JP5130796B2 - Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same - Google Patents

Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same Download PDF

Info

Publication number
JP5130796B2
JP5130796B2 JP2007158284A JP2007158284A JP5130796B2 JP 5130796 B2 JP5130796 B2 JP 5130796B2 JP 2007158284 A JP2007158284 A JP 2007158284A JP 2007158284 A JP2007158284 A JP 2007158284A JP 5130796 B2 JP5130796 B2 JP 5130796B2
Authority
JP
Japan
Prior art keywords
less
yield
strength
affected zone
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007158284A
Other languages
Japanese (ja)
Other versions
JP2008308736A (en
Inventor
圭治 植田
公宏 西村
茂 遠藤
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007158284A priority Critical patent/JP5130796B2/en
Publication of JP2008308736A publication Critical patent/JP2008308736A/en
Application granted granted Critical
Publication of JP5130796B2 publication Critical patent/JP5130796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、溶接入熱が200kJ/cmを超える超大入熱溶接でも溶接熱影響部の靭性に優れる、降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下で、建築用として好適な、板厚12mm以上の低降伏比高強度厚鋼板およびその製造方法に関する。   The present invention is excellent in toughness of the weld heat affected zone even in super-high heat input welding with a welding heat input exceeding 200 kJ / cm, with a yield strength (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less. The present invention relates to a low yield ratio high strength thick steel plate having a thickness of 12 mm or more and a method for producing the same.

近年、建築構造物の大型化、長スパン化に伴い、使用される鋼材の厚肉化、高強度化が要望され、鋼構造物の安全性の観点からは、高い許容応力を有するとともに、降伏比を低減することが要求されている。   In recent years, with the increase in size and span of building structures, it has been required to increase the thickness and strength of steel used. From the viewpoint of safety of steel structures, it has high allowable stress and yield. There is a need to reduce the ratio.

降伏比を低減すると、降伏点以上の応力が付加されても破壊までに許容される応力が大きくなり、また、一様伸びが大きくなるため、塑性変形能に優れた鋼材となる。   When the yield ratio is reduced, even if a stress higher than the yield point is applied, the stress allowed until failure increases, and the uniform elongation increases, so that the steel material is excellent in plastic deformability.

特に、引張強さが780MPaを超える高張力鋼板では、強度確保のために合金を多量に添加することが一般的であるため、降伏比が上昇する傾向で、靭性も低下する。   In particular, in a high-tensile steel sheet having a tensile strength exceeding 780 MPa, it is common to add a large amount of an alloy for securing the strength, so that the yield ratio tends to increase and the toughness also decreases.

従来、低降伏比高強度厚鋼板の製造プロセスとしては、フェライト+オーステナイト2相域への再加熱焼入れを含む多段熱処理が一般的であるが、得られるミクロ組織は、フェライト相を主体とし、硬質第2相としてベイナイトあるいはマルテンサイトを分散させるため、フェライト相の体積分率によっては、780MPa以上の引張強度、650MPa以上の降伏強さ(YP)を安定して達成することが困難である。   Conventionally, a multistage heat treatment including reheating and quenching into a ferrite + austenite two-phase region is generally used as a manufacturing process of a low yield ratio high strength thick steel plate, but the obtained microstructure is mainly composed of a ferrite phase and is hard. Since bainite or martensite is dispersed as the second phase, it is difficult to stably achieve a tensile strength of 780 MPa or more and a yield strength (YP) of 650 MPa or more depending on the volume fraction of the ferrite phase.

一方、構造物に鋼板を使用する場合は、一般に溶接接合が用いられ、安全性の観点から、使用される鋼材の母材靭性は勿論のこと、溶接熱影響部の靭性に優れることが要求される。   On the other hand, when steel plates are used for structures, welded joints are generally used, and from the viewpoint of safety, it is required that the base material toughness of the steel used is excellent as well as the toughness of the heat affected zone. The

近年では、建築構造物の大型化に伴い、使用鋼材の厚肉化が要望され、構造物の施工能率向上と施工コストの低減の観点から、大入熱溶接の適用範囲が拡大している。例えば、建築構造の柱−梁溶接では、サブマージアーク溶接などの溶接入熱が200kJ/cmを超えるような大入熱溶接が適用されている。   In recent years, with the increase in the size of building structures, the use of thicker steel materials has been demanded, and the application range of large heat input welding has been expanded from the viewpoint of improving the construction efficiency of the structures and reducing the construction costs. For example, in column-beam welding of a building structure, high heat input welding such as submerged arc welding in which welding heat input exceeds 200 kJ / cm is applied.

また、近年、建築構造物の耐震性向上が求められ、溶接継手部についても、高い靭性を有することが要求されるようになっている。例えば、柱−梁接合部については、0℃におけるシャルピー吸収エネルギーが70Jを超えるような、高い靭性を有することが要求されている。   In recent years, improvement in earthquake resistance of building structures has been demanded, and welded joints are also required to have high toughness. For example, the column-beam joint is required to have high toughness such that the Charpy absorbed energy at 0 ° C. exceeds 70 J.

一般に、鋼材に大入熱溶接を適用した際に、最も問題となるのは、溶接熱影響部のボンド部における靭性劣化である。ボンド部は、大入熱溶接時に溶融点直下の高温に曝されて、オーステナイトの結晶粒が最も粗大化し、また引き続く冷却によって、脆弱な上部ベイナイト組織に変態し、脆化組織である島状マルテンサイトが生成して靭性が低下する。そのため、高強度、低降伏比、高靭性の母材機械的特性と大入熱溶接時に溶接熱影響部の高靭性を併せ持った厚鋼板が要望され、種々の提案がなされている。   Generally, when high heat input welding is applied to a steel material, the most serious problem is toughness deterioration in the bond portion of the weld heat affected zone. The bond portion is exposed to a high temperature just below the melting point during high heat input welding, the austenite crystal grains become the most coarse, and the subsequent cooling transforms into a fragile upper bainite structure, which is an island-like martensite that is an embrittled structure. Sites form and toughness decreases. Therefore, a thick steel plate having both high strength, low yield ratio, high toughness base metal mechanical properties and high toughness of the heat affected zone during high heat input welding has been demanded, and various proposals have been made.

特許文献1、特許文献2には、熱間圧延後の鋼板を焼入れした後、再度フェライト+オーステナイトの2相域まで加熱して焼入れを行い、高強度化と低降伏比化を達成することが記載されている。   In Patent Document 1 and Patent Document 2, after quenching the hot-rolled steel sheet, it is again heated to the two-phase region of ferrite + austenite for quenching to achieve high strength and low yield ratio. Have been described.

特許文献3には、圧延後、直ちに焼入れする直接焼入れ法により、焼入れ後のミクロ組織をベイナイト相あるいはマルテンサイト相とした後、再度フェライト+オーステナイトの2相域まで加熱し焼ならしを行い、高強度化と低降伏比化を達成することが記載されている。   In Patent Document 3, after rolling, by direct quenching immediately after quenching, the microstructure after quenching is changed to a bainite phase or a martensite phase, and then again heated to a ferrite + austenite two-phase region and subjected to normalization. It is described that high strength and low yield ratio are achieved.

特許文献4には、圧延後、一定時間経過し、フェライトを析出させた後、焼入れを行う直接焼入れ法により、フェライト相+マルテンサイト相の2相組織とし、高強度化と低降伏比化を達成することが記載されている。   In Patent Document 4, after a certain period of time has passed after rolling, ferrite is precipitated, and then a direct quenching method in which quenching is performed to obtain a two-phase structure of ferrite phase + martensite phase, thereby increasing strength and reducing yield ratio. It is described to achieve.

特許文献5には、成分調整の後、圧延後直接焼入れ法により、残留γを生成させることにより、母材の高強度化と低降伏比化と溶接部の高靭性を達成することが記載されている。   Patent Document 5 describes that after the component adjustment, residual γ is generated by a direct quenching method after rolling to achieve high strength of the base material, low yield ratio, and high toughness of the welded portion. ing.

