JP5546571B2 - Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body - Google Patents

Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body Download PDF

Info

Publication number
JP5546571B2
JP5546571B2 JP2012075877A JP2012075877A JP5546571B2 JP 5546571 B2 JP5546571 B2 JP 5546571B2 JP 2012075877 A JP2012075877 A JP 2012075877A JP 2012075877 A JP2012075877 A JP 2012075877A JP 5546571 B2 JP5546571 B2 JP 5546571B2
Authority
JP
Japan
Prior art keywords
copper foil
copper
resin layer
clad laminate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012075877A
Other languages
Japanese (ja)
Other versions
JP2013207145A (en
Inventor
和樹 冠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2012075877A priority Critical patent/JP5546571B2/en
Priority to TW102107464A priority patent/TWI517767B/en
Priority to KR1020130030900A priority patent/KR101539839B1/en
Priority to CN201310104249.2A priority patent/CN103358618B/en
Publication of JP2013207145A publication Critical patent/JP2013207145A/en
Application granted granted Critical
Publication of JP5546571B2 publication Critical patent/JP5546571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Description

本発明は、電磁波シールド材、FPC、放熱材、照明機器リフレクタ等の立体成型される基板として好適な銅箔、銅張積層体、フレキシブル配線板及び立体成型体に関する。   The present invention relates to a copper foil, a copper clad laminate, a flexible wiring board, and a three-dimensionally molded body suitable as a three-dimensionally molded substrate such as an electromagnetic wave shielding material, FPC, heat radiating material, and lighting equipment reflector.

銅箔と樹脂層とを積層してなる銅張積層体は、FPC(フレキシブルプリント基板、フレキシブル配線板)、電磁波シールド材、RF-ID(無線ICタグ)、面状発熱体、放熱体などに応用されている。例えば、FPCの場合、ベース樹脂層の上に銅箔の回路が形成され、回路を保護するカバーレイフィルムが回路を覆っており、樹脂層/銅箔/樹脂層の積層構造となっている。FPCは、柔らかくて折り曲げることができるため、スペースの限られた電子機器の筐体内に折り曲げながら実装することができる。又、銅張積層体は、電磁波シールド材、照明機器のリフレクタなどに応用されている。
そして、折り曲げ性や屈曲性に優れる銅箔複合体が提案されている(例えば、特許文献1、2)。一方、ポリイミドフィルム単体を立体成型する技術が報告されており(例えば、特許文献3)、一般に樹脂フィルムはそのガラス転移温度以上の温度で成型される(例えば、特許文献4)。また、導電性ペーストを用いたFPCを立体成型する技術が報告されている(例えば、特許文献5)
Copper-clad laminates made by laminating copper foil and resin layers are used for FPC (flexible printed circuit boards, flexible wiring boards), electromagnetic shielding materials, RF-ID (wireless IC tags), planar heating elements, radiators, etc. Applied. For example, in the case of FPC, a circuit of copper foil is formed on a base resin layer, and a coverlay film that protects the circuit covers the circuit, and has a laminated structure of resin layer / copper foil / resin layer. Since FPC is soft and can be bent, it can be mounted in a casing of an electronic device with limited space. Further, the copper clad laminate is applied to an electromagnetic wave shielding material, a reflector for lighting equipment, and the like.
And the copper foil composite_body | complex excellent in a bendability and a flexibility is proposed (for example, patent document 1, 2). On the other hand, a technique for three-dimensionally forming a single polyimide film has been reported (for example, Patent Document 3), and a resin film is generally molded at a temperature equal to or higher than its glass transition temperature (for example, Patent Document 4). In addition, a technique for three-dimensionally molding FPC using a conductive paste has been reported (for example, Patent Document 5).

特開2010−100887号公報JP 2010-100877 A 特開2011−136357号公報JP 2011-136357 A 特許第4251343号公報Japanese Patent No. 4251343 特開2008−291099号公報JP 2008-291099 A 特開2008−262981号公報JP 2008-262981 A

しかしながら、FPCを曲げて電子機器の筐体内に装入すると撓んで形状が安定せず、筐体内にコンパクトに収容することが難しい。そこで、FPCを予め立体成型して電子機器の筐体内に収容すれば、形状が安定するので全体の省スペース化が図られるが、FPCは1軸曲げ等の平面加工はできるものの、立体成型が難しい。
一方、上記特許文献3に記載されているように、FPCを構成するポリイミドフィルム単体を予め立体成型しておき、その表面に蒸着等によって銅箔を成膜することも可能であるが、コストが上昇する。また、上記特許文献5に記載されているように導電性ペーストを使用したFPCで立体成型することも可能であるが、成型能が低いため成型形状が限られており、導電性ペーストを使用するので回路形状も限定した回路しかできない上にコストが上昇する。
なお、上記特許文献2には、常温での銅箔の加工硬化指数(n値)を高くすると、銅張積層板(FPCも同様)の曲げ性が向上することが記載されているが、本発明者が検討したところ、常温で銅箔の加工硬化係数が高くても、FPCを立体成型すると銅箔が破断することが判明した。
However, if the FPC is bent and inserted into the housing of the electronic device, the FPC is bent and the shape is not stable, and it is difficult to accommodate the FPC in a compact manner. Therefore, if the FPC is three-dimensionally molded in advance and accommodated in the housing of the electronic device, the shape will be stable and the entire space will be saved. However, although FPC can be flat-processed such as uniaxial bending, three-dimensional molding is possible. difficult.
On the other hand, as described in Patent Document 3, it is possible to form a single body of a polyimide film constituting the FPC in advance and form a copper foil on the surface by vapor deposition or the like. To rise. Further, as described in Patent Document 5, three-dimensional molding can be performed by FPC using a conductive paste, but the molding shape is limited due to low molding ability, and the conductive paste is used. Therefore, only a circuit having a limited circuit shape can be formed and the cost is increased.
In addition, although the said patent document 2 describes that the bendability of a copper clad laminated board (as well as FPC) improves when the work hardening index (n value) of copper foil at normal temperature is made high, As a result of examination by the inventors, it has been found that even when the work hardening coefficient of the copper foil is high at room temperature, the copper foil breaks when FPC is three-dimensionally molded.

従って、本発明の目的は、樹樹脂層と積層して立体成型を良好に行える銅箔、銅張積層体、フレキシブル配線板及び立体成型体を提供することにある。   Accordingly, an object of the present invention is to provide a copper foil, a copper-clad laminate, a flexible wiring board, and a three-dimensional molded body that can be laminated with a resin resin layer to achieve good three-dimensional molding.

上述のように、従来から銅箔の成型性(曲げ性)は、n値が高いほど向上すると考えられてきたが、樹脂層と積層して高温で(250℃前後)成型した場合、n値が高くても成型性が向上しないことが判明した。
そして、本発明者は、FPCの加工温度(250℃前後)での銅箔の変形初期でn値が高く、それ以降でn値が減少すると成型性が良好となることを見出した。変形初期とそれ以降でのn値の差(Δn)は大きい程良いが、その分だけ銅の純度を高くする必要があり、コストアップに繋がるので、Δnに適宜上限を設けるとよい。又、Δnが大きいほど成型性に優れる理由は明確ではないが、成型初期では材料の押さえ部周辺に応力が集中するため、これに耐えるには銅箔のn値が高い方が良く、それ以降では銅箔が樹脂に追従しやすいようにn値が小さくなる方が良いためと考えられる。
As described above, it has been conventionally considered that the moldability (bendability) of a copper foil is improved as the n value is higher. However, when it is laminated with a resin layer and molded at a high temperature (around 250 ° C.), the n value is increased. It was found that the moldability was not improved even when the value was high.
And this inventor discovered that n value was high at the deformation | transformation initial stage of the copper foil in the processing temperature (about 250 degreeC) of FPC, and if n value decreased after that, moldability will become favorable. The larger the difference (Δn) between the initial value and the subsequent value of the deformation, the better. However, it is necessary to increase the purity of copper accordingly, and this leads to an increase in cost. Also, the reason why the larger the Δn is, the better the moldability is, but it is not clear, but stress concentrates around the material pressing part at the initial stage of molding. In this case, it is considered that the n value should be small so that the copper foil can easily follow the resin.

すなわち、本発明の銅箔は、99.9質量%以上のCuを含み、250℃において、真ひずみε1=0.02〜0.04での加工硬化係数n1と、真ひずみε=0.04〜0.06での加工硬化係数nの差Δn=n1−nが0.03以上0.1以下である。
本発明の銅箔の一実施形態においてはAg、Au、Pr、Sn、In、Zr、Mn及びCrの群から選ばれる1種または2種以上を質量率で合計30〜500ppm含有する。
本発明の別の一側面は上記銅箔と、樹脂層とを積層してなる銅張積層体である。
本発明の銅張積層体の一実施形態においては上記樹脂層と上記銅箔とが接着剤層を介して積層され、25℃において、上記樹脂層と上記接着剤層の合計層の弾性率が上記樹脂層の弾性率に対し80〜110%である。
本発明の銅張積層体の一実施形態においては上記樹脂層と上記銅箔とが接着剤層を介して積層され、150℃において、前記合計層の弾性率が前記樹脂層の弾性率に対し80〜100%である。
本発明の銅張積層体の一実施形態においては上記接着剤層がポリイミドの接着剤層であり、その厚みが5μm以上30μm以下である。
本発明の別の一側面は上記銅張積層体の上記銅箔に回路を形成してなるフレキシブル配線板である。
本発明の別の一側面は上記銅張積層体、又は上記フレキシブル配線板を立体成型してなる立体成型体である。
That is, the copper foil of the present invention contains 99.9% by mass or more of Cu, and at 250 ° C., the work hardening coefficient n 1 at true strain ε 1 = 0.02 to 0.04 and the processing at true strain ε 2 = 0.04 to 0.06. The difference Δn = n 1 −n 2 in the curing coefficient n 2 is 0.03 or more and 0.1 or less.
In one embodiment of the copper foil of the present invention, one or more selected from the group consisting of Ag, Au, Pr, Sn, In, Zr, Mn and Cr are contained in a total mass of 30 to 500 ppm.
Another aspect of the present invention is a copper clad laminate obtained by laminating the copper foil and a resin layer.
In one embodiment of the copper clad laminate of the present invention, the resin layer and the copper foil are laminated via an adhesive layer, and the elastic modulus of the total layer of the resin layer and the adhesive layer is 25 ° C. It is 80 to 110% with respect to the elastic modulus of the resin layer.
In one embodiment of the copper clad laminate of the present invention, the resin layer and the copper foil are laminated via an adhesive layer, and at 150 ° C., the elastic modulus of the total layer is relative to the elastic modulus of the resin layer. 80 to 100%.
In one embodiment of the copper clad laminate of the present invention, the adhesive layer is a polyimide adhesive layer, and the thickness thereof is 5 μm or more and 30 μm or less.
Another aspect of the present invention is a flexible wiring board obtained by forming a circuit on the copper foil of the copper clad laminate.
Another aspect of the present invention is a three-dimensional molded body obtained by three-dimensionally molding the copper-clad laminate or the flexible wiring board.

本発明によれば、樹脂層と積層して立体成型を良好に行える銅箔、銅張積層体、フレキシブル配線板及び立体成型体を得ることができる。   According to the present invention, it is possible to obtain a copper foil, a copper-clad laminate, a flexible wiring board, and a three-dimensional molded body that can be laminated with a resin layer and can be three-dimensionally molded well.

250℃での銅箔の真応力σ,真ひずみεの両対数グラフを模式的に示す図である。It is a figure which shows typically the double logarithm graph of the true stress (sigma) of a copper foil at 250 degreeC, and a true strain (epsilon). 本発明の実施形態に係る銅箔複合体の構成を示す図である。It is a figure which shows the structure of the copper foil composite_body | complex which concerns on embodiment of this invention. 加工性の評価を行うカップ試験装置の構成を示す図である。It is a figure which shows the structure of the cup test apparatus which performs workability evaluation.

<銅箔>
本発明の実施形態に係る銅箔は、99.9質量%以上のCuを含み、250℃において、真ひずみε1=0.02〜0.04での加工硬化係数n1と、真ひずみε=0.04〜0.06での加工硬化係数nの差Δn=n1−nが0.03以上0.1以下である。
銅箔は、99.90質量%以上のCuを含み、例えば、JIS-H3100(C1020)に規格される無酸素銅、又はJIS-H3100(C1100)に規格されるタフピッチ銅とすると好ましい。
さらに、銅箔がAg、Au、Pr、Sn、In、Zr、Mn及びCrの群から選ばれる1種または2種以上を質量率で合計30〜500ppm含有してもよい。
上記元素を含むと、後述する加工硬化係数n1を高くすることができる。上記元素の含有量が30質量ppm未満であると加工硬化係数n1を高くする効果が小さく、500質量ppmを超えると加工硬化係数nが減少せずにΔnが0.03未満となる場合がある。
<Copper foil>
The copper foil according to the embodiment of the present invention contains 99.9% by mass or more of Cu, and at 250 ° C., the work hardening coefficient n 1 at the true strain ε 1 = 0.02 to 0.04 and the true strain ε 2 = 0.04 to 0.06. The difference Δn = n 1 −n 2 in the work hardening coefficient n 2 is 0.03 or more and 0.1 or less.
The copper foil contains 99.90% by mass or more of Cu, and is preferably, for example, oxygen-free copper standardized by JIS-H3100 (C1020) or tough pitch copper standardized by JIS-H3100 (C1100).
Further, the copper foil may contain one or more selected from the group consisting of Ag, Au, Pr, Sn, In, Zr, Mn and Cr in a total mass of 30 to 500 ppm.
When the above elements are included, the work hardening coefficient n 1 described later can be increased. If the content of the element is less than 30 ppm by mass, the effect of increasing the work hardening coefficient n 1 is small, and if it exceeds 500 ppm by mass, the work hardening coefficient n 2 does not decrease and Δn may be less than 0.03. .

銅箔の厚みを9〜70μmとすると好ましい。銅箔の厚みが9μm未満のものは、銅張積層体やFPCに加工した後に成型すると、銅箔の厚みが減少して割れ易い。銅箔の厚みが70μmを超えると、銅張積層体やFPCに加工した後のフレキシブル性に難がある。なお、銅箔は、加工性に優れる圧延銅箔が好ましい。
銅箔の平均結晶粒径を50μm以上とすると好ましい。
又、樹脂層の密着性や、耐熱性、耐食性の観点から、銅箔に粗化処理等の表面処理を行っても良い。この表面処理としては、例えば、特開2002-217507号公報、特開2005-15861号公報、特開2005-4826号公報、特公平7-32307号公報などに記載されているものを採用することができる。
銅箔は、電磁波シールド材用途の他、FPC用、放熱を要する基板に用いることができる。なお、放熱を要する基板は、FPCの銅箔に回路を設けず、被放熱体に銅箔を密着させて使用されるものである。
The thickness of the copper foil is preferably 9 to 70 μm. When the thickness of the copper foil is less than 9 μm, if the copper foil is molded after being processed into a copper clad laminate or FPC, the thickness of the copper foil is reduced and it is easy to break. If the thickness of the copper foil exceeds 70 μm, the flexibility after processing into a copper clad laminate or FPC is difficult. The copper foil is preferably a rolled copper foil that is excellent in workability.
The average crystal grain size of the copper foil is preferably 50 μm or more.
In addition, from the viewpoint of adhesion of the resin layer, heat resistance, and corrosion resistance, the copper foil may be subjected to surface treatment such as roughening treatment. As this surface treatment, for example, those described in JP-A-2002-217507, JP-A-2005-15861, JP-A-2005-4826, JP-B-7-32307, etc. should be adopted. Can do.
The copper foil can be used not only for electromagnetic shielding materials but also for FPC and substrates that require heat dissipation. In addition, the board | substrate which requires heat dissipation uses a copper foil closely_contact | adhered to a to-be-radiated body, without providing a circuit in the copper foil of FPC.

<銅箔の加工硬化係数n1、n
上述のように、FPCの成型温度(250℃前後)での銅箔の変形初期でn値が高く、それ以降でn値が減少する、つまりΔn=n1−nが大きくなると、成型性が良好となる。これは、成型初期では材料の押さえ部周辺に応力が集中するため、これに耐えるには銅箔のn値が高い方が良く、それ以降では銅箔が樹脂に追従しやすいようにn値が小さくなる方が良いためと考えられる。
なお、常温での塑性ひずみ領域では、加工硬化係数nは、S-S(応力−ひずみ)曲線から次式:
σ(真応力)=σ(係数)×ε(真ひずみ)で表される。そして、加工硬化係数nはほぼ一定とみなされる。
<Hardening coefficient of the copper foil n 1, n 2>
As described above, when the n value is high at the initial stage of deformation of the copper foil at the FPC molding temperature (around 250 ° C.) and the n value decreases thereafter, that is, Δn = n 1 −n 2 increases, Becomes better. This is because stress concentrates around the pressing part of the material at the initial stage of molding, so it is better that the n value of the copper foil is high to withstand this, and after that, the n value is set so that the copper foil easily follows the resin. This is probably because it is better to make it smaller.
In the plastic strain region at room temperature, the work hardening coefficient n is expressed by the following formula from the SS (stress-strain) curve:
σ (true stress) = σ 0 (coefficient) × ε (true strain) n . The work hardening coefficient n is considered to be substantially constant.

しかしながら、上記した250℃前後の高温(FPCの成型温度領域)では、銅箔は顕著な動的回復を示すので、加工硬化係数nは一定の値にならず、真ひずみεの値によって変わってゆく。
図1は、250℃での、本発明の銅箔の真応力σ,真ひずみεの両対数グラフを模式的に示す。加工硬化係数nは図1のグラフの傾きとなるが、真ひずみεの値が高くなると、加工硬化係数nが低下する(図1のn1、n参照)。
具体的には、本発明の銅箔は、250℃において、真ひずみε1=0.02〜0.04での加工硬化係数n1と、真ひずみε=0.04〜0.06での加工硬化係数nの差Δn=n1−nが0.03以上0.1以下である。
However, since the copper foil exhibits a remarkable dynamic recovery at the high temperature of about 250 ° C. (FPC molding temperature range), the work hardening coefficient n does not become a constant value, but varies depending on the value of the true strain ε. go.
FIG. 1 schematically shows a log-log graph of true stress σ and true strain ε of the copper foil of the present invention at 250 ° C. The work hardening coefficient n is the slope of the graph of FIG. 1, but the work hardening coefficient n decreases as the value of the true strain ε increases (see n 1 and n 2 in FIG. 1).
Specifically, the copper foil of the present invention has a difference between the work hardening coefficient n 1 at true strain ε 1 = 0.02 to 0.04 and the work hardening coefficient n 2 at true strain ε 2 = 0.04 to 0.06 at 250 ° C. Δn = n 1 −n 2 is 0.03 or more and 0.1 or less.

ここで、250℃における加工硬化係数を規定した理由は、銅箔を樹脂層と積層してなる銅張積層体又はフレキシブル配線板を、立体成型する成型温度は通常、樹脂層の成型性向上のため150〜350℃程度であり、250℃を代表的な温度としたためである。
又、加工硬化係数n1を算出する真ひずみε1の範囲を0.02〜0.04とした理由は、真ひずみεが0.02未満では塑性変形の開始直後であるため、真応力σ−真ひずみεの曲線が安定しないためである。又、真ひずみεが0.04前後で、加工硬化係数nが小さくなり始めるので、上限を0.04とした。
同様に、加工硬化係数nを算出する真ひずみεの範囲を0.04〜0.06とした理由は、真ひずみεが0.04前後で加工硬化係数nが小さくなり始めると共に、真ひずみεが0.06まで測定を行えば十分であるからである。
Here, the reason for defining the work hardening coefficient at 250 ° C. is that the molding temperature for three-dimensional molding of a copper clad laminate or a flexible wiring board formed by laminating a copper foil with a resin layer is usually an improvement in moldability of the resin layer. Therefore, it is about 150-350 degreeC, and it is because 250 degreeC was made into the typical temperature.
Also, the reason for the the 0.02-0.04 range of true strain epsilon 1 for calculating the work-hardening coefficient n 1, since it is less than true strain epsilon is 0.02 which is immediately after the start of the plastic deformation, the curve of the true stress σ- true strain epsilon Is not stable. Also, since the true strain ε is around 0.04 and the work hardening coefficient n starts to decrease, the upper limit is set to 0.04.
Similarly, the reason for the true strain epsilon 0.04 to 0.06 the second range to calculate the work hardening coefficient n 2, together with the true strain epsilon begins to decrease work hardening coefficient n before and after the 0.04, measured true strain epsilon is up to 0.06 This is because it is sufficient.

そして、Δnが0.03以上であれば、上述のように銅張積層体又はフレキシブル配線板を立体成型する際の成型性が良好となる。Δnは大きい程良いが、Δnを0.1より大きくするためには超高純度の銅(例えば、純度99.999質量%以上)とする必要があり、コストアップに繋がるので、Δnの上限を0.1とした。
なお、銅箔は面内に異方性を持ち、特に圧延銅箔は大きな異方性を持つことが多く、加工硬化係数も異方性を持つ。一方、フレキシブル配線板の回路は、銅箔の圧延並行方向(RD)又は圧延直角方向(TD)に沿って形成されることが多い。そこで、回路の形成方向が予めわかっている場合は、少なくとも当該形成方向にて銅箔のΔnが上記範囲を満たしていればよく、回路の形成方向が予め分かっていない場合は、RD、TDの両方向の銅箔のΔnの平均が上記範囲を満たしていればよい。
And if (DELTA) n is 0.03 or more, as mentioned above, the moldability at the time of solid-molding a copper clad laminated body or a flexible wiring board will become favorable. A larger Δn is better, but in order to make Δn larger than 0.1, it is necessary to use ultra-high purity copper (for example, a purity of 99.999% by mass or more), which leads to an increase in cost.
The copper foil has in-plane anisotropy, and in particular, the rolled copper foil often has large anisotropy, and the work hardening coefficient also has anisotropy. On the other hand, the circuit of the flexible wiring board is often formed along the rolling parallel direction (RD) or the rolling perpendicular direction (TD) of the copper foil. Therefore, when the formation direction of the circuit is known in advance, it is sufficient that Δn of the copper foil satisfies the above range at least in the formation direction. When the formation direction of the circuit is not known in advance, RD and TD The average of Δn of the copper foils in both directions only needs to satisfy the above range.

<銅箔の製造>
銅箔は、上記組成のインゴットを熱間圧延した後、冷間圧延と焼鈍を繰り返し、さらに最終冷間圧延を行って製造することができる。最終冷間圧延の後に歪取り焼鈍を行ってもよい。
ここで、銅箔のΔnを上記範囲に制御するため、熱間圧延後に水冷し、動的再結晶粒が成長することを防止するとよい。(熱間圧延直後の動的再結晶粒の平均粒径を10〜30μmとするのが好ましい)。これは、動的再結晶粒の成長を抑制すると、熱間圧延後の冷間圧延で均一な圧延組織となり、その後の焼鈍、冷間圧延で不均一な組織になり難いためと考えられる。なお、純銅系の組成で熱間圧延直後の動的再結晶粒の平均粒径を工業的に10μm未満にすることは難しく、一方で平均粒径が30μmを超えると不均一な組織が冷間圧延で生じ、その後の再結晶組織に悪影響を及ぼす。
又、冷間圧延後の焼鈍にて、テンションアニーリングを行うと、応力負荷があるために再結晶組織が変わる。そして、再結晶組織を制御することで最終圧延後の組織を制御することができる。焼鈍時のテンションが高すぎると2次再結晶が起こり最終圧延後の組織を制御することが難しく、ラインテンションを下げすぎると再結晶組織を制御する効果が生じない。焼鈍時のテンションは焼鈍温度での0.2%耐力に対し0.05〜0.3倍程度とし、焼鈍温度は300〜800℃とするとよい。
又、最終冷間圧延の加工度は92%〜99.5%とするとよい。
<Manufacture of copper foil>
The copper foil can be manufactured by hot rolling an ingot having the above composition, then repeatedly performing cold rolling and annealing, and further performing final cold rolling. Strain relief annealing may be performed after the final cold rolling.
Here, in order to control (DELTA) n of copper foil to the said range, it is good to water-cool after hot rolling, and to prevent a dynamic recrystallized grain growing. (The average grain size of the dynamic recrystallized grains immediately after hot rolling is preferably 10 to 30 μm). This is considered to be because if the growth of dynamic recrystallized grains is suppressed, a uniform rolled structure is obtained by cold rolling after hot rolling, and a non-uniform structure is hardly formed by subsequent annealing and cold rolling. In addition, it is difficult to make the average grain size of dynamic recrystallized grains immediately after hot rolling with a pure copper-based composition industrially less than 10 μm. On the other hand, when the average grain size exceeds 30 μm, a non-uniform structure becomes cold. It occurs in rolling and adversely affects the subsequent recrystallization structure.
In addition, when tension annealing is performed during annealing after cold rolling, the recrystallized structure changes due to stress load. And the structure after the final rolling can be controlled by controlling the recrystallized structure. If the tension during annealing is too high, secondary recrystallization will occur and it will be difficult to control the structure after the final rolling, and if the line tension is too low, the effect of controlling the recrystallization structure will not occur. The tension during annealing is preferably about 0.05 to 0.3 times the 0.2% proof stress at the annealing temperature, and the annealing temperature is preferably 300 to 800 ° C.
Further, the workability of the final cold rolling is preferably 92% to 99.5%.

<銅張積層体及びフレキシブル配線板>
本発明の銅張積層体は、銅箔と樹脂層とを積層してなる。又、本発明のフレキシブル配線板は、銅張積層体の前記銅箔に回路を形成してなる。
ここで、図2(a)に示すように、本発明の第1の実施形態に係る銅張積層体10は、銅箔2の片面に接着剤層4を介して樹脂層6が積層されている。
又、図2(b)に示すように、本発明の第2の実施形態に係る銅張積層体20は、厚み方向中央の樹脂層6の両面にそれぞれ接着剤層4を介して銅箔2が積層されている。
なお、図2(c)に示すフレキシブル配線板30は、銅張積層体10の銅箔2面に回路を形成した後、回路面に第2接着剤層7を介してカバーレイフィルム8を積層した構造となっている。
又、図2(d)に示すフレキシブル配線板40は、銅張積層体20の銅箔2面に回路を形成した後、回路面に第2接着剤層8を介してカバーレイフィルム8を積層した構造となっている。
放熱、電磁波シールド、リフレクタ等の機能を持つフレキシブル配線板は、図2(b)の銅張積層体20の一方の銅箔2面に回路を形成した後、この銅箔2面のみに、図2(c)と同様に第2接着層7を介してカバーレイフィルム8を積層した構造となっていることもある。
<Copper-clad laminate and flexible wiring board>
The copper clad laminate of the present invention is formed by laminating a copper foil and a resin layer. Moreover, the flexible wiring board of this invention forms a circuit in the said copper foil of a copper clad laminated body.
Here, as shown to Fig.2 (a), as for the copper clad laminated body 10 which concerns on the 1st Embodiment of this invention, the resin layer 6 is laminated | stacked through the adhesive bond layer 4 on the single side | surface of the copper foil 2. FIG. Yes.
Moreover, as shown in FIG.2 (b), the copper clad laminated body 20 which concerns on the 2nd Embodiment of this invention is copper foil 2 via the adhesive bond layer 4, respectively on both surfaces of the resin layer 6 of the thickness direction center. Are stacked.
In the flexible wiring board 30 shown in FIG. 2 (c), a circuit is formed on the copper foil 2 surface of the copper clad laminate 10, and then a coverlay film 8 is laminated on the circuit surface via the second adhesive layer 7. It has a structure.
Further, in the flexible wiring board 40 shown in FIG. 2 (d), a circuit is formed on the copper foil 2 surface of the copper clad laminate 20, and then the coverlay film 8 is laminated on the circuit surface via the second adhesive layer 8. It has a structure.
A flexible wiring board having functions such as heat dissipation, electromagnetic wave shielding, and reflectors is formed on a surface of one copper foil 2 of the copper clad laminate 20 of FIG. Similarly to 2 (c), the coverlay film 8 may be laminated via the second adhesive layer 7.

<樹脂層>
樹脂層としては、PET(ポリエチレンテレフタレート)、PI(ポリイミド)、LCP(液晶ポリマー)、PEN(ポリエチレンナフタレート)が挙げられるがこれに限定されない。また、樹脂層として、これらの樹脂フィルムを用いてもよい。
樹脂層の厚みは10〜50μm程度とすることができる。樹脂層の厚みが10μmより薄いと後述する(F×T)の値が低くなり、(F×T)/(f×t)≧1を満たさず、銅張積層体の(伸び)破断歪が低下する傾向にある。一方、樹脂層の厚みが50μmを超えても銅張積層体の(伸び)フレキシブル性が低下する傾向にある。
樹脂層と銅箔との積層方法としては、銅箔の表面に樹脂層となる材料を塗布して加熱成膜してもよい。又、樹脂層として樹脂フィルムを用い、樹脂フィルムと銅箔との間に以下の接着剤を用いてもよく、接着剤を用いずに樹脂フィルムを銅箔に熱圧着してもよい。但し、樹脂フィルムに余分な熱を加えないという点からは、接着剤を用いることが好ましい。
<Resin layer>
Examples of the resin layer include, but are not limited to, PET (polyethylene terephthalate), PI (polyimide), LCP (liquid crystal polymer), and PEN (polyethylene naphthalate). Moreover, you may use these resin films as a resin layer.
The thickness of the resin layer can be about 10 to 50 μm. If the thickness of the resin layer is less than 10 μm, the value of (F × T) described later will be low, (F × T) / (f × t) ≧ 1 will not be satisfied, and the (elongation) breaking strain of the copper clad laminate will be It tends to decrease. On the other hand, even if the thickness of the resin layer exceeds 50 μm, the (elongation) flexibility of the copper clad laminate tends to decrease.
As a method of laminating the resin layer and the copper foil, a material for forming the resin layer may be applied to the surface of the copper foil and heated to form a film. Further, a resin film may be used as the resin layer, and the following adhesive may be used between the resin film and the copper foil, or the resin film may be thermocompression bonded to the copper foil without using the adhesive. However, it is preferable to use an adhesive from the viewpoint of not applying excessive heat to the resin film.

<接着剤層>
樹脂層としてフィルムを用いた場合、このフィルムを接着剤層を介して銅箔に積層するとよい。この場合、フィルムと同成分の接着剤を用いることが好ましい。例えば、樹脂層としてポリイミドフィルムを用いる場合は、接着剤層もポリイミド系接着剤を用いることが好ましい。尚、ここでいうポリイミド接着剤とはイミド結合を含む接着剤を指し、ポリエーテルイミド等も含む。
なお、立体成型すると材料の厚みが薄くなるため、接着剤層が薄いと成型中に剥がれて割れることがある。このようなことから、接着剤層の厚みを5μm以上とするのが好ましい。接着剤層の厚みの上限は特に限定されないが、厚みが30μmを超えるとコストアップとなるので、厚みを30μm以下とするのが好ましい。
<Adhesive layer>
When a film is used as the resin layer, this film may be laminated on the copper foil via an adhesive layer. In this case, it is preferable to use an adhesive having the same component as the film. For example, when a polyimide film is used as the resin layer, it is preferable to use a polyimide-based adhesive for the adhesive layer. In addition, the polyimide adhesive here refers to the adhesive agent containing an imide bond, and polyether imide etc. are also included.
In addition, since the thickness of a material will become thin if solid molding is carried out, when an adhesive bond layer is thin, it may peel and crack during a shaping | molding. For this reason, the thickness of the adhesive layer is preferably 5 μm or more. The upper limit of the thickness of the adhesive layer is not particularly limited. However, if the thickness exceeds 30 μm, the cost increases, and therefore the thickness is preferably 30 μm or less.

樹脂層と銅箔とが接着剤層を介して積層される場合、25℃において、樹脂層と接着剤層の合計層弾性率が、樹脂層の弾性率に対し80〜110%であることが好ましい。又、150℃において、上記合計層弾性率が樹脂層の弾性率に対し80〜100%であることが好ましい。
このようにすると、接着剤層の弾性率が樹脂層に近づき、接着剤層が樹脂層の変形挙動を銅箔に伝え、樹脂層と同じように銅箔も変形させることで、銅箔のクビレを抑制し銅張積層体及びフレキシブル配線板の延びが向上する。延性を向上させるものである。
上記合計層弾性率が上記範囲未満であると、接着剤層で樹脂層の変形を緩和してしまい銅箔に変形挙動が伝達され難くなり、銅箔にくびれが生じて延性が低下する。記合計層弾性率が上記範囲より大きいと接着剤層自体の延性が低下して、銅張積層体及びフレキシブル配線板の延性が低下する。
なお、樹脂層の成型のためには高温(たとえば150℃〜350℃)である方が良いが、接着剤層は樹脂層より耐熱性が劣るので、接着剤層のTg未満、例えば25℃が好ましい。従って、接着剤の成型に適した25℃の特性と、樹脂層単体の成型能が上がる150℃の特性を選んだ。
When the resin layer and the copper foil are laminated via the adhesive layer, the total layer elastic modulus of the resin layer and the adhesive layer is 80 to 110% with respect to the elastic modulus of the resin layer at 25 ° C. preferable. Further, at 150 ° C., the total layer elastic modulus is preferably 80 to 100% with respect to the elastic modulus of the resin layer.
In this way, the elastic modulus of the adhesive layer approaches that of the resin layer, the adhesive layer transmits the deformation behavior of the resin layer to the copper foil, and the copper foil is deformed in the same manner as the resin layer. And the elongation of the copper clad laminate and the flexible wiring board is improved. It improves the ductility.
If the total layer elastic modulus is less than the above range, the deformation of the resin layer is relaxed by the adhesive layer, and the deformation behavior is hardly transmitted to the copper foil, and the copper foil is constricted and the ductility is lowered. When the total layer elastic modulus is larger than the above range, the ductility of the adhesive layer itself is lowered, and the ductility of the copper clad laminate and the flexible wiring board is lowered.
In addition, although it is better for the molding of the resin layer to be a high temperature (for example, 150 ° C. to 350 ° C.), since the adhesive layer is inferior in heat resistance to the resin layer, the adhesive layer is less than Tg, for example, 25 ° C. preferable. Therefore, we chose the 25 ° C characteristics suitable for adhesive molding and the 150 ° C characteristics that improve the molding ability of the resin layer alone.

なお、上記合計層の弾性率Eは、接着剤層と樹脂層をひとつの層とみなして測定でき、又、各層を別個に測定してから複合則を適用して合計層の弾性率Eを算出してもよい。
ここで、複合則を用いた場合、合計層の弾性率E=(Ea × ta + Eb × tb)/(ta + tb)で表される。但しEaは樹脂層の弾性率、taは樹脂層の厚み、Ebは接着剤層の弾性率、tbは接着剤層の厚みである。
又、接着剤層の弾性率の測定に当たって、接着剤層単体を入手できる場合は、接着剤層単体の弾性率を測定する。
一方、接着剤層単体を入手できない場合は、銅張積層体から樹脂層と銅箔をそれぞれアルカリ液、酸性液、溶剤等で剥離し、接着剤層単体とし、その弾性率を測定する。合計層の弾性率及び樹脂層単体の弾性率が求められる場合、上記複合則の関係から接着剤層の弾性率を求めることも出来る。各層の厚みは断面を機械研磨後に光学顕微鏡で測定すれば良い。
又、銅張積層体から樹脂層を剥離できず、接着剤層単体が得られない場合は、樹脂層を機械的に半分程度削り、接着剤層と樹脂層を含む合計層の弾性率を測定する。さらに樹脂層の削り量を増やしていき、弾性率を測定すると、やがて弾性率がほぼ一定になるのでその値を採用する。
The elastic modulus E of the total layer can be measured by regarding the adhesive layer and the resin layer as one layer, and the elastic modulus E of the total layer can be determined by applying a composite law after measuring each layer separately. It may be calculated.
Here, when the compound rule is used, the elastic modulus of the total layer is expressed by E = (Ea × ta + Eb × tb) / (ta + tb). Where Ea is the elastic modulus of the resin layer, ta is the thickness of the resin layer, Eb is the elastic modulus of the adhesive layer, and tb is the thickness of the adhesive layer.
In measuring the elastic modulus of the adhesive layer, if the adhesive layer alone can be obtained, the elastic modulus of the adhesive layer alone is measured.
On the other hand, when the adhesive layer alone cannot be obtained, the resin layer and the copper foil are peeled off from the copper clad laminate with an alkali solution, an acidic solution, a solvent, etc., respectively, and the adhesive layer is used alone, and its elastic modulus is measured. When the elastic modulus of the total layer and the elastic modulus of the resin layer alone are obtained, the elastic modulus of the adhesive layer can also be obtained from the above complex law relationship. The thickness of each layer may be measured with an optical microscope after the cross section is mechanically polished.
If the resin layer cannot be peeled off from the copper clad laminate and the adhesive layer alone cannot be obtained, mechanically scrape the resin layer about half and measure the elastic modulus of the total layer including the adhesive layer and the resin layer. To do. Further, when the amount of shaving of the resin layer is increased and the elastic modulus is measured, the elastic modulus eventually becomes almost constant, so that value is adopted.

<(F×T)/(f×t)>
銅箔の厚みt、引張歪4%における銅箔の応力f、樹脂層の厚みT、引張歪4%における樹脂層の応力Fとしたとき、銅張積層体が(F×T)/(f×t)≧1を満たすと、延性が高くなって折り曲げ性が向上するので好ましい。
この理由は明確ではないが、(F×T)及び(f×t)はいずれも単位幅当たりの応力(例えば、(N/mm))を表し、しかも銅箔と樹脂層は積層されて同一の幅を有するから、(F×T)/(f×t)は銅張積層体を構成する銅箔と樹脂層に加わる力の比を表している。従って、この比が1以上であることは、樹脂層側により多くの力が加わることであり、樹脂層側の方が銅箔より強いことになる。このことにより銅箔は樹脂層の影響を受けやすくなり、銅箔が均一に伸びるようになるため、銅張積層体全体の延性も高くなると考えられる。
<(F × T) / (f × t)>
When the copper foil thickness t, the copper foil stress f at a tensile strain of 4%, the resin layer thickness T, and the resin layer stress F at a tensile strain of 4%, the copper-clad laminate is (F × T) / (f Xt) ≧ 1 is preferable because the ductility is increased and the bendability is improved.
The reason for this is not clear, but (F × T) and (f × t) both represent stress per unit width (for example, (N / mm)), and the copper foil and the resin layer are laminated to be the same (F × T) / (f × t) represents the ratio of the force applied to the copper foil and the resin layer constituting the copper clad laminate. Therefore, when this ratio is 1 or more, more force is applied to the resin layer side, and the resin layer side is stronger than the copper foil. As a result, the copper foil is easily affected by the resin layer, and the copper foil is uniformly stretched. Therefore, it is considered that the ductility of the entire copper clad laminate is increased.

ここで、F及びfは、塑性変形が起きた後の同じ歪量での応力であればよいが、銅箔の破断歪と、樹脂層(例えばPETフィルム)の塑性変形が始まる歪とを考慮して引張歪4%の応力としている。又、Fの測定は、銅張積層体から樹脂層を溶剤等で除去して残った銅箔の引張試験により行うことができる。同様に、fの測定は、銅張積層体から銅箔を酸等で除去して残った樹脂層の引張試験により行うことができる。銅箔と樹脂層とが接着剤を介して積層されている場合は、F及びfの測定の際、接着剤層を溶剤等で除去すると、銅箔と樹脂層とが剥離し、銅箔と樹脂層とを別個に引張試験に用いることができる。T及びtは、銅張積層体の断面を各種顕微鏡(光学顕微鏡等)で観察して測定することができる。
又、銅張積層体を製造する前の銅箔と樹脂層のF及びfの値が既知の場合であって、銅張積層体を製造する際に銅箔及び樹脂層の特性が大きく変化するような熱処理を行わない場合は、銅張積層体を製造する前の上記既知のF及びf値を採用してもよい。
Here, F and f may be stresses with the same amount of strain after plastic deformation has occurred, but taking into account the fracture strain of the copper foil and the strain at which plastic deformation of the resin layer (for example, PET film) begins. Therefore, the tensile strain is 4%. Further, F can be measured by a tensile test of the copper foil remaining after removing the resin layer from the copper clad laminate with a solvent or the like. Similarly, the measurement of f can be performed by a tensile test of the resin layer remaining after removing the copper foil from the copper clad laminate with an acid or the like. When the copper foil and the resin layer are laminated via an adhesive, the copper foil and the resin layer are peeled off when the adhesive layer is removed with a solvent or the like when measuring F and f. The resin layer can be used separately for the tensile test. T and t can be measured by observing the cross section of the copper clad laminate with various microscopes (such as an optical microscope).
Moreover, when the values of F and f of the copper foil and the resin layer before manufacturing the copper clad laminate are known, the characteristics of the copper foil and the resin layer greatly change when the copper clad laminate is manufactured. When such heat treatment is not performed, the known F and f values before manufacturing the copper clad laminate may be employed.

以上のように、銅張積層体の(F×T)/(f×t)≧1を満たすことにより、銅張積層体の延性が高くなって破断歪も向上する。
ここで、銅張積層体の破断歪の値は、引張試験によって銅箔と樹脂層が同時に破断する場合はその歪を採用し、銅箔のみに先に亀裂が生じた場合は銅箔に亀裂が入ったときの歪を採用する。
なお、F、f、及び後述するF1、f1は、全てMD(Machine Direction)の値とする。
As described above, by satisfying (F × T) / (f × t) ≧ 1 of the copper-clad laminate, the ductility of the copper-clad laminate is increased and the breaking strain is also improved.
Here, the value of the strain at break of the copper-clad laminate is adopted when the copper foil and the resin layer break at the same time by a tensile test, and when the crack occurs only in the copper foil, the copper foil is cracked. Adopt the distortion when entering.
Note that F, f, and F 1 and f 1 described later are all MD (Machine Direction) values.

なお、樹脂層と接着剤層とを区別でき、これらを分離可能な場合は、本発明の「樹脂層」のF及びTは接着剤層を除いた樹脂層の値をいう。但し、樹脂層と接着剤層との区別ができない場合には、銅張積層体から銅箔のみを溶かし、接着剤層も含めて「樹脂層」として測定してもよい。これは、通常、樹脂層は接着剤層より硬く、接着剤層を樹脂層に含めても、樹脂層のみの場合と比べてFやTの値が大きく違わないこともあるからである。
FPCの場合、カバーレイフィルムを付けて銅箔の両面が樹脂層となる場合があるが、この場合、樹脂層のF、Tはカバーレイ分の強度、厚みを加えたものとする。
When the resin layer and the adhesive layer can be distinguished and separated from each other, F and T of the “resin layer” of the present invention are values of the resin layer excluding the adhesive layer. However, when the resin layer and the adhesive layer cannot be distinguished from each other, only the copper foil is melted from the copper-clad laminate, and the adhesive layer and the adhesive layer may be measured as the “resin layer”. This is because the resin layer is usually harder than the adhesive layer, and even if the adhesive layer is included in the resin layer, the values of F and T may not be significantly different from those of the resin layer alone.
In the case of FPC, a cover lay film may be attached to form both sides of the copper foil as a resin layer. In this case, F and T of the resin layer are the sum of the strength and thickness of the cover lay.

又、銅箔と樹脂層とを積層する銅張積層体の組み合わせとしては、銅箔/(樹脂層と接着剤層を含む合計層)の2層構造や、(樹脂層と接着剤層を含む合計層)/銅箔/(樹脂層と接着剤層を含む合計層)、又は銅箔/(樹脂層と接着剤層を含む合計層)/銅箔の3層構造が挙げられる。銅箔の両側に樹脂層と接着剤層を含む合計層が存在する((樹脂層と接着剤層を含む合計層)/銅箔/(樹脂層と接着剤層を含む合計層))場合、全体の(F×T)の値は、銅箔の両側の合計層のそれぞれについて計算した各(F×T)の値を加算したものとする。樹脂層の両側に銅箔が存在する((銅箔/(樹脂層と接着剤層を含む合計層)/銅箔))場合、全体の(f×t)の値は、2つの銅箔のそれぞれについて計算した各(f×t)の値を加算したものとする。   Moreover, as a combination of the copper clad laminated body which laminates | stacks copper foil and a resin layer, two-layer structure of copper foil / (total layer containing a resin layer and an adhesive layer), or (a resin layer and an adhesive layer are included) A three-layer structure of (total layer) / copper foil / (total layer including resin layer and adhesive layer) or copper foil / (total layer including resin layer and adhesive layer) / copper foil is mentioned. When there is a total layer including a resin layer and an adhesive layer on both sides of the copper foil ((total layer including a resin layer and an adhesive layer) / copper foil / (total layer including a resin layer and an adhesive layer)), The total (F × T) value is obtained by adding each (F × T) value calculated for each of the total layers on both sides of the copper foil. When copper foil is present on both sides of the resin layer ((copper foil / (total layer including resin layer and adhesive layer) / copper foil)), the total value of (f × t) is the value of the two copper foils. It is assumed that each (f × t) value calculated for each is added.

<f/(F×T)>
銅箔と樹脂層との180°剥離接着強度をf(N/mm)、銅張積層体の引張歪30%における応力をF(MPa)、銅張積層体の厚みをT(mm)としたとき、
1≦33f/(F×T)を満たすことが好ましい。
銅箔はその厚みが薄いことから厚み方向にくびれを生じやすい。くびれが生じると銅箔は破断するため、延性は低下する。一方、樹脂層は、引張り時にくびれが生じ難い特徴を持つ(均一歪の領域が広い)。そのため、銅箔と樹脂層との複合体においては、樹脂層の変形挙動を銅箔に伝え、樹脂と同じように銅箔も変形させることで、銅箔にくびれが生じ難くなり、延性が向上する。このとき、銅箔と樹脂層との接着強度が低いと、銅箔に樹脂層の変形挙動を伝えることができず、延性は向上しない(剥離して銅が割れる)。
そこで、接着強度を高くすることが必要となる。接着強度としては、せん断接着力が直接的な指標と考えられるが、接着強度を高くし、せん断接着力を銅張積層体の強度と同等レベルにすると、接着面以外の場所が破断するため測定が難しくなる。
<F 1 / (F 1 × T 1 )>
The 180 ° peel adhesion strength between the copper foil and the resin layer is f 1 (N / mm), the stress at 30% tensile strain of the copper-clad laminate is F 1 (MPa), and the thickness of the copper-clad laminate is T 1 (mm )
It is preferable to satisfy 1 ≦ 33f 1 / (F 1 × T 1 ).
Since the copper foil is thin, it tends to be constricted in the thickness direction. When the constriction occurs, the copper foil breaks, and the ductility decreases. On the other hand, the resin layer has a feature that it is difficult for necking to occur when it is pulled (the region of uniform strain is wide). Therefore, in the composite of copper foil and resin layer, the deformation behavior of the resin layer is transmitted to the copper foil, and the copper foil is also deformed in the same manner as the resin, so that the copper foil is less likely to be constricted and the ductility is improved. To do. At this time, if the adhesive strength between the copper foil and the resin layer is low, the deformation behavior of the resin layer cannot be transmitted to the copper foil, and the ductility is not improved (peeling and cracking the copper).
Therefore, it is necessary to increase the adhesive strength. As for the adhesive strength, shear adhesive strength is considered to be a direct indicator. However, if the adhesive strength is increased and the shear adhesive strength is set to the same level as the strength of the copper-clad laminate, measurement is performed because the location other than the adhesive surface breaks. Becomes difficult.

このようなことから、180°剥離接着強度fの値を用いる。せん断接着強度と180°剥離接着強度とは絶対値がまったく異なるが、加工性や引張伸度と、180°剥離接着強度との間に相関が見られたため、180°剥離接着強度を接着強度の指標とした。
ここで、実際には、「破断したときの強度=せん断密着力」になっていると考えられ、例えば30%以上の引張歪を必要とするような場合、「30%の流動応力≦せん断密着力」となり、50%以上の引張歪を必要とするような場合、「50%の流動応力≦せん断密着力」になると考えられる。そして、本発明者らの実験によると、引張歪が30%以上になると加工性が良好になったため、後述するように銅張積層体の強度Fとして、引張歪30%における強度を採用することとしている。
For this reason, the value of 180 ° peel adhesive strength f 1 is used. Although the absolute values of shear bond strength and 180 ° peel adhesive strength are completely different, there was a correlation between workability, tensile elongation, and 180 ° peel adhesive strength. It was used as an index.
Here, in reality, it is considered that “strength at break = shear adhesion strength”. For example, when a tensile strain of 30% or more is required, “30% flow stress ≦ shear adhesion” When the tensile strain of 50% or more is required, it is considered that “50% flow stress ≦ shear adhesion”. Then, according to experiments of the present inventors, since the processability and tensile strain is 30% or more becomes good, as the intensity F 1 of copper clad laminate as described below, employing the intensity of the tensile strain of 30% I am going to do that.

なお、上記した1≦33f/(F×T)の係数1/33は実験的に求めた。つまり、各種の銅張積層体を製造してfと(F×T)の値をプロットする。F×Tは引張歪30%で銅張積層体に加わる力であり、これを加工性を向上するために必要な、最低限のせん断接着強度とみなすと、fとF×Tの絶対値が同じであれば、両者は傾き1で相関が見られることになる。但し、実際には、すべてのデータのfと(F×T)が同じ相関とはならず、加工性の劣る比較例は、(F×T)に対するfの相関係数(つまり、原点を通り、(F×T)に対するfの傾き)が小さく、それだけ180°剥離接着強度が劣っている。一方、加工性の良好な実施例の傾きは各比較例の傾きより大きいが、もっとも傾きの小さい実施例(ちょうど歪30%で破断したもの)の傾きが1/33であったため、この値を加工性を向上するために必要な、最低限のせん断接着強度と180°剥離接着強度との間の相関係数とみなした。すなわち、せん断接着力を、180°剥離接着強度fの33倍とみなした。 The coefficient 1/33 of 1 ≦ 33f 1 / (F 1 × T 1 ) was obtained experimentally. That is, various copper clad laminates are manufactured and the values of f 1 and (F 1 × T 1 ) are plotted. F 1 × T 1 is a force applied to the copper clad laminate with a tensile strain of 30%. If this is considered as the minimum shear bond strength necessary to improve workability, f 1 and F 1 × T If the absolute value of 1 is the same, both will be correlated with a slope of 1. However, in actuality, f 1 and (F 1 × T 1 ) of all data do not have the same correlation, and a comparative example with poor workability is a correlation coefficient of f 1 with respect to (F 1 × T 1 ). (That is, the inclination of f 1 with respect to (F 1 × T 1 ) passes through the origin) is small, and the 180 ° peel strength is inferior. On the other hand, the slope of the example with good workability is larger than the slope of each comparative example, but the slope of the example with the smallest slope (just broken at 30% strain) was 1/33. It was regarded as a correlation coefficient between the minimum shear adhesive strength and 180 ° peel adhesive strength necessary for improving workability. That is, the shear adhesive strength was regarded as 33 times the 180 ° peel adhesive strength f 1.

このように、加工性を向上するために必要な、最低限の銅箔と樹脂層との接着強度を直接示すせん断接着力は、180°剥離接着強度fの約33倍であるから、33fは銅箔と樹脂層との加工性を向上するために必要な、最低限の接着強度を表している。一方、(F×T)は銅張積層体に加わる力であるから、式1は、銅箔と樹脂層との接着強度と、銅張積層体の引張抵抗力との比になる。そして、銅張積層体が引張られると、銅箔と樹脂層の界面で、局所変形をしようとする銅箔と引張均一歪をしようとする樹脂とによりせん断応力が掛かる。従って、このせん断応力より接着強度が低いと銅と樹脂層が剥離してしまい、銅箔に樹脂層の変形挙動を伝えることができなくなり、銅箔の延性が向上しない。
つまり、式1の比が1未満であると、接着強度が銅張積層体に加わる力より弱くなって銅箔と樹脂が剥離し易くなり、銅箔がプレス成形等の加工によって破断する。
式1の比が1以上であれば、銅と樹脂層とが剥離せずに樹脂層の変形挙動を銅箔に伝えることができ、銅箔の延性が向上する。なお、式2の比は高いほど好ましいが、15以上の値を実現することは通常は困難であるため、式1の上限を15とするとよい。
Thus, since the shear adhesive force directly indicating the minimum adhesive strength between the copper foil and the resin layer necessary for improving the workability is about 33 times the 180 ° peel adhesive strength f 1 , 33f Reference numeral 1 represents the minimum adhesive strength necessary for improving the workability between the copper foil and the resin layer. On the other hand, since (F 1 × T 1 ) is a force applied to the copper-clad laminate, Equation 1 is a ratio between the adhesive strength between the copper foil and the resin layer and the tensile resistance of the copper-clad laminate. When the copper-clad laminate is pulled, a shear stress is applied to the interface between the copper foil and the resin layer by the copper foil that is to undergo local deformation and the resin that is to undergo tensile uniform strain. Therefore, if the adhesive strength is lower than the shear stress, the copper and the resin layer are peeled off, and the deformation behavior of the resin layer cannot be transmitted to the copper foil, and the ductility of the copper foil is not improved.
That is, when the ratio of Formula 1 is less than 1, the adhesive strength becomes weaker than the force applied to the copper clad laminate, and the copper foil and the resin are easily peeled, and the copper foil is broken by a process such as press molding.
If the ratio of Formula 1 is 1 or more, the deformation behavior of the resin layer can be transmitted to the copper foil without peeling off the copper and the resin layer, and the ductility of the copper foil is improved. The higher the ratio of Equation 2, the better. However, since it is usually difficult to achieve a value of 15 or more, the upper limit of Equation 1 should be 15.

なお、180°剥離接着強度は、単位幅あたりの力(N/mm)である。
銅張積層体が3層構造であって接着面が複数存在するときは、各接着面のうち、180°剥離接着強度が最も低い値を用いる。これは、最も弱い接着面が剥離するためである。又、銅箔は通常S面、M面を有するが、S面は密着性が劣るため、銅箔のS面と樹脂との密着性が弱くなる。そのため、銅箔のS面の180°剥離接着強度を採用することが多い。
The 180 ° peel adhesion strength is a force (N / mm) per unit width.
When the copper-clad laminate has a three-layer structure and there are a plurality of adhesion surfaces, the value with the lowest 180 ° peel adhesion strength is used among the adhesion surfaces. This is because the weakest adhesive surface peels off. Further, the copper foil usually has an S surface and an M surface, but since the S surface has poor adhesion, the adhesion between the S surface of the copper foil and the resin becomes weak. Therefore, the 180 ° peel adhesion strength of the S surface of the copper foil is often adopted.

又、銅箔と樹脂層との接着強度を高くする方法としては、銅箔表面(樹脂層側の面)にクロメート処理等によってCr酸化物層を設けたり、銅箔表面に粗化処理を施したり、銅箔表面にNi被覆した後にCr酸化物層を設けることが挙げられる。
Cr酸化物層の厚みは、Cr重量で5〜100μg/dmとするとよい。この厚みは、湿式分析によるクロム含有量から算出する。又、Cr酸化物層の存在は、X線光電子分光(XPS)でCrが検出できるか否かで判定することができる(Crのピークが酸化によりシフトする)。
Ni被覆量は、90〜5000μg/dmとするとよい。Ni被覆の付着量が5000μg/dm(Ni厚み56nmに相当)を超えると、銅箔(及び銅張積層体)の延性が低下することがある。
また、銅箔と樹脂層とを積層複合させるときの圧力や温度条件を変えて接着強度を高くすることができる。樹脂層が損傷しない範囲で、積層時の圧力、温度をともに大きくした方が良い。
In addition, as a method of increasing the adhesive strength between the copper foil and the resin layer, a Cr oxide layer is provided on the copper foil surface (surface on the resin layer side) by chromate treatment or the like, and a roughening treatment is performed on the copper foil surface. Or providing a Cr oxide layer after Ni is coated on the copper foil surface.
The thickness of the Cr oxide layer is preferably 5 to 100 μg / dm 2 in terms of Cr weight. This thickness is calculated from the chromium content by wet analysis. The presence of the Cr oxide layer can be determined by whether or not Cr can be detected by X-ray photoelectron spectroscopy (XPS) (Cr peak is shifted by oxidation).
The Ni coating amount is preferably 90 to 5000 μg / dm 2 . When the adhesion amount of Ni coating exceeds 5000 μg / dm 2 (corresponding to Ni thickness 56 nm), the ductility of the copper foil (and copper clad laminate) may be lowered.
Further, the adhesive strength can be increased by changing the pressure and temperature conditions when the copper foil and the resin layer are laminated and combined. It is better to increase both the pressure and temperature during lamination as long as the resin layer is not damaged.

なお、銅箔のうち樹脂層の形成面と反対面に、耐食性(耐塩害性)を向上させるため、接触抵抗を低下させるためや銅箔層間の導通のために1μm厚程度のSn、Ni、Au、Ag、Co及びCuの群から選ばれる1種以上のめっき層を形成してもよい。   In addition, in order to improve the corrosion resistance (salt damage resistance), to reduce the contact resistance, and to conduct between the copper foil layers, Sn, Ni, One or more plating layers selected from the group consisting of Au, Ag, Co, and Cu may be formed.

<成型>
銅張積層体、又はフレキシブル配線板を立体成型する方法は限定されず、例えば、張り出し成型、絞り成型、曲げ成型、またこれらの組み合わせによる成型が挙げられる。成型後に樹脂層のスプリングバックが生じることを考慮し、成型は温間(例えば150〜350℃)で行うことが好ましい。銅張積層体、又はフレキシブル配線板が接着剤層を有する場合は、接着剤層のガラス転移温度未満で成型を行うのが好ましい。
<Molding>
A method for three-dimensionally molding the copper-clad laminate or the flexible wiring board is not limited, and examples thereof include overhang molding, drawing molding, bending molding, and molding by a combination thereof. In consideration of the occurrence of springback of the resin layer after molding, the molding is preferably performed warm (for example, 150 to 350 ° C.). When a copper clad laminated body or a flexible wiring board has an adhesive layer, it is preferable to perform molding at a temperature lower than the glass transition temperature of the adhesive layer.

<銅箔製造>
電気銅を真空中で溶解し、表1に示す添加元素を加えて大気中(実施例1-3、7-13、16-21、36)又はAr雰囲気(実施例4-6、14-15、22-35)でインゴットを鋳造した。大気中で作製したインゴットはJIS-H3100(C1100)を満たし、Ar雰囲気で鋳造したインゴットはJIS-H3100(C1020)を満たした。このインゴットを850℃×10時間均質化焼鈍した後、熱間圧延、面削、冷間圧延、焼鈍、最終冷間圧延をこの順で行い、表1に示す厚みの銅箔を得た。なお、熱間圧延後に直ちに水冷して面削した。又、焼鈍として650℃での耐力に対し0.25倍となるテンションで650℃×10秒間のテンションアニーリングを行った。又、最終冷間圧延の加工度は92%〜99.5%とした。
比較として、熱間圧延後に水冷を行わずに空冷し、テンションアニーリングを行わずに650℃×10秒焼鈍したこと以外は各実施例と同様にして銅箔を製造した。
<Copper foil production>
Electrolytic copper is dissolved in vacuum, and the additive elements shown in Table 1 are added to the atmosphere (Examples 1-3, 7-13, 16-21, 36) or Ar atmosphere (Examples 4-6, 14-15) , 22-35). The ingot produced in the atmosphere satisfied JIS-H3100 (C1100), and the ingot cast in the Ar atmosphere satisfied JIS-H3100 (C1020). After this ingot was homogenized and annealed at 850 ° C. for 10 hours, hot rolling, face milling, cold rolling, annealing, and final cold rolling were performed in this order to obtain a copper foil having a thickness shown in Table 1. In addition, it was water-cooled immediately after hot rolling and chamfered. Also, annealing was performed at 650 ° C. for 10 seconds with a tension 0.25 times the proof stress at 650 ° C. Further, the workability of the final cold rolling was set to 92% to 99.5%.
For comparison, copper foils were produced in the same manner as in the respective examples except that after hot rolling, air cooling was performed without performing water cooling, and annealing was performed at 650 ° C. for 10 seconds without performing tension annealing.

得られた銅箔を脱脂及び酸洗し、銅箔片面につき、処理液(Cu:10〜25g/L、H2SO4:20〜100g/L)を用い、温度20〜40℃、電流密度30〜70A/dm、電解時間1〜5秒で電解処理を行った。その後、この片面につき、Ni−Coめっき液(Coイオン濃度:5〜20g/L、Niイオン濃度:5〜20g/L、pH:1.0〜4.0)を用い、温度25〜60℃、電流密度:0.5〜10A/dmでNi−Coめっきを行い、さらに、クロメート浴(K2Cr2O7:0.5〜5g/L)を用いて電流密度1〜10A/dmでクロメート処理した。 The obtained copper foil is degreased and pickled, and a treatment liquid (Cu: 10 to 25 g / L, H2SO4: 20 to 100 g / L) is used on one side of the copper foil, at a temperature of 20 to 40 ° C., and a current density of 30 to 70 A. The electrolytic treatment was performed at / dm 2 and electrolysis time of 1 to 5 seconds. Thereafter, a Ni—Co plating solution (Co ion concentration: 5 to 20 g / L, Ni ion concentration: 5 to 20 g / L, pH: 1.0 to 4.0) is used on one side, and the temperature is 25 to 60 ° C. Ni-Co plating is performed at a current density of 0.5 to 10 A / dm 2 , and further at a current density of 1 to 10 A / dm 2 using a chromate bath (K 2 Cr 2 O 7 : 0.5 to 5 g / L). Chromate treatment.

<銅張積層体、フレキシブル配線板の製造>
市販のPI、PET又はPENからなる樹脂フィルムの片面に、表1に記載の組成の接着剤を塗工して乾燥させ、乾燥後の接着剤層を表1の厚みとした。次に、この樹脂フィルムの接着剤層側の面と、銅箔とを加熱プレスで貼り合せて銅張積層体を得た。
この銅張積層体の銅箔部分につき、L/S = 100/100μmの回路をエッチングで形成し、カバーレイで回路をカバーしてフレキシブル配線板を作製した。
<Manufacture of copper-clad laminate and flexible wiring board>
On one side of a commercially available resin film made of PI, PET, or PEN, an adhesive having the composition shown in Table 1 was applied and dried. The thickness of the adhesive layer after drying was as shown in Table 1. Next, the surface on the adhesive layer side of this resin film and the copper foil were bonded together with a hot press to obtain a copper clad laminate.
A circuit of L / S = 100/100 μm was formed by etching on the copper foil portion of the copper clad laminate, and the circuit was covered with a coverlay to produce a flexible wiring board.

<n、nの測定>
引張試験機により、JIS−Z2241に従い、銅箔の圧延方向に平行な方向及び垂直な方向について、それぞれ250℃の恒温槽中で引張試験を行った。各方向での引張試験の結果から、真ひずみ0.02〜0.04、0.04〜0.06の領域のみのデータを取り出し、図1に示す真応力σ−真ひずみεから、σ=σt0・ε の式により、各真ひずみ領域での最小二乗法の近似直線の傾きからn、nを求めた。
なお、銅箔の圧延平行方向及び圧延垂直方向のそれぞれについて求めたn、nを平均化して、最終的なn、nを得た。
<Measurement of n 1 and n 2 >
Using a tensile tester, a tensile test was performed in a constant temperature bath at 250 ° C. in a direction parallel to and perpendicular to the rolling direction of the copper foil in accordance with JIS-Z2241. From the results of the tensile test in each direction, the data of only the areas of true strains 0.02 to 0.04 and 0.04 to 0.06 are taken out, and from the true stress σ−true strain ε shown in FIG. 1, σ t = σ t0 · ε t n From the equation, n 1 and n 2 were determined from the slope of the approximate straight line of the least square method in each true strain region.
Note that n 1, n 2 obtained for each of the direction parallel to the rolling direction and rolling vertical copper foil are averaged to obtain a final n 1, n 2.

<F、f、F1、f1の測定>
銅箔複合体から幅12.7mmの短冊状の引張試験片を複数作製した。又、この引張試験片のいくつかを溶剤(東レエンジニアリング製のTPE3000、ギ酸)に浸漬して接着剤層とPIフィルムを溶解し、銅箔のみの試験片を得た。いくつかの試験片は塩化第二鉄等で銅箔を溶かし、樹脂層と接着層を含む合計層のみの試験片を得た。また、樹脂層と接着層を含む合計層をN-メチル-2-ピロリドン又はギ酸に浸漬して樹脂層のみの試験片を得た。
引張試験は、ゲージ長さ100mm、引張速度10mm/minの条件で行い、N10の平均値を強度(応力)及び歪(伸び)の値として採用した。
<Measurement of F, f, F 1 and f 1 >
A plurality of strip-shaped tensile test pieces having a width of 12.7 mm were prepared from the copper foil composite. Further, some of the tensile test pieces were immersed in a solvent (TPE3000, formic acid manufactured by Toray Engineering Co., Ltd.) to dissolve the adhesive layer and the PI film, thereby obtaining a test piece made of only copper foil. Some test pieces were obtained by dissolving copper foil with ferric chloride or the like to obtain a test piece having only a total layer including a resin layer and an adhesive layer. Further, the total layer including the resin layer and the adhesive layer was immersed in N-methyl-2-pyrrolidone or formic acid to obtain a test piece having only the resin layer.
The tensile test was performed under the conditions of a gauge length of 100 mm and a tensile speed of 10 mm / min, and the average value of N10 was adopted as the value of strength (stress) and strain (elongation).

<弾性率>
樹脂層、合計層の弾性率は、それぞれF、f、F1、f1の測定に用いた引張試験の値より算出した。
<Elastic modulus>
The elastic moduli of the resin layer and the total layer were calculated from the tensile test values used for measuring F, f, F 1 , and f 1 , respectively.

<立体成型性>
図3に示す試験装置を用いて、それぞれ銅張積層体、及びフレキシブル配線板を150℃及び200℃で張り出し成型した。
まず、半径20mmの半球状の窪み2aを有するダイ2の上に矩形の試験片20を載置し、試験片の外周を板押え6で加圧して保持した(圧下荷重5N/cm2)。なお、ダイ2の窪み2aの最大深さhは15mmとした。次に、試験片20の上から、半径19.8mmの半球状の先端部を有する可動ポンチ10を押し下げ、ダイ2の窪み2aに挿入した。これにより、試験片20が立体成型された。
なお、銅張積層体、及びフレキシブル配線板片面にのみ樹脂層がある場合、樹脂層を上にしてダイに載置する。又、銅張積層体、及びフレキシブル配線板の両面に樹脂層がある場合、M面と接着している樹脂層を上にしてダイに載置する。銅張積層体、及びフレキシブル配線板の両面がCuの場合はどちらが上であってもよい。
成形後の試験片内の銅箔の割れの有無を目視で判定し、以下の基準で立体成型性の評価を行った。
銅張積層板、フレキシブル配線板共に成型できたもの ◎
銅張積層板、フレキシブル配線板のいずれかに割れが生じたもの ○
銅張積層板、フレキシブル配線板の両方とも割れたとき ×
評価が◎、○であれば好ましい。
<Three-dimensional moldability>
Using the test apparatus shown in FIG. 3, the copper clad laminate and the flexible wiring board were respectively stretched and molded at 150 ° C. and 200 ° C.
First, a rectangular test piece 20 was placed on a die 2 having a hemispherical depression 2a with a radius of 20 mm, and the outer periphery of the test piece was pressed and held by a plate presser 6 (a reduction load of 5 N / cm 2). The maximum depth h of the recess 2a of the die 2 was 15 mm. Next, the movable punch 10 having a hemispherical tip with a radius of 19.8 mm was pushed down from above the test piece 20 and inserted into the recess 2 a of the die 2. Thereby, the test piece 20 was three-dimensionally molded.
In addition, when there exists a resin layer only in a copper clad laminated body and a flexible wiring board single side, it mounts on a die | dye with the resin layer facing up. Moreover, when there are resin layers on both sides of the copper clad laminate and the flexible wiring board, the resin layer bonded to the M surface is placed on the die. When both surfaces of the copper-clad laminate and the flexible wiring board are Cu, either may be the top.
The presence or absence of cracking of the copper foil in the test piece after molding was visually determined, and the three-dimensional moldability was evaluated according to the following criteria.
A copper-clad laminate and flexible wiring board can be molded.
Any cracked copper-clad laminate or flexible wiring board ○
When both copper-clad laminate and flexible wiring board are broken ×
If evaluation is (double-circle) and (circle), it is preferable.

得られた結果を表1〜表2に示す。   The obtained results are shown in Tables 1 and 2.

表1〜表2から明らかなように、Δn=n1−nが0.03以上0.1以下である銅箔を樹脂層と積層して銅張積層体を構成した各実施例の場合、立体成型性に優れていた。
なお、接着剤層の厚みが5μm未満である実施例8、35及び、25℃又は150℃において、(合計層の弾性率/樹脂層の弾性率)で表される値が規定範囲未満である実施例10,15、20、36の場合、他の実施例に比べて立体成型性がやや劣るが実用上問題はない。
As is clear from Tables 1 and 2, in the case of each Example in which a copper clad laminate was constructed by laminating a copper foil having Δn = n 1 −n 2 of 0.03 or more and 0.1 or less with a resin layer, three-dimensional formability It was excellent.
In Examples 8 and 35 where the thickness of the adhesive layer is less than 5 μm and at 25 ° C. or 150 ° C., the value represented by (elastic modulus of the total layer / elastic modulus of the resin layer) is less than the specified range. In Examples 10, 15, 20, and 36, the three-dimensional moldability is slightly inferior to those of the other examples, but there is no practical problem.

一方、Δnが0.03未満である銅箔を樹脂層と積層して銅張積層体を構成した各比較例の場合、立体成型性が劣化した。尚、実施例1-32、比較例共に1≦33f/(F×T)、(F×T)/(f×t)≧1を満たすようにし、実施例33-35は1≦33f/(F×T)、(F×T)/(f×t)≧1を満たさないようにした。1≦33f/(F×T)、(F×T)/(f×t)≧1を満たさない実施例33-35は立体成型性がやや劣るが実用上問題はない。 On the other hand, in the case of each comparative example in which a copper foil having a Δn of less than 0.03 was laminated with a resin layer to form a copper clad laminate, the three-dimensional moldability deteriorated. In Examples 1-32 and Comparative Example, 1 ≦ 33f 1 / (F 1 × T 1 ), (F × T) / (f × t) ≧ 1 is satisfied, and Examples 33-35 have 1 ≦ 33 33 f 1 / (F 1 × T 1 ), (F × T) / (f × t) ≧ 1 was not satisfied. Example 33-35, which does not satisfy 1 ≦ 33f 1 / (F 1 × T 1 ), (F × T) / (f × t) ≧ 1, is slightly inferior in three-dimensional formability, but has no practical problem.

2 銅箔
2a 銅箔の回路
4 接着剤層
6 樹脂層
8 保護樹脂層
2 Copper foil 2a Copper foil circuit 4 Adhesive layer 6 Resin layer 8 Protective resin layer

Claims (8)

99.9質量%以上のCuを含み、250℃において、真ひずみε1=0.02〜0.04での加工硬化係数n1と、真ひずみε=0.04〜0.06での加工硬化係数nの差Δn=n1−nが0.03以上0.1以下である銅箔。 Difference between work hardening coefficient n 1 at true strain ε 1 = 0.02 to 0.04 and work hardening coefficient n 2 at true strain ε 2 = 0.04 to 0.06 at 250 ° C., containing 99.9% by mass or more of Cu = Δn = n copper foil 1 -n 2 is 0.03 to 0.1. さらにAg、Au、Pr、Sn、In、Zr、Mn及びCrの群から選ばれる1種または2種以上を質量率で合計30〜500ppm含有する請求項1記載の銅箔。   The copper foil according to claim 1, further comprising one or more selected from the group consisting of Ag, Au, Pr, Sn, In, Zr, Mn and Cr in a total mass of 30 to 500 ppm. 請求項1又は2記載の銅箔と、樹脂層とを積層してなる銅張積層体。   A copper-clad laminate obtained by laminating the copper foil according to claim 1 or 2 and a resin layer. 前記樹脂層と前記銅箔とが接着剤層を介して積層され、
25℃において、前記樹脂層と前記接着剤層の合計層の弾性率が前記樹脂層の弾性率に対し80〜110%である請求項3記載の銅張積層体。
The resin layer and the copper foil are laminated via an adhesive layer,
The copper clad laminate according to claim 3, wherein the elastic modulus of the total layer of the resin layer and the adhesive layer is 80 to 110% with respect to the elastic modulus of the resin layer at 25 ° C.
前記樹脂層と前記銅箔とが接着剤層を介して積層され、
150℃において、前記合計層の弾性率が前記樹脂層の弾性率に対し80〜100%である請求項記載の銅張積層体。
The resin layer and the copper foil are laminated via an adhesive layer,
The copper clad laminate according to claim 4 , wherein the elastic modulus of the total layer is 80 to 100% with respect to the elastic modulus of the resin layer at 150 ° C.
前記接着剤層がポリイミドの接着剤層であり、その厚みが5μm以上30μm以下である請求項4又は5に記載の銅張積層体。 The copper-clad laminate according to claim 4 or 5 , wherein the adhesive layer is a polyimide adhesive layer and has a thickness of 5 µm to 30 µm. 請求項3〜のいずれかに記載の銅張積層体の前記銅箔に回路を形成してなるフレキシブル配線板。 Flexible wiring board obtained by forming a circuit on the copper foil of the copper-clad laminate according to any one of claims 3-6. 請求項3〜6のいずれかに記載の銅張積層体、又は請求項7に記載のフレキシブル配線板を立体成型してなる立体成型体。   The three-dimensional molded object formed by solid-molding the copper clad laminated body in any one of Claims 3-6, or the flexible wiring board of Claim 7.
JP2012075877A 2012-03-29 2012-03-29 Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body Active JP5546571B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012075877A JP5546571B2 (en) 2012-03-29 2012-03-29 Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body
TW102107464A TWI517767B (en) 2012-03-29 2013-03-04 Copper foil, copper clad laminate, flexible wiring board and three-dimensional molded body
KR1020130030900A KR101539839B1 (en) 2012-03-29 2013-03-22 Copper foil, copper-clad laminate, flexible printed circuits and three-dimensional molded article
CN201310104249.2A CN103358618B (en) 2012-03-29 2013-03-28 Copper foil, copper plated film stacking body, flexible distributing board and stereoscopic forming body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075877A JP5546571B2 (en) 2012-03-29 2012-03-29 Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body

Publications (2)

Publication Number Publication Date
JP2013207145A JP2013207145A (en) 2013-10-07
JP5546571B2 true JP5546571B2 (en) 2014-07-09

Family

ID=49361273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075877A Active JP5546571B2 (en) 2012-03-29 2012-03-29 Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body

Country Status (4)

Country Link
JP (1) JP5546571B2 (en)
KR (1) KR101539839B1 (en)
CN (1) CN103358618B (en)
TW (1) TWI517767B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110042353B (en) * 2019-04-04 2020-11-27 内蒙古科技大学 Nano laminated aluminum-based composite material and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188296A (en) * 1986-02-13 1987-08-17 セイコーエプソン株式会社 Three-dimensional structure of circuit board
JPH04228553A (en) * 1990-06-22 1992-08-18 Hitachi Cable Ltd Bending resisting rolled copper foil
JP3178279B2 (en) * 1994-11-18 2001-06-18 宇部興産株式会社 Polyimide film with adhesive and laminate
KR101448313B1 (en) * 2006-06-23 2014-10-07 엔지케이 인슐레이터 엘티디 Method for producing copper-based rolled alloy
WO2011078259A1 (en) * 2009-12-25 2011-06-30 新日鐵化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
JP5094834B2 (en) * 2009-12-28 2012-12-12 Jx日鉱日石金属株式会社 Copper foil manufacturing method, copper foil and copper clad laminate
JP2011153360A (en) * 2010-01-28 2011-08-11 Jx Nippon Mining & Metals Corp Rolled copper alloy foil for double-sided copper-clad laminated plate, and method for producing double-sided copper-clad laminated plate using the same
JP5189683B2 (en) * 2011-03-24 2013-04-24 Jx日鉱日石金属株式会社 Rolled copper alloy foil
JP2013143440A (en) * 2012-01-10 2013-07-22 Sekisui Chem Co Ltd Metal base substrate

Also Published As

Publication number Publication date
KR20130111340A (en) 2013-10-10
TWI517767B (en) 2016-01-11
JP2013207145A (en) 2013-10-07
TW201352082A (en) 2013-12-16
CN103358618B (en) 2015-04-22
KR101539839B1 (en) 2015-07-27
CN103358618A (en) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5325175B2 (en) Copper foil composite and method for producing molded body
KR101528995B1 (en) Metal foil composite, flexible printed circuit, formed product, and method of producing the same
JP4672515B2 (en) Rolled copper alloy foil for bending
JP5822838B2 (en) Copper foil composite, molded body and method for producing the same
JP5514897B2 (en) Laminate for flexible wiring
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP5822842B2 (en) Copper foil composite, molded body and method for producing the same
TW201734219A (en) Copper foil for flexible printed circuit board, cooper-clad laminate using same, flexible printed circuit board, and electronic machine whose copper foil contains 0.001~0.05 mass% of Ag and contains total 0.003~0.825 mass% of addition elements selected from more than one of the group of P, Ti, Sn, Ni, Be, Zn, In, and Mg
KR101626691B1 (en) Copper-foil composite, formed body, and manufacturing method therefor
TWI537125B (en) Metal foil composite, copper foil, and molded body and method for producing the same
JP5546571B2 (en) Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body
JP6220132B2 (en) Copper foil, copper-clad laminate, flexible wiring board and three-dimensional molded body
KR102136096B1 (en) Copper foil for flexible printed substrate, and copper clad laminate using the same, flexible printed substrate and electronic equipment
JP2012246556A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
KR20120070741A (en) Rolled cu alloy foil for flexible printed circuit board and the manufacturing method
JP2009194163A (en) Copper foil for circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5546571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250