JP5419745B2 - シリーズハイブリッド車両の制御装置 - Google Patents

シリーズハイブリッド車両の制御装置 Download PDF

Info

Publication number
JP5419745B2
JP5419745B2 JP2010035506A JP2010035506A JP5419745B2 JP 5419745 B2 JP5419745 B2 JP 5419745B2 JP 2010035506 A JP2010035506 A JP 2010035506A JP 2010035506 A JP2010035506 A JP 2010035506A JP 5419745 B2 JP5419745 B2 JP 5419745B2
Authority
JP
Japan
Prior art keywords
battery
output
power
generator
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010035506A
Other languages
English (en)
Other versions
JP2011168226A (ja
Inventor
裕孝 久保田
康雄 桑原
徹也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010035506A priority Critical patent/JP5419745B2/ja
Publication of JP2011168226A publication Critical patent/JP2011168226A/ja
Application granted granted Critical
Publication of JP5419745B2 publication Critical patent/JP5419745B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、ハイブリッド車両の出力制御技術に関するものであり、特に、シリーズ方式ハイブリッド車両の出力制御を行う制御装置に関するものである。
複数の動力源を組み合わせ、状況に応じてその動力源を同時にまたは個々に作動させて走行するハイブリッド車両が知られている。この中で、エンジンで発電機を回して発電された電力により、バッテリを充電し、或いは走行エネルギーとして活用して走るシリーズハイブリッド方式がある。この方式は、エンジンは車輪を回すことがなく、発電機を駆動するためにだけ使用される。このように、車輪の駆動力は全てモータから供給され、動力の流れが直列であることから、シリーズ方式と呼ばれている。ちなみに、もう一つの方式として、エンジンは走行を主体とし、場合により電池を充電する動力源として使用されるパラレルハイブリッド方式がある。この方式は、エンジンとモータという二つの動力源が並行して駆動に関与することから、パラレル方式と呼ばれる。
本発明者は、シリーズハイブリッド方式の車両における電力を制御する装置を先に提案している(特許文献1)。
特許文献1による制御装置の回路構成を図10に示すとおりであり、バッテリ101が電力変換装置102を介してコンバータ103の出力端子であるa端子、b端子に並列に接続されている。双方向のDC/DCコンバータからなる電力変換装置102は、コンバータ103の出力端子であるa端子、b端子にかかる直流バス電圧Vbusの電圧レベルにより充放電電流を制御する。例えば、車両が要求する出力(負荷)に対応するため、エンジン104、発電機107の回転が上がってコンバータ103が出力すると、直流バス電圧Vbusが上がる。このときバッテリ101が充電するように制御される。また、インバータ105が電力を吸収すると、直流バス電圧Vbusが下がるので、バッテリ101は放電する。
そして、バッテリ101からの電力とコンバータ103からの電力を足したものをインバータ105がモータ106に出力する。このように、直流バス電圧Vbusを制御するだけでバッテリ101とモータ106を制御できる。バッテリ101自体の制御は電力変換装置102だけに任せられるので、コンバータ103は、運転者がどんな出力を車両にさせたいかの指令と、直流バス電圧Vbusを監視していればよい。
また、DC/DCコンバータで構成されている電力変換装置102は、低電圧(例えば、300V)のバッテリ101から高電圧の直流バス電圧Vbus(例えば、600V)へ電圧を変換して電力を供給する役割を果たしている。
バッテリ101の電圧は、バッテリ101の出力電力/電流、SOC(State of Charge,バッテリ充電率[%]=バッテリの残容量/バッテリの満充電容量×100)等により変化する特性を有している。しかし、特許文献1の制御装置によれば、直流バス電圧Vbusに対応してバッテリ101の出力を制御する機能を電力変換装置102に持たせることにより、バッテリ101の特性にかかわらず直流バス電圧Vbus(システム電圧)を制御するのみでバッテリ101も制御することができる。
特許第3886940号公報
双方向DC/DCコンバータからなる電力変換装置102は、ハイブリッド車両に用いられるものは車両を占有するスペースが大きく、また車両に搭載するのが容易でなく、コストの面でも不利である。
