JP5573265B2 - High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same - Google Patents

High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same Download PDF

Info

Publication number
JP5573265B2
JP5573265B2 JP2010063547A JP2010063547A JP5573265B2 JP 5573265 B2 JP5573265 B2 JP 5573265B2 JP 2010063547 A JP2010063547 A JP 2010063547A JP 2010063547 A JP2010063547 A JP 2010063547A JP 5573265 B2 JP5573265 B2 JP 5573265B2
Authority
JP
Japan
Prior art keywords
less
mpa
steel
phase
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010063547A
Other languages
Japanese (ja)
Other versions
JP2011195883A (en
Inventor
圭治 植田
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010063547A priority Critical patent/JP5573265B2/en
Publication of JP2011195883A publication Critical patent/JP2011195883A/en
Application granted granted Critical
Publication of JP5573265B2 publication Critical patent/JP5573265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、橋梁、建築、造船、海洋構造物、貯蔵タンク、圧力容器、ラインパイプ等に供して好適な引張強度590MPa以上で板厚12mm以上の高強度厚鋼板およびその製造方法に係り、特に、母材の低温靭性と延性に優れるものに関する。   The present invention relates to a high-strength steel plate having a tensile strength of 590 MPa or more and a plate thickness of 12 mm or more suitable for use in bridges, buildings, shipbuilding, offshore structures, storage tanks, pressure vessels, line pipes, etc. , Relating to a base material having excellent low-temperature toughness and ductility.

橋梁、建築、貯蔵タンク、圧力容器、ラインパイプなどの鉄鋼構造物に用いられる鋼板は、強度が高いことは勿論、安全性の観点から高い靭性や延性が要求される。例えば、建築用鋼材の場合、低降伏比でかつ一様伸びを大きくして塑性変形能を高めて、耐震性を確保している。   Steel sheets used for steel structures such as bridges, buildings, storage tanks, pressure vessels, and line pipes are required to have high toughness and ductility from the viewpoint of safety as well as high strength. For example, in the case of steel for construction, the low yield ratio and uniform elongation are increased to enhance the plastic deformability and ensure the earthquake resistance.

一方で、ラインパイプなどでは、全伸び(一様伸び+局部伸び)が大きいことが要求されている。全伸びが大きいことは外部からの応力により変形が始まってから破壊するまでに変形する量が大きいことを意味し、鋼材の破壊に対する安全性の指標となっている。   On the other hand, a line pipe or the like is required to have a large total elongation (uniform elongation + local elongation). A large total elongation means that the amount of deformation from the start of deformation to the failure due to external stress is large, and is an indicator of safety against the destruction of steel materials.

引張試験片の標点距離が長いほど、全伸びに占める一様伸びの比率は大きくなるが、一般的に使用されている引張試験片では、局部伸びの割合も40〜50%程度のことが多く、一様伸びと局部伸びの両者を共に大きくして全伸びを大きくすることが望ましい。   The longer the gauge distance of a tensile test piece, the larger the ratio of uniform elongation to the total elongation. However, in a generally used tensile test piece, the ratio of local elongation is about 40 to 50%. In many cases, it is desirable to increase both the uniform elongation and the local elongation to increase the total elongation.

一般に、鋼材が高強度化するにしたがって、一様伸び、局部伸びともに低下し、特に引張強度が590MPaを超えるとその傾向が顕著になるため、ミクロ組織や成分組成の調整による優れた全伸びを備えた引張強度590MPa級鋼板が種々提案されている。   In general, as steel materials increase in strength, both uniform elongation and local elongation decrease. Especially when the tensile strength exceeds 590 MPa, the tendency becomes remarkable. Various provided tensile strength 590 MPa grade steel sheets have been proposed.

特許文献1は、一様伸びの優れた高強度鋼板の製造方法に関し、オーステナイトの再結晶温度域で圧延終了後、2相域での冷却を制御することにより成長したフェライト+マルテンサイト組織とし、降伏比の低下により、一様伸びを向上させている。   Patent Document 1 relates to a method for producing a high-strength steel sheet having excellent uniform elongation, and has a ferrite + martensite structure grown by controlling cooling in a two-phase region after rolling in the recrystallization temperature region of austenite, Uniform elongation is improved by lowering the yield ratio.

特許文献2は、残留オーステナイトを生成させ全伸びを向上させた厚鋼板およびその製造方法に関し、薄鋼板における、残留オーステナイトのTRIP効果が厚鋼板で得られるように残留オーステナイト量と残留オーステナイト中のC量を調整することを特徴とする。   Patent Document 2 relates to a thick steel plate in which residual austenite is generated and the total elongation is improved, and a method for producing the same. It is characterized by adjusting the amount.

また、特許文献3は、一様伸びに優れた高強度鋼に関し、Cu析出を利用することにより、伸びが向上することが報告されている。強化粒子自体の塑性変形能が高く、周囲のFeより軟質な強化粒子として、9R構造を有するCu粒子と、bcc構造を有するCu粒子またはfcc構造を有するCu粒子のいずれかを複合的に分散させることにより、ミクロ的な不均一変形が抑制されるためと考えられている。   Moreover, patent document 3 is related to the high strength steel excellent in uniform elongation, and it is reported that elongation improves by utilizing Cu precipitation. The reinforcing particles themselves have high plastic deformability and are softer than the surrounding Fe, and as a reinforcing particle softer, either Cu particles having 9R structure and Cu particles having bcc structure or Cu particles having fcc structure are dispersed in a composite manner. Therefore, it is considered that microscopic nonuniform deformation is suppressed.

特許第3459501号公報Japanese Patent No. 3459501 特許第4283757号公報Japanese Patent No. 4283757 特許第3694383号公報Japanese Patent No. 3694383

しかしながら、特許文献1に記載された技術では、フェライト粒が粗大化するために、低温靭性は良好とは言えず、また、ミクロ組織が不均一であることから、局部伸びが著しく低下する恐れがある。   However, in the technique described in Patent Document 1, since ferrite grains are coarsened, the low-temperature toughness cannot be said to be good, and since the microstructure is non-uniform, local elongation may be significantly reduced. is there.

特許文献2に記載された技術では、合金成分コストが高くなることや、溶接性が著しく劣化することが問題である。   In the technique described in Patent Document 2, there are problems that the cost of the alloy components becomes high and the weldability is remarkably deteriorated.

特許文献3に記載された技術では、概ね1%以上のCuの多量添加が不可欠であり、圧延中の鋼板表面割れ等、表面性状が劣化するため、実用鋼としての実現可能性が低い。   In the technique described in Patent Document 3, it is indispensable to add a large amount of Cu of approximately 1% or more, and the surface properties such as surface cracking of the steel sheet during rolling deteriorate, so that the feasibility as practical steel is low.

そこで、本発明は、経済性に優れ、優れた低温靭性と延性を兼備した引張強度590MPa以上の高強度厚鋼板およびその製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a high-strength thick steel plate having a tensile strength of 590 MPa or more, which is excellent in economic efficiency and has both excellent low-temperature toughness and ductility, and a method for producing the same.

本発明者らは、厚鋼板を対象として優れた低温靭性と590MPa以上の引張強度の確保を前提に、全伸びを決定する各種要因に関して鋭意研究を行い、以下の知見を得た。   The present inventors diligently researched various factors that determine the total elongation on the premise of securing excellent low temperature toughness and tensile strength of 590 MPa or more for thick steel plates, and obtained the following knowledge.

1.590MPa以上の引張強度と優れた低温靭性を確保しつつ、一様伸びを向上するためには、軟質相であるポリゴナルフェライト相と硬質相である上部ベイナイト相の混合組織とし、各相の面積分率を制御することが重要である。軟質相として加工フェライトが、また硬質相として下部ベイナイトやマルテンサイトが混入した場合には、伸びに対して不利である。
2.ポリゴナルフェライト相と上部ベイナイト相の混合組織とすることにより一様伸びを向上させ、さらに局部伸びを向上させるため、各相の存在形態を厳格に制御することが必要である。すなわち、ポリゴナルフェライト相は、平均結晶粒径を18μm以下かつ結晶粒径の標準偏差を8μm以下に制御する。
In order to improve the uniform elongation while ensuring a tensile strength of 1.590 MPa or more and excellent low temperature toughness, a mixed structure of a polygonal ferrite phase that is a soft phase and an upper bainite phase that is a hard phase is used. It is important to control the area fraction. When processed ferrite is mixed as a soft phase and lower bainite or martensite is mixed as a hard phase, it is disadvantageous for elongation.
2. In order to improve the uniform elongation by making the mixed structure of the polygonal ferrite phase and the upper bainite phase and further improve the local elongation, it is necessary to strictly control the existence form of each phase. That is, the polygonal ferrite phase controls the average crystal grain size to 18 μm or less and the standard deviation of crystal grain size to 8 μm or less.

均一で細粒の結晶粒主体の組織として、粗大な結晶粒を抑制することによって、引張試験時における、粗大結晶粒近傍の結晶粒界への応力集中が低減し、早期のマイクロボイドの発生が抑制されて、局部伸びが向上する。   Suppressing coarse crystal grains as a uniform and fine-grained grain structure reduces stress concentration at the grain boundaries in the vicinity of coarse crystal grains during tensile testing, resulting in early microvoids. It is suppressed and local elongation is improved.

上部ベイナイト相は、組織中に含まれる島状マルテンサイトの面積分率を5%以下とする。極度に硬い脆化組織である島状マルテンサイトと母相の界面は、引張試験時に応力が集中しやすく、マイクロボイドの発生が助長され、局部伸びに不利である。
3.上記混合組織の達成には、鋼板組成だけでなく、熱間圧延および加速冷却、さらには再加熱焼戻し条件を厳格に管理することが重要である。
The upper bainite phase has an area fraction of island martensite contained in the structure of 5% or less. The interface between the island-like martensite, which is an extremely hard embrittled structure, and the matrix phase tends to concentrate stress during the tensile test, and the generation of microvoids is promoted, which is disadvantageous for local elongation.
3. In order to achieve the above mixed structure, it is important to strictly manage not only the steel sheet composition but also hot rolling and accelerated cooling, and further, reheating and tempering conditions.

本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.質量%で、
C:0.03〜0.20%
Si:0.05〜0.60%
Mn:0.3〜2.0%
P:0.015%以下
S:0.003%以下
Al:0.07%以下
N:0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼組成と、
ポリゴナルフェライト相と上部ベイナイト相の混合組織であって、ポリゴナルフェライト相の面積分率が10〜45%、平均結晶粒径が18μm以下、結晶粒径の標準偏差が8μm以下で、上部ベイナイト相中の島状マルテンサイトの面積分率が5%以下となるミクロ組織を備えたことを特徴とする引張強度590MPa以上の延靭性に優れた高強度厚鋼板。
2.鋼組成に、質量%で、更に、
Cu:1.5%以下
Ni:2.0%以下
Cr:1.0%以下
Mo:1.0%以下
Nb:0.1%以下
V:0.1%以下
Ti:0.03%以下
B:0.005%以下
の1種または2種以上を含有することを特徴とする1記載の引張強度590MPa以上の延靭性に優れた高強度厚鋼板。
3.鋼組成に、質量%で、更に、
REM:0.02%以下
Ca:0.005%以下
Mg:0.005%以下
の1種または2種以上を含有することを特徴とする1または2記載の引張強度590MPa以上の延靭性に優れた高強度厚鋼板。
4.1乃至3のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、1000〜1250℃に再加熱後、900℃以下での累積圧下率が30%以上で、かつAr〜Ar+80℃の温度で終了する熱間圧延を行い、Ar−60℃〜Ar−10℃の温度まで放冷をした後、3〜100℃/sで400〜600℃まで加速冷却を行うことを特徴とする引張強度590MPa以上の延靭性に優れた高強度厚鋼板の製造方法。
5.加速冷却後、更に、400〜650℃で焼戻すことを特徴とする4記載の引張強度590MPa以上の延靭性に優れた高強度厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. % By mass
C: 0.03-0.20%
Si: 0.05-0.60%
Mn: 0.3 to 2.0%
P: 0.015% or less S: 0.003% or less Al: 0.07% or less N: 0.01% or less, the steel composition comprising the balance of Fe and inevitable impurities,
A mixed structure of a polygonal ferrite phase and an upper bainite phase, wherein the area fraction of the polygonal ferrite phase is 10 to 45%, the average crystal grain size is 18 μm or less, and the standard deviation of the crystal grain size is 8 μm or less. A high-strength thick steel plate excellent in ductility having a tensile strength of 590 MPa or more, comprising a microstructure in which the area fraction of island-like martensite in the phase is 5% or less.
2. In steel composition by mass%,
Cu: 1.5% or less Ni: 2.0% or less Cr: 1.0% or less Mo: 1.0% or less Nb: 0.1% or less V: 0.1% or less Ti: 0.03% or less B A high strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more according to 1, characterized by containing one or more of 0.005% or less.
3. In steel composition by mass%,
REM: 0.02% or less Ca: 0.005% or less Mg: 0.005% or less 1 type or 2 types or more characterized by excellent tensile toughness of 590 MPa or more according to 1 or 2 High strength thick steel plate.
4. After reheating the slab or slab comprising the steel composition described in any one of 4.1 to 3 to 1000 to 1250 ° C., the cumulative rolling reduction at 900 ° C. or less is 30% or more, and Ar 3 After performing hot rolling finished at a temperature of ˜Ar 3 + 80 ° C. and allowing to cool to a temperature of Ar 3 -60 ° C. to Ar 3 -10 ° C., accelerated cooling to 400 to 600 ° C. at 3 to 100 ° C./s A method for producing a high-strength thick steel plate having excellent tensile toughness with a tensile strength of 590 MPa or more.
5. 5. The method for producing a high-strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more according to 4, wherein the steel is further tempered at 400 to 650 ° C. after accelerated cooling.

本発明によれば、引張強度590MPa以上で、低温靭性および全伸びに優れた、板厚12mm以上の厚鋼板が得られ、鋼構造物の大型化、鋼構造物の耐震性および安全性の向上に大きく寄与し、産業上格段の効果を奏する。   According to the present invention, a steel plate having a tensile strength of 590 MPa or more, excellent low-temperature toughness and total elongation, and a plate thickness of 12 mm or more can be obtained, increasing the size of the steel structure, and improving the earthquake resistance and safety of the steel structure. It contributes greatly to the industry and has a remarkable industrial effect.

本発明では成分組成とミクロ組織を規定する。成分組成の説明において%は質量%、ミクロ組織の説明において%は面積%とする。
[成分組成]
C:0.03〜0.20%
Cは、鋼の強度を増加させ、構造用鋼材として必要な強度を確保するために必要な元素でその効果を得るため、0.03%以上の含有を必要とする。一方、0.20%を超える含有は、低温靭性を顕著に劣化させるとともに、上部ベイナイト中の島状マルテンサイトの面積分率が上昇し、局部伸びの低下により全伸びを低下させるため、0.03〜0.20%の範囲に限定する。好ましくは、0.04〜0.18%である。
In the present invention, the component composition and the microstructure are defined. In the description of the component composition,% means mass%, and in the description of the microstructure,% means area%.
[Ingredient composition]
C: 0.03-0.20%
C increases the strength of the steel and needs to be contained in an amount of 0.03% or more in order to obtain the effect with an element necessary for ensuring the strength required as a structural steel material. On the other hand, the content exceeding 0.20% significantly deteriorates the low temperature toughness and increases the area fraction of island martensite in the upper bainite, and decreases the total elongation due to the decrease in local elongation. The range is limited to 0.20%. Preferably, it is 0.04 to 0.18%.

Si:0.05〜0.60%
Siは、脱酸材として作用し、製鋼上、少なくとも0.05%必要である。一方、0.60%を超えて含有すると、母材の靭性、溶接部の低温割れ性が顕著に劣化するだけでなく、島状マルテンサイトの生成を助長して、局部伸びの低下により全伸びを低下させるため、0.05〜0.60%の範囲に限定する。好ましくは、0.10〜0.55%である。
Si: 0.05-0.60%
Si acts as a deoxidizer and needs to be at least 0.05% for steelmaking. On the other hand, if the content exceeds 0.60%, not only the toughness of the base metal and the low temperature cracking property of the welded portion are remarkably deteriorated, but also the formation of island martensite is promoted, and the total elongation is reduced due to the decrease in local elongation. In order to reduce the content, it is limited to the range of 0.05 to 0.60%. Preferably, it is 0.10 to 0.55%.

Mn:0.3〜2.0%
Mnは、鋼の焼入れ性を増加させる効果を有し、母材の強度を確保するために0.3%以上は必要である。一方、2.0%を超えて含有すると、母材の靭性、延性および溶接性が著しく劣化するため、0.3〜2.0%の範囲に限定する。好ましくは、0.4〜1.9%である。
Mn: 0.3 to 2.0%
Mn has the effect of increasing the hardenability of steel, and 0.3% or more is necessary to ensure the strength of the base material. On the other hand, if the content exceeds 2.0%, the toughness, ductility and weldability of the base material are significantly deteriorated, so the content is limited to the range of 0.3 to 2.0%. Preferably, it is 0.4 to 1.9%.

P:0.015%以下、S:0.003%以下
Pは鋼の強度を増加させ靭性を劣化させるとともに、島状マルテンサイトの生成を助長して、局部伸びの低下により全伸びを低下させるため、0.015%を上限とする。可能なかぎり低減することが望ましいが、過度の低減は精錬コストを高騰させ経済的に不利となるため、0.001%以上とすることが望ましい。
P: 0.015% or less, S: 0.003% or less P increases the strength of steel and deteriorates toughness, promotes the formation of island martensite, and reduces the total elongation due to a decrease in local elongation. Therefore, the upper limit is 0.015%. Although it is desirable to reduce it as much as possible, excessive reduction raises the refining cost and is economically disadvantageous, so 0.001% or more is desirable.

Sは母材の低温靭性や延性を劣化させるため、0.003%を上限として可能なかぎり低減することが望ましい。   Since S deteriorates the low-temperature toughness and ductility of the base material, it is desirable to reduce 0.003% as much as possible.

Al:0.07%以下
Alは、脱酸剤として作用し、鋼材の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中のNをAlNとして固定し、母材および溶接部の靭性向上に寄与する。一方、0.07%を超えて含有すると、母材の靭性が低下するとともに、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.07%以下に限定する。
Al: 0.07% or less Al acts as a deoxidizing agent and is most commonly used in the molten steel deoxidizing process of steel. Further, N in the steel is fixed as AlN, which contributes to improvement of the toughness of the base material and the welded portion. On the other hand, if the content exceeds 0.07%, the toughness of the base metal is lowered and mixed into the weld metal part during welding to deteriorate the toughness of the weld metal, so the content is limited to 0.07% or less.

N:0.01%以下
Nは不可避的不純物として鋼中に含まれ、0.01%を超えて含有すると、母材および溶接部靭性が著しく低下するため、0.01%以下に限定する。
N: 0.01% or less N is contained in steel as an unavoidable impurity, and if it exceeds 0.01%, the toughness of the base metal and the welded portion is remarkably reduced, so it is limited to 0.01% or less.

以上が、本発明の基本成分組成であるが、更に、特性を向上させるため、Cu、Ni、Cr、Mo、Nb、V、Ti、B、REM、Ca、Mgの1種または2種以上を含有することができる。   The above is the basic component composition of the present invention, but in order to further improve the characteristics, one or more of Cu, Ni, Cr, Mo, Nb, V, Ti, B, REM, Ca, Mg are added. Can be contained.

Cu、Ni、Cr、Mo、Nb、V、Ti、Bは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。
Cu:1.5%以下
Cuを添加する場合は、0.1%以上とすることが好ましいが、1.5%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるため、1.5%以下とする。
Cu, Ni, Cr, Mo, Nb, V, Ti, and B are all elements that contribute to improving the strength of steel, and can be appropriately contained depending on the desired strength.
Cu: 1.5% or less When Cu is added, the content is preferably 0.1% or more. However, if it exceeds 1.5%, hot brittleness is caused to deteriorate the surface properties of the steel sheet. 5% or less.

Ni:2.0%以下
Niを添加する場合は、0.1%以上とすることが好ましいが、2.0%を超えると効果が飽和し、経済的に不利になるため、2.0%以下とする。
Ni: 2.0% or less When adding Ni, it is preferable to make it 0.1% or more, but if it exceeds 2.0%, the effect is saturated and economically disadvantageous, so 2.0% The following.

Cr:1.0%以下
Crを添加する場合は、0.05%以上とすることが好ましいが、1.0%を超えて含有すると、母材靭性、延性および溶接性が著しく劣化するため、1.0%以下とする。
Cr: 1.0% or less When adding Cr, it is preferable to be 0.05% or more, but if it exceeds 1.0%, the base material toughness, ductility and weldability deteriorate significantly, 1.0% or less.

Mo:1.0%以下
Moを添加する場合は、0.05%以上とすることが好ましいが、1.0%を超えると、母材靭性、延性および耐溶接割れ性に悪影響を及ぼすため、1.0%以下とする。
Mo: 1.0% or less When adding Mo, 0.05% or more is preferable, but if it exceeds 1.0%, the base material toughness, ductility and weld crack resistance are adversely affected. 1.0% or less.

Nb:0.1%以下
Nbを添加する場合は、0.005%以上とすることが好ましいが、0.1%を超えると、母材靭性および延性を劣化させるため、0.1%以下とする。
Nb: 0.1% or less When Nb is added, the content is preferably 0.005% or more. However, if it exceeds 0.1%, the base material toughness and ductility are deteriorated. To do.

V:0.1%以下
Vを添加する場合は、0.01%以上とすることが好ましいが、0.1%を超えると、母材靭性および延性を劣化させるため、0.1%以下とする。
V: 0.1% or less When adding V, it is preferably 0.01% or more. However, if it exceeds 0.1%, the base material toughness and ductility are deteriorated. To do.

Ti:0.03%以下
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、溶接熱影響部でのオーステナイト粒の粗大化を抑制して高靭化に寄与する添加元素である。一方、0.03%を超えて添加するとTiN粒子が粗大化して、母材および溶接部靭性を劣化させるため、0.03%以下とする。
Ti: 0.03% or less Ti is an additive element that has a strong affinity for N and precipitates as TiN during solidification and contributes to high toughness by suppressing coarsening of austenite grains in the weld heat affected zone. On the other hand, if added over 0.03%, TiN particles become coarse and deteriorate the base material and weld toughness, so the content is made 0.03% or less.

B:0.005%以下
Bは、焼入れ性の向上を介して、鋼の強度を増加させる作用を有するので添加する場合は0.0005%以上とすることが好ましい。一方、0.005%を超える含有は焼入れ性を著しく増加させ、母材の靭性、延性の劣化をもたらすため、0.005%以下とする。
B: 0.005% or less B has an effect of increasing the strength of the steel through the improvement of hardenability, so when added, it is preferably made 0.0005% or more. On the other hand, if the content exceeds 0.005%, the hardenability is remarkably increased and the toughness and ductility of the base material are deteriorated, so the content is made 0.005% or less.

REM、CaおよびMgは、いずれも靭性向上に寄与し、所望する特性に応じて選択して添加する。   REM, Ca, and Mg all contribute to the improvement of toughness, and are selected and added according to desired characteristics.

REM:0.02%以下
REMを添加する場合は、0.002%以上とすることが好ましいが、0.02%を超えても効果が飽和するため、0.02%を上限とする。
REM: 0.02% or less When REM is added, the content is preferably 0.002% or more. However, if the content exceeds 0.02%, the effect is saturated, so 0.02% is made the upper limit.

Ca:0.005%以下
Caを添加する場合は、0.0005%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。
Ca: 0.005% or less When Ca is added, the content is preferably 0.0005% or more, but even if it exceeds 0.005%, the effect is saturated, so 0.005% is made the upper limit.

Mg:0.005%以下
Mgを添加する場合は、0.001%以上とすることが好ましいが、0.005%を超えても効果が飽和するため、0.005%を上限とする。
Mg: 0.005% or less When adding Mg, the content is preferably 0.001% or more. However, if the content exceeds 0.005%, the effect is saturated, so 0.005% is made the upper limit.

上記成分以外の残部は、Feおよび不可避的不純物である。   The balance other than the above components is Fe and inevitable impurities.

[ミクロ組織]
本発明では、引張強度590MPa以上と優れた低温靭性を両立させ、さらに高い一様伸びを確保するため、ミクロ組織を軟質相のポリゴナルフェライト相と硬質相の上部ベイナイト相の混合組織(複相組織)とする。
[Microstructure]
In the present invention, in order to achieve both a tensile strength of 590 MPa or more and excellent low temperature toughness, and to secure a high uniform elongation, the microstructure is a mixed structure of a polygonal ferrite phase of a soft phase and an upper bainite phase of a hard phase (double phase). Organization).

また、局部伸びを向上させるため、ポリゴナルフェライト相の結晶粒径と上部ベイナイト相中の島状マルテンサイト量を規定する。   Further, in order to improve the local elongation, the crystal grain size of the polygonal ferrite phase and the amount of island martensite in the upper bainite phase are defined.

ポリゴナルフェライト相の面積分率が10%未満では、一様伸びを上昇する効果が得られない。一方、面積分率が45%を超えると引張強度が低下し、引張強度590MPa以上を満足できない。このため、ポリゴナルフェライト相の面積分率は10〜45%とする。   If the area fraction of the polygonal ferrite phase is less than 10%, the effect of increasing uniform elongation cannot be obtained. On the other hand, if the area fraction exceeds 45%, the tensile strength decreases and the tensile strength of 590 MPa or more cannot be satisfied. For this reason, the area fraction of the polygonal ferrite phase is 10 to 45%.

ポリゴナルフェライト相の平均結晶粒径が18μmより大きければ、低温靭性が劣化するだけでなく、引張試験時にはマイクロボイドの発生を助長し、局部伸びが低下する。このためポリゴナルフェライト相の平均結晶粒径は18μm以下とする。   If the average crystal grain size of the polygonal ferrite phase is larger than 18 μm, not only the low temperature toughness is deteriorated, but also microvoids are promoted during the tensile test, and the local elongation is lowered. Therefore, the average crystal grain size of the polygonal ferrite phase is set to 18 μm or less.

また、ポリゴナルフェライト相の結晶粒径の標準偏差が8μmより大きければ、粗大粒が存在することになり、引張試験時に粗大結晶粒近傍の結晶粒界に歪が集中して、マイクロボイドの発生を助長し、局部伸びが低下する。このため、ポリゴナルフェライト相の結晶粒径の標準偏差は8μm以下とする。   In addition, if the standard deviation of the grain size of the polygonal ferrite phase is larger than 8 μm, coarse grains will exist, and strain will concentrate at the grain boundaries near the coarse grains during the tensile test, generating microvoids. And local growth is reduced. For this reason, the standard deviation of the crystal grain size of the polygonal ferrite phase is 8 μm or less.

上部ベイナイト相中の島状マルテンサイトの面積分率が5%を超えると、引張試験時に島状マルテンサイトと母相の界面に歪が集中することになり、マイクロボイドの発生を助長し、局部伸びが低下する。このため、上部ベイナイト相中の島状マルテンサイトの面積分率は5%以下とする。   If the area fraction of island martensite in the upper bainite phase exceeds 5%, strain concentrates on the interface between the island martensite and the parent phase during the tensile test, which promotes the generation of microvoids and increases the local elongation. descend. For this reason, the area fraction of island martensite in the upper bainite phase is set to 5% or less.

混合組織は、本発明の作用効果を損なわない程度に他の組織を少量含むものであってもよい。軟質相として、加工フェライトが混在すると一様伸びが低下するが面積分率で5%以下の場合には影響が無視できる。硬質相として、パーライトが混在すると強度低下を招き、下部ベイナイトやマルテンサイトが混在すると局部伸びを低下させるが、パーライト、下部ベイナイトおよびマルテンサイト等を合計した硬質第2相組織の面積分率が5%以下の場合には影響が無視できる。   The mixed tissue may contain a small amount of other tissues to the extent that the effects of the present invention are not impaired. When processed ferrite is mixed as a soft phase, the uniform elongation decreases, but the influence can be ignored when the area fraction is 5% or less. When the pearlite is mixed as the hard phase, the strength is reduced, and when the lower bainite and martensite are mixed, the local elongation is decreased. However, the area fraction of the hard second phase structure including the pearlite, the lower bainite, and martensite is 5 The effect is negligible when it is less than%.

以上の説明において、面積分率とは鋼板断面のミクロ組織から測定される領域中の平均の面積分率を示す。ポリゴナルフェライト相の同定は、例えば、鋼板の圧延方向と平行な断面について、ミクロ組織観察用サンプルを採取し、ナイタール腐食の後、倍率400倍の光学顕微鏡で観察される組織を撮影し、画像解析装置を用いて行う。   In the above description, the area fraction indicates the average area fraction in the region measured from the microstructure of the steel sheet cross section. For example, the polygonal ferrite phase is identified by taking a microstructure observation sample for a cross section parallel to the rolling direction of the steel sheet, photographing the structure observed with an optical microscope at a magnification of 400 times after the nital corrosion, Use an analysis device.

島状マルテンサイトの面積分率は、試料にレペラ腐食(JOURNAL OF METALS、March、1980、p.38−39)を実施して倍率1000倍の光学顕微鏡で観察される組織を撮影し、画像解析装置を用いて求めた。   The area fraction of island-like martensite was measured by imaging the structure observed with an optical microscope at a magnification of 1000 times after performing a repeller corrosion (JOURNAL OF METALS, March, 1980, p.38-39) on the sample. It was determined using an apparatus.

本発明鋼の好ましい製造条件は以下の様である。説明において、温度に関する「℃」表示は、板厚の1/2における温度を意味するものとする。   Preferred production conditions for the steel of the present invention are as follows. In the description, the “° C.” display relating to the temperature means a temperature at half the plate thickness.

鋼素材加熱温度:1000℃〜1250℃
上述した組成の鋳片または鋼片の鋼素材を転炉、電気炉、真空溶解炉等、通常公知の方法による溶鋼から製造し、1000℃〜1250℃に再加熱する。
Steel material heating temperature: 1000 ° C-1250 ° C
A steel material of a slab or steel slab having the above-described composition is produced from molten steel by a generally known method such as a converter, electric furnace, vacuum melting furnace, etc., and reheated to 1000 ° C to 1250 ° C.

再加熱温度が1000℃未満では、熱間圧延での変形抵抗が高く、1パス当たりの圧下量が大きく取れず、圧延パス数が増加し、圧延能率の低下を招くとともに、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合が生じる。   If the reheating temperature is less than 1000 ° C., the deformation resistance in hot rolling is high, the amount of rolling per pass cannot be increased, the number of rolling passes increases, the rolling efficiency decreases, and the steel material (slab) There are cases where the casting defects inside cannot be crimped.

一方、再加熱温度が1250℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。また、結晶粒が粗大化して所望のミクロ組織が得られず、局部伸びが低下して全伸びが低下するため、1000〜1250℃の範囲とする。   On the other hand, when the reheating temperature exceeds 1250 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases. Moreover, since a crystal grain coarsens and a desired micro structure is not obtained and local elongation falls and total elongation falls, it is set as the range of 1000-1250 degreeC.

熱間圧延:900℃以下での累積圧下率が30%以上、圧延終了温度:Ar〜Ar+80℃
900℃以下での累積圧下率が30%未満では、靭性が劣化するとともに、オーステナイト粒への加工歪の導入が不足し、最終組織のポリゴナルフェライト粒の平均結晶粒径が大きくなるとともに、粗大粒が混在して、局部伸びの低下により全伸びが低下する。
Hot rolling: Cumulative rolling reduction at 900 ° C. or lower is 30% or more, Rolling end temperature: Ar 3 to Ar 3 + 80 ° C.
If the cumulative rolling reduction at 900 ° C. or less is less than 30%, the toughness is deteriorated, the introduction of processing strain into the austenite grains is insufficient, the average crystal grain size of the polygonal ferrite grains in the final structure is increased, and the coarseness is increased. Grains are mixed, and the total elongation is reduced due to a decrease in local elongation.

圧延終了温度がAr+80℃より高い場合には、オーステナイト粒への加工歪の導入が不足し、最終組織のポリゴナルフェライト粒の平均結晶粒径が大きくなるだけでなく、粗大粒が混在して、局部伸びの低下により全伸びが低下する。 When the rolling end temperature is higher than Ar 3 + 80 ° C., the introduction of processing strain into the austenite grains is insufficient, and not only the average crystal grain size of the polygonal ferrite grains in the final structure becomes large but also coarse grains are mixed. Thus, the total elongation decreases due to the decrease in local elongation.

一方、圧延終了温度がAr未満の場合、初析フェライトを圧延するので、転位を含む加工フェライトが生成して、一様伸びの低下により全伸びが低下するので、圧延終了温度はAr〜Ar+80℃とする。 On the other hand, if the rolling end temperature is less than Ar 3, since rolling the pro-eutectoid ferrite generates the deformed ferrite containing dislocations, because the total elongation is decreased by a decrease in uniform elongation, the finish rolling temperature is Ar 3 ~ Ar 3 + 80 ° C.

板厚が70mmを超える極厚鋼板の場合には、ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。   In the case of an extremely thick steel plate having a plate thickness exceeding 70 mm, it is desirable to secure at least one rolling pass at which the rolling reduction per pass is 15% or more for the Zaku pressure bonding.

熱間圧延後の冷却:熱間圧延後、Ar−60℃〜Ar−10℃の温度まで放冷をした後、冷却速度3〜100℃/sで400〜600℃まで加速冷却
熱間圧延後の放冷をAr−10℃よりも高い温度で終了して加速冷却を開始すると、ポリゴナルフェライトが得られず、一様伸びの低下により全伸びが低下する。
Cooling after hot rolling: After hot rolling, after cooling to a temperature of Ar 3 -60 ° C to Ar 3 -10 ° C, accelerated cooling to 400 to 600 ° C at a cooling rate of 3 to 100 ° C / s When cooling after rolling is finished at a temperature higher than Ar 3 -10 ° C. and accelerated cooling is started, polygonal ferrite cannot be obtained, and the total elongation is lowered due to a decrease in uniform elongation.

一方、Ar−60℃未満まで放冷した場合には、ポリゴナルフェライト量が過剰になるとともに、硬質第2相として粗大なパーライトが混在するようになり、引張強度が低下する。このため、熱間圧延後の放冷は、Ar−60℃〜Ar−10℃の範囲とする。 On the other hand, when it is allowed to cool to less than Ar 3 −60 ° C., the amount of polygonal ferrite becomes excessive, and coarse pearlite is mixed as the hard second phase, resulting in a decrease in tensile strength. Therefore, cooling after hot rolling is in the range of Ar 3 -60 ℃ ~Ar 3 -10 ℃ .

放冷後の加速冷却の冷却速度が3℃/s未満では、ポリゴナルフェライト量が過剰になるとともに、硬質第2相として粗大なパーライトが混在し、引張強度が低下する。   When the cooling rate of accelerated cooling after standing to cool is less than 3 ° C./s, the amount of polygonal ferrite becomes excessive, coarse pearlite is mixed as the hard second phase, and the tensile strength is lowered.

一方、冷却速度が100℃/sを超えると、鋼板内の各位置における温度制御が困難となり、引張特性などの材質上のばらつきが生じる。   On the other hand, when the cooling rate exceeds 100 ° C./s, it becomes difficult to control the temperature at each position in the steel sheet, resulting in variations in materials such as tensile properties.

加速冷却の停止温度が600℃よりも高いと、ポリゴナルフェライト量が過剰になるとともに、硬質第2相として粗大なパーライトが混在し、引張強度が低下する。一方、400℃未満になると、硬質第2相に下部ベイナイトやマルテンサイトが混入し、局部伸びの低下を介して全伸びが低下する。以上より、加速冷却は冷却速度:3〜100℃/sで冷却停止温度:400〜600℃とする。加速冷却の停止後は、室温まで放冷する。   When the accelerated cooling stop temperature is higher than 600 ° C., the amount of polygonal ferrite becomes excessive, coarse pearlite is mixed as the hard second phase, and the tensile strength is lowered. On the other hand, if it becomes less than 400 degreeC, a lower bainite and a martensite will mix in a hard 2nd phase, and total elongation will fall through the fall of local elongation. From the above, accelerated cooling is performed at a cooling rate of 3 to 100 ° C./s and a cooling stop temperature of 400 to 600 ° C. After accelerating cooling stops, it is allowed to cool to room temperature.

なお、Ar(℃)は例えば、下式で求めることができる。
Ar=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
(元素記号は鋼材中の各元素の含有量(質量%)を表す)
本発明では、加速冷却後、焼戻し処理を施しても良い。焼戻し温度は、母材の靭性および延性を向上させるため400℃以上とし、一方、650℃を超えると母材強度が大幅に低下するため、400〜650℃で行うことが望ましい。保持時間は母材強度が低下しないように板厚によって適宜調整する。板厚10〜100mmの場合、1hrを超えると、母材強度が大幅に低下するので1hr以内とするが、熱処理炉内の均熱状態が良ければ、短時間の保持でもかまわない。
Ar 3 (° C.) can be obtained by the following equation, for example.
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
(The element symbol represents the content (% by mass) of each element in the steel)
In the present invention, tempering treatment may be performed after accelerated cooling. The tempering temperature is set to 400 ° C. or higher in order to improve the toughness and ductility of the base material. On the other hand, if it exceeds 650 ° C., the strength of the base material is greatly reduced. The holding time is appropriately adjusted depending on the plate thickness so that the strength of the base material does not decrease. In the case of a plate thickness of 10 to 100 mm, if it exceeds 1 hr, the strength of the base material is significantly reduced, so that it is within 1 hr. However, if the soaking state in the heat treatment furnace is good, it may be held for a short time.

転炉−取鍋精錬−連続鋳造法で、種々の成分組成の鋼スラブを、熱間圧延により板厚12mm以上の鋼板とした後、加速冷却し、一部の鋼板には、更に焼戻し処理を施した。表1に供試鋼の成分組成を示す。   After converting steel slabs of various component compositions into steel plates with a thickness of 12 mm or more by hot rolling by converter-ladder refining-continuous casting method, accelerated cooling is performed, and some steel plates are further tempered. gave. Table 1 shows the component composition of the test steel.

Figure 0005573265
Figure 0005573265

得られた鋼板の板厚1/2位置で圧延方向と直角な方向から、JIS4号引張試験片を採取し、JISZ2241(1998年)の既定に準拠して引張試験を実施し、引張特性を調査した。   JIS No. 4 tensile test specimens were sampled from the direction perpendicular to the rolling direction at the plate thickness 1/2 position of the obtained steel sheet, and tensile tests were conducted in accordance with JISZ2241 (1998) defaults to investigate the tensile properties. did.

各鋼板の板厚1/2位置で圧延方向と直角な方向から、JISZ2202(1998年)の規定に準拠してVノッチ試験片を採取し、JISZ2242(1998年)の規定に準拠してシャルピー衝撃試験を実施し、延性−脆性破面遷移温度(vTrs)を求め、母材靭性を評価した。ミクロ組織観察用の試験片を、板厚1/2位置から採取して、先に述べた方法で、ミクロ組織を観察した。   V-notch test specimens were collected from the direction perpendicular to the rolling direction at a thickness 1/2 position of each steel plate in accordance with JISZ2202 (1998) and Charpy impact in accordance with JISZ2242 (1998). A test was conducted to determine the ductile-brittle fracture surface transition temperature (vTrs), and the base material toughness was evaluated. A specimen for microstructural observation was taken from a position of 1/2 the plate thickness, and the microstructure was observed by the method described above.

表2に製造条件(熱間圧延、加速冷却)およびミクロ組織観察結果を、表3に引張特性とシャルピー衝撃試験結果を示す。表2において、組織形態の欄のFはポリゴナルフェライト相、UBは上部ベイナイト相、LBは下部ベイナイト相、Pはパーライト相をそれぞれ示している。なお、表2、3の鋼No.は共通とする。   Table 2 shows manufacturing conditions (hot rolling, accelerated cooling) and microstructure observation results, and Table 3 shows tensile properties and Charpy impact test results. In Table 2, F in the column of structure form indicates a polygonal ferrite phase, UB indicates an upper bainite phase, LB indicates a lower bainite phase, and P indicates a pearlite phase. In Tables 2 and 3, the steel No. Are common.

Figure 0005573265
Figure 0005573265

Figure 0005573265
Figure 0005573265

発明例(鋼No.1−1、1−2、2、3−1、3−2、4−1、5、6−1、6−2、7、8)は、いずれも引張強度590MPa以上の高強度、vTrs<−80℃の高靭性、且つ全伸び32%以上の高延性の母材特性を有することが確認された。
一方、比較例(鋼No.1−3〜1−7、3−3〜3−5、4−2、6−3〜6−6、9〜13)は、強度、靭性、延性のいずれか、あるいは複数の特性が目標値を満足しない。
Inventive examples (steel Nos. 1-1, 1-2, 2, 3-1, 3-2, 4-1, 5, 6-1, 6-2, 7, 8) all have a tensile strength of 590 MPa or more. Of high strength, vTrs <−80 ° C., and high ductility base material characteristics with a total elongation of 32% or more.
On the other hand, Comparative Examples (Steel Nos. 1-3 to 1-7, 3-3 to 3-5, 4-2, 6-3 to 6-6, 9 to 13) are either strength, toughness, or ductility. Or a plurality of characteristics do not satisfy the target value.

Claims (5)

質量%で、
C:0.03〜0.20%
Si:0.05〜0.60%
Mn:0.3〜2.0%
P:0.015%以下
S:0.003%以下
Al:0.07%以下
N:0.01%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼組成と、
ポリゴナルフェライト相と上部ベイナイト相の混合組織であって,ポリゴナルフェライト相の面積分率が10〜45%、平均結晶粒径が18μm以下,結晶粒径の標準偏差が8μm以下で、上部ベイナイト相中の島状マルテンサイトの面積分率が5%以下となるミクロ組織を備えたことを特徴とする引張強度590MPa以上の延靭性に優れた高強度厚鋼板。
% By mass
C: 0.03-0.20%
Si: 0.05-0.60%
Mn: 0.3 to 2.0%
P: 0.015% or less S: 0.003% or less Al: 0.07% or less N: 0.01% or less, the steel composition comprising the balance of Fe and inevitable impurities,
A mixed structure of a polygonal ferrite phase and an upper bainite phase, the area fraction of the polygonal ferrite phase is 10 to 45%, the average crystal grain size is 18 μm or less, and the standard deviation of the crystal grain size is 8 μm or less. A high-strength thick steel plate excellent in ductility having a tensile strength of 590 MPa or more, comprising a microstructure in which the area fraction of island-like martensite in the phase is 5% or less.
鋼組成に、質量%で、更に、
Cu:1.5%以下
Ni:2.0%以下
Cr:1.0%以下
Mo:1.0%以下
Nb:0.1%以下
V:0.1%以下
Ti:0.03%以下
B:0.005%以下
の1種または2種以上を含有することを特徴とする請求項1記載の引張強度590MPa以上の延靭性に優れた高強度厚鋼板。
In steel composition by mass%,
Cu: 1.5% or less Ni: 2.0% or less Cr: 1.0% or less Mo: 1.0% or less Nb: 0.1% or less V: 0.1% or less Ti: 0.03% or less B The high-strength thick steel plate excellent in ductility having a tensile strength of 590 MPa or more according to claim 1, comprising one or more of 0.005% or less.
鋼組成に、質量%で、更に、
REM:0.02%以下
Ca:0.005%以下
Mg:0.005%以下
の1種または2種以上を含有することを特徴とする請求項1または2記載の引張強度590MPa以上の延靭性に優れた高強度厚鋼板。
In steel composition by mass%,
3. REM: 0.02% or less, Ca: 0.005% or less, Mg: 0.005% or less, containing 1 type or 2 types or more, Tensile strength with a tensile strength of 590 MPa or more according to claim 1 or 2 Excellent high-strength thick steel plate.
請求項1乃至3のいずれか一つに記載した鋼組成からなる鋳片または鋼片を,1000〜1250℃に再加熱後、900℃以下での累積圧下率が30%以上で、かつAr〜Ar+80℃の温度で終了する熱間圧延を行い、Ar−60℃〜Ar−10℃の温度まで放冷をした後、3〜100℃/sで420〜600℃の冷却停止温度まで加速冷却を行うことを特徴とするポリゴナルフェライト相と上部ベイナイト相の混合組織であって,ポリゴナルフェライト相の面積分率が10〜45%、平均結晶粒径が18μm以下、結晶粒径の標準偏差が8μm以下で、上部ベイナイト相中の島状マルテンサイトの面積分率が5%以下となるミクロ組織を備える引張強度590MPa以上の延靭性に優れた高強度厚鋼板の製造方法。ただし、Ar は下記式から求める。
Ar =910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
(元素記号は鋼材中の各元素の含有量(質量%)を表す。)
A slab or steel slab comprising the steel composition according to any one of claims 1 to 3 is reheated to 1000 to 1250 ° C, and the cumulative reduction at 900 ° C or lower is 30% or more, and Ar 3 After performing hot rolling that ends at a temperature of ˜Ar 3 + 80 ° C. and allowing to cool to a temperature of Ar 3 −60 ° C. to Ar 3 −10 ° C. , cooling is stopped at 420 to 600 ° C. at 3 to 100 ° C./s. A mixed structure of a polygonal ferrite phase and an upper bainite phase characterized by accelerated cooling to a temperature, wherein the area fraction of the polygonal ferrite phase is 10 to 45%, the average crystal grain size is 18 μm or less, and the crystal grains A method for producing a high-strength thick steel sheet having a tensile strength of 590 MPa or more and having a microstructure in which the standard deviation of diameter is 8 μm or less and the area fraction of island martensite in the upper bainite phase is 5% or less . However, Ar 3 is obtained from the following formula.
Ar 3 = 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
(The element symbol represents the content (mass%) of each element in the steel.)
加速冷却後、更に、400〜650℃で焼戻すことを特徴とする請求項4記載の引張強度590MPa以上の延靭性に優れた高強度厚鋼板の製造方法。   The method for producing a high-strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more according to claim 4, further comprising tempering at 400 to 650 ° C. after accelerated cooling.
JP2010063547A 2010-03-19 2010-03-19 High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same Active JP5573265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063547A JP5573265B2 (en) 2010-03-19 2010-03-19 High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063547A JP5573265B2 (en) 2010-03-19 2010-03-19 High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011195883A JP2011195883A (en) 2011-10-06
JP5573265B2 true JP5573265B2 (en) 2014-08-20

Family

ID=44874470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063547A Active JP5573265B2 (en) 2010-03-19 2010-03-19 High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same

Country Status (1)

Country Link
JP (1) JP5573265B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532253A (en) * 2015-03-31 2018-01-02 杰富意钢铁株式会社 High intensity/ductility steel plate and its manufacture method
CN110592462A (en) * 2019-09-19 2019-12-20 舞阳钢铁有限责任公司 Steel plate for low-temperature equipment and production method thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2553172C1 (en) 2011-09-27 2015-06-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot roll for use in pipeline and method of its manufacturing
JP5910792B2 (en) 2013-02-28 2016-04-27 Jfeスチール株式会社 Thick steel plate and method for manufacturing thick steel plate
CN103320692B (en) * 2013-06-19 2016-07-06 宝山钢铁股份有限公司 Superhigh tenacity, superior weldability HT550 steel plate and manufacture method thereof
JP5876864B2 (en) 2013-12-16 2016-03-02 株式会社神戸製鋼所 Marine forged steel products
CN103820708B (en) * 2014-03-05 2016-05-25 江苏常宝钢管股份有限公司 The preparation method of boracic seamless line pipe for marine oil and gas exploitation
JP6303628B2 (en) * 2014-03-07 2018-04-04 新日鐵住金株式会社 Hot rolled steel sheet for ERW steel pipe with a thickness of 15mm or more
CA2979021C (en) 2015-03-16 2019-04-09 Jfe Steel Corporation Steel material for composite pressure vessel liner, steel pipe or tube for composite pressure vessel liner, and method of manufacturing steel pipe or tube for composite pressure vessel liner
WO2016157862A1 (en) * 2015-03-31 2016-10-06 Jfeスチール株式会社 High strength/high toughness steel sheet and method for producing same
JP6365793B2 (en) 2016-08-12 2018-08-01 Jfeスチール株式会社 Composite container pressure accumulator liner, composite container pressure accumulator, and method of manufacturing a composite container pressure accumulator liner
KR102336669B1 (en) * 2017-04-21 2021-12-07 닛폰세이테츠 가부시키가이샤 High-strength hot-dip galvanized steel sheet and its manufacturing method
KR102020415B1 (en) 2017-12-24 2019-09-10 주식회사 포스코 High strength steel sheet having excellent low yield ratio property, and manufacturing method for the same
CN109338219B (en) * 2018-11-06 2020-01-07 鞍钢股份有限公司 Super-thick steel plate for wind power flange and production method thereof
KR102142774B1 (en) * 2018-11-08 2020-08-07 주식회사 포스코 High strength steel plate for structure with a good seawater corrosion resistive property and method of manufacturing thereof
KR102119975B1 (en) * 2018-11-29 2020-06-08 주식회사 포스코 High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio
RU2728981C1 (en) * 2020-02-03 2020-08-03 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Rolled stock for casing and tubing pipes and method of its production
CN111349859B (en) * 2020-05-09 2021-07-30 安徽工业大学 Large-thickness 500 MPa-level high-Z-direction laminar-performance low-temperature container steel plate rolled by composite blank and manufacturing method thereof
CN113481438A (en) * 2021-07-06 2021-10-08 攀钢集团攀枝花钢铁研究院有限公司 Hot galvanizing high-strength low-alloy steel 590BQ and smelting method thereof
CN113930684B (en) * 2021-10-13 2022-08-16 鞍钢股份有限公司 Economical aging-resistant high-strain precipitation-strengthened pipeline steel and production method thereof
CN114182174B (en) * 2021-11-26 2022-06-28 湖南华菱湘潭钢铁有限公司 Production method of high-strength and high-toughness bridge structural steel plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615689B2 (en) * 1987-05-19 1994-03-02 新日本製鐵株式会社 Method of manufacturing low yield ratio high strength steel
JPH02217417A (en) * 1989-02-17 1990-08-30 Kawasaki Steel Corp Production of non-heattreated high tensile steel sheet excellent in dwtt characteristic
US8110292B2 (en) * 2008-04-07 2012-02-07 Nippon Steel Corporation High strength steel plate, steel pipe with excellent low temperature toughness, and method of production of same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107532253A (en) * 2015-03-31 2018-01-02 杰富意钢铁株式会社 High intensity/ductility steel plate and its manufacture method
CN107532253B (en) * 2015-03-31 2019-06-21 杰富意钢铁株式会社 High intensity/ductility steel plate and its manufacturing method
US10640841B2 (en) 2015-03-31 2020-05-05 Jfe Steel Corporation High-strength, high-toughness steel plate and method for producing the same
CN110592462A (en) * 2019-09-19 2019-12-20 舞阳钢铁有限责任公司 Steel plate for low-temperature equipment and production method thereof

Also Published As

Publication number Publication date
JP2011195883A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP5487682B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP5487683B2 (en) High-toughness high-tensile steel plate with excellent strength-elongation balance and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP6725020B2 (en) Valve plate and method for manufacturing valve plate
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5786720B2 (en) High tensile thick steel plate having a tensile strength of 780 MPa or more and method for producing the same
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP5369462B2 (en) Low yield ratio high strength steel sheet and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP6210112B2 (en) High strength steel material with excellent fatigue characteristics and method for producing the same
JP6421907B1 (en) Rolled H-section steel and its manufacturing method
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less
JP5446900B2 (en) High tensile hot-rolled steel sheet having high bake hardenability and excellent stretch flangeability and method for producing the same
JP2012102402A (en) Manufacturing method of steel member having excellent resistance property in fatigue crack propagation

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250