JP5527327B2 - 発光素子、光源装置及び投射型表示装置 - Google Patents

発光素子、光源装置及び投射型表示装置 Download PDF

Info

Publication number
JP5527327B2
JP5527327B2 JP2011538341A JP2011538341A JP5527327B2 JP 5527327 B2 JP5527327 B2 JP 5527327B2 JP 2011538341 A JP2011538341 A JP 2011538341A JP 2011538341 A JP2011538341 A JP 2011538341A JP 5527327 B2 JP5527327 B2 JP 5527327B2
Authority
JP
Japan
Prior art keywords
layer
light
dielectric constant
light emitting
plasmon excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011538341A
Other languages
English (en)
Other versions
JPWO2011052387A1 (ja
Inventor
昌尚 棗田
慎 冨永
悟郎 齋藤
雅雄 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2011538341A priority Critical patent/JP5527327B2/ja
Publication of JPWO2011052387A1 publication Critical patent/JPWO2011052387A1/ja
Application granted granted Critical
Publication of JP5527327B2 publication Critical patent/JP5527327B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0083Periodic patterns for optical field-shaping in or on the semiconductor body or semiconductor body package, e.g. photonic bandgap structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Nonlinear Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Devices (AREA)

Description

本発明は、光を出射するためにプラズモン結合を利用した発光素子、光源装置及び投射型表示装置に関する。
光源の発光素子として発光ダイオード(LED)が用いられるLEDプロジェクタが提案されている。この種のLEDプロジェクタでは、LEDからの光が入射する照明光学系と、照明光学系からの光が入射する液晶表示板やDMD(Digital Micromirror Device)を有するライトバルブと、ライトバルブからの光を投射面上に投射するための投射光学系と、を備えて構成されている。
LEDプロジェクタでは、投射映像の輝度を高めるために、LEDからライトバルブまでの光路において光損失が可能な限り生じないようにすることが求められている。
また、非特許文献1に記載されているように、光源の面積と放射角との積で決まるエテンデュー(Etendue)による制約がある。つまり、光源の発光面積と放射角との積の値を、ライトバルブの入射面の面積と、照明光学系のFナンバーで決まる取り込み角(立体角)との積の値以下にしなければ、光源からの光が投射光として利用されない。
そのため、LEDからの出射光のエテンデューの低減を図ることによって、上述の光損失の低減を図ることが懸案となっている。
そして、LEDプロジェクタの光源には、数千ルーメンクラスの光束を放射する光源が求められており、その実現のためには、高輝度かつ高指向性を有するLEDが必要不可欠になっている。
このように高輝度かつ高指向性を有する発光素子の一例として、特許文献1には、図1に示すように、サファイア基板101上に、n型GaN層102、InGaN活性層103、p型GaN層104、ITO透明電極層105、及び2次元周期構造層109が順に積層されてなる半導体発光素子が開示されている。また、この発光素子は、一部を切り欠いて溝108が形成されており、溝108内のn型GaN層102の一部に設けられたn側ボンディング電極106と、ITO透明電極層105に設けられたp側ボンディング電極107と、を備えている。この発光素子では、InGaN活性層103から出る光の指向性が2次元周期構造層109によって高められて発光素子から出射される。
また、高輝度かつ高指向性を有する発光素子の他の例として、特許文献2には、図2に示すように、基板111上に、陽極層112、ホール輸送層113、発光層114、電子輸送層115、及び微小な周期的凹凸構造格子116aを有する陰極層116が順に積層されてなる有機EL素子110が開示されている。この発光素子は、陰極層116の微小な周期的凹凸構造格子116aと外部との界面を伝播する表面プラズモンの効果によって、発光素子からの出射光の放射角を±15°未満にすることが可能な高指向性を有している。
特開2005−005679号公報 特開2006−313667号公報
PhlatLightTM Photonic Lattice LEDs for RPTV Light Engines Christian Hoepfner, SID Symposium Digest 37, 1808 (2006)
上述したようにLEDプロジェクタでは、発光素子から一定角(例えば放射角±15°)以上で出射された光は、照明光学系やライトバルブに入射されずに光損失となる。特許文献1に記載の構成では、現在、数千ルーメンクラスの光束を放射するLEDが実現されており、高輝度を達成できるが、出射光の放射角を±15°未満に狭めることができていない。つまり、特許文献1に記載の発光素子は、出射光の指向性が乏しい問題がある。
一方、特許文献2に記載の構成では、表面プラズモンを利用することによって、出射光の放射角を±15°未満に狭めることができる。しかし、現在、数千ルーメンクラスの光束を放射する有機EL素子が存在しないので、特許文献2に記載の発光素子をLEDプロジェクタに適用したとしても十分な輝度が得られない問題がある。
すなわち、上述した特許文献1、2に開示された構成では、LEDプロジェクタに必要とされる、輝度と指向性を両立した発光素子を実現できなかった。
本発明の目的は、上記関連する技術の問題を解決できる発光素子、これを備える光源装置及び投射型表示装置を提供することである。
上述した目的を達成するため、本発明に係る発光素子は、光源層と、光源層の上に積層され光源層からの光が入射する光学素子層と、を備える。光源層は、基板と、基板の上に設けられた一対のホール輸送層及び電子輸送層と、を有する。光学素子層は、光源層における基板側の反対側に積層され光源層から出射する光の周波数よりも高いプラズマ周波数を有するプラズモン励起層と、プラズモン励起層の上に積層されプラズモン励起層から入射する光を所定の出射角に変換して出射する出射層と、を有する。プラズモン励起層は、誘電性を有する2つの層の間に挟まれている。
また、本発明に係る光源装置は、本発明の発光素子と、前記発光素子から入射する軸対称偏光を所定の偏光状態に揃える偏光変換素子と、を備える。
また、本発明に係る投射型表示装置は、本発明の発光素子と、発光素子の出射光に画像情報を付与する表示素子と、表示素子の出射光によって投射映像を投射する投射光学系と、を備える。
本発明によれば、輝度の向上と、出射光の指向性の向上を両立することができるので、高輝度かつ高指向性を有する発光素子を実現できる。
特許文献1の構成を説明するための斜視図である。 特許文献2の構成を説明するための断面図である。 第1の実施形態の発光素子を模式的に示す斜視図である。 第1の実施形態の発光素子を模式的に示す平面図である。 第2の実施形態の発光素子を模式的に示す斜視図である。 第2の実施形態の発光素子を模式的に示す平面図である。 第2の実施形態の発光素子の製造工程を説明するための断面図である。 第2の実施形態の発光素子の製造工程を説明するための断面図である。 第2の実施形態の発光素子の製造工程を説明するための断面図である。 第2の実施形態の発光素子における、フォトニック結晶からなる波数ベクトル変換層の形成工程を説明するための断面図である。 第2の実施形態の発光素子における、フォトニック結晶からなる波数ベクトル変換層の形成工程を説明するための断面図である。 第2の実施形態の発光素子における、フォトニック結晶からなる波数ベクトル変換層の形成工程を説明するための断面図である。 第2の実施形態の発光素子における、フォトニック結晶からなる波数ベクトル変換層の形成工程を説明するための断面図である。 第3の実施形態の発光素子を示す模式的に示す斜視図である。 第3の実施形態の発光素子を示す模式的に示す平面図である。 第4の実施形態の発光素子を示す模式的に示す斜視図である。 第4の実施形態の発光素子を示す模式的に示す平面図である。 第5の実施形態の発光素子において、マイクロレンズアレイからなる波数ベクトル変換層の形成工程を説明するための断面図である。 第5の実施形態の発光素子において、マイクロレンズアレイからなる波数ベクトル変換層の形成工程を説明するための断面図である。 