特許文献6には、ベイナイト主体の組織にマルテンサイトあるいは島状マルテンサイトを含有させ、その体積分率、粒径、およびアスペクト比を適正に制御することにより、590MPa以上の引張強さと80%以下の低降伏比を有する母材が記載され、その製造方法として、成分調整の後、圧延後直接焼入れし、さらには、冷却停止後の再加熱処理を適正化することが記載されている。
特開2001−288512号公報 特開平6−248337号公報 特開平5−230530号公報 特開平7−97626号公報 特開2001−226740号公報 特開2006−291348号公報
In Patent Document 6, martensite or island-shaped martensite is contained in a bainite-based structure, and the volume fraction, particle size, and aspect ratio are appropriately controlled, whereby a tensile strength of 590 MPa or more and 80% or less. A base material having a low yield ratio is described, and as its manufacturing method, after component adjustment, it is directly hardened after rolling, and further, the reheating treatment after cooling stop is optimized.
JP 2001-288512 A JP-A-6-248337 JP-A-5-230530 JP-A-7-97626 JP 2001-226740 A JP 2006-291348 A

しかしながら、特許文献1、特許文献2および特許文献3に記載された技術は、煩雑な熱処理プロセスにより、製造コストが上昇することが懸念され、特許文献4および特許文献5に記載された技術では、製造条件や鋼板内位置により、フェライトとマルテンサイト相の体積分率が変化しやすく、高強度化と低降伏比を安定的に得るために製造条件を調整する操業負荷が大きい。   However, the techniques described in Patent Document 1, Patent Document 2 and Patent Document 3 are concerned with an increase in manufacturing cost due to a complicated heat treatment process. In the techniques described in Patent Document 4 and Patent Document 5, The volume fraction of the ferrite and martensite phases is likely to change depending on the manufacturing conditions and the position in the steel sheet, and the operational load for adjusting the manufacturing conditions is large in order to stably obtain high strength and a low yield ratio.

特許文献6に記載された技術では、780MPa以上の引張強度や650MPa以上の降伏強さ(YP)といった強度レベルの厚鋼板およびその製造方法に関する具体的な示唆が認められない。   In the technique described in Patent Document 6, there is no specific suggestion regarding a steel plate having a strength level such as a tensile strength of 780 MPa or more and a yield strength (YP) of 650 MPa or more and a manufacturing method thereof.

更に,いずれの特許文献記載の鋼板でも,溶接入熱量が200kJ/cmを超える大入熱溶接の溶接熱影響部で高靭性を安定して達成することは困難である。   Furthermore, in any steel sheet described in any patent document, it is difficult to stably achieve high toughness in the weld heat affected zone of high heat input welding in which the welding heat input exceeds 200 kJ / cm.

そこで、本発明は、製造が容易で、安定した母材性能を備えるとともに,溶接入熱量が200kJ/cmを超える大入熱溶接熱影響部で高靭性を安定して達成する低降伏比高張力厚鋼板およびその製造方法を提供することを目的とする。   Therefore, the present invention is easy to manufacture, has a stable base material performance, and stably achieves high toughness in a high heat input weld heat-affected zone where the heat input of welding exceeds 200 kJ / cm. It aims at providing a thick steel plate and its manufacturing method.

本発明者らは、上記課題を達成するために,厚鋼板を対象に母材の強度および降伏比,さらに大入熱溶接熱影響部の靭性に及ぼす各種要因のうち、従来、非常に脆く、母材の延性、靭性を低下させることから、低降伏比高強度厚鋼板の母材組織制御因子として、これまで積極的に利用されていない島状マルテンサイトに着目し、鋭意研究を行い、以下の知見を得た。
(1)母材の特性として650MPa以上の降伏強度と85%以下の低降伏比を安定して達成するためには、適切に選定した鋼組成において、ミクロ組織中の島状マルテンサイトの面積分率、粒径およびアスペクト比を適正に制御することが重要である。
(2)上記成分組成の鋼素材に熱間圧延を施した後、冷却速度と冷却停止温度を適正化した冷却処理を施し、さらには、冷却停止後の昇温速度と再加熱温度を適正化した再加熱処理を実施することにより、所望の母材ミクロ組織を得ることが可能である。
(3)溶接入熱量が200kJ/cmを超える大入熱溶接の溶接熱影響部で高靭性を安定して達成するためには,適切に選定した鋼組成範囲において炭素当量Ceqを0.50〜0.68%に調整し,溶接熱影響部のミクロ組織を下部ベイナイト組織とするとともに,TiおよびNの添加量、さらにはTi量とN量のバランスを厳格に調整することにより,溶接熱影響部でのオーステナイト粒の成長を抑制することが重要である。
In order to achieve the above-mentioned problems, the present inventors have hitherto been very brittle among various factors affecting the strength and yield ratio of the base metal, and the toughness of the heat-affected zone with high heat input welding, for thick steel plates. Since it reduces the ductility and toughness of the base metal, we focused on island martensite that has not been actively used so far as a base material structure control factor for low yield ratio high strength thick steel sheets. I got the knowledge.
(1) In order to stably achieve a yield strength of 650 MPa or more and a low yield ratio of 85% or less as the characteristics of the base material, the area fraction of island martensite in the microstructure in an appropriately selected steel composition, It is important to properly control the particle size and aspect ratio.
(2) After hot-rolling the steel material having the above composition, it is subjected to a cooling process in which the cooling rate and the cooling stop temperature are optimized, and further, the heating rate and the reheating temperature after the cooling stop are optimized. By performing the reheating treatment, a desired base material microstructure can be obtained.
(3) In order to stably achieve high toughness in the weld heat affected zone of high heat input welding where the heat input of welding exceeds 200 kJ / cm, the carbon equivalent Ceq is set to 0.50 in an appropriately selected steel composition range. Adjusted to 0.68%, the microstructure of the weld heat-affected zone is the lower bainite structure, the addition amount of Ti and N, and the balance of Ti and N amount is strictly adjusted, so that the welding heat effect It is important to suppress the growth of austenite grains in the part.

本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.鋼組成が、質量%で、
C:0.03〜0.10%
Si:0.05〜0.50%
Mn:1.4〜3.0%
P:0.02%以下
S:0.0050%以下
Al:0.005〜0.1%
Ti:0.004〜0.03%
N:0.0025〜0.0065%
を含有し、下記(1)式で定義されるCeqが0.50〜0.68%を満足し、かつTi/Nが2.0超え〜4.4未満を満足し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で5〜18%を含むことを特徴とする降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で含有しない元素は0とする。
2.1に記載した鋼組成に、質量%でさらに、
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:1.0%以下、
Mo:1.0%以下、
Nb:0.1%以下、
V:0.2%以下、
Ca:0.005%以下
REM:0.02%以下
Mg:0.005%以下および
B:0.005%以下
の1種又は2種以上を含有し、下記(1)式で定義されるCeqが0.50〜0.68%を満足し、かつTi/Nが2.0超え〜4.4未満を満足し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で5〜18%を含むことを特徴とする降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で含有しない元素は0とする。
3.1または2に記載した鋼組成からなる鋼片を、1000〜1250℃に加熱し、800℃以上の温度域において熱間圧延を終了後、Ar点以上の温度域から5〜100℃/sの冷却速度でAr−350〜Ar−100℃の温度域まで冷却を行った後、一旦冷却を中断し、その後、Ac点以下の温度域まで0.5℃/s以上の昇温速度で再加熱した後、0.5〜3min保持し、空冷することを特徴とする降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板の製造方法。
4.さらに、400℃以上、Ac点以下で焼き戻すことを特徴とする3に記載した降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. Steel composition is mass%,
C: 0.03-0.10%
Si: 0.05 to 0.50%
Mn: 1.4 to 3.0%
P: 0.02% or less S: 0.0050% or less Al: 0.005-0.1%
Ti: 0.004 to 0.03%
N: 0.0025 to 0.0065%
Ceq defined by the following formula (1) satisfies 0.50 to 0.68%, and Ti / N satisfies 2.0 to less than 4.4, with the balance being Fe and inevitable Yield strength characterized in that it comprises 5-18% of an area fraction of island martensite having an average equivalent circle diameter of 1 to 10 μm and an average aspect ratio of 4.0 or less. A low-yield-ratio, high-strength thick steel plate excellent in high heat input heat-affected zone toughness having a thickness (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The element not contained in the content (mass%) of each element is set to 0.
In steel composition described in 2.1, in mass%,
Cu: 0.1 to 1.0%
Ni: 0.1 to 2.0%
Cr: 1.0% or less,
Mo: 1.0% or less,
Nb: 0.1% or less,
V: 0.2% or less,
Ca: 0.005% or less REM: 0.02% or less Mg: 0.005% or less and B: 0.005% or less Ceq defined by the following formula (1) Satisfies 0.50 to 0.68%, satisfies Ti / N exceeding 2.0 to less than 4.4, the balance is composed of Fe and inevitable impurities, and the microstructure has an average equivalent circle diameter. The yield strength (YP) is 650 MPa or more, and the yield ratio (YR) is characterized by including 5 to 18% in area fraction of an island-shaped martensite having an average aspect ratio of 4.0 or less. A low-yield-ratio, high-strength thick steel plate excellent in high heat input weld heat-affected zone toughness, having 85% or less
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The element not contained in the content (mass%) of each element is set to 0.
The steel slab consisting of the steel composition described in 3.1 or 2 is heated to 1000 to 1250 ° C., and after hot rolling is finished in a temperature range of 800 ° C. or higher, from a temperature range of Ar 3 points or higher to 5 to 100 ° C. after cooling the / s cooling rate to a temperature range of Ar 3 -350~Ar 3 -100 ℃, temporarily interrupting the cooling, then, 0.5 ° C. / s or more to a temperature region 1 point below Ac High heat input welding heat having a yield strength (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less. A method for producing a low-yield-ratio high-strength thick steel plate with excellent affected zone toughness.
4). Furthermore, tempering is performed at 400 ° C. or more and Ac 1 point or less, and the high heat input welding heat-affected zone having a yield strength (YP) described in 3 of 650 MPa or more and a yield ratio (YR) of 85% or less. A method for producing low-yield ratio high-strength thick steel plates with excellent toughness.

本発明によれば、母材の降伏強さ(YP)が650MPa以上、85%以下の低降伏比を有する,溶接入熱量が200kJ/cmを超える大入熱溶接の溶接熱影響部靭性に優れた厚鋼板を、煩雑な熱処理なく、安定して製造することができ、鋼構造物の大型化、鋼構造物の耐震性の向上や施工能率向上に大きく寄与し、産業上格段の効果を奏する。   According to the present invention, the yield strength (YP) of the base metal has a low yield ratio of 650 MPa or more and 85% or less, and is excellent in weld heat affected zone toughness of high heat input welding where the heat input of welding exceeds 200 kJ / cm. Steel plate can be manufactured stably without complicated heat treatment, greatly contributing to increasing the size of steel structures, improving the earthquake resistance of steel structures, and improving construction efficiency, and has a remarkable industrial effect. .

本発明ではミクロ組織と成分組成を規定する。
[ミクロ組織]
本発明ではミクロ組織を、フェライト相とベイナイト相主体の母相であって、硬質相として、平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で5〜18%含む組織とする。
In the present invention, the microstructure and component composition are defined.
[Microstructure]
In the present invention, the microstructure is a parent phase mainly composed of a ferrite phase and a bainite phase, and an island-shaped martensite having an average equivalent circle diameter of 1 to 10 μm and an average aspect ratio of 4.0 or less as an area fraction as a hard phase. The structure contains 5 to 18%.

島状マルテンサイトは転位密度が非常に高く、またCの濃縮により、母相と比べて非常に硬い相であるために、TSが向上するとともに、多量に導入された可動転位がYPの上昇を抑制することにより、高強度と低降伏比の両立に有効である。   Island-like martensite has a very high dislocation density, and due to the concentration of C, it is a very hard phase compared to the parent phase, so TS is improved and a large amount of movable dislocations increase YP. Suppression is effective for achieving both high strength and a low yield ratio.

島状マルテンサイトの体積分率が5%未満では、上記のような、高強度化と低降伏比化の効果が得られず、一方、18%を超えると母材の延性、低温靭性が劣化する.このため、面積分率は5〜18%の範囲に限定する.なお、好ましくは、6〜16%である。   If the volume fraction of island martensite is less than 5%, the effects of increasing the strength and reducing the yield ratio as described above cannot be obtained. On the other hand, if it exceeds 18%, the ductility and low temperature toughness of the base material deteriorate. Do it. For this reason, the area fraction is limited to a range of 5 to 18%. In addition, Preferably, it is 6 to 16%.

島状マルテンサイトの平均円相当径が1μm未満では、上記のような、高強度と低降伏比の効果が得られず、一方、10μmを超えると母材の靭性が劣化する。このため、平均円相当径は1〜10μmの範囲に限定する。なお、好ましくは、3〜8μmである。   If the average equivalent circle diameter of the island-like martensite is less than 1 μm, the effects of high strength and low yield ratio as described above cannot be obtained, while if it exceeds 10 μm, the toughness of the base material deteriorates. For this reason, an average equivalent circle diameter is limited to the range of 1-10 micrometers. In addition, Preferably, it is 3-8 micrometers.

島状マルテンサイトの平均アスペクト比は、高くなると母材靭性が劣化するため、可能なかぎり低くすることが望ましい。平均アスペクト比が4.0を超えると、この傾向が顕著となるため、上限とした。   The average aspect ratio of the island martensite is preferably as low as possible because the base material toughness deteriorates as the average aspect ratio increases. When the average aspect ratio exceeds 4.0, this tendency becomes remarkable, so the upper limit is set.

尚、島状マルテンサイトは、試料にレペラ腐食(JOURNAL OF METALS、March、1980、p.38−39)を実施して倍率1000倍の光学顕微鏡で観察して同定し、平均円相当径、平均アスペクト比は、倍率1000倍の光学顕微鏡で撮影した画像を画像解析装置を用いて求めた。   In addition, island martensite is identified by observing with an optical microscope having a magnification of 1000 times after carrying out repeller corrosion (JOURNAL OF METALS, March, 1980, p.38-39) on a sample. The aspect ratio was obtained by using an image analysis device for an image taken with an optical microscope having a magnification of 1000 times.

島状マルテンサイトを除く母相は、実質的にベイナイト相とフェライト相の混合組織が主体組織で、パーライトおよびセメンタイト等の組織が混在すると強度が低下するため、これらの組織の面積分率は少ない方が良い。但し、パーライトおよびセメンタイト等の組織が面積分率で15%以下の場合には影響が無視できるため含有してもよい.強度確保の観点から、ベイナイト相の面積分率は60%以上であることが好ましい.
[成分組成]
説明において%は質量%を意味するものとする.
C:0.03〜0.10%
Cは、鋼の強度を増加させ、構造用鋼材として必要な強度を確保するのに有用な元素であり、また、上記した島状マルテンサイトを得るためには、0.03%以上の含有を必要とする。
The parent phase excluding island-like martensite is essentially a mixed structure of bainite phase and ferrite phase, and the strength decreases when structures such as pearlite and cementite coexist, so the area fraction of these structures is small. Better. However, when the structure of pearlite, cementite or the like is 15% or less in area fraction, the influence can be ignored, so it may be contained. From the viewpoint of securing strength, the area fraction of the bainite phase is preferably 60% or more.
[Ingredient composition]
In the explanation,% means mass%.
C: 0.03-0.10%
C is an element useful for increasing the strength of steel and ensuring the necessary strength as a structural steel material. In order to obtain the above-described island-shaped martensite, the content of C is 0.03% or more. I need.

一方、0.10%を超える含有は、特に大入熱溶接熱影響部の靭性を顕著に劣化させる。また,耐溶接割れ性を劣化させるとともに、母材の低温靭性を劣化させるため、0.03〜0.10%の範囲に限定する。好ましくは、0.05〜0.09%である。   On the other hand, the content exceeding 0.10% significantly deteriorates the toughness of the heat-affected zone particularly affected by high heat input welding. Further, in order to deteriorate the weld crack resistance and the low temperature toughness of the base material, the content is limited to 0.03 to 0.10%. Preferably, it is 0.05 to 0.09%.

Si:0.05〜0.50%
Siは、脱酸材として作用し、製鋼上、少なくとも0.05%必要であるが、0.50%を超えて含有すると、母材の靭性が劣化するとともに、溶接性、溶接熱影響部靭性が顕著に劣化するため、0.05〜0.50%の範囲に限定する。好ましくは、0.10〜0.45%である。
Si: 0.05 to 0.50%
Si acts as a deoxidizing material, and at least 0.05% is necessary for steelmaking. However, when it exceeds 0.50%, the toughness of the base material deteriorates and weldability and weld heat affected zone toughness are also included. Is significantly deteriorated, so it is limited to the range of 0.05 to 0.50%. Preferably, it is 0.10 to 0.45%.

Mn:1.4〜3.0%
Mnは、鋼の強度を増加させる効果を有しており、本発明では、大入熱溶接熱影響部のミクロ組織を下部ベイナイト組織とし高靭性を達成するとともに,母材の降伏強さ(YP)が650MPa以上を確保するためには、1.4%以上の含有を必要とする。
Mn: 1.4 to 3.0%
Mn has the effect of increasing the strength of the steel. In the present invention, the microstructure of the high heat input welding heat affected zone is the lower bainite structure to achieve high toughness, and the yield strength of the base metal (YP) ) Needs to be 1.4% or more in order to ensure 650 MPa or more.

一方、3.0%を超えて含有すると、母材の靭性および溶接熱影響部靭性が著しく劣化するため、1.4〜3.0%の範囲に限定する。好ましくは、1.5〜2.8%である。   On the other hand, if the content exceeds 3.0%, the toughness of the base metal and the weld heat-affected zone toughness deteriorate significantly, so the content is limited to the range of 1.4 to 3.0%. Preferably, it is 1.5 to 2.8%.

P:0.02%以下
Pは、鋼の強度を増加させ靭性を劣化させる元素であり、特に大入熱溶接部の靭性を劣化させるので、可能なかぎり低減することが望ましい。0.02%を超えて含有されると、この傾向が顕著となるため、上限とした。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.005%以上とすることが望ましい。
P: 0.02% or less P is an element that increases the strength of steel and deteriorates toughness, and particularly deteriorates the toughness of a high heat input weld. Therefore, it is desirable to reduce it as much as possible. When the content exceeds 0.02%, this tendency becomes remarkable, so the upper limit is set. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.005% or more.

S:0.0050%以下
Sは母材の低温靭性を劣化させる元素であり、できるだけ低減することが望ましい。0.0050%を超えて含有されると、この傾向が顕著となるため、上限とした。
S: 0.0050% or less S is an element that degrades the low temperature toughness of the base material, and it is desirable to reduce it as much as possible. When the content exceeds 0.0050%, this tendency becomes remarkable, so the upper limit is set.

Al:0.005〜0.1%
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中のNをAlNとして固定し、母材の靭性向上に寄与するが、0.1%を超える含有は、母材の靭性が低下するとともに、溶接時に溶接金属部に混入して、靭性を劣化させるため、0.1%以下に限定した。なお,このような効果は0.005%以上の含有で認められる.好ましくは、0.01〜0.07%である。
Al: 0.005 to 0.1%
Al acts as a deoxidizer and is most commonly used in the molten steel deoxidation process for high strength steels. In addition, N in the steel is fixed as AlN and contributes to the improvement of the toughness of the base metal. However, if the content exceeds 0.1%, the toughness of the base material decreases, and the weld metal part is mixed during welding, In order to deteriorate the toughness, the content is limited to 0.1% or less. Such an effect is recognized when the content is 0.005% or more. Preferably, it is 0.01 to 0.07%.

Ti:0.004〜0.03%
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、大入熱溶接熱影響部でのオーステナイト粒の粗大化を抑制して溶接熱影響部の高靭化に寄与する重要な添加元素である。このような効果を確保するためには,0.004%以上の添加が必要である。
Ti: 0.004 to 0.03%
Ti is an important additive element that has a strong affinity with N and precipitates as TiN during solidification, and suppresses the coarsening of austenite grains in the high heat input weld heat-affected zone and contributes to the toughening of the weld heat-affected zone. is there. In order to secure such an effect, the addition of 0.004% or more is necessary.

一方,0.03%を超えるとTiN粒子が粗大化して,期待するオーステナイト粒の粗大化抑制効果が飽和するため,0.004〜0.03%の範囲に限定する。好ましくは、0.006〜0.025%である。   On the other hand, if it exceeds 0.03%, the TiN particles become coarse and the expected austenite grain coarsening suppression effect is saturated, so the content is limited to the range of 0.004 to 0.03%. Preferably, it is 0.006 to 0.025%.

N:0.0025〜0.0065%
NはTiNを確保する上で必要な元素であり,0.0025%未満では十分なTiN量が確保できない。一方,0.0065%を超えて含有すると、固溶N量の増加により,母材および溶接部靭性が著しく低下するため、0.0065%以下に限定する。好ましくは,0.0030〜0.0060%である。
N: 0.0025 to 0.0065%
N is an element necessary for securing TiN, and if it is less than 0.0025%, a sufficient amount of TiN cannot be secured. On the other hand, if the content exceeds 0.0065%, the toughness of the base metal and the welded portion is significantly reduced due to an increase in the amount of solute N, so the content is limited to 0.0065% or less. Preferably, it is 0.0030 to 0.0060%.

また、本発明ではTi/N(但し、Ti,Nは含有量(mass%))が2.0超え〜4.4未満となるように、上述の成分範囲内でTiおよびN添加量を調整する。   Further, in the present invention, Ti and N addition amounts are adjusted within the above-described component range so that Ti / N (where Ti and N are contents (mass%)) is more than 2.0 and less than 4.4. To do.

Ti/Nが2.0以下では,ピンニング効果により大入熱溶接熱影響部の組織粗大化抑制効果を介した靭性の向上に必要なTiN量を確保できない。一方、Ti/Nが4.4以上では、TiC粒子の生成およびTiNの粗大化のため母材靭性および溶接熱影響部が劣化するため、Ti/Nは2.0超え〜4.4未満の範囲に限定した。   When Ti / N is 2.0 or less, the amount of TiN necessary for improving the toughness cannot be ensured due to the effect of suppressing the coarsening of the heat-affected zone of the high heat input welding due to the pinning effect. On the other hand, when Ti / N is 4.4 or more, the base metal toughness and the weld heat affected zone deteriorate due to the generation of TiC particles and the coarsening of TiN, so Ti / N is more than 2.0 and less than 4.4. Limited to range.

Ceq:0.50〜0.68%
本発明では、上記した成分範囲内において(1)式で定義される炭素当量Ceqが0.50〜0.68%となるように、上述した成分組成の範囲内で含有量を調整する。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で、含有しないものは0とする。
Ceq: 0.50 to 0.68%
In the present invention, the content is adjusted within the above-described component composition range so that the carbon equivalent Ceq defined by the formula (1) is 0.50 to 0.68% within the above-described component range.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The content (mass%) of each element, and 0 is not included.

Ceqが0.50%未満では、大入熱溶接熱影響部の焼入れ性が不足し、溶接熱影響部のミクロ組織が、脆化組織である島状マルテンサイトを含む脆弱な上部ベイナイト組織に変態し,所望の大入熱溶接部の高靭性が確保できない。   When Ceq is less than 0.50%, the hardenability of the high heat input weld heat affected zone is insufficient, and the microstructure of the weld heat affected zone is transformed into a fragile upper bainite structure including island martensite which is an embrittled structure. However, the desired high toughness of the high heat input weld cannot be ensured.

一方、Ceqが0.68%を超えると、母材の靭性が著しく劣化するとともに,耐溶接割れ性が劣化するため、0.50〜0.68%の範囲に限定した。好ましくは、0.55超〜0.68%の範囲である。   On the other hand, when Ceq exceeds 0.68%, the toughness of the base metal is remarkably deteriorated and the weld crack resistance is also deteriorated. Therefore, the range is limited to 0.50 to 0.68%. Preferably, it is in the range of more than 0.55 to 0.68%.

本発明では、上記した基本成分系に加えて、必要に応じ、Cu、Ni、Cr、Mo、Nb、V、Ca、REM、MgおよびBの1種または2種以上を含有することができる。   In the present invention, in addition to the basic component system described above, one or more of Cu, Ni, Cr, Mo, Nb, V, Ca, REM, Mg, and B can be contained as necessary.

Cu:0.1〜1.0%、Ni:0.1〜2.0%の1種または2種以上
CuおよびNiは、高靭性を保ちつつ強度を増加させることが可能な元素であり、大入熱溶接熱影響部靭性への影響も小さいため、高強度化のために有用な元素であり、必要に応じ選択して含有できる。
One or more of Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0% Cu and Ni are elements that can increase strength while maintaining high toughness, Since the influence on the toughness of the high heat input welding heat affected zone is small, it is an element useful for increasing the strength and can be selected and contained as necessary.

添加する場合は、Cuは0.1%以上含有することが好ましいが、含有量が1.0%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるため、0.1〜1.0%とする。尚、好ましくは、0.2〜0.7%である。   When added, Cu is preferably contained in an amount of 0.1% or more. However, if the content exceeds 1.0%, hot brittleness is caused and the surface properties of the steel sheet are deteriorated. 0%. In addition, Preferably, it is 0.2 to 0.7%.

Niは、添加する場合は、0.1%以上含有することが好ましいが、2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利になるため、0.1〜2.0%に限定した。尚、好ましくは0.2〜1.7%である。   When Ni is added, it is preferably contained in an amount of 0.1% or more. However, even if Ni is contained in an amount exceeding 2.0%, the effect is saturated and an effect commensurate with the content cannot be expected. Since it becomes disadvantageous, it limited to 0.1 to 2.0%. In addition, Preferably it is 0.2 to 1.7%.

Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.2%以下の1種または2種以上
Cr、Mo、Nb、Vは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。
One or more of Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.2% or less Cr, Mo, Nb, and V are all steel. It is an element that contributes to the improvement of the strength, and can be appropriately contained depending on the desired strength.

Crは、添加する場合、0.05%以上含有することが好ましいが、1.0%を超える含有は、大入熱溶接熱影響部靭性を劣化させるため、1.0%以下に限定することが望ましい。   When Cr is added, it is preferable to contain 0.05% or more, but the content exceeding 1.0% deteriorates the high heat input welding heat-affected zone toughness, so it should be limited to 1.0% or less. Is desirable.

Moは、添加する場合、0.05%以上含有することが好ましいが、1.0%を超える含有は、母材靭性および大入熱溶接熱影響部靭性に悪影響を及ぼすため、1.0%以下に限定することが望ましい。   When Mo is added, it is preferable to contain 0.05% or more. However, if the content exceeds 1.0%, since it adversely affects the base metal toughness and the high heat input weld heat affected zone toughness, 1.0% It is desirable to limit to the following.

Nbは、添加する場合、0.005%以上含有することが好ましいが、0.1%を超える含有は、母材靭性および大入熱溶接熱影響部靭性を劣化させるため、0.1%以下に限定することが望ましい。   When Nb is added, it is preferably contained in an amount of 0.005% or more. However, if the content exceeds 0.1%, the base material toughness and the high heat input welding heat affected zone toughness are deteriorated. It is desirable to limit to.

Vは、添加する場合、0.01%以上含有することが好ましいが、0.2%を超える含有は、大入熱溶接熱影響部靭性を劣化させるため、0.2%以下に限定することが望ましい。   When V is added, it is preferably contained in an amount of 0.01% or more. However, if the content exceeds 0.2%, the high heat input welding heat-affected zone toughness is deteriorated, so the content should be limited to 0.2% or less. Is desirable.

Ca:0.005%以下、REM:0.02%以下およびMg:0.005%以下の1種または2種以上
Ca、REMおよびMgは、いずれも靭性向上に寄与する元素であり、所望する特性に応じて選択して含有できる。
One or more of Ca: 0.005% or less, REM: 0.02% or less, and Mg: 0.005% or less Ca, REM, and Mg are elements that contribute to toughness improvement, and are desired It can be selected depending on the characteristics.

Caは、結晶粒の微細化を介して靭性を向上させる有用な元素であり、含有させる場合、0.001%以上含有することが好ましいが、0.005%を超えて含有しても効果が飽和するため、0.005%を上限とした。   Ca is a useful element that improves toughness through refinement of crystal grains. When Ca is contained, it is preferably contained in an amount of 0.001% or more, but even if contained over 0.005%, the effect is obtained. Because of saturation, 0.005% was made the upper limit.

REMは、含有させる場合、0.002%以上含有することが好ましいが、0.02%を超えて含有しても効果が飽和するため、0.02%を上限とした。   When REM is contained, it is preferably contained in an amount of 0.002% or more. However, even if contained over 0.02%, the effect is saturated, so 0.02% was made the upper limit.

Mgは、結晶粒の微細化を介して靭性を向上させる有用な元素であり、0.001%以上含有することが好ましいが、0.005%を超えて含有しても効果が飽和するため、0.005%を上限とした。   Mg is a useful element that improves toughness through refinement of crystal grains, and is preferably contained in an amount of 0.001% or more, but even if contained in excess of 0.005%, the effect is saturated, The upper limit was 0.005%.

B:0.005%以下
Bは、焼入れ性の向上を介して、鋼の強度を増加させる作用を有する。また、大入熱溶接時には、溶接熱影響部において脆弱な上部ベイナイト層を抑制し、下部ベイナイト組織の生成を促進するとともに、固溶窒素を窒化物として固着することにより、靭性向上に有用な元素である。
B: 0.005% or less B has an effect of increasing the strength of steel through improvement of hardenability. In addition, during high heat input welding, it is an element useful for improving toughness by suppressing the fragile upper bainite layer in the heat affected zone, promoting the formation of the lower bainite structure, and fixing solute nitrogen as nitrides. It is.

一方、0.005%を超える含有は焼入れ性を著しく増加させ、母材の靭性、延性の劣化をもたらす。このため、Bは0.005%以下に限定した。なお、好ましくは、0.0003〜0.0020%である。   On the other hand, the content exceeding 0.005% remarkably increases the hardenability and brings about deterioration of the toughness and ductility of the base material. For this reason, B was limited to 0.005% or less. In addition, Preferably, it is 0.0003 to 0.0020%.

上記した成分以外の残部は、Feおよび不可避的不純物である。   The balance other than the above components is Fe and inevitable impurities.

次に、製造方法について説明する。尚、温度は板厚1/2t部の温度とする。   Next, a manufacturing method will be described. The temperature is a temperature of 1/2 t part of the plate thickness.

1000℃〜1250℃加熱
上述した組成の溶鋼を、転炉、電気炉、真空溶解炉等、定法で溶製し、得られた鋼素材を1000℃〜1250℃に再加熱する。
1000 ° C. to 1250 ° C. Heating The molten steel having the above-described composition is melted by a conventional method such as a converter, electric furnace, vacuum melting furnace or the like, and the obtained steel material is reheated to 1000 ° C. to 1250 ° C.

再加熱温度が1000℃未満では、熱間圧延での変形抵抗が高くなり、1パス当たりの圧下量が大きく取れなくなることから、圧延パス数が増加し、圧延能率の低下を招くとともに、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合がある。   If the reheating temperature is less than 1000 ° C., the deformation resistance in hot rolling becomes high, and the amount of reduction per pass cannot be made large. Therefore, the number of rolling passes increases and the rolling efficiency decreases, and the steel material The casting defect in (slab) may not be crimped.

一方、再加熱温度が1250℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。このため、鋼素材の再加熱温度は1000〜1250℃の範囲とするのが好ましい。   On the other hand, when the reheating temperature exceeds 1250 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1250 degreeC.

[熱間圧延]
再加熱された鋼素材は、所定の板厚になるまで、圧延終了温度を800℃以上となる熱間圧延を施す。熱間圧延条件は、圧延終了温度を800℃以上とする以外には、所定の板厚および形状を満足できればよく、その条件はとくに限定されない。
[Hot rolling]
The reheated steel material is subjected to hot rolling at a rolling end temperature of 800 ° C. or higher until a predetermined plate thickness is reached. The hot rolling conditions are not particularly limited as long as a predetermined plate thickness and shape can be satisfied except that the rolling end temperature is 800 ° C. or higher.

尚、板厚が80mmを超える極厚鋼板の場合には、ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。   In the case of an extremely thick steel plate having a plate thickness exceeding 80 mm, it is desirable to secure at least one or more rolling passes with a rolling reduction per pass of 15% or more for zaku pressure bonding.

圧延終了温度が800℃未満になると、800℃未満の低温域圧延の際に導入・蓄積された歪がフェライト変態の駆動力となり、フェライト相主体の組織が生成しやすいばかりでなく、島状マルテンサイト生成も阻害されるので、圧延終了温度は800℃以上とする。   When the rolling end temperature is less than 800 ° C., the strain introduced and accumulated at the time of low-temperature rolling below 800 ° C. becomes the driving force for ferrite transformation, and the structure mainly composed of ferrite phase is easily generated. Since site generation is also inhibited, the rolling end temperature is set to 800 ° C. or higher.

ここで、圧延終了温度が800℃未満では、変形抵抗が高くなりすぎて圧延荷重が増大し、圧延機への負担が大きくなり、また、厚肉材を800℃未満まで圧延温度を低下させるためには、圧延途中で待機することが必要で、生産性を大きく阻害する。これらの問題を回避するためにも、圧延終了温度は800℃以上とする。   Here, when the rolling end temperature is less than 800 ° C., the deformation resistance becomes too high, the rolling load increases, the burden on the rolling mill increases, and the rolling temperature of the thick material is lowered to less than 800 ° C. Therefore, it is necessary to wait in the middle of rolling, which greatly hinders productivity. In order to avoid these problems, the rolling end temperature is set to 800 ° C. or higher.

[冷却条件]
圧延終了後、得られた厚鋼板は、Ar点以上の温度域から5〜100℃/sの平均冷却速度で、Ar−350〜Ar−100℃まで冷却する。
[Cooling conditions]
After the rolling is completed, the obtained thick steel plate is cooled to Ar 3 -350 to Ar 3 -100 ° C at an average cooling rate of 5 to 100 ° C / s from a temperature range of Ar 3 or higher.

冷却停止温度は、本発明の製造方法において、特に重要な制御因子であり、冷却停止温度がAr−350℃よりも低くなると、冷却停止時にはベイナイト変態が完了し残留オーステナイトが存在せず、その後の再加熱、空冷時に、残留オーステナイトからの島状マ
ルテンサイトの生成がなく、降伏比80%以下を満足することができない。
The cooling stop temperature is a particularly important control factor in the production method of the present invention. When the cooling stop temperature becomes lower than Ar 3 -350 ° C., the bainite transformation is completed at the time of cooling stop, and there is no residual austenite. During reheating and air cooling, no island martensite is formed from retained austenite, and a yield ratio of 80% or less cannot be satisfied.

一方、冷却後の冷却停止温度がAr−100℃よりも高くなると、冷却停止時にはベイナイト変態が進行せず、残留オーステナイトへのCの拡散が進行しないために、島状マルテンサイトが生成せず、650MPa以上の降伏強さ(YP)および降伏比(YR)85%以下を満足することができない。 On the other hand, if the cooling stop temperature after cooling is higher than the Ar 3 -100 ° C., cooling the stop does not proceed bainite transformation, in order to diffuse the C into the retained austenite does not proceed, without generating the island martensite , A yield strength (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less cannot be satisfied.

また、圧延終了後の冷却速度が5℃/s未満では、加速冷却後のミクロ組織がフェライト主体組織となり、また、島状マルテンサイトの生成も阻害されるので、650MPa以上の降伏強さ(YP)を確保できなくなる。   If the cooling rate after rolling is less than 5 ° C./s, the microstructure after accelerated cooling becomes a ferrite main structure, and the formation of island martensite is also inhibited, so that the yield strength (YP) is 650 MPa or more. ) Cannot be secured.

一方、冷却速度が100℃/sを超えると、鋼板位置による温度制御が困難となり、材質ばらつきが生じる。   On the other hand, when the cooling rate exceeds 100 ° C./s, it becomes difficult to control the temperature depending on the position of the steel sheet, resulting in material variations.

加速冷却終了後の厚鋼板は、一旦冷却を中断し、Ac点以下の温度域まで0.5℃/s以上の昇温速度で再加熱した後、空冷する。 After the accelerated cooling is finished, the thick steel plate is temporarily cooled and reheated to a temperature range of Ac 1 point or less at a heating rate of 0.5 ° C./s or higher and then air-cooled.

昇温速度が0.5℃/s未満では、目的の再加熱温度まで長時間を要するために製造効率が低下し、またパーライト変態が生じるために島状マルテンサイトが生成せず、降伏比80%以下を満足することができない。   When the rate of temperature rise is less than 0.5 ° C./s, it takes a long time to reach the desired reheating temperature, and thus the production efficiency is lowered. Further, since pearlite transformation occurs, island martensite is not generated, and the yield ratio is 80. % Or less cannot be satisfied.

また、再加熱温度がAc点以上になるとベイナイトの軟化により、所望の650MPa以上の降伏強さ(YP)を満足することができなくなる。 On the other hand, when the reheating temperature becomes Ac 1 point or higher, the desired yield strength (YP) of 650 MPa or higher cannot be satisfied due to softening of bainite.

再加熱温度は、残留オーステナイトへのCの拡散を進行させるため、冷却停止温度より100℃以上昇温することが望ましい。   The reheating temperature is desirably raised by 100 ° C. or more from the cooling stop temperature in order to promote diffusion of C into the retained austenite.

尚、再加熱後の保持時間は、生産性を阻害しないように、好ましくは、保持時間15min.以下とする。再加熱の手段として、雰囲気炉加熱、ガス炎、誘導加熱等が利用できるが、経済性、制御性等を考慮すると、誘導加熱が好ましい。   The holding time after reheating is preferably 15 min. So as not to inhibit productivity. The following. As means for reheating, atmospheric furnace heating, gas flame, induction heating and the like can be used, but in consideration of economy, controllability and the like, induction heating is preferable.

上記した、圧延後の冷却速度が5〜100℃/sの平均冷却速度範囲で、かつ加速冷却停止温度がAr−350℃〜Ar−100℃の範囲を満足することにより、加速冷却直後に、ベイナイト主体組織中に、残留オーステナイトが微細に分散したミクロ組織が得られる。 The above-described cooling rate after rolling is in the average cooling rate range of 5 to 100 ° C./s and the accelerated cooling stop temperature satisfies the range of Ar 3 to 350 ° C. to Ar 3 to 100 ° C. In addition, a microstructure in which retained austenite is finely dispersed in the bainite main structure is obtained.

さらに、その後の0.5℃/s以上の昇温速度でAc点以下までの再加熱、空冷により、微細に分散した残留オーステナイトにCが拡散して島状マルテンサイトが生成され、目的とするミクロ組織が達成され、高強度で650MPa以上の降伏強さ(YP)と85%以下の低降伏比が両立される。 Further, by subsequent reheating up to Ac 1 point or less at a heating rate of 0.5 ° C./s or more and air cooling, C diffuses into the finely dispersed residual austenite to form island martensite. A high microstructure and a high yield strength (YP) of 650 MPa or more and a low yield ratio of 85% or less are compatible.

尚、Ar点は化学組成との相関が認められ、一例として(2)式が利用できる。
Ar=868−396C+25Si−68Mn−21Cu−36Ni−25Cr−30Mo (2)
(ただし、C、Si、Mn、Cu、Ni、Cr、Mo:各合金元素の含有量(質量%))
また、Ac点も化学組成との相関が認められ、一例として(3)式が利用できる。
Ac=751−27C+18Si−12Mn−23Cu−23Ni+24Cr+23Mo−40V−6Ti+233Nb−169Al−895B (3)
(ただし、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、B:各合金元素の含有量(質量%))
本発明では、鋼板を室温まで冷却した後、再加熱、焼もどし処理を施してもよい。焼もどし工程では、400℃以上Ac点以下の焼もどし処理により、靭性を向上させることが可能である。
In addition, correlation with a chemical composition is recognized for Ar 3 point, and the formula (2) can be used as an example.
Ar 3 = 868-396C + 25Si-68Mn-21Cu-36Ni-25Cr-30Mo (2)
(However, C, Si, Mn, Cu, Ni, Cr, Mo: content of each alloy element (mass%))
Further, a correlation with the chemical composition is also observed at Ac 1 point, and the formula (3) can be used as an example.
Ac 1 = 751-27C + 18Si-12Mn -23Cu-23Ni + 24Cr + 23Mo-40V-6Ti + 233Nb-169Al-895B (3)
(However, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, B: Content of each alloy element (mass%))
In the present invention, the steel sheet may be cooled to room temperature and then reheated and tempered. In the tempering step, it is possible to improve toughness by tempering at 400 ° C. or higher and Ac 1 point or lower.

