JP5570220B2 - ニトロキシル基を有するハイパーブランチポリマー - Google Patents

ニトロキシル基を有するハイパーブランチポリマー Download PDF

Info

Publication number
JP5570220B2
JP5570220B2 JP2009538250A JP2009538250A JP5570220B2 JP 5570220 B2 JP5570220 B2 JP 5570220B2 JP 2009538250 A JP2009538250 A JP 2009538250A JP 2009538250 A JP2009538250 A JP 2009538250A JP 5570220 B2 JP5570220 B2 JP 5570220B2
Authority
JP
Japan
Prior art keywords
formula
group
hyperbranched polymer
carbon atoms
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009538250A
Other languages
English (en)
Other versions
JPWO2009054455A1 (ja
Inventor
登 古賀
悟 唐澤
寛幸 林
章博 田中
啓祐 大土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nissan Chemical Corp
Original Assignee
Kyushu University NUC
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nissan Chemical Corp filed Critical Kyushu University NUC
Priority to JP2009538250A priority Critical patent/JP5570220B2/ja
Publication of JPWO2009054455A1 publication Critical patent/JPWO2009054455A1/ja
Application granted granted Critical
Publication of JP5570220B2 publication Critical patent/JP5570220B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/20Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations containing free radicals, e.g. trityl radical for overhauser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/124Macromolecular compounds dendrimers, dendrons, hyperbranched compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/30Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/002Dendritic macromolecules
    • C08G83/005Hyperbranched macromolecules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、有機ラジカル構造を分子内に有する新規水溶性ハイパーブランチポリマーとそのMRI造影剤応用に関する。
臨床に使われている磁気共鳴画像(MRI)法は、水のプロトンの信号を画像化する方法であり、生体内に存在するプロトンの位置情報と周囲のコントラストを2次元で濃淡表示するものである。位置情報はNMR内の静磁場を故意に歪める傾斜磁場を用いることによって得られ、コントラストは水や脂質などのプロトンのNMR情報として得られるスピン密度、緩和時間、拡散速度、化学シフト、位相などによって決定される。特に、緩和時間は観測されるスピンを含む水分子と周辺分子の間の相対的な配置や運動によって変化するので、組織の状態をよく反映し、診断に用いられている。
現在用いられているMRI造影剤は生体組織中の水の緩和時間を変化させることにより、その分布量が異なる組織間にコントラストを付加する。すなわち造影剤は水プロトンの緩和時間の変化を通し間接的に検出される。GdやMnを含有するT1緩和造影剤や、酸化鉄を用いたT2緩和造影剤が用いられており、これらの金属イオンと水プロトンの相互作用により縦横の緩和が促進される。
ただ、これらの金属イオンは有毒である傾向があるため、生体組織が吸収する能力を低減するために配位子によってキレート化されており、金属イオンが有している緩和能力が減少し、造影剤としての効果が低減している。そこで、金属イオンが巨大分子に結合して緩和能を増大させるPRE効果(常磁性体緩和増強効果)を利用した造影剤(特許文献1参照。)や、有機ラジカルであるニトロキシド化合物と金属イオンをハイブリッド化し高い緩和能を有する造影剤(特許文献2参照。)、また、超常磁性体の酸化鉄ナノ粒子をポリマーで複合化し平均粒子径が26nm程度のガン細胞選択性を有する造影剤が報告されている(非特許文献1参照。)。ただし、これらは全て金属イオンを含有しており、生体内での安全性が危惧されるという課題がある。
金属イオンを全く用いず、有機ラジカルであるニトロキシル基を有するデンドリマーを用いた造影剤が報告されているが(特許文献3)、緩和能が低いことやガン細胞選択性が期待できる大きさを得るには合成上に課題があった。
米国特許第4,822,594号明細書 特表2001−523215号公報 特表2004−524259号公報 J. Am. Chem. Soc., ASAP Article 10.1021/ja072210i(Web公開 2007年9月25日)
本発明は、水溶性に優れ、溶液の粘度が低く、高い緩和能を有する、金属イオンを含有しない新規なMRI用造影剤を提供することを目的とする。
上記の課題を解決するために鋭意検討した結果、ハイパーブランチポリマー末端にニトロキシル基を導入するか又は結合基を介してニトロキシル基を導入することにより、水溶性に優れ、溶液の粘度が低く、高い緩和能を有する高分子系MRI造影剤が得られることを見い出し、本発明を完成した。
即ち、本発明は、第1観点として、式(1)、式(2)、又は式(3):
で表される有機ラジカル構造(ニトロキシル基)を少なくとも一つ以上含み、ゲル浸透クロマトグラフィによるポリスチレン換算で測定される重量平均分子量が500ないし5,000,000であるハイパーブランチポリマー、
第2観点として、式(4):
[式中、各R1はそれぞれ独立して水素原子又はメチル基を表し、
各A1はそれぞれ独立して式(5) 、又は式(6):
(式中A2はエーテル結合又はエステル結合を含んでいてもよい炭素原子数1〜30の直鎖状、分岐状又は環状のアルキレン基を表し、X1、X2、X3及びX4は、それぞれ独立して、水素原子、炭素原子数1〜20のアルキル基、炭素原子数1〜20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。)で表される基を表し、
各Eはそれぞれ独立して水素原子、ハロゲン原子、式(7)、式(8)、又は式(9):
