると、クレーン用ハイブリッ電源装置1の起動が終了し、主装置MPを作動することができる状態となる。つまり、設備が稼動可能な状態となるのである。
ここで、直流母線Laの運転電圧は、エンジン発電機10から直流母線Laに供給する電力(電流量)が制御できなくなることを防ぐために、発電機31が通常の発電を行うことにより外部に供給できる電圧の最高値よりも高く設定されている。つまり、発電機31の通常の発電では、直流母線Laに対して電力を供給できないようになっている。しかし、本実施形態のクレーン用ハイブリッ電源装置1では、発電機制御部32が発電機31を回生制動状態に制御することで、発電機31から直流母線Laに対して電力を供給することができる。
なお、補助装置SP内のインバータ以外に、他の電源(例えば、商用電源等)等のクレーン用ハイブリッ電源装置1の制御に必要な電力を供給することができる電力供給手段を設ければ、補助装置SP内のインバータを起動する前にクレーン用ハイブリッ電源装置1を起動することも可能となる。
(2)設備稼働時
本実施形態のクレーン用ハイブリッ電源装置1では、設備稼働時では、主装置MPの作動状況、つまり、主装置MPが要求する電力に応じて作動状態が変化する。具体的には、
1)待機状態
2)通常運転状態
3)主装置MPの要求電力が急激に増加した場合
4)主装置MPが回生運転している場合
の各状態について、それぞれ適切な状態で作動するように構成されているので、各状態における本実施形態のクレーン用ハイブリッ電源装置1の作動を説明する。
なお、制御装置2は、回転数指令信号をエンジン制御部22に送信する場合には、トルク指令信号は発電機制御部32に送信し、逆に、トルク指令信号をエンジン制御部22に送信する場合には、回転数指令信号は発電機制御部32に送信するように構成されている。
そこで、まず、制御装置2から、回転数指令信号がエンジン制御部22に送信され、トルク指令信号が発電機制御部32に送信される場合を説明する(第1実施形態)。
1)待機状態
主装置MPのモータがいずれも作動していない状態(待機状態)では、クレーン用ハイブリッド電源装置1および補助装置SPの作動にのみ電力が消費される。この場合、これらの作動に必要な電力と、直流母線Laを運転電圧に維持することができる程度の電力が直流母線Laに供給される状態となる。この状態では、クレーン用ハイブリッド電源装置1および補助装置SPの作動に必要な電力をエンジン発電機10がほとんど負担するように制御される。
一方、待機状態において、蓄電装置40は、蓄電器41を充放電させて直流母線Laの電圧が運転電圧に維持されるように作動するから、充放電に伴って蓄電器41の充電率は上下する。
このため、蓄電装置40の充電率が一定の値以下になると、制御装置2は、エンジン発電機10に対して、クレーン用ハイブリッド電源装置1等の作動に必要な電力に加えて、蓄電装置40を充電可能な程度の電力も直流母線Laに供給できる状態となるように制御される。つまり、制御装置2から、クレーン用ハイブリッド電源装置1等の作動に必要な電力と蓄電装置40の充電に必要な電力を合わせた電力を、最も効率よく発電できる回転数でエンジン発電機10が作動するように回転数指令信号およびトルク指令信号が送信され、エンジン発電機10が作動する。そして、蓄電器41の充電率が所定の充電率以上に回復すると、制御装置2によって、エンジン発電機10が元の運転状態に復帰される。
逆に、充電率が上昇した場合は、エンジン発電機10から直流母線Laに供給する電力がハイブリッド電源装置1等の作動に必要な電力よりも少なくなるようにエンジン発電機10が制御されるので、蓄電器41では放電が生じ、所定の充電率に回復する。
つまり、制御装置2は、蓄電器41の充電率を所定の範囲内に維持することができるように制御しており、かかる蓄電器41の充電率を調整するために行われるエンジン発電機10の運転状態の変更は、蓄電器41の充電率に応じて適宜行われる。
また、主装置MPが作動していない(待機状態)では、必要とされる電力が少ないので、エンジン発電機10が、全ての運転状態の中で、最も発電効率の高い運転状態、つまり、最も燃費が良い状態で作動するように制御することが好ましい。すると、エンジン発電機10の燃料消費を抑えることができるので、クレーン用ハイブリッ電源装置1の運転効率を高く維持することができる。
2)通常運転状態(ステップS5)
つぎに、クレーン用ハイブリッ電源装置1の通常運転時の作動を、図2に基づいて説明する。
なお、説明を分かりやすくするために、図9の門形クレーンCにおける通常運転時における作動と対比しながら説明する。
通常運転状態は、要求電力の電圧は変動するものの、その変動割合、つまり、要求電圧の増加割合や減少割合が小さい状態である。例えば、図9の門形クレーンC等では、巻上用モータMMは作動していないが、走行用モータRMや横行用モータTMが駆動している場合が相当する。
通常運転状態では、まず、制御装置2によって(例えば、負担電力算出部2aによって)、主装置MPの各モータが備えているインバータ(具体的には、走行用インバータ、横行用インバータ、補機用インバータ、巻上用インバータ)が必要とする電力が算出され、主装置MPの要求電力が算出される(ステップS6)。
すると、制御装置2は、要求電力の増加割合が予め定められた閾値を超えたかどうかを判断し、閾値を超えていない場合は、制御装置2は主装置MPが通常運転であると判断し(ステップS7)、通常運転状態を維持するように制御が行われる(ステップS8)。
なお、走行用モータRMや横行用モータTMの駆動においては、駆動する際に影響する機器の慣性力が小さいため、通常、要求電力の増加の割合が予め定められた閾値を超えることは無い。
通常運転状態と判断すると、制御装置2の負担電力算出部2aによってエンジン発電機10および蓄電装置40が負担すべき電力が算出される。すると、指令信号送信部2bでは、エンジン負担電力に基づいて、このエンジン負担電力に対し、燃費の良い状態で発電し得る出力トルクおよび回転数が算出される。そして、算出された出力トルクおよび回転数の情報を含む回転数指令信号およびトルク指令信号が作成され、それぞれエンジン制御部22および発電機制御部32に送信される。同時に、負担電力算出部2aからは、蓄電制御部43に対して、蓄電器負担電力を含む電力指令信号が蓄電制御部43に発信される。
エンジン20のエンジン制御部22は、回転数指令信号に含まれている回転数指令に基づいて、エンジン20がその回転数を維持するようにエンジン本体21を制御する。具体的には、ガバナー等の調速機(以下、単にガバナーという)によって、指示された回転数を維持するようにエンジン本体21が制御される。
一方、発電部30の発電機制御部32には、トルク指令信号で指示されるトルクが発電機31に発生するように制御される。つまり、前述したエンジン回転数において、発電機31がエンジン負担電力を発生できるように、発電機31のトルクが制御される。すると、エンジン20の回転数と発電機31のトルクに対応した電力が発電され、指示されたエンジン負担電力に相当する電力が直流母線Laに供給される。
また、蓄電装置40からは、電力指令に基づいて、蓄電装置40が負担すべき電力が直流母線Laに供給される。
よって、所定の要求電力を満たすように、エンジン発電機10と蓄電装置40とから所定の電力を直流母線Laに供給することができるから、直流母線Laから主装置MPに対して、言い換えれば、クレーン用ハイブリッ電源装置1から主装置MPに対して必要な電力を供給することができるのである。
しかも、エンジン発電機10のエンジン本体21が、エンジン負担電力に対し、最も効率のよく発電できる運転状態となるように制御されるので、エンジン発電機10の燃費を向上させることができる。
そして、制御装置2の負担電力算出部2aは、要求電力を常時監視しており、要求電力の変動に伴ってエンジン発電機10および蓄電装置40が負担する電力を変化させる。すると、指令信号送信部2bは、エンジン発電機10に送信する指令信号を変化させるから、要求電力が変化しても、エンジン発電機10の運転状態を最適な運転状態となるように制御することができるのである。
ここで、図7に基づいて、通常運転における、エンジン回転数とエンジントルクの変化が燃費に与える影響を説明する。
例えば、図7のエンジン特性図を用いて、指令信号送信部2bがエンジントルクおよびエンジン回転数を算出していたとする。そして、エンジン発電機10が、エンジントルクτ1、エンジン回転数N1の状態、つまり、要求電力がP1以下の状態で運転されていたとする(図7のt0)。
この状態から、主装置MPが要求する電力が増加し、負担電力算出部2aがエンジン負担電力としてP3を算出し、電力指令信号を発信したとする。電力指令信号を受けた指令信号送信部2bは、図7のエンジン特性図から、エンジン負担電力P3を出力でき、しかも、燃費の最も良くなる領域(α1の内側)に交点を有するエンジン回転数(N2、目標回転数)とエンジントルク(τ2)を算出する(t1)。
そして、指令信号送信部2bからの指示によって、エンジン回転数がN2、エンジントルクがτ2となるようにエンジン発電機10の作動が変更されれば、所定のタイミングにまでに、エンジン発電機10が、燃費が良い状態でエンジン負担電力P3を出力できる状態にすることができる。
2)主装置MPの要求電力が急激に増加した場合
クレーン用ハイブリッ電源装置1の装置MPの要求電力が急激に増加した場合を、図3に基づいて説明する。
なお、説明を分かりやすくするために、図9の門形クレーンCにおける通常運転時における作動と対比しながら説明する。
通常運転状態または待機状態から、巻上用モータMMが駆動されると、制御装置2によって(例えば、負担電力算出部2aによって)、巻上用インバータより要求される電力が算出され、通常運転状態と同様に、主装置MPの要求電力が算出され、この要求電力の増加の割合が予め定められた閾値を超えたかどうかが判断される。もちろん、他インバータより要求される電力も算出される。
ここで、巻上用モータMMの巻き上げの加速は、走行や横行とは異なり、予め定められた時間内に行う必要があるため、制御装置2は、大きな電力を巻上用インバータへ供給する必要がある。しかも、巻上用モータMMは、巻上ロープ用のフライホイル等を回転駆動させるため、駆動する際に影響する機器の慣性力が大きい。よって、巻上用モータMMが駆動されると、通常、要求電力の増加割合は予め定められた閾値を超えることになる。
要求電力の増加割合が予め定められた閾値を越えるような場合、つまり、要求電力が急激に増加した場合に、エンジン発電機10を、要求電力の急増に追従するように急加速させると、エンジン発電機10の燃焼状態が悪化し、黒煙の発生や燃費の悪化が生じ、最悪の場合にはエンジンが停止してシステムダウンするという問題が生じる。
このため、本実施形態のクレーン用ハイブリッ電源装置1では、主装置MPの要求電力の増加割合が所定の値を超えたことを制御装置2が検出した場合、エンジン発電機10の燃焼状態の悪化を防ぐために、以下の加速モードで作動するように構成されている(図3参照)。
まず、主装置MPの要求電力の増加割合が所定の値を超えたことを制御装置2が検出すると、加速モードでの制御が開始され(ステップS20)、負担電力算出部2aによって予測最大電力および予測最大電力となるタイミングが算出され(ステップS21)、エンジン負担電力が算出される。算出されたエンジン負担電力が指令信号送信部2bに送信されると、指令信号送信部2bによって、予測最大電力を最も効率よく出力できるエンジン20の回転数(目標回転数)が算出される(ステップS22)。
目標回転数が算出されると、指令信号送信部2bによって回転数の時間変動データが作成され(ステップS23)、回転数の時間変動データに基づいて、回転数指令信号が順次エンジン発電機10のエンジン制御部22に送信される(ステップS24)。
一方、加速モードでは、通常運転時においてトルク指令信号が送信されていた発電機制御部32に対しても、エンジン制御部22に送信される回転数指令信号と同じ情報を有する回転数指令信号が指令信号送信部2bから送信される(ステップS24)。
このように、同じ回転数の情報を含んだ回転数指令信号が、エンジン制御部22と発電機制御部32の両方に送信されると、エンジン20の回転数の上昇を発電機31がエンジンアシストするように作動するので、エンジン20の燃焼状態の悪化を防ぎつつ、エンジン20の加速期間を短くすることができる。
エンジン20の回転数の上昇を発電機31がエンジンアシストすることによってエンジン20の燃焼状態の悪化を防ぐことができる理由は、以下のとおりである。
まず、エンジン20の回転数を現在の回転数から目標回転数まで加速するときには、ガバナーは、燃焼状態の悪化が生じない程度に燃料の供給量を増加させるように作動する。
しかし、要求される回転数上昇速度が速い場合、上記程度に燃料の供給量を増加させてもエンジン20の出力応答性が遅いため、エンジン20の回転数上昇が要求回転数に対して追随できない。より具体的には、エンジン20への噴射量が大きくなっても、供給される空気が不足するため、エンジン20が加速することができない。
このため、エンジン20の回転数は十分に加速されずに加速遅れが生じる。すると、ガバナーは、回転数を上昇させるためにさらに大量の燃料を供給しようとするが、この場合、燃料が過剰に供給された状態となり、燃焼状態の悪化が生じてしまう。このように、エンジン回転数も過給率も上昇していない状態では、エンジン20は高出力を発生させることができない(過渡現象)ため、エンジン負担が大きすぎると、エンジン20が停止する恐れがある。
ここで、発電機31に対してエンジン20と同じ条件で回転数を上昇させるように指示しておけば、発電機31も要求される回転数上昇速度で加速しようとする。このため、エンジン20の加速遅れがあっても発電機31の加速も遅くなると、発電機制御部32は発電機31が指示された回転数上昇速度で加速するように、発電機31の主軸に加えるトルクを増加させる。つまり、発電機31は直流母線Laから供給される直流電力によってエンジン20を駆動する駆動手段として作動される。このとき加えられるトルクは、ガバナーによって燃焼状態の悪化が生じない程度に燃料の供給量が増加されたときにエンジン20が発生するトルクと、エンジン20の加速に本来必要であったトルクとの差に相当する。つまり、エンジン20の回転数の上昇に不足するトルクを発電機31がエンジンアシストした状態となるのである。
そして、発電機31がエンジンアシストすることによって、ガバナーによってエンジン20に供給された燃料は燃焼状態の悪化が生じない程度の量に抑えられる。
したがって、エンジン20の燃焼状態の悪化を防ぎつつ、エンジン20の加速期間を短くすることができるのである。
なお、上述した発電機31によるエンジンアシストには、エンジン本体21(エンジン用フライホイルも含む)に動力(トルク)を供給して加速をアシストする場合と、発電機31が自分で加速することによってエンジン本体21の負担を軽減して加速をアシストする場合が含まれる。
指令信号送信部2bは、エンジン回転数が目標回転数に達したか否かを検出しており、エンジン回転数が目標回転数に達するまでは、加速モードでの運転を継続させる(ステップS25)。
そして、エンジン20が目標回転数に到達すると、指令信号送信部2bによって、要求電力に対応したエンジン負担電力を最も効率のよく発電できる運転状態でエンジン20が作動するように回転数指令信号およびトルク指令信号を作成するようになる。つまり、制御が通常運転状態に復帰するのである(ステップS26)。
加速モードでは以上のように制御されるので、予測最大電力が要求される前に、エンジン発電機10が予測最大電力におけるエンジン負担電力を供給できる回転数に到達させることができれば、予測最大電力が要求されたときに、エンジン負担電力を確実に直流母線Laに供給することができる。
なお、加速モードで制御が行われている間には、直流母線Laを運転電圧に維持するように、蓄電器41から電力が供給される。つまり、要求電力だけでなく、発電機31が作動するために必要な電力を含めた全ての電力が蓄電器41から供給されて、直流母線Laは運転電圧に維持されるのである。
また、上記では、加速モードで制御が行われている際に、発電機制御部32に対しても回転数指令信号が指令信号送信部2bから送信される場合を説明した。しかし、既知の値であるエンジン発電機10が備えている慣性力と、予め定められた立ち上がり時間(5秒)と、目標回転数と、によって、必要なトルクを算出し、算出されたトルクを、トルク指令信号として発電機制御部32へ入力するようにしてもよく(図4のステップS24a)、この方法によって発電機31がエンジン20をエンジンアシストするようにしてもよい(図4)。
ここで、図8に基づいて、図9の門形クレーンCにおいて加速モードを実行する場合の一例を説明する。
なお、図8には、巻上用モータMMの回転数の時間変化(図8(A))、巻上用モータMMを駆動した際の要求電力の時間変化(図8(B))、エンジン回転数の時間変化(図8(C))、エンジン発電機10の発電電力の時間変化(図8(D))、蓄電装置40からの放電電力の時間変化(図8(E))、及び、エンジン20のみの出力(実線)と、エンジン20のみの出力(PE)に発電機30からのアシスト出力を追加した合計出力(一点鎖線)の時間変化(図8(F))を示している。
巻上用モータMMにより巻上げを行う場合には、その回転数は、通常、クレーンの仕様上、予め定められた時間(t2:例えば5秒)までに、加速を完了し、等速運転へ切り替える必要がある(図8(A))。このため、予め定められた時間(t2:例えば5秒)に加速を終えるように、要求電力が算出される(図8(B))。
しかしながら、エンジン20は、要求電力の増加に対して応答性が良くないため、要求電力が急激に増加した場合には、エンジン20の回転数を要求電力の増加に対応するように急激に増加させることができない(図8(C)中の破線)。
したがって、エンジン20の回転数がNeになるまで、時刻t0〜t3の時間を必要とする。このように、エンジン回転数(過給機を有するエンジンではエンジン回転数と過給率)が上昇していない状態では、エンジン発電機10の出力を十分に上昇させることができない(図8(F)中の時刻t0以降の破線)。
一方、エンジン回転数(過給機を有するエンジンではエンジン回転数と過給率)が上昇し、エンジン出力がPeまで得られるようになると、エンジン20のみの出力によって、要求電力の増加に対応するようにエンジン20の回転数を加速することが可能となる。
このため、エンジン20のみの出力によって要求電力の増加に対応するようにエンジン20の加速ができる回転数Neが得られるまで(時刻t1まで)、発電機31はエンジンをアシストするよう作動し、エンジン20の加速をアシストする。
つまり、負担電力算出部2aにより算出された要求電力の増加の割合が、予め定められた閾値を超えたと判断されると、発電機31は発電運転から電動運転へ切り換られる。そして、発電機31は蓄電装置40からの放電電力により、エンジン20をアシストする運転を行う(図8(D)の時刻t0〜t1における網掛け部分)。
時刻t0〜t1においては、蓄電装置40からの放電電力は、発電機31によるエンジンアシスト運転と巻上用モータMMによる巻上げ運転に消費される。図8(D)の時刻t0〜t1において、マイナス部分(網掛け部分)が発電機31によって消費される放電電力であり、プラス部分(白部分)が巻上用モータMMによって消費される放電電力を示す。
発電機31がエンジンエンジンアシスト運転を行うことで、発電機31はエンジン20に対し、エンジン回転数の上昇に不足しているトルク分をアシストする。これにより、エンジン20の回転数は急激に上昇する(図8(C)中時刻t0以降の実線)。エンジン回転数が急激に上昇している間、エンジン20へは燃料が供給は続けられている。この間、エンジン回転数の上昇とエンジンへの燃料の供給により、エンジンによる出力(図8(F)中実線部分)はエンジンアシストが無い場合(図8(F)中破線)よりも、迅速に大きくできる。それ以降も、発電機によるエンジンアシスト運転は時刻t1まで続けられる(図8(F)中一点鎖線部分)。
したがって、エンジン回転数は高い応答性で立ち上げられるので、時刻t1までの間に、エンジン20は、自己の出力のみで出力を増大させることが可能となるエンジン回転数Neに到達することができる(図8(F):時刻t1)。
つまり、時刻t1において、エンジン20は、エンジン20出力を十分に上昇させることができるエンジン回転数と過給率が得られた状態となる。
そして、時刻t1において、エンジン20はエンジン20のみの出力で出力を増大できるエンジン回転数Neに到達しているので、発電機31はエンジンアシスト運転から発電運転へ切り換られる(図8(D)中時刻t1)。これと同時に、発電機31がエンジンアシストを行うために消費されていた電力はなくなるため、それに対応する分の蓄電装置40からの放電電力も減少する。
したがって、蓄電装置40からの放電電力は、一時的に低下する(図8(E)中時刻t1)。
時刻t1以降も、巻上用モータMMは加速を続けるので、要求電力は増大し続ける。したがって、蓄電装置40からの放電電力は上昇し続ける。
一方、エンジン20は回転数Neに到達しているので、エンジン20はエンジン20のみの出力でエンジン出力を急激に上昇させることができる(図8(F)中時刻t1〜t2)。
そして、時刻t2において、エンジン回転数がNlに到達すると、クレーン用ハイブリッ電源装置1は、上述の通常運転へ切り替えられる。
このように、クレーン用ハイブリッ電源装置1は、エンジン20がその出力を十分に上昇させることができるエンジン回転数と過給率が得られた状態になるまでの間、発電機31の出力を用いてエンジンアシスト運転を行う。これにより、要求電力の増加に対して応答性の遅れがあるにもかかわらず、発電機31のエンジンアシスト運転によって、短時間でエンジン回転数をNeまで上昇させることができる。
よって、燃焼状態の悪化を生じることなく、エンジン回転数を増加させることができる。そして、巻上用モータMMは、予め定められた時間(t2)までに加速を完了させることができる。これにより、通常のクレーン(例えば、図9の門型クレーンC等)では、約50秒以内で、巻上動作を完了させることが可能となる。
なお、エンジン20の回転数が目標回転数に到達する前に、通常運転モードに復帰するようにしてもよい。例えば、エンジン20の回転数が目標回転数マイナス数%の回転数になったときに、通常運転モードに復帰するようにしてもよい。
3)主装置MPが回生運転している場合(回生モード)
本実施形態のクレーン用ハイブリッ電源装置1が設けられている設備では、主装置MPにおいて回生発電が行われている場合、回生発電された電力は、まず、補助装置SPの作動に使用されて消費される。
しかし、回生発電された電力が補助装置SPの消費電力を超えている場合には、残った電力は、直流母線Laに供給されることになる。つまり、クレーン用ハイブリッ電源装置1に対して外部から電力が供給される状態となる。すると、クレーン用ハイブリッ電源装置1において、補助装置SPの作動のために直流母線Laに供給していた電力が余ってしまうことになる。
ここで、蓄電装置40の蓄電器41の充電率に余裕がある場合には、外部から供給される電力によって直流母線Laの電圧が高くなると、直流母線Laの電圧を運転電圧に保つように、蓄電装置40は充電器41を充電するが、充電する電力量が大きくなると、充電に起因する蓄電装置40の負荷が大きくなる。
とくに、図9の門形クレーンCに使用されるような巻上用モータMMでは、通常、回生運転時間が長い(約1分)ので、巻上用モータによって発生した回生電力を全て蓄電装置40に充電していると、蓄電装置が過充電状態となってしまう。しかも、従来、巻上用モータの回生運転中、エンジン20はアイドリング運転を続けていたため、エンジン20の燃費も悪くなっていた。
そこで、本実施形態のクレーン用ハイブリッ電源装置1では、回生発電された電力が補助装置SPの消費電力を超えている場合には、発電機31がエンジン20を駆動するように作動して回生発電された電力を消費するように制御している。そして、エンジン20を駆動しても消費できなかった電力(余剰電力)だけが蓄電装置40の蓄電器41に充電されるように制御している(図5参照)。
つまり、回生発電された電力が補助装置SPにおいて消費される電力を超えている場合において、本実施形態のクレーン用ハイブリッ電源装置1は、発電機31によってエンジン20を駆動することにより直流母線Laの電圧の上昇を抑えるように作動される。そして、エンジン20を駆動するだけでは直流母線Laの電圧の上昇を抑えることができない場合にのみ、蓄電装置40が余剰電力を充電して、直流母線Laの電圧を運転電圧に維持するように作動するのである。
すると、発電機31によってエンジン20が駆動されているので、エンジン発電機10のエンジン本体21に供給する燃料を減らすことができるし、余剰電力だけを蓄電装置40に供給するので、充放電に起因する蓄電装置40の負荷を少なくすることができる。
具体的には、外部から供給される電力(例えば、主装置MPにおいて回生発電された電力)が補助装置SPの作動に必要な電力を超えていることを検出すると、制御装置2の指令信号送信部2bは、エンジン回転数指令信号を作成し、このエンジン回転数指令信号をエンジン20のエンジン制御部22に送信する(ステップS32)。
同時に、制御装置2の指令信号送信部2bは、エンジン20のアイドリング速度+αの速度で発電機31を作動させるように発電機回転数指令信号を作成し、この発電機回転数指令信号を発電部30の発電機制御部32に送信する(ステップS31)。
すると、エンジン本体21の回転数指令が発電機31の回転数指令よりも低いので、発電機31がエンジン本体21の回転数を上昇させるように作動し、エンジンブレーキがかかった状態となるから、主装置MPにおいて回生発電された電力が消費されることになる。このように、発電機31がエンジン20を駆動するように作動して回生発電された電力を消費するように制御する。そして、エンジン20を駆動しても消費できなかった電力(余剰電力)が蓄電装置40に充電される(ステップS33、S34)。
よって、主装置MPが回生運転している場合において上記制御を行えば、エンジン発電機10のエンジン本体21に供給する燃料を減らすことができるし、充放電に起因する蓄電装置40の負荷を少なくすることができる。
そして、外部から供給された電力を抵抗などによって熱エネルギとして捨ててしまう場合と比べると、一部の電力はエンジン20の燃費の向上に寄与し、余剰電力は蓄電器41から直流母線Laに供給することにより再利用することができるので、外部から供給された電力を有効に利用することができる。
とくに、制御装置2に、回生発電された電力、つまり、外部から直流母線Laに供給される電力によってエンジン本体21をアイドリング速度+αの速度で駆動できるか否かを判断する機能を設けることが好ましい。
かかる機能を設け、エンジン本体21をアイドリング速度+αの速度で駆動できる電力が外部から供給されていると判断した場合には、制御装置2からエンジン20のエンジン制御部22に対して、燃料カット指令信号を送信するようにする。
すると、エンジン20が完全にモータリング状態で作動されることになるので、エンジン本体21に供給する燃料を完全にカットすることができ、大幅にエンジン発電機の燃費を向上させることができる。
(第2の実施形態)
つぎに、第2の実施形態として、制御装置2から、トルク指令信号がエンジン制御部22に送信され、回転数指令信号が発電機制御部32に送信される場合を説明する。
なお、1)待機状態、4)主装置MPが回生運転している場合、については、回転数指令信号がエンジン制御部22に送信され、トルク指令信号が発電機制御部32に送信される場合と同じであるので、2)通常運転状態と、3)主装置MPの要求電力が急激に増加した場合、とを説明する。
2)通常運転状態
つぎに、クレーン用ハイブリッ電源装置1の通常運転時の作動を説明する。
なお、説明を分かりやすくするために、図9の門形クレーンCにおける通常運転時における作動と対比しながら説明する。
通常運転状態は、要求電力の電圧は変動するものの、その変動割合、つまり、要求電圧の増加割合や減少割合が小さい状態である。例えば、図9の門形クレーンC等では、巻上用モータMMは作動していないが、走行用モータRMや横行用モータTMが駆動している場合、また、巻上用モータMMの作動による負荷が小さい場合が通常運転状態に相当する。
通常運転状態では、まず、制御装置2によって(例えば、負担電力算出部2aによって)、主装置MPの各モータが備えているインバータ(具体的には、走行用インバータ(、横行用インバータ、補機用インバータ、巻上用インバータ)が必要とする電力が算出され、主装置MPの要求電力が算出される。
すると、制御装置2は、要求電力の増加割合が予め定められた閾値を超えたかどうかを判断し、閾値を超えていない場合は、制御装置2は主装置MPが通常運転であると判断する。
なお、走行用モータRMや横行用モータTMの駆動においては、駆動する際に影響する機器の慣性力が小さいため、通常、要求電力の増加の割合が予め定められた閾値を超えることは無い。
通常運転状態と判断すると、制御装置2の負担電力算出部2aによって、エンジン発電機10および蓄電装置40が負担すべき電力が算出される。すると、指令信号送信部2bでは、エンジン負担電力に基づいて、このエンジン負担電力に対し、燃費の良い状態で発電し得る出力トルクおよび回転数を算出する。そして、算出された出力トルクおよび回転数の情報を含む回転数指令信号およびトルク指令信号が作成され、それぞれエンジン制御部22および発電機制御部32に送信される。
なお、エンジン20の出力トルクは、エンジン本体21に供給される燃料量に応じて変化するので、指令信号送信部2bは、トルク指令信号において、エンジン20が所定の出力トルクを発生させることができる、最低の燃料量を指示する。
エンジン20のエンジン制御部22では、トルク指令信号に含まれている燃料量の指示に基づいて、所定量の燃料がエンジン20に供給されるようにエンジン本体21を制御する。具体的には、ディーゼルエンジンであれば、燃料噴射量が制御される。
一方、発電部30の発電機制御部32には、回転数指令信号で指示される回転数で発電機31が回転するように制御される。つまり、エンジン本体21が前述した出力トルクを発生している状態において、発電機31がエンジン負担電力、言い換えれば、発電機31がエンジン負担電力を発生できるように、発電機31の回転数が制御される。すると、エンジン20の出力トルクと発電機31の回転数に対応した電力が発電され、指示されたエンジン負担電力に相当する電力が直流母線Laに供給される。
また、蓄電装置40からは、電力指令に基づいて、蓄電装置40が負担すべき電力が直流母線Laに供給される。
よって、所定の要求電力を満たすように、エンジン発電機10と蓄電装置40とから所定の電力を直流母線Laに供給することができるから、直流母線Laから主装置MPに対して、言い換えれば、クレーン用ハイブリッ電源装置1から主装置MPに対して必要な電力を供給することができるのである。
しかも、エンジン発電機10のエンジン本体21が、エンジン負担電力を最も効率のよく発電できる運転状態となるように制御されるので、エンジン発電機10の燃費を向上させることができる。
そして、制御装置2の負担電力算出部2aは、要求電力を常時監視しており、要求電力の変動に伴ってエンジン発電機10および蓄電装置40が負担する電力を変化させる。すると、指令信号送信部2bは、エンジン発電機10に送信する指令信号を変化させるから、要求電力が変化しても、エンジン発電機10の運転状態が最適な運転状態となるように制御することができるのである。
3)主装置MPの要求電力が急激に増加した場合(加速モード)
主装置MPの要求電力が増加した場合には、制御装置2は、通常、蓄電器負担電力とエンジン負担電力とを共に増加させて要求電力を満たすように制御する。すると、エンジン負担電力の増加に対応するためにエンジン発電機10は加速するように制御される。
ここで、要求電力が急激に増加した場合に、エンジン発電機10を、要求電力の急増に追従するように急加速させると、エンジン発電機10の燃焼状態が悪化し、黒煙の発生や燃費の悪化が生じ、最悪の場合にはエンジンが停止してシステムダウンするという問題が生じる。
そこで、主装置MPの要求電力の増加割合が所定の値を超えたことを制御装置2が検出した場合、エンジン発電機10の燃焼状態の悪化を防ぐために、以下の加速モードで作動するように構成されている(図6参照)。
まず、主装置MPの要求電力の増加割合が所定の値を超えたことを制御装置2が検出すると、加速モードでの制御が開始され(ステップS40)、負担電力算出部2aによって予測最大電力および予測最大電力となるタイミングが算出され(ステップS41)、エンジン負担電力が算出される。算出されたエンジン負担電力が指令信号送信部2bに送信されると、指令信号送信部2bによって、予測最大電力を最も効率よく出力できるエンジン20の回転数(目標回転数)が算出される(ステップS42)。
回転数の時間変動データが作成されると、回転数の時間変動データに基づいて、指令信号送信部2bによって回転数指令信号が順次発電機制御部32に送信される(ステップS43、ステップS44)。
一方、指令信号送信部2bによって、どの回転数においても燃焼状態の悪化が生じない状態(例えば、黒煙が発生しない状態等)で運転できる最大量の燃料供給量が算出される。そして、かかる燃料供給量の情報を含んだトルク指令信号が指令信号送信部2bによって作成され、エンジン制御部22に送信される(ステップS43、ステップS45)。
上記のごときトルク指令信号および回転数指令信号がエンジン制御部22および発電機制御部32に送信されると、発電機31の加速に伴って、エンジン20も加速する状況となる。このとき、エンジン20は、供給される燃料量では発電機31の回転数上昇に追従できる出力トルクを発生できないので、エンジン20の回転数の上昇に不足するトルクを発電機31がエンジンアシストした状態となる。つまり、発電機31は、直流母線Laから供給される直流電力によってエンジン20を駆動する駆動手段として作動される。
すると、エンジン20の燃焼状態の悪化が生じないような条件で運転させつつ、発電機31の発生するトルクによってエンジン20の回転数を上昇させることができる。よって、加速時においても、エンジン20の燃費の悪化や黒煙の発生を防ぐことができるし、エンジン20の加速期間を短くすることができるのである。
エンジン20の回転数の上昇を発電機31がエンジンアシストすることによってエンジン20の燃焼状態の悪化を防ぐことができる理由は、以下のとおりである。
まず、エンジン20の回転数を現在の回転数から目標回転数まで加速するときには、ガバナーは、燃焼状態の悪化が生じない程度に燃料の供給量を増加させるように作動する。
しかし、要求される回転数上昇速度が速い場合、上記程度に燃料の供給量を増加させてもエンジン20の出力応答性が遅いため、エンジン20の回転数上昇が要求回転数に対して追随できない。より具体的には、エンジン20への噴射量が大きくなっても、供給される空気が不足するため、エンジン20が加速することができない。
このため、エンジン20の回転数は十分に加速されずに加速遅れが生じる。すると、ガバナーは、回転数を上昇させるためにさらに大量の燃料を供給しようとするが、この場合、燃料が過剰に供給された状態となり、燃焼状態の悪化が生じてしまう。このように、エンジン回転数も過給率も上昇していない状態では、エンジン20は高出力を発生させることができない(過渡現象)ため、エンジン負担が大きすぎると、エンジン20が停止する恐れがある。
ここで、発電機31に対してエンジン20と同じ条件で回転数を上昇させるように指示しておけば、発電機31も要求される回転数上昇速度で加速しようとする。このため、エンジン20の加速遅れがあっても発電機31の加速も遅くなると、発電機制御部32は発電機31が指示された回転数上昇速度で加速するように、発電機31の主軸に加えるトルクを増加させる。つまり、発電機31は直流母線Laから供給される直流電力によってエンジン20を駆動する駆動手段として作動される。このとき加えられるトルクは、ガバナーによって燃焼状態の悪化が生じない程度に燃料の供給量が増加されたときにエンジン20が発生するトルクと、エンジン20の加速に本来必要であったトルクとの差に相当する。つまり、エンジン20の回転数の上昇に不足するトルクを発電機31がエンジンアシストした状態となるのである。
そして、発電機31がエンジンアシストすることによって、ガバナーによってエンジン20に供給された燃料は燃焼状態の悪化が生じない程度の量に抑えられる。
なお、上述した発電機31によるエンジンアシストには、エンジン本体21(エンジン用フライホイルも含む)に動力(トルク)を供給して加速をアシストする場合と、発電機31が自分で加速することによってエンジン本体21の負担を軽減して加速をアシストする場合が含まれる。
指令信号送信部2bは、エンジン回転数が目標回転数に達したか否かを検出しており、エンジン回転数が目標回転数に達するまでは、加速モードでの運転を継続させる(ステップS46)。
そして、エンジン20が目標回転数に到達すると、指令信号送信部2bによって、要求電力に対応したエンジン負担電力を最も効率よく発電できる運転状態でエンジン20が作動するように回転数指令信号およびトルク指令信号を作成するようになる。つまり、制御が通常運転状態に復帰するのである(ステップS47)。
以上のように加速モードでは制御されるので、予測最大電力が要求される前に、エンジン発電機10が予測最大電力におけるエンジン負担電力を供給できる回転数に到達させることができれば、予測最大電力が要求されたときに、エンジン負担電力を確実に直流母線Laに供給することができる。
なお、加速モードで制御が行われている間には、発電機31が作動するために必要な電力が蓄電装置40から供給されるように、蓄電制御部43には電力指令信号が送られる。 つまり、発電機31が作動するために必要な電力を含めて、要求電力を全て蓄電器41から供給するように蓄電制御部43に電力指令信号が送られる。
また、第2の実施形態においても、図9の門形クレーンCにおいて加速モードを実行する場合では、巻上用モータMMの速度の時間変化、巻上用モータMMを駆動した際の要求電力の時間変化、エンジン回転数の時間変化、発電機の発電電力の時間変化)、蓄電装置からの放電電力の時間変化、及び、エンジン出力の時間変化は図8と同様な時間変動となる。
また、エンジン20の回転数が目標回転数に到達する前に、通常運転モードに復帰するようにしてもよい。例えば、エンジン20の回転数が目標回転数マイナス数%の回転数になったときに、通常運転モードに復帰するようにしてもよい。
(緊急時の制御)
なお、制御装置2の故障等により指令信号が各装置に送信されない状態となった場合において、エンジン発電機10が自動的に定格速度で作動するようにしておけば、制御装置2にトラブルがあっても、主装置MPや補助装置SPなどへの電力供給を維持することができる。
なお、本発明は上記した実施形態に限定されることはなく、種々の変形が可能である。
本発明のクレーン用ハイブリッ電源装置は、ガントリークレーンやタイヤマウント式ジブクレーンなどのエンジン発電機を動力源として有するクレーン等のように、インバータの直流母線に電力を供給する設備の電源として適している。
1 クレーン用ハイブリッ電源装置
2 制御装置
2a 負担電力算出部
2b 指令信号送信部
10 エンジン発電機
20 エンジン
21 エンジン本体
22 エンジン制御部
30 発電部
31 発電機
32 発電機制御部
40 蓄電装置

Claims (16)

  1. エンジン発電機と、蓄電装置と、該蓄電装置および前記エンジン発電機を制御する制御装置と、を備えたクレーン用ハイブリッド電源装置であって、
    前記エンジン発電機は、エンジンと該エンジンの出力軸に接続された発電機を有する発電部とからなり、
    前記エンジン発電機は、
    前記要求電力の増加割合が所定の値を超えると、該エンジンが予め定められたエンジン回転数に到達するまで、前記発電機により前記エンジンをアシスト運転し、
    該エンジンが予め定められたエンジン回転数に到達すると、前記エンジンのアシスト運転から前記エンジンによる発電運転へ切り替わるものであり、
    前記制御装置は、
    外部負荷からの要求電力と前記蓄電装置の充電電力とに基づきエンジン負担電力を算出する負担電力算出部と、
    前記エンジン負担電力に対し、燃費の良い状態で発電し得る前記エンジン発電機の出力トルク及び回転数を算出し、前記エンジン発電機に対して前記出力トルクを指令するトルク指令信号と前記回転数を指令する回転数指令信号とを送信する指令信号送信部と、を備えている
    ことを特徴とするクレーン用ハイブリッド電源装置。
  2. 所定のエンジン発電機出力を得るために必要な出力トルク及び回転数の変化に応じて変化するエンジンの燃費を、所定の値ごとに複数の燃費領域として分けた場合、
    前記指令信号送信部は、
    複数の前記燃費領域の中から最も燃費が良い燃費領域に対応する出力トルク及び回転数を選択して、前記エンジン負担電力に対応したエンジン発電機出力を得るために必要な出力トルク及び回転数を算出し、
    前記算出した出力トルクを指令するトルク指令信号と、前記算出した回転数を指令する回転数指令信号と、を送信する機能を有している
    ことを特徴とする請求項1記載のクレーン用ハイブリッド電源装置。
  3. 前記外部負荷には主装置と補助装置とが含まれており、
    前記エンジンの回転数は、前記主装置からの主装置要求動力が有る状態のエンジンの回転数より、
    該主装置からの主装置要求動力が無い待機状態のエンジンの回転数の方が低い
    ことを特徴とする請求項1または2項に記載のクレーン用ハイブリッド電源装置。
  4. 前記エンジンは、エンジン本体及び該エンジン本体の作動を制御するエンジン制御部を備え、
    前記指令信号送信部は、
    前記エンジンの回転数を指示する情報を含んだ前記回転数指令信号を前記エンジン制御部に送信し、
    前記発電部の発電機に発生させるトルクを指示する情報を含んだ前記トルク指令信号を前記発電機制御部に送信する
    ことを特徴とする請求項1〜のいずれか一項に記載のクレーン用ハイブリッド電源装置。
  5. 前記指令信号送信部は、
    前記要求電力の増加割合が所定の値を超えると、前記要求電力が最大電力値となったときに前記エンジン発電機が要求される前記エンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように前記発電部の発電機を加速させる回転数の時間変動データを算出し、
    該回転数の時間変動データに基づいて生成される前記回転数指令信号を、前記エンジン制御部および前記発電機制御部に送信する
    ことを特徴とする請求項記載のクレーン用ハイブリッド電源装置。
  6. 前記エンジンは、エンジン本体及び該エンジン本体の作動を制御するエンジン制御部を備え、
    前記制御装置の指令信号送信部は、
    前記エンジンの出力トルクを指示する情報を含んだ前記トルク指令信号を前記エンジン制御部に送信し、
    前記発電部の発電機の回転数を指示する情報を含んだ前記回転数指令信号を前記発電機制御部に送信する
    ことを特徴とする請求項1〜のいずれか一項に記載のクレーン用ハイブリッド電源装置。
  7. 前記指令信号送信部は、
    前記要求電力の増加割合が所定の値を超えると、前記要求電力が最大電力値となったときに前記エンジン発電機が要求される前記エンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように前記発電部の発電機を加速させる回転数の時間変動データを算出して、該回転数の時間変動データに基づいて生成される前記回転数指令信号を、前記発電機制御部に送信し、
    前記発電部の発電機の加速期間において、燃焼状態が悪化しない程度で加速し得る出力トルクを算出し、該出力トルクに基づいて生成される前記トルク指令信号を前記エンジン制御部に送信する
    ことを特徴とする請求項記載のクレーン用ハイブリッド電源装置。
  8. 前記電源装置に対して外部から電力が供給される状態となると、
    前記制御装置は、
    前記エンジンが、前記発電部の発電機によってモータリング状態で駆動されるように制御する
    ことを特徴とする請求項1〜のいずれか一項に記載のクレーン用ハイブリッド電源装置。
  9. エンジンと該エンジンの出力軸に接続された発電機を有する発電部とからなるエンジン発電機と、蓄電装置と、を備えたクレーン用ハイブリッド電源装置の制御方法であって、
    前記エンジン発電機が、
    外部負荷からの要求電力の増加割合が所定の値を超えると、前記エンジンが予め定められたエンジン回転数に到達するまで、該エンジンを前記発電機によりアシスト運転し、
    該エンジンが予め定められたエンジン回転数に到達すると、前記エンジンのアシスト運転から前記エンジンによる発電運転へ切り替わるものであり、外部負荷からの要求電力と前記蓄電装置の充電電力とに基づきエンジン負担電力を算出し、
    エンジン負担電力に対し、燃費の良い状態で発電し得る前記エンジン発電機の出力トルクおよび回転数を算出し、
    前記エンジン発電機に対して前記出力トルクを指令するトルク指令信号と前記回転数を指令する回転数指令信号とを送信する
    ことを特徴とするクレーン用ハイブリッド電源装置の制御方法。
  10. 所定のエンジン発電機出力を得るために必要な出力トルク及び回転数の変化に応じて変化するエンジンの燃費を、所定の値ごとに複数の燃費領域として分けた場合、
    複数の前記燃費領域の中から最も燃費が良い燃費領域に対応する出力トルク及び回転数を選択して、前記エンジン負担電力に対応したエンジン発電機出力を得るために必要な出力トルク及び回転数を算出し、
    前記エンジン発電機に対して前記算出した出力トルクを指令するトルク指令信号と、前記算出した回転数を指令する回転数指令信号と、を送信する
    ことを特徴とする請求項記載のクレーン用ハイブリッド電源装置の制御方法。
  11. 前記外部の負荷には主装置と補助装置とが含まれており、
    前記エンジンの回転数は、
    前記主装置からの主装置要求電力がある状態のエンジンの回転数より、
    該主装置からの主装置要求電力が無い待機状態のエンジンの回転数の方が低くなるように制御されている
    ことを特徴とする請求項9または10のいずれか一項に記載のクレーン用ハイブリッド電源装置の制御方法。
  12. 前記エンジンの回転数と前記発電部の発電機に発生させるトルクとを制御して、前記エンジン発電機の発電する電力を調整する
    ことを特徴とする請求項9〜11のいずれか一項に記載のクレーン用ハイブリッド電源装置の制御方法。
  13. 前記要求電力の増加割合が所定の値を超えると、前記要求電力が最大電力値となったときに前記エンジン発電機が要求される前記エンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように、前記エンジンの調速機を機能させた状態で前記エンジンを加速し、
    該エンジンと同じ速度で前記発電部の発電機を加速する
    ことを特徴とする請求項1記載のクレーン用ハイブリッド電源装置の制御方法。
  14. 前記エンジンの出力トルクと前記発電部の発電機の回転数とを制御して、前記エンジン発電機の発電する電力を調整する
    ことを特徴とする請求項9〜11のいずれか一項に記載のクレーン用ハイブリッド電源装置の制御方法。
  15. 前記要求電力の増加割合が所定の値を超えると、
    燃焼状態が悪化しない程度の出力トルクを発生するように前記エンジンを制御し、
    前記要求電力が最大電力値となったときに前記エンジン発電機が要求されるエンジン負担電力を該エンジンが発生し得る回転数に、前記要求電力が前記最大電力値となる時間よりも早く到達するように、前記発電部の発電機を加速させる
    ことを特徴とする請求項1記載のクレーン用ハイブリッド電源装置の制御方法。
  16. 外部から電力が供給される状態となると、
    前記発電部の発電機によって前記エンジンをモータリング状態で駆動する
    ことを特徴とする請求項9〜15のいずれか一項に記載のクレーン用ハイブリッド電源装置の制御方法。
JP2011519565A 2009-06-16 2010-06-16 クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法 Active JP5580307B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011519565A JP5580307B2 (ja) 2009-06-16 2010-06-16 クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009143017 2009-06-16
JP2009143017 2009-06-16
PCT/JP2010/004016 WO2010146854A1 (ja) 2009-06-16 2010-06-16 クレーン用ハイブリット電源装置およびクレーン用ハイブリット電源装置の制御方法
JP2011519565A JP5580307B2 (ja) 2009-06-16 2010-06-16 クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法

Publications (2)

Publication Number Publication Date
JPWO2010146854A1 JPWO2010146854A1 (ja) 2012-11-29
JP5580307B2 true JP5580307B2 (ja) 2014-08-27

Family

ID=43356185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011519565A Active JP5580307B2 (ja) 2009-06-16 2010-06-16 クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法

Country Status (8)

Country Link
US (1) US8670886B2 (ja)
JP (1) JP5580307B2 (ja)
KR (1) KR101366468B1 (ja)
CN (1) CN102460949B (ja)
MY (1) MY154760A (ja)
SG (1) SG176817A1 (ja)
TW (1) TWI469911B (ja)
WO (1) WO2010146854A1 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261864B2 (en) * 2008-06-17 2012-09-11 GM Global Technology Operations LLC Hybrid powertrain auto start control system with engine pulse cancellation
US8718881B2 (en) * 2009-09-11 2014-05-06 Tmeic Corporation Fuel efficient crane system
JP5729644B2 (ja) * 2011-06-23 2015-06-03 三井造船株式会社 クレーン装置及びクレーン制御方法
CN102718146A (zh) * 2012-06-20 2012-10-10 三一集团有限公司 桥式起重机电气***和桥式起重机节能方法
CN104029675B (zh) * 2013-03-04 2017-07-11 上海汽车集团股份有限公司 混合动力汽车及其动力***转矩控制方法
JP5989584B2 (ja) * 2013-03-26 2016-09-07 三井造船株式会社 港湾荷役機器の制御方法と港湾荷役機器
CN103342290A (zh) * 2013-07-15 2013-10-09 上海港机重工有限公司 混合动力遥控式集装箱吊具及其供电装置
CN103342287A (zh) * 2013-07-22 2013-10-09 石家庄通合电子科技股份有限公司 码头用电动桥式起重机的供电***
US20150101322A1 (en) * 2013-10-14 2015-04-16 Brian Riskas System architecture for mobile hydraulic equipment
CN106103331B (zh) * 2014-03-28 2017-10-27 住友重机械搬运***工程株式会社 起重机装置、电力供给单元及改造方法
JP6204873B2 (ja) * 2014-04-21 2017-09-27 株式会社神戸製鋼所 電動ウインチ装置
JP5890556B1 (ja) * 2015-03-27 2016-03-22 三井造船株式会社 クレーンおよびクレーンの制御方法
US10166624B2 (en) * 2015-04-17 2019-01-01 Lincoln Global, Inc. Hybrid welding supply
DE102015008038A1 (de) 2015-06-23 2016-12-29 Liebherr-Components Biberach Gmbh Kran sowie Verfahren zu dessen Steuerung
KR101714247B1 (ko) * 2015-10-27 2017-03-08 현대자동차주식회사 알터네이터 가변 제어 장치 및 방법
WO2017161842A1 (zh) * 2016-03-24 2017-09-28 深圳市兆涵科技发展有限公司 一种轮胎式龙门起重机三动力混合节能***
CN105731259B (zh) * 2016-04-29 2017-12-15 上海海事大学 集装箱龙门起重机可插电串联增程式动力源装置能量控制方法
KR101903372B1 (ko) 2016-11-30 2018-10-02 재단법인 자동차융합기술원 연속 운전시간이 개선된 소형 크레인용 유압공급장치
CN114180478B (zh) * 2021-11-09 2023-02-07 中联重科股份有限公司 用于卷扬机构的方法、处理器、装置、卷扬机构及起重机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940533U (ja) * 1982-09-02 1984-03-15 株式会社明電舎 ガスタ−ビン発電装置
JPH0998515A (ja) * 1995-07-25 1997-04-08 Nippon Soken Inc ハイブリッド車のエンジン制御装置
JP2003028071A (ja) * 2001-07-18 2003-01-29 Hitachi Constr Mach Co Ltd ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム
JP2006117341A (ja) * 2004-10-19 2006-05-11 Aichi Corp 架装作業車
WO2008050552A1 (fr) * 2006-10-25 2008-05-02 Kabushiki Kaisha Yaskawa Denki Système de grue et son procédé de commande
JP2008222222A (ja) * 2008-03-27 2008-09-25 Toyota Motor Corp 駆動装置およびその運転制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940533A (ja) 1982-08-30 1984-03-06 ザ・パ−キン−エルマ−・コ−ポレイシヨン X線リトグラフイ−法およびその方法を実施する系
DE69834588T2 (de) * 1997-09-15 2006-09-07 Honda Giken Kogyo K.K. Vorrichtung zur Steuerung eines Hybridfahrzeuges
US5936375A (en) 1997-11-05 1999-08-10 Paceco Corp. Method for energy storage for load hoisting machinery
JPH11285165A (ja) 1998-03-26 1999-10-15 Sumitomo Heavy Ind Ltd クレーン用電源設備
JP5055948B2 (ja) * 2006-10-20 2012-10-24 コベルコ建機株式会社 ハイブリッド作業機械
GB2455499A (en) 2007-12-01 2009-06-17 Airmax Group Plc Operating an energy efficient crane
KR101312964B1 (ko) * 2009-04-01 2013-10-01 스미도모쥬기가이고교 가부시키가이샤 하이브리드형 작업기계
JP5204150B2 (ja) * 2010-05-21 2013-06-05 日立建機株式会社 ハイブリッド式建設機械

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940533U (ja) * 1982-09-02 1984-03-15 株式会社明電舎 ガスタ−ビン発電装置
JPH0998515A (ja) * 1995-07-25 1997-04-08 Nippon Soken Inc ハイブリッド車のエンジン制御装置
JP2003028071A (ja) * 2001-07-18 2003-01-29 Hitachi Constr Mach Co Ltd ハイブリッド建設機械の駆動制御装置、ハイブリッド建設機械及びその駆動制御プログラム
JP2006117341A (ja) * 2004-10-19 2006-05-11 Aichi Corp 架装作業車
WO2008050552A1 (fr) * 2006-10-25 2008-05-02 Kabushiki Kaisha Yaskawa Denki Système de grue et son procédé de commande
JP2008222222A (ja) * 2008-03-27 2008-09-25 Toyota Motor Corp 駆動装置およびその運転制御方法

Also Published As

Publication number Publication date
CN102460949B (zh) 2015-01-21
TW201111266A (en) 2011-04-01
CN102460949A (zh) 2012-05-16
US8670886B2 (en) 2014-03-11
MY154760A (en) 2015-07-15
JPWO2010146854A1 (ja) 2012-11-29
WO2010146854A1 (ja) 2010-12-23
US20120089287A1 (en) 2012-04-12
SG176817A1 (en) 2012-01-30
KR20120024787A (ko) 2012-03-14
KR101366468B1 (ko) 2014-02-21
TWI469911B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5580307B2 (ja) クレーン用ハイブリッド電源装置およびクレーン用ハイブリッド電源装置の制御方法
US8532855B2 (en) Hybrid construction machine
JP6493992B2 (ja) 電動車両の制御装置及び電動車両
EP2228491B1 (en) Hybrid construction machine and control method of hybrid construction machine
JP5356543B2 (ja) 作業用車両の駆動制御装置
JP2019180207A (ja) 車両電源システム
US20110288711A1 (en) Hybrid working machine and servo control system
JP5182514B2 (ja) 電動車両の制御装置
JP2010116070A (ja) 船舶エネルギーシステム
JP2012082644A (ja) 建設機械
EP3690147B1 (en) Construction machine
JP2019180211A (ja) 車両電源システム
JP2019180209A (ja) 車両電源システム
JP5751764B2 (ja) クレーン制御装置、及びクレーン装置
JP2009254069A (ja) 鉄道車両の制御方法および装置
JP6243857B2 (ja) ハイブリッド建設機械
JP5122509B2 (ja) ハイブリッド型作業機械
JP2007191973A (ja) ハイブリッド用動力制御システム
JP5419745B2 (ja) シリーズハイブリッド車両の制御装置
JP2019180210A (ja) 車両電源システム
EP3309304B1 (en) Control device and control method for construction machine
JP2019180213A (ja) 車両電源システム
JP2008254830A (ja) クレーン装置
JP2005207385A (ja) ハイブリッドシステムにおける制御方法
JP5578821B2 (ja) 電力供給制御システム

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20120914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140710

R150 Certificate of patent or registration of utility model

Ref document number: 5580307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350