焼もどし処理後のミクロ組織として、硬質相は焼もどされた島状マルテンサイトとなるが、母相よりも十分に硬度が高ければ、高強度と低降伏比を両立させる効果を得ることができる。   As the microstructure after tempering, the hard phase becomes tempered island martensite, but if the hardness is sufficiently higher than the parent phase, the effect of achieving both high strength and low yield ratio can be obtained. .

このような効果を得るためには、焼もどし温度を400℃以上とする必要があるが、 Ac点を超えると強度低下を招くため、焼もどし処理は、400℃〜Ac点で行うことが望ましい。 In order to obtain such an effect, it is necessary to set the tempering temperature to 400 ° C. or higher. However, if the temperature exceeds 1 Ac, the strength is reduced, so the tempering treatment should be performed at 400 ° C. to 1 Ac. Is desirable.

上記した組成の鋼素材を用いて、上記した条件の熱間圧延、冷却および再加熱、空冷を施すことにより、島状マルテンサイトを分散して生成させることが可能で、650MPa以上の降伏強さ(YP)および降伏比80%以下の母材特性と,溶接入熱量が200kJ/cmを超えるような大入熱溶接熱影響部の高靭性を兼備する低降伏比高強度鋼板を容易に製造することができる.   By using the steel material having the above composition, by performing hot rolling, cooling and reheating, and air cooling under the above conditions, it is possible to disperse and generate island martensite, and yield strength of 650 MPa or more. (YP) and a low yield ratio high strength steel sheet that has both a base metal characteristic with a yield ratio of 80% or less and a high heat input weld heat affected zone high toughness that exceeds 200 kJ / cm. be able to.

転炉−取鍋精錬−連続鋳造法で、調製された鋼素材を、熱間圧延−加速冷却−再加熱−空冷、さらには焼もどしにより種々の板厚の厚鋼板とした。   The steel materials prepared by the converter-ladder refining-continuous casting method were made into thick steel plates having various thicknesses by hot rolling-accelerated cooling-reheating-air cooling and tempering.

表1に鋼素材の成分組成を、表2に製造条件と鋼板の板厚を示す。得られた各厚鋼板の板厚1/2位置から、JIS4号引張試験片を採取し、JISZ2241(1998年)の規定に準拠して引張試験を実施し、引張特性を調査した。尚、表1中のAr(℃)は、(2)式で、Ac(℃)は(3)式で求めた。 Table 1 shows the component composition of the steel material, and Table 2 shows the manufacturing conditions and the plate thickness of the steel sheet. A JIS No. 4 tensile test piece was sampled from the position of the plate thickness 1/2 of each obtained thick steel plate, and a tensile test was carried out in accordance with the provisions of JIS Z2241 (1998) to investigate the tensile properties. Incidentally, Ar 3 in Table 1 (° C.) is (2) the formula, Ac 1 (° C.) was determined by equation (3).

得られた各厚鋼板の板厚1/2位置から、JISZ2202(1998年)の規定に準拠してVノッチ試験片を採取し、JISZ2242(1998年)の規定に準拠してシャルピー衝撃試験を実施し、0℃における吸収エネルギー(vE0)を求め、母材靭性を評価した。   V-notch test specimens were collected from the thickness 1/2 position of each steel plate obtained in accordance with JISZ2202 (1998), and Charpy impact test was conducted in accordance with JISZ2242 (1998). Then, the absorbed energy (vE0) at 0 ° C. was obtained, and the base material toughness was evaluated.

また,各厚鋼板から採取した継手用試験板に,図1に示す開先を準備し、サブマージアーク溶接(溶接入熱量≧200kJ/cm)により、溶接継手を作製した。その後、図2に示すように、溶接継手部から切欠き位置を板厚方向1/4tのボンド部とするJIS4号衝撃試験片を採取し、試験温度:0℃でのシャルピー衝撃試験を行って,継手ボンド部の0℃における吸収エネルギー(vE)を求めた。継手用試験板の板厚tは母材と同じとした。但し、母材の特性が本発明範囲を満たさない厚鋼板については継手は作成しなかった。尚、溶接部の靭性は、鋼板製造条件によらないので、同一成分で製造条件のみ変化させたものは、代表条件のみ継手を作製した。 Moreover, the groove | channel shown in FIG. 1 was prepared for the test plate for joint extract | collected from each thick steel plate, and the welded joint was produced by submerged arc welding (welding heat input> = 200kJ / cm). Thereafter, as shown in FIG. 2, a JIS No. 4 impact test piece having a notch position of 1/4 t in the thickness direction is taken from the welded joint, and a Charpy impact test at a test temperature of 0 ° C. is performed. The absorbed energy (vE 0 ) at 0 ° C. of the joint bond part was determined. The thickness t of the joint test plate was the same as that of the base material. However, no joints were prepared for thick steel plates whose base metal characteristics do not satisfy the scope of the present invention. In addition, since the toughness of the welded part does not depend on the steel sheet manufacturing conditions, a joint was produced only under the representative conditions when only the manufacturing conditions were changed with the same components.

本発明範囲は、母材の引張り強さ(TS)が780MPa以上、降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下、母材靭性(vEo)100J以上、継手ボンド部の0℃における吸収エネルギー(vE)70J以上とする。 The scope of the present invention is that the base material has a tensile strength (TS) of 780 MPa or more, a yield strength (YP) of 650 MPa or more, a yield ratio (YR) of 85% or less, a base material toughness (vEo) of 100 J or more, a joint bond part The absorbed energy (vE 0 ) at 0 ° C. is 70 J or more.

得られた結果を表3に示す。本発明例(鋼No.1−1,1−2,2,3,4,5−1、6,7−1,8,9)は、いずれも、引張強さ780MPa以上で650MPa以上の降伏強さ(YP)および降伏比85%以下、0℃での吸収エネルギーvE>100Jの高強度、低降伏比で、高靭性の母材特性を有する。 The obtained results are shown in Table 3. Examples of the present invention (steel Nos. 1-1, 1-2, 2,3,4,5-1, 6,7-1,8,9) all have a tensile strength of 780 MPa or more and a yield of 650 MPa or more. It has a strength (YP) and yield ratio of 85% or less, a high strength of absorbed energy vE 0 > 100 J at 0 ° C., a low yield ratio, and a tough base material.

また,大入熱溶接施工を施した場合であっても,ボンド部でのvE>70Jと優れた大入熱溶接熱影響部靭性が得られることが認められる。 In addition, even when high heat input welding is performed, it is recognized that vE 0 > 70 J and excellent high heat input heat affected zone toughness at the bond portion can be obtained.

一方、本発明の範囲を外れる比較例(鋼No.1−3,1−4,1−5,5−2,5−3,7−2,7−3,10〜15)は、母材強度、降伏比、母材靭性,大入熱溶接熱影響部靭性のうち、いずれか、あるいは複数の特性が目標値を満足していない。   On the other hand, comparative examples (steel Nos. 1-3, 1-4, 1-5, 5-2, 5-3, 7-2, 7-3, 10-15) that deviate from the scope of the present invention are base materials. One or more of the strength, yield ratio, base metal toughness, and high heat input weld heat affected zone toughness do not satisfy the target value.

Figure 0005130796
Figure 0005130796

Figure 0005130796
Figure 0005130796

Figure 0005130796
Figure 0005130796

サブマージアーク溶接の開先形状を示す模式図。The schematic diagram which shows the groove shape of submerged arc welding. 図1に示すサブマージアーク溶接部からのシャルピー衝撃試験片の採取位置を示す模式図。The schematic diagram which shows the sampling position of the Charpy impact test piece from the submerged arc welding part shown in FIG.

Claims (4)

鋼組成が、質量%で、
C:0.03〜0.10%
Si:0.05〜0.50%
Mn:1.4〜3.0%
P:0.02%以下
S:0.0050%以下
Al:0.005〜0.1%
Ti:0.004〜0.03%
N:0.0025〜0.0065%
を含有し、下記(1)式で定義されるCeqが0.50〜0.68%を満足し、かつTi/Nが2.0超え〜4.4未満を満足し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で5〜18%を含むことを特徴とする降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で含有しない元素は0とする。
Steel composition is mass%,
C: 0.03-0.10%
Si: 0.05 to 0.50%
Mn: 1.4 to 3.0%
P: 0.02% or less S: 0.0050% or less Al: 0.005-0.1%
Ti: 0.004 to 0.03%
N: 0.0025 to 0.0065%
Ceq defined by the following formula (1) satisfies 0.50 to 0.68%, and Ti / N satisfies 2.0 to less than 4.4, with the balance being Fe and inevitable Yield strength characterized in that it comprises 5-18% of an area fraction of island martensite having an average equivalent circle diameter of 1 to 10 μm and an average aspect ratio of 4.0 or less. A low-yield-ratio, high-strength thick steel plate excellent in high heat input heat-affected zone toughness having a thickness (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The element not contained in the content (mass%) of each element is set to 0.
請求項1に記載した鋼組成に、質量%でさらに、
Cu:0.1〜1.0%
Ni:0.1〜2.0%
Cr:1.0%以下、
Mo:1.0%以下、
Nb:0.1%以下、
V:0.2%以下、
Ca:0.005%以下
REM:0.02%以下
Mg:0.005%以下および
B:0.005%以下
の1種又は2種以上を含有し、下記(1)式で定義されるCeqが0.50〜0.68%を満足し、かつTi/Nが2.0超え〜4.4未満を満足し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で5〜18%を含むことを特徴とする降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で含有しない元素は0とする。
The steel composition according to claim 1, further in mass%,
Cu: 0.1 to 1.0%
Ni: 0.1 to 2.0%
Cr: 1.0% or less,
Mo: 1.0% or less,
Nb: 0.1% or less,
V: 0.2% or less,
Ca: 0.005% or less REM: 0.02% or less Mg: 0.005% or less and B: 0.005% or less Ceq defined by the following formula (1) Satisfies 0.50 to 0.68%, satisfies Ti / N exceeding 2.0 to less than 4.4, the balance is composed of Fe and inevitable impurities, and the microstructure has an average equivalent circle diameter. The yield strength (YP) is 650 MPa or more, and the yield ratio (YR) is characterized by including 5 to 18% in area fraction of an island-shaped martensite having an average aspect ratio of 4.0 or less. A low-yield-ratio, high-strength thick steel plate excellent in high heat input weld heat-affected zone toughness, having 85% or less
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The element not contained in the content (mass%) of each element is set to 0.
請求項1または請求項2に記載した鋼組成からなる鋼片を、1000〜1250℃に加熱し、800℃以上の温度域において熱間圧延を終了後、Ar点以上の温度域から5〜100℃/sの冷却速度でAr−350〜Ar−100℃の温度域まで冷却を行った後、一旦冷却を中断し、その後、Ac点以下の温度域まで0.5℃/s以上の昇温速度で再加熱した後、0.5〜3min保持し、空冷することを特徴とする降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板の製造方法。 The steel slab comprising the steel composition according to claim 1 or claim 2 is heated to 1000 to 1250 ° C, and after hot rolling is finished at a temperature range of 800 ° C or higher, the temperature is increased from 5 to 3 at a temperature range of Ar 3 points or higher. after cooling to a temperature range of Ar 3 -350~Ar 3 -100 ℃ at a cooling rate of 100 ° C. / s, temporarily interrupting the cooling, then, Ac 1 point to below the temperature range 0.5 ° C. / s High heat input with a yield strength (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less. A method of producing a low yield ratio high strength thick steel plate with excellent weld heat affected zone toughness. さらに、400℃以上、Ac点以下で焼き戻すことを特徴とする請求項3に記載した降伏強さ(YP)が650MPa以上、降伏比(YR)が85%以下を有する大入熱溶接熱影響部靭性に優れた低降伏比高強度厚鋼板の製造方法。 The high heat input welding heat having a yield strength (YP) of 650 MPa or more and a yield ratio (YR) of 85% or less, further comprising tempering at 400 ° C. or more and Ac 1 point or less. A method for producing a low-yield-ratio high-strength thick steel plate with excellent affected zone toughness.
JP2007158284A 2007-06-15 2007-06-15 Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same Active JP5130796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007158284A JP5130796B2 (en) 2007-06-15 2007-06-15 Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007158284A JP5130796B2 (en) 2007-06-15 2007-06-15 Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008308736A JP2008308736A (en) 2008-12-25
JP5130796B2 true JP5130796B2 (en) 2013-01-30

Family

ID=40236592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007158284A Active JP5130796B2 (en) 2007-06-15 2007-06-15 Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same

Country Status (1)

Country Link
JP (1) JP5130796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914009A (en) * 2018-08-28 2018-11-30 宝钢湛江钢铁有限公司 Al+Ti system high strength and low cost ship steel and its manufacturing method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2775031C (en) * 2009-09-30 2015-03-24 Jfe Steel Corporation Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
JP5206755B2 (en) * 2010-09-28 2013-06-12 新日鐵住金株式会社 Manufacturing method of steel sheet for high-strength line pipe
JP6064320B2 (en) * 2012-01-04 2017-01-25 Jfeスチール株式会社 Low yield ratio high strength steel plate with excellent ductile fracture resistance
JP5849892B2 (en) * 2012-08-03 2016-02-03 Jfeスチール株式会社 Steel material for large heat input welding
EP2942414B1 (en) * 2013-03-15 2019-05-22 JFE Steel Corporation Thick, tough, high tensile strength steel plate and production method therefor
CN103805863B (en) * 2014-02-24 2016-04-20 内蒙古包钢钢联股份有限公司 The production technique of high-strength high-toughness steel plate
NO3120941T3 (en) * 2014-03-20 2018-08-25
CN106232850A (en) 2014-04-24 2016-12-14 杰富意钢铁株式会社 Steel plate and manufacture method thereof
CN104404377B (en) * 2014-11-28 2016-11-30 内蒙古包钢钢联股份有限公司 A kind of high strength steel plate with excellent cold forming capability and manufacture method thereof
CN106191659B (en) * 2016-08-19 2018-07-24 山东钢铁股份有限公司 It is a kind of can Large Heat Input Welding steel plate for ocean engineering and its manufacturing method
CN111636034B (en) * 2020-06-29 2021-09-21 包头钢铁(集团)有限责任公司 Production method of corrosion-resistant rare earth high-performance bridge steel Q500qE wide and thick steel plate
CN113234999B (en) * 2021-04-27 2022-05-20 南京钢铁股份有限公司 Efficient welding bridge steel and manufacturing method thereof
CN114672733B (en) * 2022-03-30 2023-02-24 江苏省沙钢钢铁研究院有限公司 690 MPa-grade steel plate capable of being welded under high heat input and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151034B2 (en) * 2005-02-24 2013-02-27 Jfeスチール株式会社 Manufacturing method of steel plate for high tension line pipe and steel plate for high tension line pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914009A (en) * 2018-08-28 2018-11-30 宝钢湛江钢铁有限公司 Al+Ti system high strength and low cost ship steel and its manufacturing method

Also Published As

Publication number Publication date
JP2008308736A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP4730102B2 (en) Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP6572876B2 (en) Low yield ratio high tensile steel plate and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
JP5089224B2 (en) Manufacturing method of on-line cooling type high strength steel sheet
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2007197823A (en) LOW YIELD RATIO OF 550 MPa CLASS HIGH-TENSILE STEEL PLATE, AND ITS MANUFACTURING METHOD
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less
JP5245414B2 (en) Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe
JP4539100B2 (en) Super high heat input welded heat affected zone
JP6455533B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP2009161811A (en) Steel sheet for low yield ratio high strength steel pipe, method for producing the same, and low yield ratio high strength steel pipe
JP4742597B2 (en) Production method of non-tempered high strength steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250