{式中、X-は、Cl-、Br-、I-、PF6 -、BF4 -、又はパーフルオロアルカンスルホナートを表し、R2、R3、R4、R5、R6、R7、R9、R10、及びR11は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基、炭素原子数1ないし5のヒドロキシルアルキル基、式(1)、式(2)、又は式(3)で表される有機ラジカル構造を表し、R8は、炭素原子数1〜5のアルキル基、炭素原子数1〜5のヒドロキシルアルキル基、炭素原子数7〜12のアリールアルキル基、式(10)、又は式(11):
(式中、R12は、式(1)又は式(2)で表される有機ラジカル構造を表し、R13は水素原子、式(1)、又は式(2)で表される有機ラジカル構造を表し、R14は、式(1)又は式(2)で表される有機ラジカル構造を表し、mは1ないし5を表す。)で表される基を表す。}で表される構造を表すが、但し、少なくとも一つ以上のEは式(1)〜(3)で表される有機ラジカル構造を有し、
nは繰り返し単位構造の数であって2〜100000の整数を表す。]で表される構造を有する、第1観点に記載のハイパーブランチポリマー。
第3観点として、前記A1が、何れも式(12):
で表される構造である、第2観点に記載のハイパーブランチポリマー、
第4観点として、前記A1が、何れも式(13):
(式中、lは2〜10の整数を表す。)
で表される構造である、第2観点に記載のハイパーブランチポリマー、
第5観点として、前記各Eがそれぞれ独立して、水素原子、臭素原子、式(7)、又は式(8)で表される基を表し、ここで、式(7)中のR2、R3及びR4は、それぞれ独立して、水素原子、メチル基、又は式(1)を表し、式(8)中のR5、R6、及びR7は、それぞれ独立して、水素原子、メチル基、式(1)、又は式(2)を表し、式(8)中のR8がメチル基、ベンジル基、式(10)又は式(11)である、第3観点に記載のハイパーブランチポリマー、
第6観点として、前記Eの一つ以上が、式(14)、式(15)、式(16)、又は式(17):
で表される構造である、第5観点に記載のハイパーブランチポリマー、
第7観点として、第1観点に記載のハイパーブランチポリマーを含有するMRI用造影剤、
第8観点として、第1観点に記載のハイパーブランチポリマーを含有する電極活物質、である。
本発明のハイパーブランチポリマーは分子末端にニトロキシル基を含有するため、高い緩和能を有している上、水溶性に優れ、かつハイパーブランチポリマーの特徴に一つでもある低粘度の為、非金属型の新規MRI用造影剤として利用可能である。また、ハイパーブランチポリマーは比較的容易に分子量を制御できるため、種々のサイズのポリマーを提供でき、ガン細胞選択性や臓器選択性を有する画期的なMRI造影剤と期待される。
本発明のハイパーブランチポリマーが担持しているニトロキシル基は安定な有機ラジカルであるため、サイクル特性や充放電効率に優れた電極活物質として、ラジカル電池やリチウムイオン電池等の二次電池への応用が期待される。
以下、本発明を実施するための詳細を説明する。
本発明のハイパーブランチポリマーは、有機ラジカル構造(ニトロキシル基)を少なくとも一つ以上含み、ゲル浸透クロマトグラフィによるポリスチレン換算で測定される重量平均分子量が500ないし5,000,000であるハイパーブランチポリマーであり、例えば上記式(4)で表すものが挙げられる。担持する有機ラジカル構造としては、式(1)、式(2)、又は式(3)で表すものが挙げられる。
式(4)において、R1は水素原子又はメチル基を表す。また、A1は式(5)、又は式(6)で表される構造を表す。nは繰り返し単位構造の数であって2〜100000の整数を表す。
式(5)及び式(6)において、A2はエーテル結合又はエステル結合を含んでいてもよい炭素原子数1ないし30の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y1、Y2、Y3又はY4は、それぞれ、水素原子、炭素原子数1ないし20のアルキル基、炭素原子数1ないし20のアルコキシ基、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。
2のアルキレン基の具体例としては、メチレン、エチレン、ノルマルプロピレン、ノルマルブチレン、ノルマルヘキシレン等の直鎖状アルキレン、イソプロピレン、イソブチレン、2−メチルプロピレン等の枝分かれ状アルキレンが挙げられる。また環状アルキレンとしては、炭素原子数3ないし30の単環式、多環式及び架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素原子数4以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。例えば、下記に脂環式脂肪族基のうち、脂環式部分の構造例(a)ないし(s)を示す。
1、Y2、Y3又はY4の炭素原子数1ないし20のアルキル基としては、メチル基、エチル基、イソプロピル基、シクロヘキシル基、ノルマルペンチル基等が挙げられる。炭素原子数1ないし20のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、シクロヘキシルオキシ基、ノルマルペンチルオキシ基等が挙げられる。Y1、Y2、Y3又はY4としては、水素原子又は炭素原子数1ないし20のアルキル基が好ましい。
また、式(4)中のA1としては、式(12)で表される構造であることが好ましい。
式(4)中のEとしては、水素原子、ハロゲン原子、式(7)、式(8)、又は式(9)で表される構造が挙げられ、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは臭素原子が挙げられる。
式(7)、式(8)、及び式(9)中、X-は、Cl-、Br-、I-、PF6 -、BF4 -、又はパーフルオロアルカンスルホナートを表し、好ましくはBr-を表す。
2、R3、R4、R5、R6、R7、R9、R10、及びR11は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基、炭素原子数1〜5のヒドロキシルアルキル基、式(1)、式(2)、又は式(3)で表される構造を表し、炭素原子数1〜5のアルキル基としては、メチル基、エチル基、イソプロピル基、t−ブチル基、シクロペンチル基、ノルマルペンチル基等が挙げられる。炭素原子数1ないし5のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。好ましくは、水素原子、メチル基、式(1)、式(2)、又は式(3)で表される構造を表す。
8は、炭素原子数1〜5のアルキル基、炭素原子数1〜5のヒドロキシルアルキル基、炭素原子数7〜12のアリールアルキル基、式(10)、又は式(11)で表される構造を表し、炭素原子数1〜5のアルキル基としては、メチル基、エチル基、イソプロピル基、t−ブチル基、シクロペンチル基、ノルマルペンチル基等が挙げられる。炭素原子数1ないし5のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。炭素原子数7〜12のアリールアルキル基としては、ベンジル基及びフェネチル基等が挙げられる。
式(10)及び式(11)中の、R12は、式(1)又は式(2)を表し、R13は水素原子、式(1)、又は式(2)を表し、R14は、式(1)又は式(2)を表し、mは1ないし5を表す。
次に、本発明の式(4)で表される構造を有するハイパーブランチポリマーの製造方法を説明する。
式(4)で表される構造を有するハイパーブランチポリマーは、例えば、以下に示すスキームに従って製造することができる。
[式中、A1、R1、X、E、n、R2、R3、R4、R5、R6、R7、R8、R9、R10及びR11は前記と同様の意味を表し、DCは、ジチオカルバメート基(−SC(=S)N(Ra)Rb(式中、Ra及びRbは、それぞれ、炭素原子数1〜5のアルキル基、炭素原子数1〜5のヒドロキシアルキル基または炭素原子数7〜12のアリールアルキル基を表すか、または、RaとRbは互いに結合し、窒素原子と共に環を形成していてもよい。))を表す。]
即ち、分子末端にジチオカルバメート基を有する式(18)で表されるハイパーブランチポリマーのジチオカルバメート基をXで置換して末端にXを有する式(19)で表されるハイパーブランチポリマーとした後、E´、例えば、スキーム中に記載されるR2、R3及びR4を置換基として有する三級アミン、R5、R6、R7及びR8を置換基として有するイミダゾール、R9、R10及びR11を置換基として有するピリジンを反応させることにより式(4)で表されるハイパーブランチポリマーを製造することができる。
上記の式(18)で表されるハイパーブランチポリマーから式(19)で表されるハイパーブランチポリマーを合成する反応は、ジチオカルバメート基をXで置換するために使用される反応条件を使用することができる。
例えば、Xがハロゲン原子である場合の反応(ハロゲン化)の反応条件を以下に説明する。
ハロゲン化の方法は、ジチオカルバメート基をハロゲン原子に変換することができる方法であれば、特に制限はない。本反応で使用できるハロゲン化剤としては、塩素、N−クロロコハク酸イミド、塩素化イソシアヌール酸、塩化スルフリル、ターシャリーブチルハイポクロリド、三塩化リン、五塩化リン、トリフェニルホスフィンジクロリド、塩化第二銅、五塩化アンチモン等の塩素化剤、臭素、N−ブロモコハク酸イミド、N−ブロムグルタルイミド、N,N’,N”−トリブロモイソシアヌル酸、N,N’−ジブロモイソシアヌル酸ナトリウム、N,N−ブロムイソシアヌル酸カリウム、N,N’−ジブロモイソシアヌル酸、N−ブロモイソシアヌル酸ナトリウム、N,N’−ジブロムヒダントイン、N−ブロモヒダントインカリウム、N,N’−ブロモヒダントインナトリウム、N−ブロム−N’−メチルヒダントイン、1,3−ジブロモ−5,5’−ジメチルヒダントイン、3−ブロモ−5,5’−ジメチルヒダントイン、3−ブロモ−5,5’−ジメチルヒダントイン、1−ブロモ−5,5’−ジメチルヒダントインナトリウム、1−ブロモ−5,5’−ジメチルヒダントインカリウム、3−ブロモ−5,5’−ジメチルヒダントインナトリウム、3−ブロモ−5,5’−ジメチルヒダントインカリウム等の臭素化剤、ヨウ素、N−ヨードコハク酸イミド、ヨウ素酸カリウム、過ヨウ素酸カリウム、過ヨウ素酸、ヨウ素酸等のヨウ素化剤を使用することができる。ハロゲン化剤の使用量は、ハイパーブランチポリマー内のジチオカルバメート基の数に対して1ないし20倍モル当量、好ましくは1.5ないし15倍モル当量、より好ましくは2ないし10倍モル当量であればよい。置換反応の条件としては、反応時間0.01ないし100時間、反応温度0ないし300℃から、適宜選択される。好ましくは反応時間0.1ないし10時間、反応温度20ないし150℃である。
分子末端のジチオカルバメート基をハロゲン原子に置換する反応は、水又は有機溶剤中で行なうことが好ましい。使用する溶剤は、前記のジチオカルバメート基を有するハイパーブランチポリマーとハロゲン化剤とを溶解可能なものが好ましい。また、該溶剤がジチオカルバメート基を有するハイパーブランチポリマーを製造する際に使用する溶剤と同じものであると、反応操作も簡便になり好ましい。
ハロゲン化の方法としては、有機溶剤溶液中、臭素等のハロゲン化剤を使用して、加熱還流することによって行なう反応が好ましい。有機溶剤としては、本反応の進行を著しく阻害しないものであれば良く、酢酸等の有機酸系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、1,2−ジクロロベンゼン等の芳香族炭化水素類、テトラヒドロフラン、ジエチルエーテル等のエーテル系化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系化合物、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ノルマルヘプタン、ノルマルヘキサン、シクロヘキサン等の脂肪族炭化水素類等が使用できる。これらの溶剤は一種を用いてもよいし、二種またはそれ以上を混合して用いてもよい。また、ジチオカルバメート基を分子末端に有するハイパーブランチポリマーの質量に対して0.2ないし1,000倍質量、好ましくは1ないし500倍質量、より好ましくは5ないし100倍質量、最も好ましくは10ないし50倍質量の有機溶剤を使用することが好ましい。また、この反応では反応開始前には反応系内の酸素を十分に除去する必要があり、窒素、アルゴン等の不活性気体で系内を置換するとよい。反応条件としては、反応時間0.01ないし100時間、反応温度0ないし200℃から、適宜選択される。好ましくは反応時間0.1ないし5時間、反応温度20ないし150℃である。
反応後は系内に残存するハロゲン化剤を分解処理することが望ましいが、その際、チオ硫酸ナトリウム、亜硫酸ナトリウム等の還元剤の水溶液、又は水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ水溶液を用いることが出来る。また、エチレン、プロピレン、ブテン、シクロヘキセン等の不飽和結合を含む化合物と反応させてもよい。使用量は用いたハロゲン化剤に対して、0.1ないし50当量、好ましくは、0.5ないし10当量、より好ましくは1ないし3当量であれば良い。上述のような反応によって得られた本発明の分子末端にハロゲン原子を有するハイパーブランチポリマーは、反応溶液中から溶剤留去又は固液分離により溶剤と分離することができる。また、反応溶液を貧溶剤中へ加えることにより本発明の分子末端にハロゲン原子を有するハイパーブランチポリマーを沈殿させ、粉末として回収することもできる。
なお、本発明の分子末端にハロゲン原子を含有するハイパーブランチポリマーは、分子末端の一部がジチオカルバメート基として残存していてもよい。
上記の式(19)で表されるハイパーブランチポリマーから式(4)で表されるハイパーブランチポリマーを合成する反応は、X-をカウンターイオンとするアミン化合物(R2、R3及びR4を置換基として有する三級アミン、R5、R6、R7及びR8を置換基として有するイミダゾール、R9、R10及びR11を置換基として有するピリジン)の四級化反応で
ある。
例えば、Xがハロゲン原子である場合の反応条件を以下に説明する。
反応で使用できるアミン化合物の使用量は、分子末端にハロゲン原子を有するハイパーブランチポリマー中のハロゲン原子の1モル当量に対して0.1ないし20倍モル当量、好ましくは0.5ないし10倍モル当量、より好ましくは1ないし5倍モル当量であればよい。反応の条件としては、反応時間は0.01ないし100時間、反応温度は0ないし300℃から、適宜選択される。好ましくは反応時間が0.1ないし10時間で、反応温度が20ないし150℃である。
分子末端のハロゲン原子とアミン化合物との反応は、水又は有機溶剤溶液中で、塩基の存在下又は非存在下で行なうことができる。使用する溶剤は、前記のハロゲン原子を有するハイパーブランチポリマーとアミン化合物を溶解可能なものが好ましい。さらに、前記ハロゲン原子を有するハイパーブランチポリマーとアミン化合物を溶解可能であるが、分子末端にアミノ基又はアンモニウム基を有するハイパーブランチポリマーを溶解しない溶媒であれば、単離が容易となりさらに好適である。
有機溶剤としては、本反応の進行を著しく阻害しないものであれば良く、水及び酢酸等の有機酸系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、1,2−ジクロロベンゼン等の芳香族炭化水素類、テトラヒドロフラン、ジエチルエーテル等のエーテル系化合物、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系化合物、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ノルマルヘプタン、ノルマルヘキサン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の脂肪族炭化水素類等が使用できる。これらの溶剤は一種を用いてもよいし、二種以上を混合して用いてもよい。また、使用量は、ハロゲン原子を分子末端に有するハイパーブランチポリマーの質量に対して0.2ないし1,000倍質量、好ましくは1ないし500倍質量、より好ましくは5ないし100倍質量、最も好ましくは10ないし50倍質量の有機溶剤を使用することが好ましい。また、この反応では反応開始前には反応系内の酸素を十分に除去する必要があり、窒素、アルゴン等の不活性気体で系内を置換するとよい。反応条件としては、反応時間0.01ないし100時間、反応温度0ないし200℃から、適宜選択される。好ましくは反応時間が0.1ないし5時間で、反応温度が20ないし150℃である。
尚、分子末端にジチオカーバメート基を有する式(18)で表されるハイパーブランチポリマーは、ジチオカーバメート基を有するスチレン化合物の光重合による合成方法(KojiIshizu, Akihide Mori,Macromol. Rapid Commun.21,665−668(2000)、Koji Ishizu, Akih
ide Mori, Polymer International 50,906−910(2001)、Koji Ishizu, Yoshihiro Ohta, Susumu
Kawauchi, MacromoleculesVol.35, No.9, 37
81−3784(2002))や、ジチオカルバメート基を有するアクリル化合物の光重合による合成方法(KojiIshizu, Takeshi Shibuya,Akihide Mori, PolymerInternational 51,424−428(2002)、Koji Ishizu, Takeshi Shibuya,Susumu Kawauchi, MacromoleculesVol.36, No.10,3505−3510(2002)、Koji Ishizu, Takeshi Shibuya,Jaebum Park, SatoshiUchida, Polymer International53,259−265(2004))によって合成できる。
例えば、式(21)(式中、R1、Ra、Rb及びA1は、前記と同様である。)で表されるジチオカルバメート化合物をリビングラジカル重合することによりジチオカルバメート基を分子末端に有するハイパーブランチポリマーを得ることができる。ジチオカルバメート基を分子末端に有するハイパーブランチポリマーは次のようにして生成すると考えられる。すなわち、式(21)の化合物への光照射等によってA1−S結合が開裂してラジカル種(式(22))が発生する。次に、(22)のラジカル種が式(21)の化合物と反応して式(23)の化合物を生成する。さらに、式(23)においてC−S結合又はA1−S結合が開裂してラジカル種を発生し、それが式(21)の化合物と反応することによって、式(24)又は式(25)の化合物を与える。なお、式(24)及び式(25)中、DCはジチオカルバメート基(−SC(=S)N(Ra)Rb)を表す。そして、式(24)及び式(25)の化合物から同様の反応が繰り返されることによって、ジチオカルバメート基を分子末端に有するハイパーブランチポリマーが生成すると考えられる。
ニトロキシル基を導入する際の原料となる、ジメチルアミノTEMPOの合成は、Syntheses of Some Stable Radicals p.213-214 (XXXI)、及びEur. J. Med. 24(1989)335-340に従って合成できる。すなわち、2,2,6,6,-テトラメチル-4-ピペリドンをタングステン酸ナトリウム存在下、トリトンBによりニトロキシル誘導体に酸化し、続いてジメチルアミンとシアノボロハイドライドにより還元的アミノ化を行うことによりジメチルアミノTEMPOが得られる。
本発明はまた、本発明のハイパーブランチポリマーを含有するMRI用造影剤に関する。
本発明のハイパーブランチポリマーを含有するMRI用造影剤は、通常注射用蒸留水、生理食塩水やリンゲル液等の溶媒に懸濁、または溶解等の状態で用いられ、さらに必要に応じて、薬理学的に許容されうる担体、賦形剤等の添加剤を含めることができる。本発明のハイパーブランチポリマーを含有するMRI用造影剤は、細胞などに適用しうる他、血管(静脈、動脈)内投与、経口投与、直腸内投与、膣内投与、リンパ管内投与、関節内投与等によって生体内に投与することができ、好ましくは、水剤、乳剤または懸濁液等の形態で投与する。本発明のハイパーブランチポリマーを含有するMRI用造影剤に含められる添加剤としては、その投与形態、投与経路等によっても異なるが具体的には、注射剤の場合には、緩衝剤、抗菌剤、安定化剤、溶解補助剤や賦形剤等が単独または組み合わせて用いられ、経口投与剤(具体的には水剤、シロップ剤、乳剤または懸濁液等)の場合、着色剤、保存剤、安定化剤、懸濁化剤、乳化剤、粘稠剤、甘味剤、芳香剤等が単独または組み合わせて用いられる。各種添加剤は通常当分野で用いられるものが使用される。
本発明のハイパーブランチポリマーを含有するMRI用造影剤は従来のMRI用造影剤に準じて投与、造影することができる。具体的な投与方法としては静脈内投与や経口投与などが挙げられる。
また、本発明のハイパーブランチポリマーを含有するMRI用造影剤は、ヒト以外にも各種動物用の造影剤としても好適に用いることができ、その投与形態、投与経路、投与量等は対象となる動物の体重や状態によって適宜選択する。
本発明はまた、本発明のハイパーブランチポリマーを含有する電極活物質に関する。
本発明のハイパーブランチポリマーを含有する電極活物質は、例えば、リチウム2次電池用の電極(陽極、陰極)、湿式太陽電池、センサー、燃料電池等に使用することができる。
以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
参考例1:N、N−ジエチルジチオカルバミルメチルスチレンの合成
2Lの反応フラスコに、クロロメチルスチレン[セイミケミカル(株)製、CMS−14(商品名)]120g、N、N−ジエチルジチオカルバミド酸ナトリウム3水和物[関東化学(株)製]181g、アセトン1400gを仕込み、撹拌下、40℃で1時間反応させた。反応後、析出した塩化ナトリウムを濾過して除き、その後エバポレーターで反応溶液からアセトンを留去し、反応粗粉末を得た。この反応粗粉末をトルエンに再溶解し、トルエン/水系で分液後、−20℃の冷凍庫内でトルエン相から目的物を再結晶した。再結晶物を濾過、真空乾燥して、白色粉末の目的物206g(収率97%)を得た。液体クロマトグラフィーによる純度(面積百分率値)は100%であった。DSC測定での融点は56℃であった。
参考例2
<ジチオカルバメート基を分子末端に有するスチレン系ハイパーブランチポリマー(HPS)の合成>
300mLの反応フラスコに、参考例1で得られたN、N−ジエチルジチオカルバミルメチルスチレン108g、トルエン72gを仕込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この溶液の真ん中から100Wの高圧水銀灯[セン特殊光源(株)製、HL−100]を点灯させ、内部照射による光重合反応を、撹拌下、温度30℃で12時間行なった。次にこの反応液をメタノール3000gに添加してポリマーを高粘度な塊状状態で再沈した後、上澄み液をデカンテーションで除いた。さらにこのポリマーをテトラヒドロフラン300gに再溶解した後、この溶液をメタノール3000gに添加してポリマーをスラリー状態で再沈した。このスラリーを濾過し、真空乾燥して、白色粉末の目的物48gを得た。ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwは19,000、分散度Mw/Mnは3.5であった。
参考例3
<ハロゲン原子を分子末端に有するスチレン系ハイパーブランチポリマー(HPS−Br)の合成>
還流塔を付した300mlの反応フラスコに、参考例2で得たジチオカルバメート基を分子末端に有するハイパーブランチポリマー10g及びクロロホルム50gを仕込み、反応系内を窒素置換した。これに、臭素[純正化学社製]16.0gをクロロホルム50gに溶解させたものを滴下して加え、3時間還流を行った。温度30℃まで冷却後、生成した橙色沈殿を濾別した。
飽和食塩水及び20質量%チオ硫酸ナトリウムを加えて、有機相を洗浄した。この溶液をメタノール500gに滴下して再沈を行った。得られた黄色粉末を再度クロロホルム40gに溶解し、500gのメタノールに滴下し、再沈を行い、得られた無色粉末を乾燥して、ジチオカルバメート基を分子末端に有するハイパーブランチポリマーのジチオカルバメート基部分が臭素原子に置換されたハイパーブランチポリマー4.6gを得た。ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwは6,600、分散度Mw/Mnは2.2であった。元素分析は、炭素50.2質量%、水素3.8質量%、窒素1.0質量%未満及び臭素33.2質量%であった。1H−NMRスペクトルの測定結果において、ジチオカルバメート基のメチレン基由来の4.0ppm及び3.7ppmのピークが消失しており、また、1.3ppmのジチオカルバメート基のメチル基由来のピークが減少したことが観測された。これより、参考例2で得られたハイパーブランチポリマーの末端のジチオカルバメート基は、ほぼ100%ハロゲン原子(臭素原子)に置換されていることが明らかとなった。得られたハイパーブランチポリマー(HPS−Br)は式(20)で表される構造を有する。
実施例1:化合物(5)(HBP−NN+Br-)の合成
<化合物(2)の合成>
Synth. Commun.,1990, 20, 321-331の方法に従って化合物(1)(N−メチルイミダゾール)から化合物(2)を合成した。
<化合物(3)の合成(合成法1)>
化合物(2)3.0 g(27.2 mmol)を水70 mLに溶液し、2,3-ビス(ヒドロキシルアミノ)-2,3-ジメチルブタン硫酸塩1水和物16.4 g(62.1 mmol)を加え、1時間撹拌した。炭酸ナトリウムで中和し、さらに1時間撹拌した。溶媒留去後、得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製を行い、白色固体の化合物(3)4.67 gを得た。
IR(KBr, cm-1): 3252;
m.p. (℃) : 176-177 ℃
1H-NMR(270MHz,CDCl3)δ(ppm): 7.06 (s, 1H), 6.85 (s, 1H), 5.14 (s, 1H), 3.76 (s, 1H), 1.22 (s, 6H), 1.21 (s, 6H);
FABMS (m-ニトロベンジルアルコール) : 241(M++1)
Anal. Cacld for C11H20N4O2: C, 54.98; H, 8.39; N, 23.32. Found: C, 54.85; H, 8.31; N, 23.21
<化合物(4)の合成(合成法2)>
化合物(3)1.78 g(7.41 mmol)を塩化メチレン120 mLに溶解し、二酸化鉛10.5 g(76.1mmol)を加え、室温で1時間撹拌した。吸引濾過後、ろ液を溶媒留去し、得られた固体をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール)により精製を行い、青色固体の化合物(4)1.49 gを得た。
IR(KBr, cm-1): 1372;
m.p. (℃) : 155-157 ℃
Anal. Cacld for C11H20N4O2: C, 54.98; H, 8.39; N, 23.32. Found: C, 54.85; H, 8.31; N, 23.21
<化合物(5)(HBP−NN+Br-)の合成(合成法3)>
参考例3で合成したハイパーブランチポリマー(HPS−Br)39.4 mgをクロロホルム5 mLに溶解し、化合物(4)71.8 mg(0.3 mmol)を加え加熱還流した。反応溶液を室温にもどし酢酸エチルを加え、析出した紫色固体を吸引ろ過で集めた。得られた固体を真空乾燥し、化合物(5)(HBP−NN+Br-)を21.5 mg得た。
IR(KBr, cm-1): 3415, 2919, 2847, 1623, 1521, 1439, 1373;
実施例2:化合物(7)(HBP−N−TEMPO)の合成
<化合物(6)の合成>
Eur. J. Med. 1989, 335-340の方法に従って2,2,6,6−テトラメチル−4−ピペリドンから化合物(6)(ジメチルアミノTEMPO)を合成した。
<化合物(7)(HBP−N−TEMPO)の合成(合成法4)>
参考例3で合成したハイパーブランチポリマー(HPS−Br)2.5 gをDMF125 mLに溶解し、化合物(6)5.1 g(25.4 mmol)を加え、80℃で加熱した。8時間後、反応溶液を室温にもどし、アセトン1000 mL中に加え、析出した赤色固体を吸引ろ過で集めた。得られた固体を真空乾燥し、化合物(7)(HBP−N−TEMPO)4.0 gを得た。
IR(KBr, cm-1): 3421, 2981, 2919, 2319, 1664;
実施例3:化合物(11)(HBP−Im−O−TEMPO)の合成
<化合物(9)の合成(合成法5)>
Synlet,2005, 4, 607-610の方法に従って化合物(8)から化合物(9)を合成した。
<化合物(10)の合成(合成法6)>
NaH(60%活性)700 mg(17.5 mmol)をノルマルヘキサンで2回洗浄し、真空ポンプで乾燥させた。乾燥テトラヒドロフラン30 mLを加えたあと、イミダゾール660 mg(9.7 mmol)の
テトラヒドロフラン10 mL溶液を0℃中に保ちながら滴下した。30分の撹拌の後、化合物(9)2.0 g(8.1 mmol)の10 mLテトラヒドロフラン溶液を滴下し、3時間0℃下で撹拌した後、1時間室温でさらに撹拌した。反応溶液を氷浴中で冷却し、希塩酸水溶液を加え中和した後、テトラヒドロフランを留去し、塩化メチレンで抽出した。飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し、溶媒留去した。シリカゲルカラムクロマトグラフィー(酢酸エチルの後クロロホルム:メタノール)により精製後、赤色固体1.25 gを得た。
IR(KBr, cm-1): 1744, 1512, 1216;
FABMS (m-ニトロベンジルアルコール) : 281(M++1)
Anal. Cacld for C14H22N3O3: C, 59.98; H, 7.91; N, 14.99. Found: C, 60.08; H, 7.74; N, 14.72
<化合物(11)(HBP−Im−O−TEMPO)の合成(合成法9)>
参考例3で合成したハイパーブランチポリマー(HPS−Br)400 mgをDMF20 mLに溶解し、化合物(10)650 mg(2.3 mmol)を加え、80℃で加熱した。6時間反応後、反応溶
液を室温にもどし、アセトン20 mLを加えて析出した赤色固体を吸引ろ過で集めた。得られた固体を真空乾燥し、化合物(11)(HBP−Im−O−TEMPO)を910 mg得た。
IR(KBr, cm-1): 3431, 2976, 2930, 1748, 1225, 1159;
実施例4:化合物(16)(HBP−Im−(TEMPO)2)の合成
<化合物(13)の合成(合成法10)>
J. Chem. Soc., Perkin Trans I, 2002, 2663-2667の方法に従って化合物(12)から化合物(13)を合成した。
<化合物(14)の合成(合成法11)>
NaH(60%活性)333 mg(9.0 mmol)をノルマルヘキサンで2回洗浄し、真空ポンプで乾燥させた。乾燥テトラヒドロフラン15mLと化合物(13)1.5 g(4.6 mmol)のテトラヒドロフラン5 mL溶液を0℃中に保ちながら滴下した。30分の撹拌の後、ブロモアセチルクロライド1.5 g(9.5 mmol)を滴下し、6時間室温で撹拌した。氷浴中で、希塩酸水溶液を加え中和した後、テトラヒドロフランを留去し、塩化メチレンで抽出した。飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し、溶媒留去した。シリカゲルカラムクロマトグラフィー(酢酸エチルの後クロロホルム:メタノール)により精製後、赤色固体210 mgを得た。
IR(KBr, cm-1): 2973, 2931, 1651;
FABMS (m-ニトロベンジルアルコール) : 447(M++1)
Anal. Cacld for C20H36N3O3Br: C, 53.81; H, 8.13; N, 9.41. Found: C, 53.65; H, 8.14; N, 9.72
<化合物(15)の合成(合成法12)>
NaH(60%活性)20 mg(0.4 mmol)をノルマルヘキサンで2回洗浄し、真空ポンプで乾燥させた。乾燥テトラヒドロフラン2mLを加え、イミダゾール28 mg(0.4 mmol)のテトラヒドロフラン2 mL溶液を0℃中に保ちながら滴下した。30分の撹拌の後、化合物(14)150 mg(0.33 mmol)の5 mLテトラヒドロフラン溶液を滴下し、3時間撹拌した後、1時間室温でさらに撹拌した。氷浴中で希塩酸水溶液を加え中和した後、テトラヒドロフランを留去し、塩化メチレンで抽出した。飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥し、溶媒留去した。シリカゲルカラムクロマトグラフィー(酢酸エチルの後クロロホルム:メタノール)により精製後、赤色固体60 mgを得た。クロロホルム、ジエチルエーテル混合溶媒で再結晶し、赤色ブロック晶を得た。
IR(KBr, cm-1): 2976, 2931, 1668;
FABMS (m-ニトロベンジルアルコール) : 435(M++1)
Anal. Cacld for [C23H39N5O3・Et2O]: C, 63.87; H, 9.73; N, 13.79. Found: C, 63.57; H, 9.74; N, 13.52
<化合物(16)(HBP−Im−(TEMPO)2)の合成(合成法13)>
参考例3で合成したハイパーブランチポリマー(HPS−Br)20 mgをDMF5 mLに溶解し、化合物(15)70 mg(0.16 mmol)を加え、80℃で加熱した。6時間反応後、室温にもどし、アセトン5 mLを加えて析出した赤色固体を吸引ろ過で集めた。得られた固体を真空乾燥し、化合物(16)(HBP−Im−(TEMPO)2)を70 mg得た
IR(KBr, cm-1): 3436, 2975, 2929, 1660;
試験例1:ESRの測定
実施例3で合成した化合物(11)(HBP−Im−O−TEMPO)2mgを1mLの脱イオン水に溶解して調製したサンプルを1φのサンプル管の下から2cmまでサンプルを入れ、ブルカーバイオスピン社製EMX (9.4 GHz)でESRの測定を室温で行った。測定結果のグラフを図1に示した。シグナルの顕著なブロードニングの確認から、ハイパーブランチ中で、有機ラジカルの高密度な集積化が示唆された。
試験例2:緩和時間の測定
<測定法1>
実施例1ないし4で合成したそれぞれの化合物(化合物(5)、化合物(7)、化合物(11)、化合物(16))1, 2, 3 mgを脱イオン水に溶解させ、0.3 mLとしたサンプルと脱イオン水のみのサンプル0.3 mLを、10φのサンプル管に入れ準備した。日本電子社製のパルスNMR装置JNM-MU25RAN(0.59 T、25 MHz、25 ℃)を用いて、それぞれのサンプル
中の水の緩和時間(τ)を反転回復法(inversion recovery法)で求め、T1の値を得た。縦軸にτの逆数、横軸に濃度でプロットした傾きからr1(mM-1s-1)を見積った。
1例として、化合物(11)の測定結果のグラフを図2に示した。
また、各サンプルのr1(mM-1s-1)の値を表1にまとめた。
<測定法2>
測定法1と同様にして調製した各サンプルにつき、バリアン社製 MRI 4.7T UNITY INOVA(4.7 T、200 MHz、17 ℃)を用いた緩和能測定も行った。
各サンプルのr1(mM-1s-1)の値を表1にまとめた。
*濃度決定法は、ラジカル化合物とカップリング前のハイパーブランチポリマー(ブロモ体)の分子量を10,000と見積り、1分子中50ユニットブロモ基が存在すると仮定し、ハイパーブランチラジカルカップリング体の分子量を見積った。それぞれの分子量(Mw)を以下に示す。
化合物(5)21,720、化合物(7)19,800、化合物(11)23,850、化合物(16)31,550 GdDTPA(4.0 mM-1s-1)と比べると、同程度か十分に大きな緩和能(r1)を示しており、T1の強調は十分であることが示された。
試験例3:TEM(透過型電子顕微鏡)観察
ハイパーブランチポリマー(化合物(7)、化合物(11))を0.01wt%となるようにTHF(関東化学社製)に溶解させた溶液をカーボンメッシュグリッドに滴下、乾燥してTEM観察用サンプルを作製した。TEM観察(日立製作所H−8000)を行った結果、5nm程度の粒子状構造体が観測された。
化合物(7)のTEM写真を図3に示し、化合物(11)のTEM写真を図4に示した。
試験例4:T1強調画像の測定(ファントム画像)
上記と同様の方法で、化合物(11)、化合物(16)を用いて調製した水溶液サンプルの、T1強調画像化を行った。バリアン社製 MRI 4.7T UNITY INOVA(4.7 T、200 MHz、17 ℃)で得られた水プロトンの緩和速度を、スピンエコー法、スポイルドグラディエントエコー法により、T1強調化し画像化した。
得られた画像を図5に示した。
同濃度のGdDTPAと比べると、化合物(11)、(16)の輝度が強いことより、十分に臨床応用可能な程度T1が強調されることが、画像からも示された。
試験例5:サイクリックボルタモグラムの測定(CV)
化合物(7)、(11)0.3 mgをKCl溶液1 mLに溶解させ、ALS製600Bを用いてサイクリックボルタモグラムの測定を行った。作用電極にはグラファイトカーボン、参照電極にはAg/AgCl、対電極にはPtを用いて、0.05 V/Sの速度で行った。化合物(7)を用いた場合のサイクリックボルタモグラムの測定結果のグラフを図6に示し、化合物(11)を用いた場合のサイクリックボルタモグラムの測定結果のグラフを図7に示した。それぞれ600〜700 mAに可逆なredoxピークを確認し、ニトロキラジカルとオキソアンモニウムイオンとの間の酸化還元反応に対応する事が示された。このことは、化合物(7)、(11)が再利用可能な二次電池としての材料に有効である事を示す。
参考文献:Nishide et. al., Electrochimica Acta, 2004 50, 827-831
化合物(11)のESRの測定結果を示すグラフである。 化合物(11)の緩和時間測定結果を示すグラフである。 化合物(7)のTEM写真である。 化合物(11)のTEM写真である。 化合物(11)及び化合物(16)のT1強調画像である。 化合物(7)を用いた場合のサイクリックボルタモグラムの測定結果を示すグラフである。 化合物(11)を用いた場合のサイクリックボルタモグラムの測定結果を示すグラフである。

Claims (7)

  1. 式(4):
    [式中、各Rはそれぞれ独立して水素原子又はメチル基を表し、
    各Aはそれぞれ独立して式(5)又は式(6):
    (式中Aはエーテル結合又はエステル結合を含んでいてもよい炭素原子数1〜30の直鎖状、分岐状又は環状のアルキレン基を表し、X、X、X及びXは、それぞれ独立して、水素原子、炭素原子数1〜20のアルキル基、炭素原子数1〜20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。)で表される基を表し、
    各Eはそれぞれ独立して水素原子、ハロゲン原子、式(7)、式(8)又は式(9):
    {式中、Xは、Cl、Br、I、PF 、BF 、又はパーフルオロアルカンスルホナートを表し、R、R、R、R、R、R、R、R10、及びR11は、それぞれ独立して、水素原子、炭素原子数1〜5のアルキル基、炭素原子数1ない
    し5のヒドロキシルアルキル基、又は式(1)、式(2)もしくは式(3)
    で表される有機ラジカル構造(ニトロキシル基)を表し、Rは、炭素原子数1〜5のアルキル基、炭素原子数1〜5のヒドロキシルアルキル基、炭素原子数7〜12のアリールアルキル基、式(10)又は式(11):
    (式中、R12は、前記式(1)又は前記式(2)で表される有機ラジカル構造を表し、
    13は水素原子、前記式(1)又は前記式(2)で表される有機ラジカル構造を表し、R14は、前記式(1)又は前記式(2)で表される有機ラジカル構造を表し、mは1ないし5を表す。)で表される基を表す。}で表される構造を表すが、但し、少なくとも一つ以上のEは式(1)、式(2)又は式(3)で表される有機ラジカル構造を有し、
    nは繰り返し単位構造の数であって2〜100000の整数を表す。]で表される構造を有する、ゲル浸透クロマトグラフィによるポリスチレン換算で測定される重量平均分子量が500ないし5,000,000である、ハイパーブランチポリマー。
  2. 前記Aが、何れも式(12):
    で表される構造である、請求項に記載のハイパーブランチポリマー。
  3. 前記Aが、何れも式(13):
    (式中、lは2〜10の整数を表す。)
    で表される構造である、請求項に記載のハイパーブランチポリマー。
  4. 前記各Eがそれぞれ独立して、水素原子、臭素原子、式(7)又は式(8)で表される基を表し、ここで、式(7)中のR、R及びRは、それぞれ独立して、水素原子、メチル基、又は式(1)で表される基を表し、式(8)中のR、R、及びRは、それぞれ独立して、水素原子、メチル基、式(1)又は式(2)で表される基を表し、式(8)中のRがメチル基、ベンジル基、式(10)又は式(11)で表される基を表す、請求項記載のハイパーブランチポリマー。
  5. 前記Eの一つ以上が、式(14)、式(15)、式(16)又は式(17):
    で表される構造を表す、請求項に記載のハイパーブランチポリマー。
  6. 請求項1記載のハイパーブランチポリマーを含有するMRI用造影剤。
  7. 請求項1記載のハイパーブランチポリマーを含有する電極活物質。
JP2009538250A 2007-10-26 2008-10-23 ニトロキシル基を有するハイパーブランチポリマー Expired - Fee Related JP5570220B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009538250A JP5570220B2 (ja) 2007-10-26 2008-10-23 ニトロキシル基を有するハイパーブランチポリマー

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007279082 2007-10-26
JP2007279082 2007-10-26
JP2009538250A JP5570220B2 (ja) 2007-10-26 2008-10-23 ニトロキシル基を有するハイパーブランチポリマー
PCT/JP2008/069236 WO2009054455A1 (ja) 2007-10-26 2008-10-23 ニトロキシル基を有するハイパーブランチポリマー

Publications (2)

Publication Number Publication Date
JPWO2009054455A1 JPWO2009054455A1 (ja) 2011-03-10
JP5570220B2 true JP5570220B2 (ja) 2014-08-13

Family

ID=40579557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009538250A Expired - Fee Related JP5570220B2 (ja) 2007-10-26 2008-10-23 ニトロキシル基を有するハイパーブランチポリマー

Country Status (3)

Country Link
US (1) US7994258B2 (ja)
JP (1) JP5570220B2 (ja)
WO (1) WO2009054455A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009136626A1 (ja) * 2008-05-07 2011-09-08 日産化学工業株式会社 エレクトロクロミック材料
WO2010087379A1 (ja) * 2009-01-27 2010-08-05 国立大学法人九州大学 チオエステル基含有ハイパーブランチポリマー
CN102959679B (zh) 2010-07-02 2016-01-20 株式会社德山 光固化性压印用组合物以及使用该组合物的图案的形成方法
JP5802680B2 (ja) * 2010-11-26 2015-10-28 国立大学法人九州大学 常磁性を有する水溶性ハイパーブランチポリマー
JPWO2012120929A1 (ja) * 2011-03-09 2014-07-17 日本電気株式会社 電極用活物質、及び二次電池
EP2514800B2 (de) 2011-04-21 2018-03-07 Merck Patent GmbH Verbindungen und flüssigkristallines Medium
WO2014050323A1 (ja) * 2012-09-27 2014-04-03 日本電気株式会社 コポリマー、電極用活物質、及び二次電池
EP2789609A1 (en) * 2013-04-11 2014-10-15 Bruker Biospin (SAS) Highly efficient polarizing agents for dynamic nuclear polarization
CN109715676B (zh) * 2017-01-13 2022-04-15 麦克赛尔株式会社 超支化聚合物、金属回收剂、金属回收方法和催化活性妨碍剂
CN109638252A (zh) * 2018-12-14 2019-04-16 中南民族大学 超支化聚合物电极活性材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567411A (en) * 1986-11-10 1996-10-22 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Dendritic amplifier molecules having multiple terminal active groups stemming from a benzyl core group
JP2004524259A (ja) * 1999-12-10 2004-08-12 ローゼン、ジェラルド エム. 関節のmri画像診断における造影増強剤としてポリニトロシル官能基を有するデンドリマーの利用
JP2004256563A (ja) * 2003-02-24 2004-09-16 Shiseido Co Ltd スターポリマーの製造方法
WO2006093050A1 (ja) * 2005-03-03 2006-09-08 Tokyo Institute Of Technology ハイパーブランチポリマー及びその製造方法
WO2007136004A1 (ja) * 2006-05-19 2007-11-29 Nissan Chemical Industries, Ltd. ハイパーブランチポリマー及びその製造方法
WO2008029806A1 (fr) * 2006-09-07 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperramifié et son procédé de production
WO2008029688A1 (fr) * 2006-09-01 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperbranché et son procédé de production

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822594A (en) 1987-01-27 1989-04-18 Gibby Wendell A Contrast enhancing agents for magnetic resonance images
JP2001523215A (ja) 1995-04-17 2001-11-20 イマークス ファーマシューティカル コーポレーション ハイブリッド磁気共鳴造影剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5567411A (en) * 1986-11-10 1996-10-22 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Dendritic amplifier molecules having multiple terminal active groups stemming from a benzyl core group
JP2004524259A (ja) * 1999-12-10 2004-08-12 ローゼン、ジェラルド エム. 関節のmri画像診断における造影増強剤としてポリニトロシル官能基を有するデンドリマーの利用
JP2004256563A (ja) * 2003-02-24 2004-09-16 Shiseido Co Ltd スターポリマーの製造方法
WO2006093050A1 (ja) * 2005-03-03 2006-09-08 Tokyo Institute Of Technology ハイパーブランチポリマー及びその製造方法
WO2007136004A1 (ja) * 2006-05-19 2007-11-29 Nissan Chemical Industries, Ltd. ハイパーブランチポリマー及びその製造方法
WO2008029688A1 (fr) * 2006-09-01 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperbranché et son procédé de production
WO2008029806A1 (fr) * 2006-09-07 2008-03-13 Nissan Chemical Industries, Ltd. Polymère hyperramifié et son procédé de production

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6008060798; Macromolecules 35, 2002, 3781-4 *
JPN6008060801; Macromol. Rapid Commun. 21, 2000, 665-8 *
JPN6008060803; Polymer International 53, 2004, 259-65 *
JPN6008060806; 日本化学会講演予稿集 86 (2), 2006, 1228 *
JPN7008008575; J. Chem. Soc., Perkin Trnas. 1, 2002, 2663-7 *

Also Published As

Publication number Publication date
WO2009054455A1 (ja) 2009-04-30
US7994258B2 (en) 2011-08-09
US20100249350A1 (en) 2010-09-30
JPWO2009054455A1 (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
JP5570220B2 (ja) ニトロキシル基を有するハイパーブランチポリマー
Liu et al. Self-assembly of BODIPY based pH-sensitive near-infrared polymeric micelles for drug controlled delivery and fluorescence imaging applications
WO2016197585A1 (zh) 新型环状寡聚咔唑衍生物及其制备方法与应用
CN107254027A (zh) 两亲性嵌段聚合物及其制备方法、嵌段聚合物囊泡及其制备方法与应用
CN110664751A (zh) 一种pH响应性聚合物纳米胶束及其制备和应用
CN108484819B (zh) 一类水溶性星形荧光聚合物及其纳米颗粒的制备方法
JP2003327587A (ja) 新規なナフタレンテトラカルボン酸ジイミド化合物とその重合体、および、該ナフタレンテトラカルボン酸ジイミド化合物の製造方法
TWI310385B (en) Organic bismuth compound, preparing method thereof, living radical polymerization initiator, polymer preparation and polymer using the same
CN113348001B (zh) 一种聚合物及其组合物
JP2004517042A (ja) オレフィン置換芳香族または複素芳香族の製造方法
CN103601873A (zh) 一种含两性侧链荧光共轭聚电解质的应用
Mespouille et al. Controlled synthesis of amphiphilic block copolymers based on polyester and poly (amino methacrylate): Comprehensive study of reaction mechanisms
JP7113509B2 (ja) 高分子金属錯体の製造方法
JP5263828B2 (ja) ビタミンb12修飾コアシェル型ハイパーブランチポリマーおよび脱ハロゲン化触媒
WO2024055383A1 (zh) 一种聚1,5-取代***及其制备方法与应用
JP5101816B2 (ja) 多分岐高分子
JP4080806B2 (ja) アクリル系重合体及び電荷輸送材料
KR101336692B1 (ko) 하이드라지드기를 가지는 폴리에틸렌옥사이드계 블록공중합체 및 그에 의해 안정화된 산화철 나노입자
JP4977099B2 (ja) ラジカル重合性基含有環状ポリスルフィドおよびその製造方法並びにその重合体
Feng et al. t BCPMA: A new trifunctional acrylic monomer for convenient synthesis of a well-defined amphiphilic graft copolymer by successive RDRP
JP2012116800A (ja) 芳香族スルホン酸誘導体およびその製造方法
WO2005087835A1 (ja) 分子ワイヤー型蛍光性キラルセンサー
JP3830677B2 (ja) 光学活性ポリチオフェン誘導体とその製造方法
JP5820171B2 (ja) 包接化合物およびその製造方法
JP4118645B2 (ja) カリックス[4]アレーン誘導体混合物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees