JP5740854B2 - Oriented electrical steel sheet - Google Patents

Oriented electrical steel sheet Download PDF

Info

Publication number
JP5740854B2
JP5740854B2 JP2010148301A JP2010148301A JP5740854B2 JP 5740854 B2 JP5740854 B2 JP 5740854B2 JP 2010148301 A JP2010148301 A JP 2010148301A JP 2010148301 A JP2010148301 A JP 2010148301A JP 5740854 B2 JP5740854 B2 JP 5740854B2
Authority
JP
Japan
Prior art keywords
steel sheet
dislocation density
linear
high dislocation
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010148301A
Other languages
Japanese (ja)
Other versions
JP2012012639A (en
Inventor
大村 健
大村  健
千田 邦浩
邦浩 千田
山口 広
山口  広
岡部 誠司
誠司 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010148301A priority Critical patent/JP5740854B2/en
Publication of JP2012012639A publication Critical patent/JP2012012639A/en
Application granted granted Critical
Publication of JP5740854B2 publication Critical patent/JP5740854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、トランスなどの鉄心材料に供して好適な方向性電磁鋼板に関し、特に鉄損の一層の低減を図ろうとするものである。   The present invention relates to a grain-oriented electrical steel sheet suitable for use in an iron core material such as a transformer, and particularly intends to further reduce iron loss.

方向性電磁鋼板は、主にトランスの鉄心として利用され、磁化特性に優れていること、特に鉄損が低いことが求められている。
そのためには、鋼板中の二次再結晶粒を(110)[001]方位(ゴス方位)に高度に揃えることや、製品中の不純物を低減することが重要である。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
For that purpose, it is important to highly align the secondary recrystallized grains in the steel sheet in the (110) [001] orientation (Goss orientation) and to reduce impurities in the product.

しかしながら、結晶方位の制御や不純物の低減には限界があることから、鋼板の表面に対して物理的な手法で不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
たとえば、特許文献1には、最終製品板にレーザを照射し、鋼板表層に線状の高転位密度領域を導入することにより、磁区幅を狭くして鉄損を低減する技術が提案されている。
また、特許文献2には、仕上げ焼鈍済みの鋼板に882〜2156 MPa(90〜220 kgf/mm2)の荷重で地鉄部分に深さ5μm 超の溝を形成したのち、750℃以上の温度で加熱処理することにより、磁区を細分化する技術が提案されている。
However, since there is a limit to the control of crystal orientation and the reduction of impurities, by introducing non-uniformity to the surface of the steel plate with a physical technique, the magnetic domain width is subdivided to reduce iron loss. Technology, ie magnetic domain fragmentation technology, has been developed.
For example, Patent Document 1 proposes a technique for reducing the core loss by narrowing the magnetic domain width by irradiating the final product plate with a laser and introducing a linear high dislocation density region into the steel sheet surface layer. .
In Patent Document 2, a steel sheet that has been subjected to finish annealing is formed with a groove having a depth of more than 5 μm in the base iron part under a load of 882 to 2156 MPa (90 to 220 kgf / mm 2 ), and then a temperature of 750 ° C. or higher. A technique for subdividing the magnetic domains by heat treatment in the above has been proposed.

上述したような磁区細分化技術の開発により、鉄損特性が良好な方向性電磁鋼板が得られるようになった。
しかしながら、近年の省エネルギーや環境保護に対する意識の高まりから、鉄損特性の更なる改善が要求されている。
With the development of the magnetic domain fragmentation technology as described above, a grain-oriented electrical steel sheet having good iron loss characteristics can be obtained.
However, due to the recent increase in awareness of energy saving and environmental protection, further improvement in iron loss characteristics is required.

特公昭57-2252号公報Japanese Patent Publication No.57-2252 特公昭62-53579号公報Japanese Examined Patent Publication No.62-53579 特開平7-201550号公報Japanese Unexamined Patent Publication No. 7-201550 特開平7-320922号公報Japanese Unexamined Patent Publication No. 7-320922

一層の低鉄損化を実現するためには、磁区をさらに細分化させればよい。しかしながら、上述した高転位密度領域を導入する方法および溝を形成する方法のいずれにも、次に述べるような問題があり、これ以上の磁区細分化は望めなかった。   In order to achieve further reduction in iron loss, the magnetic domains may be further subdivided. However, both the above-described method for introducing a high dislocation density region and the method for forming a groove have the following problems, and no further magnetic domain fragmentation can be expected.

すなわち、高転位密度領域を導入する方法では、転位を入れれば入れるほど、磁区が細分化され、渦電流損は低減する。しかしながら、転位を導入した領域の周辺部分は磁区が細分化されるものの、転位を導入した領域そのものは磁区構造が乱れてヒステリシス損が増加するため、転位を導入しすぎると、磁区細分化による渦電流損の改善以上にヒステリシス損が劣化するという問題があった。   That is, in the method of introducing a high dislocation density region, the more dislocations are inserted, the more the magnetic domains are subdivided and the eddy current loss is reduced. However, although the magnetic domain is subdivided in the peripheral portion of the region where the dislocation is introduced, the magnetic domain structure is disturbed and the hysteresis loss increases in the region where the dislocation is introduced. There was a problem that hysteresis loss deteriorated more than improvement of current loss.

また、溝を形成する方法では、転位が導入されるわけではないので、溝を形成しすぎてもヒステリシス損の劣化を招くことはないが、鋼板が部分的に除去されるために、その量が多くなると磁束密度が大幅に劣化するという問題があった。   Also, since dislocations are not introduced in the method of forming a groove, even if the groove is formed too much, there is no deterioration in hysteresis loss, but the amount of the steel sheet is partially removed. There is a problem that the magnetic flux density is greatly deteriorated when the number of the magnetic fluxes increases.

本発明は、上記の現状に鑑み開発されたもので、磁区細分化技術を効果的に活用することにより、一層の低鉄損化を達成した方向性電磁鋼板を提案することを目的とする。   The present invention has been developed in view of the above-described present situation, and an object thereof is to propose a grain-oriented electrical steel sheet that achieves further reduction in iron loss by effectively utilizing magnetic domain fragmentation technology.

さて、発明者らは、上記の問題を解決すべく鋭意検討を重ねた。
その結果、高転位密度導入法と溝形成法を適切に組み合わせることによって、具体的には、方向性電磁鋼板の片面に、圧延方向と交わる向きに伸びる線状溝を形成し、さらに鋼板の反対面に線状の高転位密度領域を線状溝とほぼ同じ位置に形成することによって、より効果的な磁区の細分化が達成されることの知見を得た。
本発明は、上記の知見に立脚するものである。
Now, the inventors have intensively studied to solve the above problems.
As a result, by appropriately combining the high dislocation density introduction method and the groove forming method, specifically, a linear groove extending in the direction intersecting with the rolling direction is formed on one side of the grain-oriented electrical steel sheet, and the opposite of the steel sheet. The inventors have found that more effective magnetic domain fragmentation can be achieved by forming a linear high dislocation density region on the surface at substantially the same position as the linear groove.
The present invention is based on the above findings.

なお、特許文献3や特許文献4に、高転位密度導入法と溝形成法を組み合わせる方法が開示されているが、これらはいずれも、鋼板片面に両手法を施すという内容であり、高転位密度導入法と溝形成法の処理面を別にすることで、これまで以上の磁区細分化効果が得られるという、本発明の技術内容を何ら示唆するものではない。   In addition, although the method of combining the high dislocation density introduction method and the groove formation method is disclosed in Patent Document 3 and Patent Document 4, both of these are the contents that both methods are applied to one side of the steel sheet, and the high dislocation density is disclosed. It does not suggest the technical contents of the present invention that the effect of subdividing the magnetic domain can be obtained by separating the processing surface of the introduction method and the groove forming method.

すなわち、本発明の要旨構成は次のとおりである。
1.鋼板の片面に、圧延方向と交わる向きに伸びる溝形成時に転位の導入を伴わない線状溝を形成し、一方鋼板の反対面には、該線状溝と対応する位置に高転位密度領域の形成時に鋼板の部分的除去を伴わない線状の高転位密度領域を形成した方向性電磁鋼板であって、
該線状溝の幅と該線状の高転位密度領域の幅が、いずれか狭い方の幅に対して50%以上重複していることを特徴とする方向性電磁鋼板。

That is, the gist configuration of the present invention is as follows.
1. On one side of the steel sheet, a linear groove without introduction of dislocations is formed at the time of forming a groove extending in the direction crossing the rolling direction, while on the opposite side of the steel sheet, a high dislocation density region is formed at a position corresponding to the linear groove . A grain-oriented electrical steel sheet that forms a linear high dislocation density region without partial removal of the steel sheet during formation ,
A grain-oriented electrical steel sheet characterized in that the width of the linear groove and the width of the linear high dislocation density region overlap by 50% or more with respect to the narrower width.

2.前記線状溝が、幅:50〜300μm、深さ:10〜50μm で、前記線状の高転位密度領域が、幅:50〜500μm であり、該線状溝および該線状の高転位密度領域の圧延方向と直角する方向に対する交差角が±30°以内であることを特徴とする請求項1に記載の方向性電磁鋼板。 2. The linear groove has a width of 50 to 300 μm and a depth of 10 to 50 μm, and the linear high dislocation density region has a width of 50 to 500 μm. The linear groove and the linear high dislocation density The grain-oriented electrical steel sheet according to claim 1, wherein the crossing angle of the region with respect to a direction perpendicular to the rolling direction is within ± 30 °.

本発明に従い、線状溝の形成および線状の高転位密度領域の導入という2つの磁区細分化技術を効果的に組み合わせることによって、鉄損低減効果が格段に向上し、より低鉄損の方向性電磁鋼板を得ることが可能になった。   According to the present invention, by effectively combining the two magnetic domain subdivision techniques of forming linear grooves and introducing linear high dislocation density regions, the iron loss reduction effect is significantly improved, and the direction of lower iron loss It has become possible to obtain a magnetic steel sheet.

本発明に従い、鋼板の片面に線状溝を形成し、鋼板の反対面には線状の高転位密度領域を導入した状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which a linear groove is formed on one surface of a steel sheet and a linear high dislocation density region is introduced on the opposite surface of the steel sheet according to the present invention.

以下、本発明を具体的に説明する。
本発明の特徴は、以下に述べる3項目に集約される。
(1) 溝形成法と高転位密度領域導入法を組み合わせる。
各方法を単独で使用して磁区をより細分化する場合、溝形成法では、深さや数を増やすと磁束密度が劣化するという問題が、一方高転位密度領域導入法では、転位を入れすぎるとヒステリシス損が劣化するという問題があった。しかしながら、溝形成後、高転位密度を導入した場合、溝形成領域にはもともと高転位密度領域がないので、追加で高転位密度を導入しても大幅なヒステリシス損の劣化はない。また、追加の高転位密度導入では磁束密度の劣化はないので、単独では不可能な更なる磁区細分化が可能になる。
Hereinafter, the present invention will be specifically described.
The features of the present invention are summarized in the following three items.
(1) Combining groove formation and high dislocation density region introduction.
When each method is used alone to further subdivide the magnetic domain, the groove formation method has a problem that the magnetic flux density deteriorates when the depth or number is increased, while the high dislocation density region introduction method has too many dislocations. There was a problem that hysteresis loss deteriorated. However, when a high dislocation density is introduced after the formation of the groove, there is no high dislocation density region in the groove forming region, so that even if a high dislocation density is additionally introduced, there is no significant deterioration in hysteresis loss. In addition, since the introduction of an additional high dislocation density does not degrade the magnetic flux density, further magnetic domain subdivision that is impossible by itself becomes possible.

(2) 線状溝の形成と高転位密度領域の導入を異なる面で実施し、形成位置と導入位置を各面でほぼ同じ位置とする。
鋼板の同じ面に線状溝の形成と高転位密度領域の導入を行った場合や、異なる面でも形成位置と導入位置をずらした場合に比べて、より磁区細分化効果が得られる理由は、明確に解明されたわけではないが、発明者らは、転位の分布状態の差に起因しているのではないかと考えている。たとえば、溝形成部分では、他の部分に比べて板厚が減少しているため、導入された転位がその位置に集中する等で、転位導入により弊害となるヒステリシス損の増加が抑制されることが考えられる。
具体的には、方向性電磁鋼板の片面に、圧延方向と交わる向きに伸びる線状溝を形成し、さらに鋼板の反対面に線状の高転位密度領域を線状溝とほぼ同じ位置に形成する。
しかも、線状溝と線状高転位密度領域については、それらの幅のいずれか狭い方の幅に対して50%以上重複するように形成する。
(2) The formation of the linear groove and the introduction of the high dislocation density region are carried out on different surfaces, and the formation position and the introduction position are made substantially the same on each surface.
The reason why the magnetic domain refinement effect can be obtained more than when the formation of linear grooves on the same surface of the steel sheet and the introduction of a high dislocation density region or when the formation position and the introduction position are shifted even on different surfaces is as follows. Although not clearly elucidated, the inventors believe that this may be due to a difference in dislocation distribution. For example, since the thickness of the groove forming part is reduced compared to other parts, the introduction of dislocations suppresses an increase in hysteresis loss that is a harmful effect due to the introduction of dislocations. Can be considered.
Specifically, a linear groove extending in the direction intersecting with the rolling direction is formed on one side of the grain-oriented electrical steel sheet, and a linear high dislocation density region is formed on the opposite surface of the steel sheet at substantially the same position as the linear groove. To do.
Moreover, the linear groove and the linear high dislocation density region are formed so as to overlap by 50% or more with respect to the narrower one of the widths.

図1に、本発明に従い、鋼板の片面に圧延方向と交わる向きに線状溝を形成する一方、鋼板の反対面には線状の高転位密度領域を導入した場合を、鋼板の断面で示す。
図1(a)は、線状溝の形成幅と高転位密度領域の導入幅とが全く一致している場合である。また、同図(b)は、両者の幅Wは同じで、線状溝と高転位密度領域の重複部分の幅rが、線状溝および高転位密度領域の幅Wに対して、50%以上重複している場合である。さらに、同図(c)は、両者の幅が異なる場合であるが、かような場合でも、いずれか狭い方の幅(この場合は高転位密度領域幅)W'に対する重複部分の幅rが、高転位密度領域幅W'に対して50%以上重複している場合である。
ここで、線状溝および高転位密度領域の幅は、図1に示すように鋼板板面における溝および領域自身の幅とする。
In FIG. 1, according to the present invention, a linear groove is formed on one surface of a steel sheet in a direction intersecting with the rolling direction, while a case where a linear high dislocation density region is introduced on the opposite surface of the steel sheet is shown in a cross section of the steel sheet. .
FIG. 1A shows a case where the formation width of the linear groove and the introduction width of the high dislocation density region are exactly the same. In FIG. 5B, the width W of both is the same, and the width r of the overlapping portion between the linear groove and the high dislocation density region is 50% of the width W of the linear groove and the high dislocation density region. This is a case where there is an overlap. Further, FIG. 4C shows a case where the widths of the two are different. Even in such a case, the width r of the overlapping portion with respect to the narrower width (in this case, the high dislocation density region width) W ′ is In this case, 50% or more overlap with the high dislocation density region width W ′.
Here, the width of the linear groove and the high dislocation density region is the width of the groove and the region itself on the steel plate surface as shown in FIG.

(3) 線状溝は、幅:50〜300μm、深さ:10〜50μm および間隔:1.5〜10.0mm程度、一方高転位密度領域は幅:50〜500μm、塑性歪深さ:10〜50μm および間隔:1.5〜10.0mm程度とし、線状溝および線状の高転位密度領域の圧延方向と直角する向きに対するずれは±30°以内とすることが好ましい。
この規定は、各手法単独で磁区を細分化させるときに最も効果的に細分化する条件であるが、本発明のように両手法を組み合わせた場合でも、最も磁区細分化効果が高くなる条件である。
なお、本発明において、「線状」とは、実線だけでなく、点線や破線なども含むものとする。
(3) The linear groove has a width of 50 to 300 μm, a depth of 10 to 50 μm and a spacing of about 1.5 to 10.0 mm, while a high dislocation density region has a width of 50 to 500 μm and a plastic strain depth of 10 to 50 μm and The interval is preferably about 1.5 to 10.0 mm, and the deviation of the linear groove and the linear high dislocation density region with respect to the direction perpendicular to the rolling direction is preferably within ± 30 °.
This regulation is the condition for subdividing the magnetic domain most effectively when each method is subdivided. However, even when both methods are combined as in the present invention, the conditions under which the magnetic domain subdivision effect is the highest are obtained. is there.
In the present invention, “linear” includes not only a solid line but also a dotted line and a broken line.

次に、本発明の方向性電磁鋼板の好適成分組成について説明する。
本発明において、インヒビターを利用する場合、例えばAlN系インヒビターを利用する場合であればAlおよびNを、またMnS・MnSe系インヒビターを利用する場合であればMnとSeおよび/またはSを適量含有させればよい。勿論、両インヒビターを併用してもよい。この場合におけるAl,N,SおよびSeの好適含有量はそれぞれ、Al:0.01〜0.065質量%、N:0.005〜0.012質量%、S:0.005〜0.03質量%、Se:0.005〜0.03質量%である。
また、本発明は、Al,N,S,Seの含有量を制限した、インヒビターを使用しない方向性電磁鋼板にも適用することができる。
この場合には、Al,N,SおよびSe量はそれぞれ、Al:100 質量ppm以下、N:50 質量ppm以下、S:50 質量ppm以下、Se:50 質量ppm以下に抑制することが好ましい。
Next, the suitable component composition of the grain-oriented electrical steel sheet of the present invention will be described.
In the present invention, when an inhibitor is used, for example, when using an AlN-based inhibitor, Al and N are contained. When using an MnS / MnSe-based inhibitor, an appropriate amount of Mn, Se and / or S is contained. Just do it. Of course, both inhibitors may be used in combination. The preferred contents of Al, N, S and Se in this case are Al: 0.01 to 0.065 mass%, N: 0.005 to 0.012 mass%, S: 0.005 to 0.03 mass%, and Se: 0.005 to 0.03 mass%, respectively. .
Moreover, this invention is applicable also to the grain-oriented electrical steel sheet which restricted content of Al, N, S, and Se and which does not use an inhibitor.
In this case, the amounts of Al, N, S and Se are preferably suppressed to Al: 100 mass ppm or less, N: 50 mass ppm or less, S: 50 mass ppm or less, and Se: 50 mass ppm or less.

その他の基本成分および任意添加成分について述べると、次のとおりである。
C:0.08質量%以下
C量が0.08質量%を超えると製造工程中に磁気時効の起こらない50質量ppm以下までCを低減することが困難になるため、0.08質量%以下とすることが好ましい。なお、下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設ける必要はない。
Other basic components and optional added components are described as follows.
C: 0.08 mass% or less When the C content exceeds 0.08 mass%, it is difficult to reduce C to 50 mass ppm or less at which no magnetic aging occurs during the production process. In addition, regarding the lower limit, since a secondary recrystallization is possible even for a material not containing C, there is no need to provide it.

Si:2.0〜8.0質量%
Siは、鋼の電気抵抗を高め、鉄損を改善するのに有効な元素であるが、含有量が2.0質量%に満たないと十分な鉄損低減効果が達成できず、一方、8.0質量%を超えると加工性が著しく低下し、また磁束密度も低下するため、Si量は2.0〜8.0質量%の範囲とすることが好ましい。
Si: 2.0 to 8.0 mass%
Si is an element effective in increasing the electrical resistance of steel and improving iron loss. However, if the content is less than 2.0% by mass, a sufficient iron loss reduction effect cannot be achieved, while 8.0% by mass. If it exceeds 1, the workability is remarkably lowered and the magnetic flux density is also lowered.

Mn:0.005〜1.0質量%
Mnは、熱間加工性を良好にする上で必要な元素であるが、含有量が0.005質量%未満ではその添加効果に乏しく、一方1.0質量%を超えると製品板の磁束密度が低下するため、 Mn量は0.005〜1.0質量%の範囲とすることが好ましい。
Mn: 0.005 to 1.0 mass%
Mn is an element necessary for improving the hot workability. However, if the content is less than 0.005% by mass, the effect of addition is poor, whereas if it exceeds 1.0% by mass, the magnetic flux density of the product plate decreases. The amount of Mn is preferably in the range of 0.005 to 1.0 mass%.

上記の基本成分以外に、磁気特性改善成分として、次に述べる元素を適宜含有させることができる。
Ni:0.03〜1.50質量%、Sn:0.01〜1.50質量%、Sb:0.005〜1.50質量%、Cu:0.03〜3.0質量%、P:0.03〜0.50質量%、Mo:0.005〜0.10質量%およびCr:0.03〜1.50質量%のうちから選んだ少なくとも1種
Niは、熱延板組織を改善して磁気特性を向上させるために有用な元素である。しかしながら、含有量が0.03質量%未満では磁気特性の向上効果が小さく、一方1.5質量%を超えると二次再結晶が不安定になり磁気特性が劣化する。そのため、Ni量は0.03〜1.5質量%の範囲とするのが好ましい。
また、Sn、Sb、Cu、P、CrおよびMoはそれぞれ磁気特性の向上に有用な元素であるが、いずれも上記した各成分の下限に満たないと、磁気特性の向上効果が小さく、一方、上記した各成分の上限量を超えると、二次再結晶粒の発達が阻害されるため、それぞれ上記の範囲で含有させることが好ましい。
なお、上記成分以外の残部は、製造工程において混入する不可避的不純物およびFeである。
In addition to the above basic components, the following elements can be appropriately contained as magnetic property improving components.
Ni: 0.03-1.50% by mass, Sn: 0.01-1.50% by mass, Sb: 0.005-1.50% by mass, Cu: 0.03-3.0% by mass, P: 0.03-0.50% by mass, Mo: 0.005-0.10% by mass and Cr: At least one selected from 0.03 to 1.50 mass%
Ni is an element useful for improving the magnetic properties by improving the hot-rolled sheet structure. However, if the content is less than 0.03% by mass, the effect of improving the magnetic properties is small. On the other hand, if the content exceeds 1.5% by mass, the secondary recrystallization becomes unstable and the magnetic properties deteriorate. Therefore, the amount of Ni is preferably in the range of 0.03 to 1.5 mass%.
Sn, Sb, Cu, P, Cr and Mo are elements useful for improving the magnetic properties, respectively, but if any of them is less than the lower limit of each component described above, the effect of improving the magnetic properties is small. If the upper limit amount of each component described above is exceeded, the development of secondary recrystallized grains is hindered.
The balance other than the above components is inevitable impurities and Fe mixed in the manufacturing process.

本発明の方向性電磁鋼板を製造する方法については、特に限定されないが、以下に示す製造方法が推奨される。
上記の好適成分組成に調整した鋼素材を、通常の造塊法、連続鋳造法でスラブとしてもよいし、100mm以下の厚さの薄鋳片を直接連続鋳造法で製造してもよい。スラブは、通常の方法で加熱して熱間圧延に供するが、鋳造後加熱せずに直ちに熱間圧延に供してもよい。薄鋳片の場合には熱間圧延しても良いし、熱間圧延を省略してそのまま以後の工程に進めてもよい。ついで、必要に応じて熱延板焼鈍を行ったのち、一回または中間焼鈍を挟む2回以上の冷間圧延により最終板厚とし、その後脱炭焼鈍ついで最終仕上げ焼鈍を施したのち、通常絶縁張力コーティングを塗布して製品とする。
Although it does not specifically limit about the method of manufacturing the grain-oriented electrical steel sheet of this invention, The manufacturing method shown below is recommended.
The steel material adjusted to the above suitable component composition may be made into a slab by a normal ingot-making method or a continuous casting method, or a thin cast piece having a thickness of 100 mm or less may be directly produced by a continuous casting method. The slab is heated by a normal method and subjected to hot rolling, but may be immediately subjected to hot rolling without being heated after casting. In the case of a thin slab, hot rolling may be performed, or the hot rolling may be omitted and the subsequent process may be performed as it is. Next, after performing hot-rolled sheet annealing as necessary, the final sheet thickness is obtained by cold rolling at least once with or between the intermediate annealing, followed by decarburization annealing and final finishing annealing, followed by normal insulation Apply tension coating to make product.

本発明では、上記した最終仕上げ焼鈍の前後いずれかの工程において、線状溝を形成すると共に、線状の高転位密度領域を導入する。
線状溝の形成は、局所的にエッチング処理する方法、刃物などでけがく方法、突起つきロールで圧延する方法などが挙げられるが、最も好ましいのは最終冷延後の鋼板に印刷等によりエッチングレジストを付着させたのち、非付着域に電解エッチング等の処理により線状溝を形成する方法である。
また、高転位密度領域を導入する方法も特には限定はされないが、工業化の容易性から特開昭60-236271号公報に開示されたプラズマ炎を照射したり、特公昭57-2252号公報に開示されたレーザーを照射したりする方法が好ましい。とくに最近使用されるようになってきたグリーンレーザーマーカーは、照***度の面で特に有利である。
In the present invention, a linear groove is formed and a linear high dislocation density region is introduced in any of the steps before and after the final finish annealing.
The formation of the linear groove includes a method of locally etching, a method of scribing with a blade, a method of rolling with a roll with protrusions, etc. The most preferable is etching on the steel sheet after the final cold rolling by printing or the like In this method, after a resist is attached, a linear groove is formed in a non-attached region by a process such as electrolytic etching.
Also, the method for introducing a high dislocation density region is not particularly limited, but for ease of industrialization, irradiation with a plasma flame disclosed in JP-A-60-236271 or JP-B-57-2252 is disclosed. The disclosed laser irradiation method is preferred. In particular, the green laser marker that has recently been used is particularly advantageous in terms of irradiation accuracy.

C:0.06質量%、Si:3.4質量%、Mn:0.07質量%、Ni:0.01質量%、Al:250質量ppm、N:80質量ppm、Se:180質量ppm、S:15質量ppmおよびO:18質量ppmを含有し、残部は実質的にFeの組成になる鋼スラブを、連続鋳造にて製造し、1400℃に加熱後、熱間圧延により板厚:2.0 mmの熱延板としたのち、1000℃で180秒の熱延板焼鈍を施した。ついで、冷間圧延により中間板厚:0.75mmとし、雰囲気酸化度P(H2O)/P(H2)=0.30、830℃、300秒の条件で中間焼鈍を施したのち、塩酸酸洗により表面のサブスケールを除去してから、再度冷間圧延を施して最終板厚:0.23mmの冷延板に仕上げた。その後、グラビアオフセット印刷によるエッチングレジストを塗布し、引き続く電解エッチングおよびアルカリ液中でのレジスト剥離により、幅:150μm(一部は幅:250μm)、深さ:20μm の線状溝を、圧延方向と直交する向きに対し10°の傾斜角度にて3mm間隔で形成した。ついで、雰囲気酸化度P(H2O)/P(H2)=0.45、均熱温度:840℃で200秒保持する脱炭焼鈍を施したのち、MgOを主成分とする焼鈍分離剤を塗布してから、二次再結晶とフォルステライト被膜形成および純化を目的とした最終仕上げ焼鈍を、N2:H2=50:50の混合雰囲気中にて1230℃,5hの条件で実施した。その後、50%のコロイダルシリカとリン酸マグネシウムからなる絶縁張力コート処理を施した。 C: 0.06 mass%, Si: 3.4 mass%, Mn: 0.07 mass%, Ni: 0.01 mass%, Al: 250 mass ppm, N: 80 mass ppm, Se: 180 mass ppm, S: 15 mass ppm and O: A steel slab containing 18 ppm by mass and the balance being substantially Fe composition was manufactured by continuous casting, heated to 1400 ° C, and hot rolled to a hot rolled sheet with a thickness of 2.0 mm. And hot-rolled sheet annealing at 1000 ° C. for 180 seconds. Next, the intermediate sheet thickness was 0.75 mm by cold rolling, and the intermediate oxidation was performed under the conditions of atmospheric oxidation degree P (H 2 O) / P (H 2 ) = 0.30, 830 ° C., 300 seconds, and then pickled with hydrochloric acid. After removing the subscale on the surface, cold rolling was performed again to finish a cold rolled sheet having a final sheet thickness of 0.23 mm. After that, an etching resist by gravure offset printing is applied, followed by electrolytic etching and resist stripping in an alkaline solution to form a linear groove with a width of 150 μm (some width: 250 μm) and a depth: 20 μm in the rolling direction. They were formed at intervals of 3 mm at an inclination angle of 10 ° with respect to the orthogonal direction. Next, after decarburization annealing was performed, which was held at 200 ° C for 200 seconds at a soaking temperature of P (H 2 O) / P (H 2 ) = 0.45, then an annealing separator mainly composed of MgO was applied. Then, final finish annealing for the purpose of secondary recrystallization, forsterite film formation and purification was performed in a mixed atmosphere of N 2 : H 2 = 50: 50 under conditions of 1230 ° C. and 5 h. Thereafter, an insulating tension coating treatment comprising 50% colloidal silica and magnesium phosphate was performed.

さらに、得られた鋼板に対し、表1に示す条件に従って、レーザー照射を行い、線状の高転位密度領域(幅:200μm,深さ:150μm)を導入した。
かくして得られた製品板の磁気特性(鉄損W17/50、磁束密度B8)について調べた結果を表1に併記する。
Furthermore, the obtained steel sheet was irradiated with laser according to the conditions shown in Table 1 to introduce a linear high dislocation density region (width: 200 μm, depth: 150 μm).
The results of examining the magnetic properties (iron loss W 17/50 , magnetic flux density B 8 ) of the product plate thus obtained are also shown in Table 1.

Figure 0005740854
Figure 0005740854

表1に示したとおり、本発明に従い、鋼板の片面に線状溝を形成すると共に、反対面には線状の高転位密度領域を形成し、これら線状溝と線状領域の重複幅をいずれか狭い方の幅の50%以上とした場合は、鉄損W17/50が0.70 W/kg未満という優れた鉄損値を得ることができた。
これに対し、鋼板の片面に線状溝を形成しただけの比較例1および同じく片面に線状の高転位密度領域を導入しただけの比較例2はそれぞれ、W17/50:0.74 W/kg、0.73 W/kg程度の鉄損値しか得られなかった。
また、鋼板の片面の同一位置で線状溝の形成と線状の高転位密度領域の導入を行った比較例3は、比較例1,2に比べると鉄損値は低下したとはいえ、W17/50=0.70 W/kgにすぎなかった。
さらに、線状溝の中央部に線状の高転位密度領域を導入した場合は、鋼板の同一面に導入した場合(比較例5)および異なる面に導入した場合(比較例6)のいずれの場合も、得られたW17/50は0.70 W/kgであり、本発明には及ばなかった。
As shown in Table 1, in accordance with the present invention, a linear groove is formed on one surface of the steel sheet, and a linear high dislocation density region is formed on the opposite surface, and the overlapping width of the linear groove and the linear region is increased. When the narrower width was set to 50% or more, an excellent iron loss value of iron loss W 17/50 of less than 0.70 W / kg could be obtained.
On the other hand, Comparative Example 1 in which linear grooves are formed on one side of the steel sheet and Comparative Example 2 in which linear high dislocation density regions are also introduced on one side are respectively W 17/50 : 0.74 W / kg. Only an iron loss value of about 0.73 W / kg was obtained.
Moreover, although the comparative example 3 which performed the formation of the linear groove | channel and the introduction of the linear high dislocation density area | region in the same position of the single side | surface of a steel plate, although the iron loss value fell compared with the comparative examples 1 and 2, W 17/50 = 0.70 W / kg.
Furthermore, when a linear high dislocation density region is introduced at the central portion of the linear groove, any of the case of introduction on the same surface of the steel plate (Comparative Example 5) and the case of introduction on a different surface (Comparative Example 6). Even in this case, the obtained W 17/50 was 0.70 W / kg, which did not reach the present invention.

Claims (2)

鋼板の片面に、圧延方向と交わる向きに伸びる溝形成時に転位の導入を伴わない線状溝を形成し、一方鋼板の反対面には、該線状溝と対応する位置に高転位密度領域の形成時に鋼板の部分的除去を伴わない線状の高転位密度領域を形成した方向性電磁鋼板であって、
該線状溝の幅と該線状の高転位密度領域の幅が、いずれか狭い方の幅に対して50%以上重複していることを特徴とする方向性電磁鋼板。
On one side of the steel sheet, a linear groove without introduction of dislocations is formed at the time of forming a groove extending in the direction crossing the rolling direction, while on the opposite side of the steel sheet, a high dislocation density region is formed at a position corresponding to the linear groove . A grain-oriented electrical steel sheet that forms a linear high dislocation density region without partial removal of the steel sheet during formation ,
A grain-oriented electrical steel sheet characterized in that the width of the linear groove and the width of the linear high dislocation density region overlap by 50% or more with respect to the narrower width.
前記線状溝が、幅:50〜300μm、深さ:10〜50μm で、前記線状の高転位密度領域が、幅:50〜500μm であり、該線状溝および該線状の高転位密度領域の圧延方向と直角する方向に対する交差角が±30°以内であることを特徴とする請求項1に記載の方向性電磁鋼板。   The linear groove has a width of 50 to 300 μm and a depth of 10 to 50 μm, and the linear high dislocation density region has a width of 50 to 500 μm. The linear groove and the linear high dislocation density The grain-oriented electrical steel sheet according to claim 1, wherein the crossing angle of the region with respect to a direction perpendicular to the rolling direction is within ± 30 °.
JP2010148301A 2010-06-29 2010-06-29 Oriented electrical steel sheet Active JP5740854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148301A JP5740854B2 (en) 2010-06-29 2010-06-29 Oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148301A JP5740854B2 (en) 2010-06-29 2010-06-29 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2012012639A JP2012012639A (en) 2012-01-19
JP5740854B2 true JP5740854B2 (en) 2015-07-01

Family

ID=45599418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148301A Active JP5740854B2 (en) 2010-06-29 2010-06-29 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5740854B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102477484B (en) * 2010-11-26 2013-09-25 宝山钢铁股份有限公司 Quick laser scribing method
KR102044320B1 (en) * 2017-12-26 2019-11-13 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
KR102091631B1 (en) * 2018-08-28 2020-03-20 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP6973369B2 (en) * 2018-12-27 2021-11-24 Jfeスチール株式会社 Directional electromagnetic steel plate and its manufacturing method
JP7010321B2 (en) * 2019-03-19 2022-02-10 Jfeスチール株式会社 Directional electrical steel sheet and its manufacturing method
KR102276850B1 (en) * 2019-12-19 2021-07-12 주식회사 포스코 Grain oriented electrical steel sheet and method for refining magnetic domains therein
JP2021114868A (en) * 2020-01-21 2021-08-05 三菱電機株式会社 Manufacturing method of lamination iron core of electric machine and manufacturing method of the electric machine
JP7331800B2 (en) * 2020-07-31 2023-08-23 Jfeスチール株式会社 Oriented electrical steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089545A (en) * 1983-10-21 1985-05-20 Kawasaki Steel Corp Grain-oriented silicon steel sheet causing small iron loss
JP4319715B2 (en) * 1998-10-06 2009-08-26 新日本製鐵株式会社 Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JP2002121618A (en) * 2000-10-18 2002-04-26 Nippon Steel Corp Manufacturing apparatus for grain-oriented silicon steel plate excellent in magnetic characteristic

Also Published As

Publication number Publication date
JP2012012639A (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5740854B2 (en) Oriented electrical steel sheet
JP5853352B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5772410B2 (en) Method for producing grain-oriented electrical steel sheet
JP5742294B2 (en) Method for producing grain-oriented electrical steel sheet
JP6617827B2 (en) Method for producing grain-oriented electrical steel sheet
JP2017222898A (en) Production method of grain oriented magnetic steel sheet
KR20120071820A (en) Grain-oriented electrical steel sheet with extremely low iron loss and method for manufacturing the same
WO2016067636A1 (en) Production method for oriented electromagnetic steel sheet
WO2018084198A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP6418226B2 (en) Method for producing grain-oriented electrical steel sheet
JPWO2018151296A1 (en) Method of manufacturing directional magnetic steel sheet
JP2015140470A (en) Grain oriented silicon steel plate and production method thereof
WO2018084203A1 (en) Method for producing grain-oriented electrical steel sheet
JP7053848B2 (en) Electrical steel sheet and its manufacturing method
JP5527094B2 (en) Method for producing grain-oriented electrical steel sheet
JP3893759B2 (en) Method for producing grain-oriented silicon steel sheet
JP2014196536A (en) Method of flattening and annealing grain-oriented electrical steel sheet and method of producing grain-oriented electrical steel sheet
JP4876799B2 (en) Oriented electrical steel sheet
JP5754170B2 (en) Method for producing grain-oriented electrical steel sheet
JP2009228118A (en) Method for manufacturing grain-oriented electrical steel sheet
JP2007262436A (en) Method for producing grain oriented silicon steel sheet
JP6607176B2 (en) Method for producing grain-oriented electrical steel sheet
KR101459730B1 (en) Oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5740854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250