また、ハイブリッド車両はバッテリ101への電力の入出力が頻繁に発生するとともに、電力変換装置102によるエネルギーロスが大きいため、電力変換装置102が存在することにより車両燃費が低下する。
本発明は、このような課題に基づいてなされたもので、電力変換装置を用いることなく、直流バス電圧に対応してバッテリへの出力を適切に制御できる制御装置を提供することを目的とする。
本発明は、シリーズハイブリッド方式の車両における出力の制御装置に関するものであり、この車両は、駆動力を発生するエンジンと、エンジンが発生する駆動力により発電を行う発電機と、発電機で発電される交流電力を直流に変換するとともに電圧を制御して供給するコンバータと、コンバータから供給される電力が充電されるバッテリと、発電機及びバッテリを動力源とするモータと、コンバータ及びバッテリからの電力をモータに向けて供給するバスと、を備えている。
そして、本発明による制御装置は、以下の手順で電力供給を制御する。つまり、バッテリの目標出力とバッテリの充電率に基づいてバスに対する直流電圧指令値を設定し、目標出力に達するようにバッテリからバスに対する出力を制御し、バスへのバッテリからの出力が目標出力に達すると、直流バス電圧指令値にコンバータの直流電圧レベルが近づくように発電機からの電力を制御することを特徴としている。
本発明の制御装置は、バッテリの充電率を考慮して直流バス電圧指令値を設定するので、バッテリからバスへ向けて適切な出力を与えることができる。
本発明における制御装置は、バッテリの温度及びバッテリの劣化状態の一方又は双方をさらに考慮して直流バス電圧指令値を設定することができる。そうすることで、バッテリの温度が変化した場合、あるいは劣化によりバッテリの特性が変化した場合でも、バッテリからバスへ向けて適切な出力を与えることができる。
本発明における制御装置は、車両に対する負荷要求電力と発電機の最大出力に基づいて、バッテリの目標出力及び発電機からの出力を決定することが好ましい。そうすることで、負荷要求に対して過不足なく、バッテリと発電機、換言するとエンジンからの出力をバスに向けて供給できるので、加速等の車両性能不足、エンジン過負荷を防ぐことができる。
本発明における制御装置は、バッテリの充電率が予め設定される閾値よりも低い場合には、バッテリからのバスへの出力よりも、発電機からのバスへの出力を優先させるとともに、発電機からの出力をバッテリの充電に供することが好ましい。そうすることで、バッテリの充電率を規定の範囲に維持することが可能となり、バッテリの過充電や過放電を防ぐことができる。また、バッテリの充電率を中程度で運用できるため、常に十分な加速(放電)および回生ブレーキ(充電)を確保できるとともに、充電率のふれ幅が狭いためバッテリの寿命も長くすることができる。
本発明の制御装置は、バッテリの充電率を考慮して直流バス電圧指令値を設定するので、バッテリからバスへ向けて適切な出力を与えることができる。
第1実施形態におけるシリーズハイブリッド方式車両の概略構成を示すブロック図である。 第1実施形態における電力制御の手順を示すブロック図である。 第1実施形態におけるバッテリ電力−電圧特性テーブルの一例を示す。 第1実施形態において、(a)は車両の負荷が増大しているときのバッテリとエンジンの動力配分の様子を示すグラフと、(b)は車両の負荷増大に伴う直流バス電圧の変遷を示すグラフである。 第2実施形態におけるバッテリ電力−電圧特性テーブルの一例を示す。 第2の実施形態におけるシリーズハイブリッド方式車両の概略構成を示すブロック図である。 第2実施形態における直流バス電圧指令値を決定する構成を示すブロック図である。 第3実施形態における制御部の制御手順を示すブロック図である。 第3実施形態において、(a)は高SOCモード時の車両の負荷が増大しているときのバッテリとエンジンの動力配分の様子を示すグラフと、(b)は低SOCモード時の車両の負荷が増大しているときのバッテリとエンジンの動力配分の様子を示すグラフである。 従来のシリーズハイブリッド方式車両の概略構成を示すブロック図である。
以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
[第1実施形態]
図1に本実施形態によるシリーズハイブリッド方式車両10の概略構成を示す。
シリーズハイブリッド方式車両10は、エンジン1で発電機2を駆動して発電をし、得られた電力により、第1車輪5、第2車輪6を各々回転させる第1走行モータ3、第2走行モータ4を駆動する。また、発電機2で得られた電力は、バッテリ23の充電にも使用される。バッテリ23は、蓄えられた電力を放電することで、第1走行モータ3、第2走行モータ4を駆動する。つまり、第1車輪5、第2車輪6の駆動力はすべて第1走行モータ3、第2走行モータ4から供給される。第1走行モータ3、第2走行モータ4への電力の供給は、発電機2から行う場合、バッテリ23から行う場合、発電機2及びバッテリ23の両者から行う場合、のいずれかから選択できる。
内燃機関としてのエンジン1としては、主にディーゼルエンジンを用いるが、これに限らずレシプロエンジン、ロータリーエンジン等の公知のエンジンを広く適用できる。
発電機2には、コンバータ21が付設されている。発電機2と電気的に接続されているコンバータ21は、発電機2で生成された交流の電力を直流に変換するとともに、直流バス8への出力を制御する。そして、コンバータ21は、直流のバス電圧を制御することで、バッテリ23から電力の充放電を制御する。
コンバータ21の出力端子であるa端子、b端子には、直流バス8の一端が接続されている。a端子及びb端子の間には、直流バス電圧Vbusがかかる。直流バス8の他端は第1インバータ25の入力端子であるc端子、d端子に接続されている。直流バス8は、途中で分岐されており、分岐された部分の直流バス8は第2インバータ27の入力端子であるe端子、f端子に接続される。このようにして、第1インバータ25及び第2インバータ27は互いに並列に接続されている。
直流バス8には、バッテリ23が並列に接続されている。バッテリ23は直流バス8に直接接続されており、シリーズハイブリッド方式車両10は双方向DC/DCコンバータなどの電力変換器を備えていない。そのために、バッテリ23は、直流バス電圧Vbusに対応する電圧のものが使用される。これはまた、第1インバータ25、第2インバータ27の駆動電圧の範囲内の電圧を有するバッテリ23を使用することを意味する。
また、直流バス8には、電力負荷となる補機7が並列に接続されている。補機7としては、例えば空気調和装置、照明などが掲げられ、電力負荷となる。なお、補機7は本発明にとって任意の構成要素である。
第1インバータ25、第2インバータ27は直流バス8を通って送られてくる直流電力を交流に変換して各々第1走行モータ3、第2走行モータ4に与える。また、第1インバータ25、第2インバータ27は、第1走行モータ3、第2走行モータ4が回生動作をして生成された電力を直流に変換する。
直流バス8は、コンバータ21からの直流電力をバッテリ23、第1インバータ25、第2インバータ27に与える。また、第1走行モータ3、第2走行モータ4が回生動作したときに生成される電力が、第1インバータ25、第2インバータ27によって直流電力に変換されると直流バス8を通ってバッテリ23に送る。さらに、第1インバータ25及び第2インバータ27の一方によって直流電力に変換された回生電力を他方に送ることもある。
第1インバータ25に接続される第1走行モータ3、第2インバータ27に接続される第2走行モータ4は、例えば、永久磁石式同期電動機から構成される。第1走行モータ3、第2走行モータ4は、各々第1インバータ25、第2インバータ27を介して与えられる交流電力により駆動されることで、第1車輪5、第2車輪6を回転させる。第1走行モータ3、第2走行モータ4は、第1車輪5、第2車輪6にブレーキがかけられ減速するときには、発電機として動作して回生電力を生成する。この回生電力は、第1インバータ25、第2インバータ27に送られ、直流電力に変換される。なお、この例では、第1走行モータ3と第1車輪5、第2走行モータ4と第2車輪6を直接接続させているが、減速機を介してもよいことは言うまでもない。
シリーズハイブリッド方式車両10は、エンジン1、発電機2、コンバータ21…の動作を制御する制御部20を備えている。コンバータ21は、制御部20の指令に基づいて、発電機2及びバッテリ23からの電力の出力を以下のように制御する。
コンバータ21は、エンジン1に連結された発電機2の出力を制御する機能を有している。具体的には、車両が要求する負荷からバッテリ23が入出力する電力を足し引きして発電機2の出力を制御する。このとき、直流バス電圧Vbusの値を参照することで間接的にバッテリ23からの出力を制御する。そして、第1インバータ25、第2インバータ27は、コンバータ21からの電力とバッテリ23からの電力の和を第1走行モータ3、第2走行モータ4に出力する。
<バッテリ目標出力P、バッテリSOCの参照>
図2は、制御部20及びコンバータ21における電力制御の手順を模式的に示している。
この電力制御システムでは、まず、バッテリ目標出力Pと、バッテリ23の充電率(以下、バッテリSOC)とが参照される。バッテリSOCを参照するのは、以下の理由による。先述したように、コンバータ21は発電機2の出力を制御することにより、バッテリ23の出力を間接的に制御する。しかし、バッテリ23は充放電を繰り返しているとその特性が変動し、この特性にバッテリ電圧が依存するので、バッテリ23から任意の出力(電力)を得ることが困難である。そこで、出力に最も大きく影響を与えるバッテリSOCを考慮する。
ここで、バッテリ目標出力Pは、車両のアクセル、ハンドル及びブレーキ(いずれも図示を省略)等に基づく運転条件(車両の負荷要求)に基づいて定められる。
また、バッテリSOCは「バッテリの残容量/バッテリの満充電容量×100」で特定されるが、例えば、バッテリ23のバッテリ電圧値及びバッテリ電流を検出し、その積算値に基づいてバッテリの残容量を推定できる。ただし、これはバッテリの残容量を特定する最も基本的な例であり、バッテリ電圧値及びバッテリ電流の他に、バッテリ23の端子電圧、端子電流及び温度などを考慮してバッテリ23の残容量を推定することもできる。
<バッテリ電力−電圧特性対比ブロック>
次に、電力制御システムは、バッテリ目標出力P、バッテリSOCを参照して、直流バス電圧指令値Vbusを決定する。この決定は、バッテリ電力−電圧特性対比ブロック29において行われる。
バッテリ電力−電圧特性対比ブロック29は、バッテリ23におけるバッテリ電圧とバッテリ電力が対応付けられた特性テーブルを保持している。この特性テーブルは、バッテリSOCの値に応じて保持される。この特性テーブルの一例をグラフ化して図3に示している。図3は、縦軸をバッテリ電圧とし、横軸をバッテリ電力(電流)としている。このグラフに示すように、同じバッテリ電力であっても、バッテリSOCが高いほどバッテリ電圧は高く、バッテリSOCが低いほどバッテリ電圧は低くなる傾向がある。例えば、バッテリ目標出力がP1、バッテリSOCがS4だとすると、図3の特性線図S4を参照することにより、直流バス電圧指令値VbusをV1に決定する。
なお、図3に示す特性テーブルは、使用するバッテリ23について事前に実験的に取得しておく。また、ここではテーブル(グラフ)とした例を説明したが、事前に実験的に求めた値から導出される、バッテリ電圧とバッテリ電力の関係式を用いて直流バス電圧指令値Vbusを決定することもできる。
以上のように決定された直流バス電圧指令値Vbusは、バッテリ電力−電圧特性対比ブロック29から出力され、実際の直流バス電圧Vbusと比較される。この比較結果を受けて、直流バス電圧レギュレータブロック33は、実際の直流バス電圧Vbusをさらに監視しつつ、発電機2のトルク指令値Tgを出力する。コンバータ21は、トルク指令値Tgを受けて発電機2の動作を制御する。
図4を用いて、シリーズハイブリッド方式車両10の負荷(車両負荷要求電力)が増大するときの電力制御の一例を示す。なお、この車両負荷は、走行による負荷と補機7の使用による合計の負荷により定まる。
図4に示すように、車両負荷が増大するときには、バッテリ23が発電機2よりも優先して出力する。車両負荷の増大に伴い、バッテリ23からの出力、特性の変化に応じてバッテリ電圧、つまり直流バス電圧Vbusが低下する。直流バス電圧Vbusが低下して直流バス電圧指令値Vbusに達したならば、エンジン1を駆動させて発電機2により電力を発生し、第1インバータ25、第2インバータ27に向けて供給する。コンバータ21は、発電機2からの出力及びバッテリ23からの出力による直流バス電圧Vbusが直流バス電圧指令値Vbusに一致するように、発電機2の制御を行う。この制御により、バッテリ23からの出力は一定とされる。
[第2実施形態]
第2実施形態では、直流バス電圧指令値Vbusをさらに精度よく決定することを志向する。つまり、バッテリ電力−電圧特性は、バッテリSOC以外にバッテリ23の温度(T)及び劣化状態(バッテリSOH)にも影響を受けるため、これらをも考慮した電力−電圧特性により直流バス電圧指令値Vbusを決定する。なお、バッテリ劣化状態(State of Health)は、劣化時満充電容量/初期満充電容量×100[%]で特定される。
図5にバッテリ温度T、バッテリSOHをも考慮したバッテリ電力−電圧特性の例を示す。図5に示すように、バッテリSOCが同じであっても、バッテリ23の特性が変わる。つまり、バッテリ温度Tが低いとバッテリ23の内部抵抗が高くなるために、バッテリ23の電力(出力)が同じであっても、充電時の電圧は高く、放電時の電圧は低くなり、バッテリ23の電圧変動幅が大きくなる。バッテリSOHが小さい、つまりバッテリ23の劣化の度合いが大きい場合も同様である。バッテリ温度Tが高い又はバッテリ23の劣化の度合いが小さいと、これとは逆に、バッテリ23の電圧変動幅が小さくなる。なお、図5では一つのバッテリSOCについて特性線図を示しているが、実際には異なる複数のバッテリSOCについて同様の特性線図が用意される。
第2実施形態では、図6に示すように、バッテリ温度Tを検知するために、バッテリ23に温度検知センサ24を設ける。温度検知センサ24で検知されたバッテリ23の温度は制御部20に送られる。
また、バッテリ23に充放電履歴監視回路28を設ける。バッテリ23が劣化する主たる要因が充放電の回数であることから、充放電履歴監視回路28で得られたバッテリ23の充放電の履歴は制御部20に送られる。
制御部20は、図7に示すように、取得したバッテリSOC、バッテリ温度T及び充放電の履歴を、図5に示す特性線図と対比することで、直流バス電圧指令値Vbusを決定する。そうすることで、バッテリ23の温度が変化し、あるいはバッテリ23が劣化したことによりバッテリ電力−電圧特性が変化した場合でも、所望のバッテリ出力が得られる。
[第3実施形態]
第3実施形態は、バッテリ電力−電圧特性テーブルへ入力されるバッテリ目標出力Pを、車両状態を考慮して決定する機能を制御部20が有している。
このバッテリ目標出力Pの決定機構は、図8に示すように、走行用動力演算ブロック37、エンジン最大出力演算ブロック39及びバッテリ出力決定ブロック41を備える。
バッテリ出力決定ブロック41は、負荷要求電力に対してエンジン1とバッテリ23の動力配分を決定し、バッテリ目標出力Pを演算、決定する。負荷要求電力は、走行用電力と補機用電力の総和で定められる。走行用電力は、第1走行モータ3、第2走行モータ4の各々についてのモータ回転数及びモータトルク指令値を用いて演算し、決定される。以下、より詳しく説明する。
走行用動力演算ブロック37においては、例えば以下のようにして走行用電力が求められる。すなわち、モータ回転数(n(rpm))、モータトルク指令値(T(N・m))より第1走行モータ3、第2走行モータ4に必要な動力(走行動力)Pr(kW)を求め、この走行用動力Prに第1走行モータ3、第2走行モータ4、第1インバータ25及び第2インバータ27の効率ηを考慮して直流バス8に与える走行用電力P1(=Pr/η)が求められる。なお、モータトルクは印加電流に比例するので、モータトルク指令値(T(N・m))の変わりに電流指令値を用いることもできる。
補機7の動作に必要な電力(補機用電力)P2は、別途計算して求める。
走行用電力P1と補機用電力P2を足し合わせることで負荷要求電力Pが決定される。
走行用動力演算ブロック37では、エンジン1の回転数、アクセルペダルの踏込量、エンジン1のガバナの開度等の情報に基づいて、エンジン1がその時点における最大出力Pを求める。
バッテリ出力決定ブロック41は、負荷要求電力Pとエンジン最大出力Pから求められる発電機2の最大出力Pとを比較することで、バッテリ23が出力すべき電力(バッテリ目標出力)P(=P−P)を決定する。これで、エンジン1(発電機2)とバッテリ23の動力配分が特定される。
バッテリ出力決定ブロック41では、バッテリ目標出力Pを決定することに加えて、バッテリSOCを参照することで、高SOCモードか低SOCモードを選択する。バッテリSOCが高い高SOCモードとバッテリSOCが低い低SOCモードとで、エンジン1(発電機2)とバッテリ23の各々から出力する動力配分の制御が異なる。
図9(a)に示すように、高SOCモードは、図4と同様にバッテリ23からの電力を優先させる。バッテリSOCが例えば50%以上であれば、高SOCモードと判断する。もちろん、50%以外の値をバッテリSOCの高低の基準にできる。
低SOCモード(例えば、50%未満)の場合には、図9(b)に示すように、発電機2を介するエンジン1からの出力を優先させる。エンジン1からの出力を開始すると、発電機2で生成される電力を負荷(第1走行モータ3、第2走行モータ4及び補機7)に供給するとともに、バッテリ23の充電にも供する。このように、エンジン1の出力が上昇する過程では、エンジン1の出力は負荷に供給するとともに、バッテリ23の充電に供される。しかし、エンジン1の出力がエンジン最大出力Pに近づく(例えば0.8P)と、バッテリ23の充電に供する電力を絞る。そして、エンジン1の出力がエンジン最大出力Pに達した時点で、バッテリ23への充電は停止する。さらにエンジン最大出力Pを超える部分については、エンジン1からの出力に加えてバッテリ23から出力することで、負荷要求電力Pに応える。
なお、ここでは高SOCモード(図9(a))、低SOCモード(図9(b))というように、SOCを2段階としているが、高SOCモード、中SOCモード及び低SOCモードというように3段階、あるいは4段階以上にSOCモードを設定することもできる。
以上のように、第3実施形態によれば、バッテリSOCを考慮してエンジン1(発電機2)、バッテリ23の出力を配分することで、負荷からの要求に対して過不足なく出力を供給できるので、加速等の車両性能不足、エンジン1への過負荷を防ぐことができる。
ここで、バッテリSOCを高い値に維持していると回生される電力によりバッテリ23が過度に充電される一方、バッテリSOCを低い値に維持していると負荷からの要求に応える電力をバッテリ23が供給できなくなるため、通常、バッテリSOCは50〜60%程度に維持することが求められる。これに対して第3実施形態によると、バッテリSOCを考慮してバッテリ23の充放電を決定するので、バッテリSOCを50〜60%程度に保つことができるので、バッテリ23へ過度に充電されること、又は過度に放電されることがない。また、バッテリSOCが50〜60%という中程度で運用できるため、常に十分な加速(放電)および回生ブレーキ(充電)を確保しつつ、バッテリSOCの振れ幅が狭いためバッテリ23の寿命も長くすることができる。
さらに、エンジン1とバッテリ23の動力配分、つまり、エンジン燃費を考慮してバッテリ目標出力Pの決定をすることで、エンジン燃費の向上も期待できる。
なお、上記第1〜第3実施の形態では、第1車輪5、第2車輪6自体で走行することを前提としているが、例えばキャタピラを介して走行する車両にも本発明を適用できる。
これ以外にも、本発明の主旨を逸脱しない限り、上記実施の形態で挙げた構成を取捨選択したり、他の構成に適宜変更することが可能である。
10…シリーズハイブリッド方式車両
1…エンジン、2…発電機、3…第1走行モータ、4…第2走行モータ
5…第1車輪、6…第2車輪、7…補機、8…直流バス
20…制御部、21…コンバータ、23…バッテリ、24…温度検知センサ
25…第1インバータ、27…第2インバータ、28…充放電履歴監視回路
29…バッテリ電力−電圧特性対比ブロック
33…直流バス電圧レギュレータブロック
37…走行用動力演算ブロック、39…エンジン最大出力演算ブロック
41…バッテリ出力決定ブロック

Claims (4)

  1. 駆動力を発生するエンジンと、
    前記エンジンが発生する前記駆動力により発電を行う発電機と、
    前記発電機で発電される交流電力を直流に変換するとともに電圧を制御して供給するコンバータと、
    前記コンバータから供給される電力が充電されるバッテリと、
    前記発電機及び前記バッテリを動力源とするモータと、
    前記コンバータ及び前記バッテリからの電力を前記モータに向けて供給するバスと、
    を備えるシリーズハイブリッド方式の車両における出力の制御装置であって、
    前記制御装置は、
    前記バッテリの目標出力と前記バッテリの充電率に基づいて前記バスに対する直流電圧指令値を設定し、
    前記目標出力に達するように前記バッテリから前記バスに対する出力を制御し、
    前記バスへの前記バッテリからの出力が前記目標出力に達すると、前記直流電圧指令値に前記コンバータの直流電圧レベルが近づくように前記発電機からの出力を制御する、
    ことを特徴とするハイブリッド車両の制御装置。
  2. 前記制御装置は、
    前記バッテリの温度及び前記バッテリの劣化状態の一方又は双方をさらに考慮して前記直流電圧指令値を設定する、
    請求項1に記載のハイブリッド車両の制御装置。
  3. 前記制御装置は、
    車両に対する負荷要求電力と前記発電機の最大出力に基づいて、前記バッテリの目標出力及び前記発電機からの出力を決定する、
    請求項1又は2に記載のハイブリッド車両の制御装置。
  4. 前記バッテリの充電率が予め設定される閾値よりも低い場合には、
    前記バッテリからの前記バスへの出力よりも、前記発電機からの前記バスへの出力を優先させるとともに、前記発電機からの前記出力を前記バッテリの充電に供する、
    請求項1〜3のいずれか一項に記載のハイブリッド車両の制御装置。
JP2010035506A 2010-02-22 2010-02-22 シリーズハイブリッド車両の制御装置 Active JP5419745B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010035506A JP5419745B2 (ja) 2010-02-22 2010-02-22 シリーズハイブリッド車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010035506A JP5419745B2 (ja) 2010-02-22 2010-02-22 シリーズハイブリッド車両の制御装置

Publications (2)

Publication Number Publication Date
JP2011168226A JP2011168226A (ja) 2011-09-01
JP5419745B2 true JP5419745B2 (ja) 2014-02-19

Family

ID=44682779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010035506A Active JP5419745B2 (ja) 2010-02-22 2010-02-22 シリーズハイブリッド車両の制御装置

Country Status (1)

Country Link
JP (1) JP5419745B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051140A1 (ja) * 2011-10-06 2013-04-11 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP5787786B2 (ja) * 2012-02-22 2015-09-30 三菱重工業株式会社 車両の制御装置
EP2875978B1 (en) 2012-07-20 2020-04-15 Mitsubishi Electric Corporation Hybrid vehicle control device
JP6338250B2 (ja) * 2015-04-27 2018-06-06 エス・イー・シーエレベーター株式会社 スターリングエンジン発電制御システム
JP7155930B2 (ja) * 2018-11-20 2022-10-19 トヨタ自動車株式会社 ハイブリッド車両の制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044880B2 (ja) * 1991-11-22 2000-05-22 トヨタ自動車株式会社 シリーズハイブリッド車の駆動制御装置
JPH06225405A (ja) * 1993-01-21 1994-08-12 Toyota Motor Corp 電気自動車用エンジン駆動発電機の制御装置
JP3886940B2 (ja) * 2003-07-10 2007-02-28 三菱重工業株式会社 ハイブリッド車両の制御装置
JP5186690B2 (ja) * 2008-03-21 2013-04-17 株式会社小松製作所 ハイブリッド建設機械における蓄電装置の劣化状態判定方法および装置

Also Published As

Publication number Publication date
JP2011168226A (ja) 2011-09-01

Similar Documents

Publication Publication Date Title
US11007893B2 (en) Control device for electric vehicle and electric vehicle
WO2016151695A1 (ja) 車両の電力制御装置
JP6240649B2 (ja) 電力供給システム
JP5494979B2 (ja) 電動車両
JP2007195398A (ja) 車両推進システム
JP2014027864A (ja) 電気自動車の低電圧直流交換器アクティブ制御システム
US10661670B2 (en) Power supply system, transportation apparatus, and power transmission method
JP2012066624A (ja) 電動車両の発電制御装置両
JPWO2012066675A1 (ja) 車両の充電装置
US10875408B2 (en) Apparatus for controlling motorized vehicle
US10680540B2 (en) Apparatus for controlling motorized vehicle
JP2008228403A (ja) 車両用電源装置
JP6410757B2 (ja) 動力システム及び輸送機器、並びに、電力伝送方法
JP6744350B2 (ja) 車両
US11065966B2 (en) Apparatus for controlling motorized vehicle
JP5419745B2 (ja) シリーズハイブリッド車両の制御装置
US9868434B2 (en) Vehicle and control method for vehicle
JP2019180209A (ja) 車両電源システム
KR20120012654A (ko) 전기자동차 및 그 제어방법
JP2018103930A (ja) ハイブリッド車両の制御装置
KR20160038010A (ko) 발전 제어 장치 및 발전 제어 방법
JP7081958B2 (ja) 車両電源システム
JP2012045996A (ja) ハイブリッド車両の発電制御装置
JP2013103645A (ja) ハイブリッド車両の制御装置
JP5772209B2 (ja) 蓄電装置の充放電制御装置およびそれを搭載した電動車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131119

R151 Written notification of patent or utility model registration

Ref document number: 5419745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151