第5の実施形態の発光素子が備える指向性制御層を模式的に示す斜視図である。 第6の実施形態の発光素子が備える指向性制御層を模式的に示す斜視図である。 第7の実施形態の発光素子が備える指向性制御層を模式的に示す斜視図である。 第8の実施形態の発光素子が備える指向性制御層を模式的に示す斜視図である。 第9の実施形態の発光素子が備える指向性制御層を模式的に示す斜視図である。 第10の実施形態の発光素子を模式的に示す斜視図である。 第10の実施形態の発光素子を模式的に示す平面図である。 実施形態の発光素子に適用される軸対称偏光用1/2波長板を示す斜視図である。 実施形態の発光素子に適用される軸対称偏光用1/2波長板の構造を示す縦断面図である。 実施形態の発光素子に適用される軸対称偏光用1/2波長板を説明するために示す模式図である。 実施形態の発光素子に適用される軸対称偏光用1/2波長板を説明するために示す模式図である。 実施形態の発光素子が、軸対称偏光用1/2波長板を備えない構成の場合における、出射光のファーフィールドパターンと偏光方向を示す模式図である。 実施形態の発光素子が、軸対称偏光用1/2波長板を備える構成の場合における、出射光のファーフィールドパターンと偏光方向を示す模式図である。 実施形態におけるプラズモン共鳴特性を説明するための図である。 波数ベクトル変換層のフォトニック結晶に入射する光の入射角のズレ量と、波数ベクトル変換層から出射される光の出射角との関係を示す図である。 波数ベクトル変換層のフォトニック結晶に入射する光の入射角と、波数ベクトル変換層から出射角が0゜で出射光を出射するための格子ピッチとの関係を示す図である。 波数ベクトル変換層のフォトニック結晶における、格子深さと回折効率との関係を示す図である。 波数ベクトル変換層のフォトニック結晶における、フォトニック結晶に対する入射角と、回折効率との関係を示す図である。 波数ベクトル変換層のフォトニック結晶に対して入射角が40゜で光を入射させた場合における、発光素子の出射光における配光分布を示す図である。 第1の実施形態の発光素子において、実効誘電率から求まるプラズモン共鳴角と、多層膜反射計算によって求まるプラズモン共鳴角とを比較して示す図である。 第1の実施形態の発光素子の出射光における角度分布を示す図である。 実施形態の発光素子が適用されるLEDプロジェクタを示す模式図である。
以下、本発明の具体的な実施形態について、図面を参照して説明する。
(第1の実施形態)
図3Aに、本実施形態の発光素子の模式的な構成の斜視図を示す。図3Bに、本実施形態の発光素子の模式的な構成の平面図を示す。なお、発光素子において、実際の個々の層の厚さが非常に薄く、またそれぞれ層の厚さの違いが大きいので、各層を正確なスケール、比率で図を描くことが困難である。このため、図面では各層が実際の比率通りに描かれておらず、各層を模式的に示している。
図3Aに示すように、第1の実施形態の発光素子1は、光源層4と、この光源層4の上に積層され光源層4からの光が入射する光学素子層としての指向性制御層5と、を備えている。
光源層4は、基板10と、この基板10の上に設けられた一対のホール輸送層11及び電子輸送層13と、を有している。基板10上には、基板10側から、ホール輸送層11、電子輸送層13の順にそれぞれ積層されている。
指向性制御層5は、光源層4の基板10側に対する反対側に設けられている。指向性制御層5は、光源層4から出射する光の周波数よりも高いプラズマ周波数を有するプラズモン励起層15と、このプラズモン励起層15の上に積層されプラズモン励起層15から入射する光を所定の出射角に変換して出射する出射層としての波数ベクトル変換層17と、を備えている。
また、プラズモン励起層15は、誘電性を有する2つの層の間に挟まれている。誘電性を有する2つの層として、指向性制御層5は、図3Aに示すように、プラズモン励起層15と波数ベクトル変換層17との間に挟まれて設けられた高誘電率層16と、プラズモン励起層15と電子輸送層13との間に挟まれて設けられ、高誘電率層16よりも誘電率が低い低誘電率層14と、を備えている。
ただし、高誘電率層16および低誘電率層14の誘電率は、後述するようにプラズモン励起層15の入射側部分(基板10側)の複素実効誘電率の実部が、プラズモン励起層15の出射側部分(波数ベクトル変換層17側)の複素実効誘電率の実部よりも低く設定されていれば、高誘電率層16の誘電率よりも低誘電率層14の誘電率の方が高くても発光素子1は動作する。したがって、プラズモン励起層15は、一対の高誘電率層16と低誘電率層14との間に挟まれて配置されている。
そして、本実施形態における光学素子1は、プラズモン励起層15の光源層4側に積層された構造全体を含む入射側部分(以下、単に入射側部分と称する)の実効誘電率が、プラズモン励起層15の波数ベクトル変換層17側に積層された構造全体と、波数ベクトル変換層17に接する媒質とを含む出射側部分(以下、単に出射側部分と称する)の実効誘電率よりも低くなるように構成されている。なお、プラズモン励起層15の光源層4側に積層された構造全体には、基板10が含まれる。プラズモン励起層15の波数ベクトル変換層17側に積層された構造全体には、波数ベクトル変換層17が含まれる。
つまり、第1の実施形態では、プラズモン励起層15に対する、光源層4及び低誘電率層14を含む入射側部分の実効誘電率が、プラズモン励起層15に対する、高誘電率層16及び波数ベクトル変換層17と媒質とを含む出射側部分の実効誘電率よりも低くなっている。
詳細には、プラズモン励起層15の入射側部分(基板10側)の複素実効誘電率の実部が、プラズモン励起層15の出射側部分(波数ベクトル変換層17側)の複素実効誘電率の実部よりも低く設定されている。
ここで、複素実効誘電率εeffは、プラズモン励起層15の界面に平行な方向をx軸、y軸、プラズモン励起層15の界面に垂直な方向をz軸とし、光源層4から出射する光の角周波数をω、プラズモン励起層15に対する入射側部分及び出射側部分における誘電体の誘電率分布をε(ω,x,y,z)、表面プラズモンの波数のz成分をkspp,z、虚数単位をjとすれば、
Figure 0005527327
で表される。ここで積分範囲Dは、プラズモン励起層15に対する入射側部分または出射側部分の三次元座標の範囲である。言い換えれば、この積分範囲Dにおけるx軸及びy軸方向の範囲は、入射側部分が含む構造体の外周面または出射側部分が含む構造体の外周面までの媒質を含まない範囲であり、プラズモン励起層15の界面に平行な面内の外縁までの範囲である。また、積分範囲Dにおけるz軸方向の範囲は、入射側部分または出射側部分(媒質を含む)の範囲である。なお、積分範囲Dにおけるz軸方向の範囲に関しては、プラズモン励起層15と、プラズモン励起層15に隣接する、誘電性を有する層との界面を、z=0となる位置とし、この界面から、プラズモン励起層15の、上記隣接する層側の無限遠までの範囲であり、この界面から遠ざかる方向を、式(1)における(+)z方向とする。
また、表面プラズモンの波数のz成分kspp,z、表面プラズモンの波数のx、y成分ksppは、プラズモン励起層15の誘電率の実部をεmetal、真空中での光の波数をk0とすれば、
Figure 0005527327
Figure 0005527327
で表される。
したがって、式(1)、式(2)、式(3)を用い、ε(ω,x,y,z)として、プラズモン励起層15の入射側部分の誘電率分布εin(ω,x,y,z)、プラズモン励起層15の出射側部分の誘電率分布εout(ω,x,y,z)をそれぞれ代入して、計算することで、プラズモン励起層15に対する入射側部分の複素実効誘電率層εeffin、及び出射側部分の複素実効誘電率εeffoutがそれぞれ求まる。実際には、複素実効誘電率εeffとして適当な初期値を与え、式(1)、式(2)、式(3)を繰り返し計算することで、複素実効誘電率εeffを容易に求められる。なお、プラズモン励起層15に接する層の誘電率が非常に高い場合は、その界面における表面プラズモンの波数のz成分kspp,zが実数となる。これは、その界面において表面プラズモンが発生しない ことに相当する。そのため、プラズモン励起層15に接する層の誘電率が、この場合の実効誘電率に相当する。
ここで、表面プラズモンの有効相互作用距離を、表面プラズモンの強度がe−2となる距離とすれば、表面プラズモンの有効相互作用距離deffは、
Figure 0005527327
で表わされる。
指向性制御層5が有する低誘電率層14は、高誘電率層16よりも誘電率が低い層である。低誘電率層14の複素誘電率をε(λ)とし、その実部をεlr(λ)、虚部をεli(λ)とする。また、高誘電率層16の複素誘電率をε(λ)とし、その実部をεhr(λ)、虚部をεhi(λ)とすると、
1≦εlr(λ)<εhr(λ)の関係を満たしている。なお、λは、誘電率層への入射光の真空中での波長である。
ただし、低誘電率層14の誘電率の方が高誘電率層16の誘電率よりも高い場合でも、プラズモン励起層15の低誘電率層14側の実効誘電率の実部がプラズモン励起層15の高誘電率層16側の実効誘電率の実部よりも低ければ、発光素子1は動作する。つまり、低誘電率層14、高誘電率層16の誘電率には、プラズモン励起層15の出射側部分の実効誘電率の実部が入射側部分の実効誘電率の実部より高く保たれる範囲が許容される。
ここで、実効誘電率の考え方を示す一例として、低誘電率層14が誘電体層Aと誘電体層Bとからなり、高誘電率層16が誘電体層Cと誘電体層Dとからなり、プラズモン励起層15に隣接する誘電体層Bと誘電体層Cの膜厚が十分に薄い(厚さが例えば10nm未満)場合を考える。この場合には、誘電体層Aが低誘電率層、誘電体層Dが高誘電率層として作用する。これは誘電体層Bと誘電体層Cの膜厚が非常に薄いため、実効誘電率への影響がほとんどないためである。すなわち、低誘電率層14と高誘電率層16の複素誘電率は、複素実効誘電率を考慮して設定すればよい。
また、発光周波数における虚部εli(λ)、及び虚部εhi(λ)は、可能な限り低い方が好ましく、プラズモン結合させ易くし、光損失を低減することができる。
なお、ホール輸送層11、電子輸送層13、プラズモン励起層15を除き、光源層4を含めたいずれの層や、波数ベクトル変換層17に接する媒質においても、複素誘電率の虚部は可能な限り低い方が好ましい。複素誘電率の虚部を可能な限り低くすることで、プラズモン結合を生じさせ易くし、光損失を低減することができる。
また、図3A及び図3Bに示すように、発光素子1は、ホール輸送層11の厚さ方向に直交する面の一部が露出するように、ホール輸送層11の上方の各層の一部がそれぞれ切り欠かれており、露出されたホール輸送層11の一部に陽極19が設けられている。同様に、発光素子1は、プラズモン励起層15の厚さ方向に直交する面の一部が外部に露出するように、プラズモン励起層15の上方の高誘電率層16及び波数ベクトル変換層17の一部がそれぞれ切り欠かれており、露出されたプラズモン励起層15の一部が陰極として機能する。したがって、本実施形態の発光素子1の構成では、プラズモン励起層15から電子が注入され、陽極19からホール(正孔)が注入される。なお、光源層4における電子輸送層13とホール輸送層11の相対的な位置は、本実施形態におけるそれぞれの位置と反対に配置されてもよい。また、表面が露出したプラズモン励起層15上に、プラズモン励起層15とは材料の異なる陰極パッドが設けられてもよい。
発光素子1の周囲の媒質は、固体、液体、気体のいずれであってもよく、発光素子1の基板10側と波数ベクトル変換層17側とがそれぞれ異なる媒質であってもよい。
ホール輸送層11としては、例えば芳香族アミン化合物やテトラフェニルジアミンが挙げられる。また、ホール輸送層11としては、一般的なLEDや、半導体レーザを構成するp型半導体層が用いられてもよい。
電子輸送層13としては、例えばAlq3、オキサジアゾール(PBD)、トリアゾール(TAZ)が挙げられる。また、電子輸送層13としては、一般的なLEDや、半導体レーザを構成するn型半導体層が用いられてもよい。
また、図3Aは、本発明に係る光学素子1が備える光源層4の基本構成を示している。光源層4を構成する各層の間に、例えばバッファ層や、更に別のホール輸送層、電子輸送層等の他の層が挿入される構成であってもよく、光源層として周知のLEDの構造を適用することができる。
また、光源層4は、ホール輸送層11と基板10との間に、活性層12からの光を反射する反射層(不図示)が設けられてよい。この構成の場合、反射層としては、例えばAgやAl等の金属膜、誘電体多層膜などが挙げられる。
低誘電率層14としては、例えば、SiOナノロッドアレイフィルムや、SiO、AlF、MgF、NaAlF、NaF、LiF、CaF、BaF、低誘電率プラスチック等の薄膜または多孔質膜を用いるのが好ましい。また、低誘電率層14としては、イオン、ドナー、アクセプタ等のドープでそれらに導電性を付与したものや、ITO、Mg(OH):C、SnO、C12A7、TiO2:Nb、ZnO:Al、ZnO:Ga等の導電性材料を主要構成材料とする多孔質膜を用いるのが特に好ましい。また、低誘電率層14の厚さは、可能な限り薄い方が望ましい。
高誘電率層16としては、例えば、ダイヤモンド、TiO、CeO2、Ta5、ZrO2、Sb、HfO、La、NdO、Y、ZnO、Nb等の高誘電率材料の薄膜または多孔質膜を用いるのが好ましい。
なお、本実施形態の発光素子1が備える光源層4において、ホール輸送層11と電子輸送層13の界面で、ホール輸送層11や電子輸送層13の一方または両方の一部が発光素子の活性層として働く。
プラズモン励起層15は、光源層4が発生する光の周波数(発光周波数)よりも高いプラズマ周波数を有する材料によって形成された微粒子層または薄膜層である。言い換えれば、プラズモン励起層15は、光源層4が発生する発光周波数において負の誘電率を有している。
プラズモン励起層15の材料としては、例えば、金、銀、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、アルミニウム、またはこれらの合金などが挙げられる。これらの中でも、プラズモン励起層15の材料としては、金、銀、銅、白金、アルミニウム及びこれらを主成分とする合金が好ましく、金、銀、白金、アルミニウム及びそれらを主成分とする合金が特に好ましい。
プラズモン励起層15の厚さは、200nm以下に形成されるのが好ましく、10nm〜100nm程度に形成されるのが特に好ましい。高誘電率層16とプラズモン励起層15との界面から、電子輸送層13とホール輸送層11との界面までの距離は、500nm以下に形成されるのが好ましく、短ければ短いほどよい。なお、この距離は、電子輸送層13とホール輸送層11の界面と、プラズモン励起層15との間でプラズモン結合が起こる距離に相当する。
波数ベクトル変換層17は、この波数ベクトル変換層17に入射する入射光の波数ベクトルを変換することで、高誘電率層16から光を取り出し、発光素子1から光を出射すための出射層である。言い換えれば、波数ベクトル変換層17は、高誘電率層16からの光の出射角を、所定の角度に変換して発光素子1から出射する。つまり、波数ベクトル変換層17は、高誘電率層16との界面にほぼ直交するように、発光素子1から出射光を出射させる機能を奏している。
波数ベクトル変換層17としては、例えば、表面レリーフ格子、フォトニック結晶に代表される周期構造または準周期構造(高誘電率層16からの光の波長よりも大きな凹凸を有するテクスチャー構造、又は準結晶構造、粗面が形成された表面構造、ホログラム、マイクロレンズアレイ等を用いたものが挙げられる。なお、準周期構造とは、例えば周期構造の一部が欠けている不完全な周期構造を指している。これらの中でも、フォトニック結晶に代表される周期構造、準周期構造、準結晶構造、マイクロレンズアレイを用いるのが好ましい。これは、光の取り出し効率を高められるだけでなく、指向性を制御できるからである。また、フォトニック結晶を用いる場合には、結晶構造が三角格子構造を採ることが望ましい。また、波数ベクトル変換層17は、平板状の基部の上に凸部が設けられた構造であってもよい。また、波数ベクトル変換層17は、高誘電率層16と異なる材料によって構成されていてもよい。
以上のように構成された発光素子1について、波数ベクトル変換層17から光を出射する動作を説明する。
陰極としての、プラズモン励起層15の一部から電子が注入され、陽極19からホールが注入される。プラズモン励起層15の一部及び陽極19から光源層4に注入された電子とホールは、それぞれ電子輸送層13とホール輸送層11を通って、電子輸送層13とホール輸送層11との間に注入される。電子輸送層13とホール輸送層11との間に注入された電子とホールは、プラズモン励起層15中の電子またはホールと結合し、高誘電率層16側へ光を出射させる。
上述したように第1の実施形態の発光素子1は、光源層4を構成する材料に一般的なLEDと同じ材料が用いられるため、LEDと同様に高い輝度を実現できる。また、本実施形態の発光素子1によれば、波数ベクトル変換層17へ入射する光の入射角が、プラズモン励起層15とこのプラズモン励起層15の入射側部分の実効誘電率と、出射側部分の実効誘電率と、電子輸送層13とホール輸送層11との間に注入された電子とホールによる発光のスペクトル幅で決定されるので、発光素子1からの出射光の指向性が、光源層4の指向性に制限されることがなくなる。また、本実施形態の発光素子1は、放射過程においてプラズモン結合を応用することによって、発光素子1からの出射光の放射角を狭めて出射光の指向性を高めることができる。
したがって、本実施形態によれば、輝度の向上と、出射光の指向性の向上を両立することができる。また、本実施形態によれば、発光素子1からの出射光の指向性が向上するので、出射光のエテンデューを低減することができる。
なお、第1の実施形態の発光素子1の製造工程は、後述する第2の実施形態の発光素子の製造工程と類似しており、活性層を形成する工程を有していないことを除いて、第2の実施形態における製造工程と同様である。そのため、ここでは第1の実施形態の発光素子1の製造工程についての説明を省略する。
以下、他の実施形態の発光素子を説明する。他の実施形態の発光素子は、第1の実施形態の発光素子1と比べて光源層4または指向性制御層5の構成のみが異なっているので、第1の実施形態と異なる光源層または指向性制御層についてのみ説明する。なお、他の実施形態の発光素子において、第1の実施形態における光源層4及び指向性制御層5が有する層と同一の層には、第1の実施形態と同一の符号を付して説明を省略する。
(第2の実施形態)
図4Aに、第2の実施形態の発光素子の模式的な斜視図を示す。図4Bに、第2の実施形態の発光素子の模式的な平面図を示す。
図4A及び図4Bに示すように、第2の実施形態の発光素子2は、光源層24と、この光源層24の上に積層され光源層24からの光が入射する光学素子層である指向性制御層5と、を備えている。第2の実施形態の発光素子2が備える指向性制御層5は、第1の実施形態と同一であるので、説明を省略する。第2の実施形態の発光素子2が備える光源層24は、活性層12がホール輸送層11と電子輸送層13との間に形成されている点が、第1の実施形態における光源層4と異なっている。
光源層24が有する活性層12としては、例えばInGaN、AlGaAs、AlGaInP、GaN、ZnO、ダイヤモンド等の無機材料(半導体)、(チオフェン/フェニレン)コオリゴマー、Alq3等の有機材料(半導体材料)が用いられる。また、活性層12は量子井戸構造を採るのが好ましい。
なお、第2の実施形態の発光素子2では、高誘電率層16とプラズモン励起層15との界面から、電子輸送層13と活性層12との界面までの距離が、500nm以下に形成されるのが好ましく、短ければ短いほどよい。この距離は、活性層12とプラズモン励起層15との間でプラズモン結合が起こる距離に相当する。
また、第2の実施形態の発光素子2では、プラズモン励起層15の一部及び陽極19から光源層24に注入された電子とホールが、それぞれ電子輸送層13とホール輸送層11を通って、活性層12に注入される。活性層12に注入された電子とホールは、プラズモン励起層15中の電子またはホールと結合し、高誘電率層16側へ光を出射させる。このように高誘電率層16に入射した光は、波数ベクトル変換層17から出射される。
図5A〜図5Cは、第2の実施形態の発光素子2の製造工程を示している。これはあくまで一例であって、この製造方法に限定されるものではない。また、基板10の上に、図5Aに示すように、ホール輸送層11、活性層12、電子輸送層13を積層する工程については、公知の一般的な工程を採ることができるので、説明を省略する。また、上述したように、第1の実施形態の発光素子1の製造工程では、活性層12を形成する工程だけが省かれる。
続いて、例えば物理蒸着、電子線ビーム蒸着やスパッタ等を用いて、図5B及び図5Cに示すように、電子輸送層13の上に、低誘電率層14、プラズモン励起層15、高誘電率層16の順にそれぞれ積層する。
図6A〜図6Dに、フォトニック結晶によって波数ベクトル変換層17を形成する製造工程を示す。図6Aに示すように、高誘電率層16上に波数ベクトル変換層17を形成し、この波数ベクトル変換層17の上にレジスト膜20をスピンコート法で塗布し、図6Bに示すように、ナノインプリント技術やフォトリソグラフィ技術、電子線リソグラフィ技術でレジスト膜20にフォトニック結晶のネガパターンを転写する。続いて、ドライエッチングによって、図6Cに示すように所望の深さまで波数ベクトル変換層17をエッチングし、その後、図6Dに示すようにレジスト膜20を剥離する。最後に、プラズモン励起層15及びホール輸送層11の表面一部をエッチングして露出させ、ホール輸送層11の一部に陽極19を設けることで、発光素子2が完成する。
(第3の実施形態)
図7Aに、第3の実施形態の発光素子の模式的な斜視図を示す。図7Bに、第3の実施形態の発光素子の模式的な平面図を示す。
図7A及び図7Bに示すように、第3の実施形態の発光素子3は、光源層34と、この光源層34の上に積層され光源層34からの光が入射する光学素子層である指向性制御層5と、を備えている。第3の実施形態の発光素子3が備える指向性制御層5は、第1の実施形態と同一であるので、説明を省略する。第3の実施形態の発光素子3が備える光源層34は、陽極としての陽極層29が、基板10とホール輸送層11との間に、基板10の全面にわたって形成されている点が、第2の実施形態における光源層24と異なっている。
第3の実施形態では、陽極層29が、活性層12からの光を反射する反射層としての役割を果たしている。したがって、第3の実施形態では、活性層12から基板10側に放射される光を波数ベクトル変換層17側へ反射することが可能になり、活性層12からの光取り出し効率が向上されている。陽極層29としては、例えばAg、Alや、それらを主要成分とする合金等の金属薄膜が用いられる。
また、第3の実施形態では、陽極層29が、放熱板としての役割も果たしている。このため、光源層34は、発光に伴う発熱によって内部量子効率が低下するのを防ぐことができる。
また、陽極層29は、ホールの移動度を高めている。ほとんどの場合、ホールの移動度は電子の移動度よりも低い。そのため、ホールの注入が電子の注入に間に合わず、内部量子効率が制限されてしまう。つまり、陽極層29を有することによって、光源層34は、内部量子効率が向上される。また、陽極層29を有することによって、発光素子3の面内方向に対するホールの移動度を向上させているので、光源層34は、面内において更に均一に発光することができる。
また、表面の一部が露出したプラズモン励起層15の、この一部上にプラズモン励起層15とは材料の異なる陰極パッドを設けてもよく、陽極層29上に陽極層29とは材料の異なる陽極パッドを設けてもよい。
(第4の実施形態)
図8Aに、第4の実施形態の発光素子の模式的な斜視図を示す。図8Bに、第4の実施形態の発光素子の模式的な平面図を示す。図8A及び図8Bに示すように、第4の実施形態の発光素子6が備える指向性制御層25は、マイクロレンズアレイからなる波数ベクトル変換層27を有している。本実施形態における指向性制御層25は、上述した実施形態における、フォトニック結晶からなる波数ベクトル変換層17を有する指向性制御層5と同様の効果が得られる。
また、本実施形態における光源層24は、ホール輸送層11の一部に陽極19が設けられたが、第2の実施形態と同様に、基板10とホール輸送層11との間に陽極層29が設けられる構成にされてもよい。
図9A及び図9Bは、高誘電率層16の上にマイクロレンズアレイからなる波数ベクトル変換層27が積層された構成の製造工程について説明するための断面図である。マイクロレンズアレイからなる波数ベクトル変換層27を備える構成においても、図6A〜図6Dに示した製造工程と同様に、基板10に、ホール輸送層11から高誘電率層16までの各層を積層するので、これらの製造工程の説明を省略する。
図9A及び図9Bに示すように、図6A〜図6Dに示した製造工程を用いて、基板10に、ホール輸送層11から高誘電率層16までの各層を積層した後、高誘電率層16の表面にマイクロレンズアレイからなる波数ベクトル変換層27を形成する。これはあくまで一例であって、この製造方法に限定されるものではない。高誘電率層16の表面に、UV硬化樹脂30をスピンコート法等によって塗布した後、ナノインプリントを用いて、UV硬化樹脂30に所望のレンズアレイパターンを成形し、UV硬化樹脂30に光を照射して硬化させることで、マイクロレンズアレイからなる波数ベクトル変換層27が形成される。
(第5の実施形態)
図10に、第5の実施形態の発光素子が備える指向性制御層の斜視図を示す。図10に示すように、第5の実施形態の発光素子が備える指向性制御層35は、光源層34の電子輸送層23に積層されるプラズモン励起層15と、このプラズモン励起層15に積層される波数ベクトル変換層37と、を有している。
第5の実施形態における指向性制御層35は、波数ベクトル変換層37が高誘電率層を兼ねており、高誘電率層と同一の層である。また、光源層34の電子輸送層23は、指向性制御層35の低誘電率層を兼ねており、低誘電率層と同一の層である。したがって、第5の実施形態における光源層34の電子輸送層23は、波数ベクトル変換層37の誘電率よりも低く設定されている。
ただし、波数ベクトル変換層37の誘電率の方が電子輸送層23の誘電率よりも低い場合でも、プラズモン励起層15の波数ベクトル変換層37側の実効誘電率の実部が、プラズモン励起層15の電子輸送層23側の実効誘電率の実部よりも高ければ、指向性制御層35は動作する。つまり、波数ベクトル変換層37や電子輸送層23の誘電率には、プラズモン励起層15の出射側部分の実効誘電率の実部が、入射側部分の実効誘電率の実部より高く保たれる範囲が許容される。
以上のように構成された第5の実施形態によれば、第1〜第4の実施形態と同様の効果が得られると共に、第1〜第4の実施形態に比べて製造工程の簡略化を図ることができる。
(第6の実施形態)
図11に、第6の実施形態の発光素子が備える指向性制御層の斜視図を示す。図11に示すように、第6の実施形態における指向性制御層45は、光源層24の電子輸送層13に積層される低誘電率層14と、この低誘電率層14に積層されるプラズモン励起層15と、このプラズモン励起層15に積層される波数ベクトル変換層37と、を有している。
第6の実施形態における指向性制御層45は、波数ベクトル変換層37が高誘電率層を兼ねており、高誘電率層と同一の層である。
以上のように構成された第6の実施形態によれば、第1〜第4の実施形態と同様の効果が得られると共に、第1〜第4の実施形態に比べて製造工程の簡略化を図ることができる。
(第7の実施形態)
図12に、第7の実施形態の発光素子が備える指向性制御層の斜視図を示す。図12に示すように、第7の実施形態における指向性制御層55は、光源層34の電子輸送層23に積層されるプラズモン励起層15と、このプラズモン励起層15に積層される高誘電率層16と、この高誘電率層16に積層される波数ベクトル変換層37と、を有している。
第7の実施形態における指向性制御層55は、光源層34の電子輸送層23が、指向性制御層55の低誘電率層を兼ねており、低誘電率層と同一の層である。
以上のように構成された第7の実施形態によれば、第1〜第4の実施形態と同様の効果が得られると共に、第1〜第4の実施形態に比べて製造工程の簡略化を図ることができる。
(第8の実施形態)
図13に、第8の実施形態の発光素子が備える指向性制御層の斜視図を示す。図13に示すように、第8の実施形態における指向性制御層65は、第1の実施形態における指向性制御層5と同様の構成であり、第1の実施形態における低誘電率層14及び高誘電率層16が、それぞれ積層された複数の誘電体層によって構成されている点が異なっている。
つまり、第8の実施形態における指向性制御層65は、複数の誘電体層67a〜67cが積層されてなる低誘電率層群67と、複数の誘電体層68a〜68cが積層されてなる高誘電率層群68と、を備えている。
低誘電率層群67では、光源層24の電子輸送層13に近い方からプラズモン励起層15に向かって誘電率が単調に低くなるように、複数の誘電体層67a〜67cが配置されている。同様に、高誘電率層群68では、プラズモン励起層15に近い方からフォトニック結晶からなる波数ベクトル変換層17側に向って誘電率が単調に低くなるように、複数の誘電体層68a〜68cが配置されている。
低誘電率層群67の全体の厚さは、指向性制御層が低誘電率層を独立して備える実施形態における低誘電率層と等しい厚さに設定されている。同様に、高誘電率層群68の全体の厚さは、指向性制御層が高誘電率層を独立して備える実施形態における高誘電率層と同じ厚さに設定されている。なお、低誘電率層群67及び高誘電率層群68は、それぞれ3層構造で示したが、例えば2〜5層程度の層構造で構成することができる。また、必要に応じて、低誘電率層群及び高誘電率層群をそれぞれ構成する誘電体層の数が異なる構成や、低誘電率層及び高誘電率層の一方のみが複数の誘電率層からなる構成としてもよい。
このように低誘電率層群67及び高誘電率層群68が複数の誘電体層67a〜67c、68a〜68cから構成されることで、プラズモン励起層15の界面に隣接する各誘電体層67a、68cの誘電率を良好に設定すると共に、光源層24の電子輸送層13と、波数ベクトル変換層17または外部の空気等の媒質と、これらにそれぞれ隣り合う誘電体層67c、68aとの屈折率のマッチングを好ましく設定することが可能になる。つまり、高誘電体層群68は、波数ベクトル変換層17または空気等の媒質との界面での屈折率差を小さくし、低誘電体層群67は、光源層24の電子輸送層13との界面での屈折率差を小さくすることが可能になる。
以上のように構成された第8の実施形態の指向性制御層65によれば、プラズモン励起層15に隣接する各誘電体層67a、68cの誘電率を良好に設定すると共に、光源層24の電子輸送層13及び波数ベクトル変換層17との界面での屈折率差を小さく設定することが可能になる。このため、指向性制御層65は、光損失を更に低減し、光源層4からの光の利用効率を更に高めることができる。
なお、低誘電率層群67及び高誘電率層群68の代わりに、内部で誘電率が単調に変化する単層膜が用いてもよい。この構成の場合、高誘電率層は、誘電率がプラズモン励起層15側から波数ベクトル変換層17側に向かって次第に低くなる分布を有する。また同様に、低誘電率層は、誘電率が光源層24の電子輸送層13側からプラズモン励起層15側に向かって次第に低くなる分布を有する。
(第9の実施形態)
図14に、第9の実施形態の発光素子が備える指向性制御層の斜視図を示す。図14に示すように、第9の実施形態における指向性制御層75では、第1の実施形態における指向性制御層5と同様の構成であり、プラズモン励起層群78が、積層された複数の金属層78a,78bによって構成されている点が異なっている。
第9の実施形態における指向性制御層75のプラズモン励起層群78では、金属層78a、78bがそれぞれ異なる金属材料によってそれぞれ形成されて積層されている。これによって、プラズモン励起層群78は、プラズマ周波数を調整することが可能になっている。
プラズモン励起層群78におけるプラズマ周波数が高くなるように調整する場合には、例えば、金属層78a,78bをそれぞれAg及びAlによって形成する。また、プラズモン励起層群78におけるプラズマ周波数が低くなるように調整する場合には、例えば、異なる金属層78a,78bをそれぞれAg及びAuによって形成する。なお、プラズモン励起層群78は、一例として2層構造を示したが、必要に応じて3層以上の金属層によって構成されてもよいことは勿論である。
以上のように構成された第9の実施形態の指向性制御層75によれば、プラズモン励起層群78が複数の金属層78a,78bによって構成されることによって、プラズモン励起層群78における実効的なプラズマ周波数を、活性層12の発光周波数に近づくように調整できる。このため、プラズモン励起層群78中の電子またはホールと、活性層12中の電子またはホールとが良好に結合し、出射効率を高められる。
(第10の実施形態)
図15Aに、第10の実施形態の発光素子の模式的な斜視図を示す。図15Bに、第10の実施形態の発光素子の模式的な平面図を示す。
図15A及び図15Bに示すように、第10の実施形態の発光素子8が備える光源層44は、第2の実施形態における光源層24の電子輸送層13に、透明電極層40が積層されて構成された一般的なLED構造を有している。すなわち、光源層44は、基板10側の反対側に積層された透明電極層40を有している。そして、光源層44は、このようなLED構造の上に、活性層12と異なる別の活性層22が積層されている。
なお、第1の実施形態における光源層4は、上述した別の活性層22と同様に、ホール輸送層11と電子輸送層13との界面からの光によって電子及びホールが生成される活性層と、透明電極層とを有する構成にされてもよい。また、本実施形態における光源層44は、ホール輸送層11の一部に陽極19が設けられたが、第3の実施形態と同様に、基板10とホール輸送層11との間に陽極層29が設けられる構成にされてもよい。
第10の実施形態の発光素子8では、光源層44への電流注入によって、活性層12から出た光は、別の活性層22中に電子とホールを励起する。別の活性層22に生成された電子とホールは、上述したようにプラズモン励起層15中の電子またはホールとプラズモン結合することで、指向性制御層5の特性で決められた所定の方向に、所定の波長の光を出射する。
以上のように構成された第10の実施形態の発光素子8によれば、所望の波長の光を出射する場合に、活性層として用いる発光材料の選択の幅が広がる。例えば、緑色の出射光を得るための発光材料であって、電流注入において高い発光効率を有する無機材料は知られていないが、光注入によって高い発光効率を有する無機材料は周知である。本実施形態では、このような特性の発光材料を用いる場合に、活性層12及び別の活性層22を有する光源層34を備えることによって、一旦、活性層12に電流注入して得られた光を別の活性層22に光注入することができる。これによって、別の活性層22として用いた発光材料の特性を効率的に利用し、光源層44の発光効率を向上することができる。
(実施形態の光源装置)
次に、上述した第2の実施形態の発光素子2の出射側に、軸対称偏光用1/2波長板が配置された光源装置について説明する。図16に、上述した発光素子2に適用される軸対称偏光用1/2波長板を説明するための斜視図を示す。
図16に示すように、実施形態の光源装置9は、発光素子2から入射する軸対称偏光を所定の偏光状態に揃える偏光変換素子として、発光素子2からの入射光を直線偏光する軸対称偏光用1/2波長板50を備えている。軸対称偏光用1/2波長板50は、発光素子2の波数ベクトル変換層17側に配置されている。発光素子2からの出射光を軸対称偏光用1/2波長板50によって直線偏光することで、偏光状態が揃えられた出射光を実現できる。なお、偏光変換素子によって軸対称偏光を所定の偏光状態に揃えることには、直線偏光することに限定するものではなく、円偏光することも含まれる。また、軸対称偏光用1/2波長板50を備える光源装置には、上述した第1〜第10の実施形態の発光素子のいずれに適用されてもよいことは勿論である。
図17は、軸対称偏光用1/2波長板50の構造を示すための縦断面図である。軸対称偏光用1/2波長板50の構成は、あくまで一例であって、この構成に限定されない。図17に示すように、軸対称偏光用1/2波長板50は、配向膜51,54がそれぞれ形成された一対のガラス基板56,57と、これらガラス基板56,57の配向膜51,54を対向させてガラス基板56,57の間に挟んで配置された液晶層53と、ガラス基板56,57の間に配置されたスペーサ52と、を備えている。
液晶層53は、常光に対する屈折率をno、異常光に対する屈折率をneとすると、屈折率neが屈折率noよりも大きい。また、液晶層53の厚さdは、(ne−no)×d=λ/2を満たしている。なお、λは真空中における入射光の波長である。
図18A及び図18Bは、軸対称偏光用1/2波長板50を説明するための示す模式図である。図18Aに、軸対称偏光用1/2波長板50の液晶層53を、ガラス基板56,57の主面に平行に切った状態の横断面図を示す。図18Bに、液晶分子58の配向方向を説明するための模式図を示す。
図18Aに示すように、液晶分子58は、軸対称偏光用1/2波長板50の中心に対して同心円状に配置されている。また、液晶分子58は、図18Bに示すように、液晶分子58の主軸とこの主軸近傍の座標軸とのなす角をΦとし、座標軸と偏光方向とがなす角をθとすると、液晶分子58は、θ=2Φ、または、θ=Φ+90のいずれかの関係式を満たす方向に配向されている。
図19に、発光素子が軸対称偏光用1/2波長板を備えない構成の場合における、出射光のファーフィールドパターン62を示す。上述した第1〜第10の実施形態において、プラズモン結合を介してプラズモン励起層15から出射する光の偏光は、TM偏光のみであるので、発光素子2からの出射光のファーフィールドパターン62が、図19に示すように、偏光方向が放射状になった軸対称偏光となる。
図20に、軸対称偏光用1/2波長板50を通過した出射光のファーフィールドパターン64を示す。発光素子2は、上述した軸対称偏光用1/2波長板50の作用によって、図20に示すように、面内での偏光方向63が同一方向に揃えられた出射光が得られる。
なお、本実施形態の発光素子は、画像表示装置の光源に用いられるのに好適であり、投射型表示装置が備える光源や、液晶表示板(LCD)の直下型光源、いわゆるバックライトとして携帯型電話機、PDA(Personal Data Assistant)等の電子機器に用いられてもよい。
(第1の実施例)
図21に、上述した実施形態におけるプラズモン共鳴特性を説明するための図を示す。図21では、高誘電率層16にTiO、プラズモン励起層15にAg、低誘電率層14に多孔質SiOを用いた発光素子において、波長が653nm、539nm、459nmの光をそれぞれプラズモン励起層15に入射させた場合について、入射角に対する反射率の関係を示している。ここで、高誘電率層16、低誘電率層14は光の波長に比べて十分に厚く形成した。
図21に示すように、プラズモン励起層15への入射角23゜付近での反射率の急峻な低下は、この角度が全反射角よりも大きいので、プラズモンとの結合によるものである。このように、本実施例によれば、プラズモンと結合する角度に異方性があり、その条件が狭いことが分かる。また、プラズモン励起層15への入射光の波長が長いほど、反射率の減少は急峻となっている。これは、波長が長いほど、発光素子からの出射光の指向性が高いことを示している。以下、波長が459nmの光について放射特性を考察する。
図22に、波数ベクトル変換層17のフォトニック結晶への入射角のズレ量に対する出射角の変化を示す。図22中において、「×」、「□」、「○」、「△」印をそれぞれ結ぶ線は、フォトニック結晶に対して入射角20°、40°、60°、80°でそれぞれ入射した光を、フォトニック結晶から出射角0°で出射するようにフォトニック結晶の格子ピッチを設計した場合の結果を示している。フォトニック結晶への入射角が大きい方が、入射角のバラツキに対する出射角のバラツキを抑えられる。
図23に、入射角に対して、入射光を出射角0゜の方向に出射するときのフォトニック結晶の格子ピッチの変化を示す。図23に示すように、フォトニック結晶への入射角が増えるのに従って、フォトニック結晶の格子ピッチが狭くなる。
図24に、フォトニック結晶の格子深さと回折効率との関係を示す。ここで、フォトニック結晶の格子ピッチは228nmとした。これは入射角40°の光を回折角0°の方向に出射する条件である。図24中において、「×」、「□」、「○」、「△」印をそれぞれ結ぶ線は、それぞれフォトニック結晶による透過1次回折光、反射0次回折光、反射1次回折光、反射2次回折光の回折強度を示している。図24に示すように、フォトニック結晶の格子深さの変化に対して、回折効率は周期的に変化する。また、透過1次回折光の回折効率の変化と、反射0次回折光の回折効率の変化とはほぼ逆の相関がある。
図25に、波数ベクトル変換層のフォトニック結晶への入射角と、回折効率との関係を示す。ここでの回折効率は、フォトニック結晶の格子深さを50nmから950nmまで変化させたときに、透過1次光の回折効率が最大になる所定の格子深さにおける最大回折効率である。図25に示すように、フォトニック結晶へ入射角40°で光が入射したときに、透過1次光の回折効率が極大値になる。入射角40゜の前後の範囲では、入射角の増加に伴って透過1次光の回折効率が単調増加、または単調減少している。したがって、低誘電率層14及び高誘電率層16の誘電率を調整して、波数ベクトル変換層17をなすフォトニック結晶へ入射角40°付近で光を入射させたときが最適な条件にある。
図26に、発光素子の出射光における配光分布を示す。すなわち、図26において、横軸が出射光の出射角を示し、縦軸が出射光の強度を示している。条件として、フォトニック結晶の格子ピッチを228nm、フォトニック結晶への光の入射角を40°に設定した。このとき、出射光の半値全幅を放射幅とすれば、出射光の放射幅が5.2°、すなわち放射角が±2.6゜であった。
以上のように、本実施形態の発光素子によれば、プラズモン励起層15を利用することによって、発光素子からの出射光の放射角の指向性を高め、かつ、波数ベクトル変換層17の格子構造を適宜調整することによって、放射角を±3゜以下に狭めて指向性を更に高めることが可能になる。さらに、本実施形態の発光素子は、光源層を構成するホール輸送層11、活性層12、電子輸送層13を、一般的なLEDと同様にそれぞれp型半導体層、無機材料からなる活性層、型半導体層として無機半導体を用いて構成することが可能であるので、数千ルーメンクラスの光束を得ることができる。
(第2の実施例)
図27に、第1の実施形態の発光素子1において、式(1)を用いて算出した実効誘電率から求まるプラズモン共鳴角(図中に○で示す)と、多層膜反射計算によって求まるプラズモン共鳴角(図中に□で示す)とを比較して示す。図26において、横軸が低誘電率層の厚さを示し、縦軸がプラズモン共鳴角を示している。図26に示すように、実効誘電率による計算値と、多層膜反射による計算値が一致しており、式(1)で定義される実効誘電率でプラズモン共鳴の条件を定義できることが明らかである。
基板10としてAl、ホール輸送層11、電子輸送層13としてGaN、低誘電率層14として、多孔質SiO、プラズモン励起層15としてAg、高誘電率層16としてTiOをそれぞれ用い、それぞれの厚さを、0.5mm、113nm、10nm、50nm、0.5mmとした。また光源層4の発光波長を460nmとして計算した。ここで、波数ベクトル変換層17の材質をTiO、周期構造の深さ、ピッチ、デューティ比をそれぞれ、200nm、221nm、0.5に設定した。
図28に、上記の各層の厚さを加味して計算した第1の実施形態の発光素子1の出射光における角度分布を示す。図28において、横軸が出射光の出射角を示し、縦軸が出射光の強度を示している。この条件下における出射光は、円環状ではなく、ガウス関数状の配光分布を有しているが、ピッチを221nmからずらすことでピークが***し、円環状の配向分布が得られる。
なお、簡単化のために、計算を2次元で行った。発光素子1から出射した光の強度が半分になる角度の全幅を放射角とした場合、放射角は、波長460nmの光に対して±0.8(deg)であった。
したがって、実施形態の発光素子1によれば、発光素子1からの出射光の放射角の指向性を高め、かつ、波数ベクトル変換層17の格子構造を適宜調整することで、放射角を±5度以下に狭めて指向性を更に高めることが可能になる。
第2の実施例において、プラズモン励起層15の出射側部分及び入射側部分の実効誘電率は、式(1)よりそれぞれ、9.8、3.1となる。さらに、表面プラズモンの出射側及び入射側におけるz方向の波数の虚部は、式(2)よりそれぞれ、0、2.23×10−1となる。表面プラズモンの有効相互作用距離を、表面プラズモンの強度がe−2となる距離とすれば、1/Im(kspp,z)より、表面プラズモンの有効相互作用距離は、出射側及び入射側でそれぞれ、無限大、45nmとなる。
最後に、上述した第1から第9の実施形態の発光素子が適用される投射型表示装置としてのLEDプロジェクタの構成例について図面を参照して説明する。図29に、実施形態のLEDプロジェクタの模式図を示す。
図29に示すように、実施形態のLEDプロジェクタ70は、赤(R)光用発光素子71r、緑(G)光用発光素子71g、及び青(B)光用発光素子71bと、これらの発光素子71r、71g、71bからの出射光がそれぞれ入射する照明光学系72r、72g、72bと、これらの照明光学系72r、72g、72bを通過した光が入射する表示素子としてのライトバルブ73r、73g、73bと、を備えている。また、LEDプロジェクタ70は、ライトバルブ73r、73g、73bによってそれぞれ画像情報が付与されて入射されたR、G、B光を合成するクロスダイクロイックプリズム74と、このクロスダイクロイックプリズム74からの出射光をスクリーン等の投射面上に投射する投射レンズ(不図示)を含む投射光学系76と、を備えている。
このLEDプロジェクタ70は、いわゆる3板式プロジェクタに適用された構成である。照明光学系72r、72g、72bとしては、例えば輝度を均一化するためのロッドレンズを有している。ライトバルブ73r、73g、73bは、例えば液晶表示板やDMD等を有している。また、上述した実施形態の発光素子は、単板式プロジェクタにも適用可能であることは勿論である。
本実施形態のLEDプロジェクタ70によれば、上述した実施形態の発光素子が適用されることで、投射映像の輝度を向上することができる。
また、LEDプロジェクタ70においても、図17及び図18A、18Bに示した軸対称偏光用1/2波長板50を、各発光素子71r、71g、71bからの出射光の光路上に配置することが好ましく、ライトバルブ73r、73g、73bでの偏光損失を抑制することができる。また、照明光学系が偏光子を有する構成の場合には、軸対称偏光用1/2波長板50を、偏光子と発光素子71との間に配置する構成が好ましい。
以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細は、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
この出願は、2009年10月30日に出願された日本出願特願2009−250282を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (26)

  1. 光源層と、該光源層の上に積層され、該光源層からの光が入射する光学素子層と、を備え、
    前記光源層は、基板と、該基板の上に設けられた一対のホール輸送層及び電子輸送層を有し、
    前記光学素子層は、
    前記光源層における前記基板側の反対側に積層され、前記光源層から出射する光の周波数よりも高いプラズマ周波数を有するプラズモン励起層と、
    前記プラズモン励起層の上に積層され、前記プラズモン励起層から入射する光を所定の出射角に変換して出射する出射層と、を有し、
    前記プラズモン励起層は、誘電性を有する2つの層の間に挟まれている、発光素子。
  2. 前記プラズモン励起層の前記光源層側に積層された構造体を含む入射側部分の実効誘電率が、前記プラズモン励起層の前記出射層側に積層された構造体と、前記出射層に接する媒質とを含む出射側部分の実効誘電率よりも低い、請求項1に記載の発光素子。
  3. 前記実効誘電率が、
    記入射側部分または前記出射側部分の誘電体の誘電率分布と、
    記入射側部分または前記出射側部分での前記プラズモン励起層の界面に垂直な方向に対する表面プラズモンの分布と、
    に基づいて決定される、請求項2に記載の発光素子。
  4. 前記ホール輸送層と前記電子輸送層との間に設けられ、光を発生する活性層を有する、請求項1ないし3のいずれか1項に記載の発光素子。
  5. 前記プラズモン励起層の前記出射層側、及び前記プラズモン励起層の前記光源層側の少なくとも一方の側に隣接して設けられた誘電率層を備える、請求項1ないし4のいずれか1項に記載の発光素子。
  6. 前記プラズモン励起層は、一対の前記誘電率層の間に挟まれ、
    前記プラズモン励起層の前記光源層側に隣接する前記誘電率層は、前記プラズモン励起層の前記出射層側に隣接する前記誘電率層よりも誘電率が低い、請求項5に記載の発光素子。
  7. 前記プラズモン励起層の前記光源層側に隣接して設けられた前記誘電率層は、前記プラズモン励起層の前記出射層側に隣接する層よりも誘電率が低い低誘電率層である、請求項5に記載の発光素子。
  8. 前記プラズモン励起層の前記出射層側に隣接して設けられた前記誘電率層は、前記プラズモン励起層の前記光源層側に隣接する層よりも誘電率が高い高誘電率層である、請求項5に記載の発光素子。
  9. 前記一対のホール輸送層及び電子輸送層のいずれか一方は、前記プラズモン励起層に隣接して設けられ、前記プラズモン励起層の前記出射層側に隣接する層よりも誘電率が低い、請求項1ないし4のいずれか1項に記載の発光素子。
  10. 前記低誘電率層は、誘電率が異なる複数の誘電体層が積層されて構成され、前記複数の誘電体層が、前記光源層から前記プラズモン励起層側に向かう順に誘電率が低くなるように配置されている、請求項7に記載の発光素子。
  11. 前記高誘電率層は、誘電率が異なる複数の誘電体層が積層されて構成され、前記複数の誘電体層が、前記プラズモン励起層側から前記出射層側に向かう順に誘電率が低くなるように配置されている、請求項8に記載の発光素子。
  12. 前記低誘電率層は、誘電率が前記光源層側から前記プラズモン励起層側に向かって次第に低くなる分布を有している、請求項7に記載の発光素子。
  13. 前記高誘電率層は、誘電率が前記プラズモン励起層側から前記出射層側に向かって次第に低くなる分布を有する、請求項8に記載の発光素子。
  14. 前記出射層は、表面周期構造を有している、請求項1ないし13のいずれか1項に記載の発光素子。
  15. 前記出射層は、フォトニック結晶からなる、請求項1ないし13のいずれか1に記載の発光素子。
  16. 前記低誘電率層は、多孔質層である、請求項7、10、12のいずれか1項に記載の発光素子。
  17. 前記低誘電率層は、導電性を有している、請求項7、10、12、16のいずれか1項に記載の発光素子。
  18. 前記プラズモン励起層は、異なる金属材料からなる複数の金属層が積層されて構成されている、請求項1ないし17のいずれか1項に記載の発光素子。
  19. 前記プラズモン励起層は、Ag、Au、Cu、Pt、Alのうちのいずれか1つ、またはこれらのうちの少なくとも1つを含む合金からなる、請求項1ないし18のいずれか1項に記載の発光素子。
  20. 前記一対のホール輸送層及び電子輸送層のいずれか一方のうち前記基板側に設けられた層は、厚さ方向に直交する面の一部が露出されて該一部に電極が設けられている、請求項1ないし19のいずれか1項に記載の発光素子。
  21. 前記光源層は、前記基板と、前記一対のホール輸送層及び電子輸送層のいずれか一方との間に設けられた電極層を更に有している、請求項1ないし19のいずれか1項に記載の発光素子。
  22. 前記プラズモン励起層は、厚さ方向に直交する面の一部が露出されて該一部に電流が供給される、請求項1ないし21のいずれか1項に記載の発光素子。
  23. 前記光源層は、前記基板側の反対側に積層された透明電極層と、該透明電極層の上に積層され、前記ホール輸送層と前記電子輸送層との間からの光によって電子及びホールが生成される活性層と、を有し、
    前記プラズモン励起層は、前記ホール輸送層と前記電子輸送層との間からの光で、前記活性層を励起したときに発生する光の周波数よりも高いプラズマ周波数を有している、請求項1ないし22のいずれか1項に記載の発光素子。
  24. 請求項1ないし23のいずれか1項の記載の発光素子と、前記発光素子から入射する軸対称偏光を所定の偏光状態に揃える偏光変換素子と、を備える光源装置。
  25. 請求項1ないし23のいずれか1項に記載の発光素子と、
    前記発光素子の出射光に画像情報を付与する表示素子と、
    前記表示素子の出射光によって投射映像を投射する投射光学系と、を備える投射型表示装置。
  26. 請求項1ないし23のいずれか1項に記載の発光素子と、
    前記発光素子の出射光に画像情報を付与する表示素子と、
    前記表示素子の出射光によって投射映像を投射する投射光学系と、
    前記発光素子と前記表示素子との間の光路上に配置され、前記発光素子から入射する軸対称偏光を所定の偏光状態に揃える偏光変換素子と、を備える投射型表示装置。
JP2011538341A 2009-10-30 2010-10-14 発光素子、光源装置及び投射型表示装置 Expired - Fee Related JP5527327B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011538341A JP5527327B2 (ja) 2009-10-30 2010-10-14 発光素子、光源装置及び投射型表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009250282 2009-10-30
JP2009250282 2009-10-30
JP2011538341A JP5527327B2 (ja) 2009-10-30 2010-10-14 発光素子、光源装置及び投射型表示装置
PCT/JP2010/068014 WO2011052387A1 (ja) 2009-10-30 2010-10-14 発光素子、光源装置及び投射型表示装置

Publications (2)

Publication Number Publication Date
JPWO2011052387A1 JPWO2011052387A1 (ja) 2013-03-21
JP5527327B2 true JP5527327B2 (ja) 2014-06-18

Family

ID=43921813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011538341A Expired - Fee Related JP5527327B2 (ja) 2009-10-30 2010-10-14 発光素子、光源装置及び投射型表示装置

Country Status (5)

Country Link
US (1) US9028071B2 (ja)
EP (1) EP2496052A1 (ja)
JP (1) JP5527327B2 (ja)
CN (1) CN102598852B (ja)
WO (1) WO2011052387A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11249339B2 (en) 2018-07-24 2022-02-15 Lg Display Co., Ltd. Display device having a mirror function

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120314189A1 (en) * 2010-03-10 2012-12-13 Nec Corporation Light emitting element, light source device, and projection display device
JP5776689B2 (ja) * 2010-05-14 2015-09-09 日本電気株式会社 表示素子、表示器及び投射型表示装置
WO2012049905A1 (ja) * 2010-10-15 2012-04-19 日本電気株式会社 光学素子、光源および投射型表示装置
DE102010051286A1 (de) * 2010-11-12 2012-05-16 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung
WO2012172858A1 (ja) * 2011-06-17 2012-12-20 日本電気株式会社 光学素子、光源装置及び投射型表示装置
JPWO2013046872A1 (ja) * 2011-09-27 2015-03-26 日本電気株式会社 光学素子、光源装置及び投射型表示装置
WO2013046866A1 (ja) * 2011-09-27 2013-04-04 日本電気株式会社 光素子および該光素子を用いた投射型表示装置
JPWO2013175670A1 (ja) * 2012-05-22 2016-01-12 日本電気株式会社 光学素子、照明装置および画像表示装置
CN103474523B (zh) * 2012-06-07 2016-06-08 清华大学 发光二极管的制备方法
CN103474524B (zh) * 2012-06-07 2016-04-27 清华大学 发光二极管的制备方法
CN103474521B (zh) * 2012-06-07 2016-08-10 清华大学 发光二极管的制备方法
JPWO2014020954A1 (ja) * 2012-07-31 2016-07-21 日本電気株式会社 光学素子、照明装置、画像表示装置、光学素子の作動方法
KR101431691B1 (ko) 2012-12-28 2014-08-22 주식회사 포스코 유기발광다이오드 및 그 제조방법
JP6208942B2 (ja) * 2012-12-28 2017-10-04 キヤノン株式会社 プロジェクター
CN103219442B (zh) * 2013-04-15 2016-03-30 西安交通大学 局域表面等离子体增强型垂直结构led结构及制造方法
CN103824907A (zh) * 2014-03-11 2014-05-28 映瑞光电科技(上海)有限公司 一种led芯片及其制作方法
CN109037462B (zh) * 2014-07-24 2020-09-04 环球展览公司 具有增强层的oled装置及其制造方法
TWI653563B (zh) * 2016-05-24 2019-03-11 仁寶電腦工業股份有限公司 投影觸控的圖像選取方法
US11287563B2 (en) 2016-12-01 2022-03-29 Ostendo Technologies, Inc. Polarized light emission from micro-pixel displays and methods of fabrication thereof
JP6918409B2 (ja) * 2017-01-26 2021-08-11 ソニーセミコンダクタソリューションズ株式会社 カメラモジュールおよびその製造方法、並びに電子機器
CN106816522A (zh) * 2017-02-22 2017-06-09 武汉华星光电技术有限公司 发光二极管
JP2019144334A (ja) * 2018-02-19 2019-08-29 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
JP7188690B2 (ja) * 2018-08-22 2022-12-13 セイコーエプソン株式会社 プロジェクター
US11655377B2 (en) 2018-12-11 2023-05-23 University Of Central Florida Research Foundation, Inc. Inorganic paint pigment with plasmonic aluminum reflector layers and related methods
US10921680B2 (en) * 2018-12-11 2021-02-16 University Of Central Florida Research Foundation, Inc. Plasmonic aluminum particle based display device and related methods
CN113785442B (zh) * 2018-12-21 2024-07-05 亮锐有限责任公司 具有角动量光子滤光器的高亮度定向直接发射器
US11041983B2 (en) 2018-12-21 2021-06-22 Lumileds Llc High brightness directional direct emitter with photonic filter of angular momentum
DE102019100624A1 (de) * 2019-01-11 2020-07-16 Osram Opto Semiconductors Gmbh Optoelektronisches halbleiterbauelement mit erster und zweiter dielektrischer schicht und verfahren zur herstellung des optoelektronischen halbleiterbauelements
CN111180500B (zh) * 2020-02-26 2023-10-24 京东方科技集团股份有限公司 显示用基板及电致发光显示装置
US11204153B1 (en) 2021-02-22 2021-12-21 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter
US11508888B2 (en) 2021-02-22 2022-11-22 Lumileds Llc Light-emitting device assembly with emitter array, micro- or nano-structured lens, and angular filter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005005679A (ja) 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
US7102175B2 (en) * 2003-04-15 2006-09-05 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and method for fabricating the same
JP2006313667A (ja) 2005-05-06 2006-11-16 Institute Of Physical & Chemical Research 有機el素子
KR100631133B1 (ko) 2005-05-31 2006-10-02 삼성전기주식회사 수직구조 질화물계 반도체 발광 다이오드
US7719182B2 (en) 2005-09-22 2010-05-18 Global Oled Technology Llc OLED device having improved light output
JP2007214260A (ja) * 2006-02-08 2007-08-23 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JP2009250282A (ja) 2008-04-02 2009-10-29 Nsk Ltd 伸縮軸及び伸縮軸を備えたステアリング装置
WO2011040528A1 (ja) * 2009-09-30 2011-04-07 日本電気株式会社 光学素子、光源装置及び投射型表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11249339B2 (en) 2018-07-24 2022-02-15 Lg Display Co., Ltd. Display device having a mirror function

Also Published As

Publication number Publication date
US20120224148A1 (en) 2012-09-06
CN102598852B (zh) 2015-05-20
WO2011052387A1 (ja) 2011-05-05
CN102598852A (zh) 2012-07-18
JPWO2011052387A1 (ja) 2013-03-21
EP2496052A1 (en) 2012-09-05
US9028071B2 (en) 2015-05-12

Similar Documents

Publication Publication Date Title
JP5527327B2 (ja) 発光素子、光源装置及び投射型表示装置
JP5605427B2 (ja) 発光素子、光源装置及び投射型表示装置
JP5605368B2 (ja) 光学素子、光源装置及び投射型表示装置
JP5605426B2 (ja) 光学素子、光源装置及び投射型表示装置
WO2012172858A1 (ja) 光学素子、光源装置及び投射型表示装置
JP5664657B2 (ja) 光学素子、光源および投射型表示装置
WO2013103037A1 (ja) 光学装置、光学素子および画像表示装置
JP5776689B2 (ja) 表示素子、表示器及び投射型表示装置
WO2012017774A1 (ja) 偏光子及び発光装置
US20140226197A1 (en) Optical element and projection-type display device using same
WO2013046865A1 (ja) 光学素子、光源装置及び投射型表示装置
WO2013046872A1 (ja) 光学素子、光源装置及び投射型表示装置
WO2013103038A1 (ja) 光学装置および画像表示装置
WO2022159949A1 (en) Directional polarized light emission from thin-film light emitting diodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140331

R150 Certificate of patent or registration of utility model

Ref document number: 5527327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees