JP5522517B2 - Manufacturing method of FRP pipe - Google Patents

Manufacturing method of FRP pipe Download PDF

Info

Publication number
JP5522517B2
JP5522517B2 JP2009294189A JP2009294189A JP5522517B2 JP 5522517 B2 JP5522517 B2 JP 5522517B2 JP 2009294189 A JP2009294189 A JP 2009294189A JP 2009294189 A JP2009294189 A JP 2009294189A JP 5522517 B2 JP5522517 B2 JP 5522517B2
Authority
JP
Japan
Prior art keywords
resin
vacuum suction
cavity
hollow core
flexible hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009294189A
Other languages
Japanese (ja)
Other versions
JP2011131523A (en
Inventor
俊英 関戸
知行 篠田
正人 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2009294189A priority Critical patent/JP5522517B2/en
Publication of JP2011131523A publication Critical patent/JP2011131523A/en
Application granted granted Critical
Publication of JP5522517B2 publication Critical patent/JP5522517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は、比較的大型(口径が0.3m以上、長さが2m以上)の繊維強化プラスチック(以下、FRP(Fiber reinforced Plastic) と言う。)製のパイプを効率よく安価に製造する方法に関する。とくに、大口径でかつ一般道路では搬送が困難なほどの長尺のパイプほど効果が大きいFRPパイプの製造方法に関する。   The present invention relates to a method for efficiently and inexpensively manufacturing a pipe made of a fiber reinforced plastic (hereinafter referred to as FRP (Fiber reinforced Plastic)) having a relatively large size (a diameter of 0.3 m or more and a length of 2 m or more). . In particular, the present invention relates to a method for manufacturing an FRP pipe having a large diameter and a greater effect as a long pipe that is difficult to convey on a general road.

FRPの成形方法として、成形型のキャビティ内に強化繊維基材(例えば、強化繊維織物の積層体)を配置し、キャビティ内にマトリックス樹脂を注入して樹脂を強化繊維基材に含浸させた後、樹脂を硬化させる、いわゆるRTM(Resin Transfer Molding)法が知られている。また、比較的大型のFRPを効率よく成形するために、成形型のキャビティ内を真空吸引し、そのキャビティ内の減圧状態と外部圧との差圧を利用してマトリックス樹脂を注入するようにした、いわゆるVaRTM(Vacuum assisted Resin Transfer Molding)法も知られている(例えば、特許文献1、2)。   As a method for molding FRP, a reinforcing fiber substrate (for example, a laminate of reinforcing fiber fabric) is placed in a cavity of a mold, and a matrix resin is injected into the cavity to impregnate the reinforcing fiber substrate with the resin. A so-called RTM (Resin Transfer Molding) method for curing a resin is known. Also, in order to efficiently mold a relatively large FRP, the inside of the cavity of the mold is vacuum-sucked, and the matrix resin is injected using the pressure difference between the reduced pressure state in the cavity and the external pressure. A so-called VaRTM (Vacuum Assisted Resin Transfer Molding) method is also known (for example, Patent Documents 1 and 2).

また、FRP製パイプを製造する場合、中空の中子を使用し、その中子の外周に強化繊維基材を配置して成形型のキャビティ内に納め、その状態で例えば上記のようなVaRTM法によりFRPパイプを成形する方法も、一般的なFRP成形方法の範疇と考えられる。   Further, when manufacturing an FRP pipe, a hollow core is used, and a reinforcing fiber base is disposed on the outer periphery of the core and placed in a cavity of a molding die. In this state, for example, the VaRTM method as described above The method of forming an FRP pipe by the above method is considered to be a category of a general FRP forming method.

特開2002−307463号公報JP 2002-307463 A 特許第4104413号公報Japanese Patent No. 4104413

ところが、例えば従来のVaRTM法をそのまま採用して、例えば、直径が0.3〜数mでかつ長さが数m〜数百mの大口径・長尺FRPパイプを製造しようとすると、以下のような種々の問題が生じる。   However, for example, when the conventional VaRTM method is adopted as it is, and an attempt is made to produce a large-diameter / long FRP pipe having a diameter of 0.3 to several meters and a length of several meters to several hundred meters, for example, Various problems arise.

まず、例えば中空の中子を使用し、その中子の外周に強化繊維基材を配置して成形型のキャビティ内に納め、その状態で強化繊維基材に含浸させるためのマトリックス樹脂をキャビティ内に注入しようとすると、成形しようとするFRPパイプが大口径・長尺であるため、樹脂が長手方向または/および周方向の全域へ確実に回り込まず、成形に要求される所定の樹脂注入状態を得ることが困難になるおそれがある。樹脂注入が不十分であると、強化繊維基材への樹脂含浸も不十分となり、所望の大口径・長尺FRPパイプを製造できないことになる。   First, for example, a hollow core is used, and a reinforcing fiber base is placed on the outer periphery of the core and placed in the cavity of the mold, and the matrix resin for impregnating the reinforcing fiber base in that state is contained in the cavity. The FRP pipe to be molded has a large diameter and a long length, so that the resin does not surely enter the entire area in the longitudinal direction and / or the circumferential direction, and the predetermined resin injection state required for molding is maintained. May be difficult to obtain. If the resin injection is insufficient, the resin impregnation into the reinforcing fiber base is also insufficient, and a desired large diameter / long FRP pipe cannot be manufactured.

また、中空の中子を使用し、その中子の外周に配置した強化繊維基材の所定部位に樹脂を隈なく行き渡らせるためには、前述のようなVaRTM法が好ましい方法と考えられるが、大口径で長尺のパイプの各部位について、真空による減圧部に順次樹脂を吸引・注入し、樹脂注入端を円滑に進めて樹脂をパイプ全周・全長にわたって適切に行き渡らせることは非常に困難なことが多い。   In addition, the VaRTM method as described above is considered a preferable method in order to spread the resin thoroughly to a predetermined portion of the reinforcing fiber base disposed on the outer periphery of the core using a hollow core, For each part of a large-diameter and long pipe, it is very difficult to draw and inject resin sequentially into the vacuum decompression section and smoothly advance the resin injection end to properly distribute the resin over the entire circumference and length of the pipe. There are many things.

さらに、中空中子の外周に、強化繊維基材を大口径・長尺FRPパイプの成形に適した形態で配置することにも、特別の工夫が要求されると考えられる。すなわち、中空中子の外周に単に何重にも強化繊維基材を巻いていくだけでは、目標とする大きな直径のFRPパイプに仕上げることは難しいと考えられる。また、強化繊維基材を数m〜数百mの長さにわたって所望のパイプ形態で中空中子の外周上に均等に緩みや皺が生じない状態で積層していくことも難しいと考えられる。   Furthermore, it is considered that a special device is required to arrange the reinforcing fiber base on the outer periphery of the hollow core in a form suitable for forming a large-diameter / long FRP pipe. That is, it is considered that it is difficult to finish a target large-diameter FRP pipe by simply winding the reinforcing fiber base material around the outer periphery of the hollow core. Further, it is considered difficult to laminate the reinforcing fiber base material in a desired pipe form over a length of several meters to several hundred meters in a state where the reinforcing fiber base material is not loosened or wrinkled evenly on the outer periphery of the hollow core.

そこで本発明の課題は、例えば、直径が0.3〜数mでかつ長さが数m〜数百mに及ぶ大口径・長尺FRPパイプを製造するに際し、成形すべきパイプの各部位に確実に望ましい形態で樹脂を注入・含浸させることができ、目標とする所定性能の大口径・長尺FRPパイプを容易に効率よくかつ安価に製造可能な方法を提供することにある。   Therefore, the problem of the present invention is that, for example, when manufacturing a large-diameter / long FRP pipe having a diameter of 0.3 to several m and a length of several m to several hundred m, It is an object of the present invention to provide a method capable of reliably and efficiently injecting and impregnating a resin in a desired form and easily and efficiently manufacturing a large-diameter / long FRP pipe having a predetermined performance.

上記課題を解決するために、本発明に係る大口径・長尺なFRPパイプの製造方法は、(1)所定の幅を有し成形すべきFRPパイプの全長にわたってパイプ長手方向に延びる強化繊維シート基材を複数枚積層し、
(2)積層された基材の上に、可撓性中空中子をその中空部が収縮し全体がシート状になった状態で配置し、
(3)積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせて、可撓性中空中子を複数枚の基材で包み込み、
(4)可撓性中空中子を内包した折り畳み基材を、横断面円形のキャビティを形成可能な成形型のキャビティ内に配置し、
(5)成形型のキャビティ内面の少なくとも最上部またはその近傍に設けられパイプ長手方向に延びる真空吸引ラインを介して、キャビティ内面と前記積層された基材との間から真空吸引することにより、前記可撓性中空中子をキャビティ内面に向けて膨張させるとともに該膨張に伴い可撓性中空中子の外周面上の前記積層された基材をキャビティ内面に押し付け、
(6)前記真空吸引を継続しつつ、キャビティ内面の少なくとも最下部またはその近傍に設けられパイプ周方向における左右2箇所にてパイプ長手方向に延びる2本の樹脂注入ラインを介して、成形型の外部より導入される樹脂のキャビティ内への注入を開始し、
(7)注入された樹脂がキャビティ内面に沿ってパイプ周方向に流動し前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインに到達したことを確認した後、前記樹脂注入ラインを介しての樹脂注入および前記真空吸引ラインを介しての真空吸引を停止するとともに前記樹脂注入ラインおよび前記真空吸引ラインと成形型外部との連通を遮断し、
(8)その状態に保持して注入樹脂を硬化させる、
ステップを有することを特徴とする方法からなる。
なお、上記成形型は、少なくとも上、下型に分割された複数の型(場合によっては、上型や下型がさらに複数に分割されることもある)からなり、組み立てられた状態でのキャビティ内面の断面形状が円形である。また、両端部は、完全円板またはドーナッツ型円板からなり、上記上、下型とは接触部でシールされた構成となる。肉厚が薄いパイプの成形時は、両端部だけをフィルムによってバッグする場合もある。
In order to solve the above-mentioned problems, a method for producing a large-diameter / long FRP pipe according to the present invention includes (1) a reinforcing fiber sheet having a predetermined width and extending in the pipe longitudinal direction over the entire length of the FRP pipe to be molded. Laminating multiple substrates,
(2) On the laminated base material, the flexible hollow core is disposed in a state where the hollow portion is contracted and the whole is in a sheet shape,
(3) Fold both sides in the width direction of each laminated base material to the side of the flexible hollow core, and overlap the ends of the both sides in the width direction to form a plurality of flexible hollow cores. Wrapped in wood,
(4) A folding base material containing a flexible hollow core is disposed in a cavity of a mold that can form a cavity having a circular cross section,
(5) By vacuum suction from between the cavity inner surface and the laminated base material through a vacuum suction line provided in at least the uppermost part of the cavity inner surface of the mold or in the vicinity thereof and extending in the pipe longitudinal direction, The flexible hollow core is expanded toward the inner surface of the cavity and the laminated base material on the outer peripheral surface of the flexible hollow core is pressed against the inner surface of the cavity along with the expansion.
(6) While continuing the vacuum suction, through two resin injection lines provided in at least the lowermost part of the cavity inner surface or in the vicinity thereof and extending in the pipe longitudinal direction at two left and right positions in the pipe circumferential direction, Start injection of resin introduced from outside into the cavity,
(7) After confirming that the injected resin flows in the pipe circumferential direction along the cavity inner surface and reaches a vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof, the resin injection line is The resin injection through and the vacuum suction through the vacuum suction line is stopped and the communication between the resin injection line and the vacuum suction line and the outside of the mold is cut off,
(8) Hold the state to cure the injected resin.
It comprises a method characterized by comprising steps.
The above-mentioned mold is composed of at least a plurality of molds divided into an upper mold and a lower mold (in some cases, the upper mold and the lower mold may be further divided into a plurality of molds), and a cavity in an assembled state. The cross-sectional shape of the inner surface is circular. Further, both end portions are made of complete discs or donut type discs, and the upper and lower dies are sealed at the contact portions. When forming a thin pipe, only both ends may be bagged with a film.

この大口径・長尺なFRPパイプの製造方法においては、まず、上記ステップ(1)において、例えば、平坦な、あるいは浅い凹状部を有する基材積層架台上にて、所定の幅を有する長尺の(成形すべきFRPパイプの全長にわたってパイプ長手方向に延びる)強化繊維シート基材を複数枚積層する。この段階では、長尺ではあるが平坦形状のシート基材を積層していくだけであるので、比較的容易に所定の作業を行うことができる。   In the manufacturing method of this large diameter and long FRP pipe, first, in the above step (1), for example, a long length having a predetermined width on a base material laminated frame having a flat or shallow concave portion. A plurality of reinforcing fiber sheet base materials (extending in the longitudinal direction of the pipe over the entire length of the FRP pipe to be formed) are laminated. At this stage, since a long but flat sheet base material is simply laminated, a predetermined operation can be performed relatively easily.

次に、上記ステップ(2)において、上記積層基材上に、可撓性中空中子をその中空部が収縮し全体がシート状になった状態で(つまり、環状に繋がってはいるが、上層と下層との2層に重ねられ、全体としてその2層積層のシート状の形態で)配置される。この段階でも、長尺ではあるが平坦なシート状態の可撓性中空中子を、上記積層基材上の所定位置に配置するだけであるから、比較的容易に所定の作業を行うことができ、かつ、積層基材に対する可撓性中空中子の位置決めも容易に精度良く行うことができる。ただし、次のステップ(3)の動作の一部とも重複するが、最内層(積層基材の最上層)に、予め可撓性中空中子を内蔵させておくことも可能である。   Next, in the step (2), on the laminated base material, the flexible hollow core is in a state where the hollow portion is contracted and the whole is in a sheet shape (that is, connected in an annular shape, The two layers of the upper layer and the lower layer are stacked and arranged as a whole (in the form of a sheet of the two-layer stack). Even at this stage, since the flexible hollow core in the form of a long but flat sheet is only arranged at a predetermined position on the laminated base material, the predetermined operation can be performed relatively easily. And positioning of a flexible hollow core with respect to a laminated base material can also be performed easily and accurately. However, although it overlaps with a part of operation | movement of the following step (3), it is also possible to incorporate a flexible hollow core in the innermost layer (uppermost layer of a lamination | stacking base material) previously.

次に、上記ステップ(3)において、上記積層された各基材の幅方向両側部分を順次可撓性中空中子側に折り畳んでいき、可撓性中空中子を複数枚の基材で包み込む。このとき、各基材の幅方向両側部分の端部同士をオーバーラップさせるようにする。このオーバーラップ部を設けておくことにより、後の可撓性中空中子を横断面円形になるように膨張させる際に、その外周に配置されている各基材のオーバーラップ部の基材端部同士が適宜自動的にずれ、基材の周長が不足して基材端間に隙間が生じることが回避される。   Next, in the step (3), the widthwise side portions of the laminated base materials are sequentially folded to the flexible hollow core side, and the flexible hollow core is wrapped with a plurality of base materials. . At this time, the end portions of both side portions of each base material are overlapped with each other. By providing this overlap part, when the subsequent flexible hollow core is expanded to have a circular cross section, the base end of the overlap part of each base material arranged on the outer periphery thereof It is avoided that the portions are automatically shifted appropriately, and the peripheral length of the base material is insufficient to cause a gap between the base material ends.

次に、上記ステップ(4)において、上記可撓性中空中子を内包した折り畳み基材を、横断面円形のキャビティを形成可能な成形型(例えば、上型と下型とからなる成形型)のキャビティ内に配置する。この段階では、可撓性中空中子も積層基材も未だ折り畳まれた状態にある。   Next, in the step (4), a mold (for example, a mold composed of an upper mold and a lower mold) capable of forming a cavity having a circular cross section is formed on the folded base material containing the flexible hollow core. Place in the cavity. At this stage, both the flexible hollow core and the laminated base material are still folded.

次に、上記ステップ(5)において、上記成形型のキャビティ内面の少なくとも最上部またはその近傍に設けられパイプ長手方向に延びる真空吸引ライン(例えば、成形型のキャビティ面に露出するように加工された溝からなる真空吸引ライン)を介して、キャビティ内面と上記積層された基材との間から真空吸引することにより、上記可撓性中空中子の長手方向の端部(両端または片側)から流入される気体によって該可撓性中空中子をキャビティ内面に向けて膨張させ、該膨張に伴って可撓性中空中子の外周面上に配置されていた上記積層基材をキャビティ内面に押し付ける。これにより、可撓性中空中子の外周面上の積層基材が、キャビティ内面に沿った形状、つまり、横断面が円形で所定の周長のキャビティ内面に押し付けられたパイプ形状になる。可撓性中空中子の外周に配置されている各基材は可撓性中空中子の膨張に伴って横断面円形になるように膨らむが、このとき、前述の如く、各基材のオーバーラップ部の基材端部同士が適宜自動的にずれるので、基材の周長が膨張した可撓性中空中子の周長に比べて不足しそれによって基材端間に隙間が生じる事態が生じることは回避され、パイプ周方向に連続して延びる積層基材の形態が保たれる。   Next, in step (5), a vacuum suction line (for example, exposed to the cavity surface of the mold) provided in at least the uppermost part of the cavity inner surface of the mold or in the vicinity thereof and extending in the longitudinal direction of the pipe. Inflow from the longitudinal ends (both ends or one side) of the flexible hollow core by vacuum suction from between the cavity inner surface and the laminated base material via a vacuum suction line comprising grooves) The flexible hollow core is expanded toward the inner surface of the cavity by the generated gas, and the laminated base material arranged on the outer peripheral surface of the flexible hollow core is pressed against the inner surface of the cavity along with the expansion. Thereby, the laminated base material on the outer peripheral surface of the flexible hollow core has a shape along the inner surface of the cavity, that is, a pipe shape having a circular cross section and pressed against the inner surface of the cavity having a predetermined peripheral length. Each base material arranged on the outer periphery of the flexible hollow core swells so as to have a circular cross section as the flexible hollow core expands. Since the base end portions of the wrap portion are automatically automatically shifted from each other, the peripheral length of the base material is insufficient compared to the peripheral length of the expanded flexible hollow core, thereby causing a gap between the base material ends. Occurrence is avoided and the form of the laminated base material continuously extending in the pipe circumferential direction is maintained.

この状態にてステップ(6)においてFRPのマトリックス樹脂が注入される。すなわち、上記真空吸引ラインを介しての真空吸引を継続しつつ、キャビティ内面の少なくとも最下部またはその近傍に設けられパイプ周方向における左右2箇所にてパイプ長手方向に延びる2本の樹脂注入ライン(例えば、成形型のキャビティ面に露出するように加工された溝からなる樹脂注入ライン)を介して、成形型の外部より導入される樹脂のキャビティ内への注入を開始する。樹脂は、真空吸引により減圧されたキャビティ内圧と、外部圧(大気圧に加え、後述の加圧状態も含む)との差圧によりキャビティ内に注入される。つまり、樹脂注入形態としては、いわゆるRTM法、あるいは、いわゆるVaRTM法を使用することになる。そして、樹脂は2本の樹脂注入ラインからキャビティ内に導入され、その2本の樹脂注入ラインの各ラインから左右のパイプ周方向にキャビティ内面に沿って注入されていく。左右のパイプ周方向に注入されていく樹脂は、実質的にパイプ半周分にわたって充満されればよいので、大口径のFRPパイプの成形であっても、確実にかつ容易に所定の樹脂充満状態を得ることが可能になる。また、パイプ口径が大きくて積層基材の厚みが厚く、注入樹脂の流動や含浸が遅かったり、困難な場合、積層基材の最内層や最外層の上に、樹脂流動抵抗の低い樹脂流動媒体(例えば、合成繊維製のメッシュ織物など)を配置することもある。   In this state, FRP matrix resin is injected in step (6). That is, while continuing the vacuum suction through the vacuum suction line, two resin injection lines (in the pipe inner circumferential direction, provided at least at the lowermost part of the cavity inner surface or in the vicinity thereof, extending in the pipe longitudinal direction ( For example, injection of resin introduced from the outside of the mold into the cavity is started via a resin injection line formed of grooves processed to be exposed on the cavity surface of the mold. The resin is injected into the cavity by a differential pressure between the cavity internal pressure reduced by vacuum suction and the external pressure (including a pressurized state described later in addition to atmospheric pressure). That is, the so-called RTM method or the so-called VaRTM method is used as the resin injection mode. Then, the resin is introduced into the cavity from the two resin injection lines, and is injected along the inner surface of the cavity in the left and right pipe circumferential directions from each of the two resin injection lines. The resin injected in the circumferential direction of the left and right pipes only needs to be substantially filled over the pipe half circumference, so even when molding a large-diameter FRP pipe, the predetermined resin filling state can be reliably and easily achieved. It becomes possible to obtain. Also, if the pipe diameter is large and the thickness of the laminated substrate is large, and the flow or impregnation of the injected resin is slow or difficult, the resin fluidized medium with low resin flow resistance on the innermost layer or outermost layer of the laminated substrate (For example, a mesh fabric made of synthetic fiber or the like) may be disposed.

次に、上記ステップ(7)において、上記注入された樹脂がキャビティ内面に沿ってパイプ周方向に流動し上記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインに到達したことを確認した後、上記樹脂注入ラインを介しての樹脂注入および上記真空吸引ラインを介しての真空吸引を停止するとともに上記樹脂注入ラインおよび上記真空吸引ラインと成形型外部との連通を遮断する。注入された樹脂が真空吸引ラインまで到達した状態では、上述の各パイプ半周分にわたる樹脂充満が完了した状態であるので(つまり、パイプ周方向に全周にわたって樹脂充満が完了した状態であるので)、膨張された可撓性中空中子の外周面上の積層基材に全体にわたって樹脂含浸可能な状態となる。実際には、上記樹脂注入と基材への樹脂含浸は同時進行する。このように所望の全体にわたる樹脂注入、樹脂含浸が完了した状態で、あるいは完了可能な状態になった時点で、真空吸引、樹脂注入が停止される。   Next, in the step (7), it is confirmed that the injected resin flows in the pipe circumferential direction along the cavity inner surface and reaches a vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof. After that, the resin injection through the resin injection line and the vacuum suction through the vacuum suction line are stopped, and the communication between the resin injection line and the vacuum suction line and the outside of the mold is shut off. In the state where the injected resin has reached the vacuum suction line, it is in a state where the resin filling for each half circumference of each pipe is completed (that is, the resin is filled over the entire circumference in the pipe circumferential direction). The laminated base material on the outer peripheral surface of the expanded flexible hollow core can be impregnated with resin throughout. Actually, the resin injection and the resin impregnation to the substrate proceed simultaneously. In this way, when the desired resin injection and resin impregnation are completed, or when the resin injection is completed, vacuum suction and resin injection are stopped.

そして、ステップ(8)において、上記状態に保持して注入樹脂を硬化させる。その場合、硬化を促進させるために、成形型を何らかの手段で加熱してもよい。樹脂硬化により、所望の大口径・長尺FRPパイプの成形が完了し、成形されたFRPパイプが成形型から脱型される。可撓性中空中子は成形されたパイプの一部を構成してもよいが、該中空中子の再使用の観点から、基本的には成形されたFRPパイプの一部を構成するものではなく、FRPパイプ脱型後に、あるいはFRPパイプ脱型前に、可撓性中空中子の膨張状態を解除してFRPパイプ自体から離型させ、次の成形に使用すればよい。可撓性中空中子の外周面を離型容易な材質で形成したり、該外周面とFRPパイプ自体との間に離型シートや離型フィルムを介在させたりしておけば、より容易に離型させることが可能である。また、該離型シートや離型フィルムは、FRPパイプを成形型から脱型し易くするため、予め成形型のキャビティ内面に配置すればよい。   In step (8), the injected resin is cured while maintaining the above state. In that case, the mold may be heated by some means in order to promote curing. By molding the resin, molding of a desired large-diameter / long FRP pipe is completed, and the molded FRP pipe is removed from the mold. The flexible hollow core may constitute a part of the molded pipe, but from the viewpoint of reuse of the hollow core, basically, it does not constitute a part of the molded FRP pipe. Instead, after the FRP pipe is removed, or before the FRP pipe is removed, the expanded state of the flexible hollow core is released and released from the FRP pipe itself, and used for the next molding. It is easier if the outer peripheral surface of the flexible hollow core is made of a material that is easy to release or if a release sheet or release film is interposed between the outer peripheral surface and the FRP pipe itself. It is possible to release the mold. Further, the release sheet or release film may be disposed in advance on the cavity inner surface of the mold in order to make it easy to remove the FRP pipe from the mold.

このような本発明に係る大口径・長尺FRPパイプの製造方法においては、上記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインも、パイプ周方向における左右2箇所に設けられており、一方の真空吸引ラインを介して、キャビティ内面と上記積層された基材との間のパイプ周方向における半周分から真空吸引し、他方の真空吸引ラインを介して、キャビティ内面と上記積層された基材との間のパイプ周方向における残りの半周分から真空吸引するようにすることもできる。このようにすれば、真空吸引についても、樹脂注入に対応させて各パイプ半周分にわけて行うことができ、より望ましい真空吸引状態、樹脂注入状態を現出できる。   In such a large diameter / long FRP pipe manufacturing method according to the present invention, vacuum suction lines provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof are also provided at two positions on the left and right sides in the pipe circumferential direction. The vacuum suction is performed from one half of the circumference of the pipe between the cavity inner surface and the laminated base material through one vacuum suction line, and the laminate is laminated with the cavity inner surface through the other vacuum suction line. It is also possible to perform vacuum suction from the remaining half circumference in the pipe circumferential direction with the base material. In this way, the vacuum suction can also be performed for each pipe half circumference corresponding to the resin injection, and a more desirable vacuum suction state and resin injection state can be realized.

また、上記キャビティ内面の少なくとも最下部またはその近傍に設けられた2本の樹脂注入ラインから、上記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインに至る左右半周分の各キャビティ内面の途中部位に、パイプ長手方向に延び、注入樹脂が到達してくるまでは真空吸引ラインとして機能し樹脂到達後は成形型の外部より導入される樹脂の注入ラインに切り換え可能な真空吸引兼樹脂注入ラインが少なくとも一つ設けられており(各半周分に対して少なくとも一つ設けられており)、上記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインを介しての真空吸引は継続しつつ、各真空吸引兼樹脂注入ラインに注入樹脂が到達した時点で該真空吸引兼樹脂注入ラインを真空吸引ラインから樹脂注入ラインに順次切り換えるようにすることもできる。このようにすれば、各半周分についてその途中位置まで注入樹脂が到達したことを確認した後、真空吸引兼樹脂注入ラインを真空吸引ラインから樹脂注入ラインに切り換えて、その途中位置から先の部位については真空吸引を継続しつつ切り換えられた樹脂注入ラインからも樹脂を注入することができるので、注入樹脂が到達しにくい部位が生じるのを回避できる。したがって、とくに大口径のFRPパイプの成形において、キャビティ内面に沿って進む注入樹脂の先端部を、より確実にかつより円滑に先に進めることができるようになり、より確実にパイプ周方向全周にわたって樹脂を注入、充満できるようになる。   Further, each cavity inner surface corresponding to the left and right half circumferences extending from two resin injection lines provided at least in the lowermost part of the cavity inner surface or in the vicinity thereof to a vacuum suction line provided in at least the uppermost part of the cavity inner surface or in the vicinity thereof. In the middle of the pipe, it extends in the longitudinal direction of the pipe and functions as a vacuum suction line until the injected resin arrives. After reaching the resin, it can be switched to the resin injection line introduced from the outside of the mold. At least one line is provided (at least one line is provided for each half circumference), and vacuum suction is continued through a vacuum suction line provided at least at the top of the cavity inner surface or in the vicinity thereof. However, when the injected resin reaches each vacuum suction / resin injection line, the vacuum suction / resin injection line is connected to the vacuum suction label. It is also possible to sequentially switch to the resin injection line from emissions. In this way, after confirming that the injected resin has reached the halfway position for each half circumference, switch the vacuum suction / resin injection line from the vacuum suction line to the resin injection line, Since the resin can be injected also from the resin injection line switched while continuing the vacuum suction, it is possible to avoid the occurrence of a site where the injected resin is difficult to reach. Therefore, especially in the molding of large-diameter FRP pipes, the tip of the injected resin that advances along the inner surface of the cavity can be advanced more reliably and smoothly, and the entire circumference in the pipe circumferential direction can be more reliably achieved. The resin can be poured and filled over.

また、上記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインを介しての真空吸引を継続しつつ樹脂を注入し、該真空吸引ラインに到達した樹脂に空気混入が無くなったことを確認後、真空吸引および樹脂注入を停止するようにすることもできる。このようにすれば、最上部に設けられた真空吸引ラインへの樹脂到達に加え、その到達樹脂中に空気混入が無いことまで確認されるので(つまり、注入された樹脂の先端部にて、樹脂が空気混入の無い極めて良好な状態にてその位置までの導入が完了したことが確認されるので)、ボイド等の無い状態での樹脂硬化が可能になる。   Further, the resin is injected while continuing the vacuum suction through the vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof, and the resin that has reached the vacuum suction line is free of air mixing. After confirmation, vacuum suction and resin injection can be stopped. In this way, in addition to the resin reaching the vacuum suction line provided at the top, it is confirmed that there is no air mixing in the reaching resin (that is, at the tip of the injected resin, Since it is confirmed that the resin has been introduced to that position in a very good state with no air mixing, the resin can be cured without any voids.

あるいは、上記キャビティ内への樹脂注入が終了した後、成形型の外部より導入される樹脂のキャビティ内への注入を停止し、前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインを介しての真空吸引によるキャビティ内からの樹脂吸引を所定の樹脂量になるまで継続した後、該真空吸引ラインを介しての吸引を停止するようにすることもできる。すなわち、上記真空吸引ラインによる真空吸引を継続すれば、キャビティ内に注入されていた樹脂はその真空吸引ラインに向けて吸引されキャビティ内からある樹脂量吸い出されることになるが、そのキャビティ内からの樹脂吸引が所定の樹脂量(吸引樹脂量)になるまで継続され、同時に可撓性中空中子は微小ながら膨張するので、キャビティ内における基材への樹脂含浸量が低減され、最終的に成形されるFRPパイプにおける繊維体積含有率(Vf)が意図的に増大されることになる。このような動作は、次のようにVf向上の目的で行われる。すなわち、普通にVaRTM成形すると、キャビティ内の内圧について樹脂注入当初(即ち、樹脂が充満する前)は真空度が高いが、樹脂注入が相当進んだ段階、例えば樹脂が充満してきて完全に含浸が完了した段階では、真空吸引部での吸引は継続しているので完全に大気圧までには低くはならないが、既に充満している樹脂のために吸引の効率が低下してかなり真空度が下がった状態となり、樹脂リッチな状況(Vfが低い状況)になるおそれがある。そこで、樹脂注入側を閉鎖した状態で、真空吸引側から充満した樹脂を吸い出して所望のVfにコントロールする(VFを上げる)ことを目的とした動作である。   Alternatively, after the resin injection into the cavity is completed, the injection of the resin introduced from the outside of the mold into the cavity is stopped, and a vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof It is also possible to stop the suction through the vacuum suction line after the suction of the resin from the cavity by the vacuum suction is continued until a predetermined amount of resin is reached. That is, if the vacuum suction by the vacuum suction line is continued, the resin injected into the cavity is sucked toward the vacuum suction line and a certain amount of resin is sucked out from the cavity. The resin suction is continued until a predetermined resin amount (suction resin amount) is reached, and at the same time, the flexible hollow core expands while being minute, so that the amount of resin impregnation into the substrate in the cavity is reduced, and finally The fiber volume content (Vf) in the molded FRP pipe will be intentionally increased. Such an operation is performed for the purpose of improving Vf as follows. That is, when the VaRTM molding is normally performed, the degree of vacuum is high at the beginning of the resin injection (that is, before the resin is filled) with respect to the internal pressure in the cavity, but the resin is fully filled, for example, the resin is filled and completely impregnated. At the completed stage, suction in the vacuum suction section continues, so it will not be completely reduced to atmospheric pressure, but because of the already filled resin, the suction efficiency is reduced and the degree of vacuum drops considerably. May result in a resin-rich situation (a situation where Vf is low). Therefore, the operation is aimed at sucking out the filled resin from the vacuum suction side and controlling it to a desired Vf (increasing VF) with the resin injection side closed.

また、本発明に係る大口径・長尺なFRPパイプの製造方法においては、上記成形型を下型と上型から構成し、下型上に可撓性中空中子を内包した折り畳み基材を配置後、上型を閉じて両型間を真空シールするようにすることができる。つまり、両型間をO−リングやシールテープなどで完全にシールし、型間の隙間から空気が出入りしないようにして、上述の真空吸引、樹脂注入をより確実に行わせる。   Further, in the method for producing a large-diameter / long FRP pipe according to the present invention, a folding base material in which the molding die is composed of a lower die and an upper die and a flexible hollow core is included on the lower die is provided. After placement, the upper mold can be closed and the two molds can be vacuum sealed. That is, the two molds are completely sealed with an O-ring, a seal tape, or the like, so that air does not enter and exit from the gaps between the molds, and the above-described vacuum suction and resin injection are performed more reliably.

また、本発明に係る大口径・長尺なFRPパイプの製造方法においては、基本的にはVaRTM成形を行うものであるから、上記可撓性中空中子の中空部は空気の出入り自在に形成されており、可撓性中空中子をキャビティ内面に向けて膨張させる際に、該可撓性中空中子の端部より中空部内にキャビティ内の空気を導入させるようにする。しかし、可撓性中空中子の中空部は空気の出入り自在に形成されているが、可撓性中空中子をキャビティ内面に向けて膨張させる際に、該可撓性中空中子の中空部内に加圧気体を注入するようにすることもできる。このようにすれば、注入された加圧気体により、可撓性中空中子をキャビティ内面に向けてさらに膨張させることができ、それによって成形型のキャビティ内面と可撓性中空中子の間隔を望ましい間隔に固定すること、すなわち、上述した繊維体積含有率(Vf)が高いFRPパイプの製造が可能になり、大口径の成形であっても、FRPパイプの強度向上や成形精度向上等に寄与できる。   In addition, in the method for manufacturing a large-diameter / long FRP pipe according to the present invention, VaRTM molding is basically performed, so that the hollow portion of the flexible hollow core is formed so that air can enter and exit. Thus, when the flexible hollow core is expanded toward the inner surface of the cavity, air in the cavity is introduced into the hollow portion from the end of the flexible hollow core. However, the hollow portion of the flexible hollow core is formed so that air can freely enter and exit. However, when the flexible hollow core is expanded toward the inner surface of the cavity, the hollow portion of the flexible hollow core It is also possible to inject a pressurized gas. In this way, the flexible hollow core can be further expanded toward the inner surface of the cavity by the injected pressurized gas, thereby reducing the distance between the inner surface of the mold cavity and the flexible hollow core. It is possible to manufacture FRP pipes having a high fiber volume content (Vf) as described above by fixing at a desired interval, and contribute to improving the strength of the FRP pipe and improving the molding accuracy even with large diameter molding. it can.

また、本発明に係る大口径・長尺FRPパイプの製造方法においては、基本的にはVaRTM成形を行うものであるから、成形型の外部より導入される樹脂をキャビティ内に注入するに際し、例えば、注入樹脂を収容した樹脂タンクにかかる大気圧と、上述の真空吸引による真空圧との差圧を利用して樹脂を注入することができる。しかし、成形型の外部より導入される樹脂をキャビティ内に注入するに際し、加圧樹脂を注入するようにすることもできる。このようにすれば、加圧された樹脂がより確実にキャビティ内面に沿って注入されるようになる。ただし、この場合、キャビティ内面に向けて膨張されている可撓性中空中子が樹脂圧によって収縮されないよう、可撓性中空中子の中空部内圧との大小関係を考慮する必要がある。逆に言えば、可撓性中空中子の中空部内圧は、少なくとも樹脂加圧圧力と同等かそれ以上にする必要がある。樹脂の加圧注入については、例えば樹脂を樹脂注入機により加圧(例えば、最大で3kg/cm2 程度)して注入すればよい。また、その際、樹脂が真空吸引ラインに到達した後、全ての樹脂注入ラインや真空吸引ラインを閉鎖し、暫くの間(例えば、数分〜数十分の間)樹脂を加圧したままにしてキャビティ内に樹脂の静水圧をかけておくことも可能である。このようにすれば、注入された樹脂の強化繊維基材へのより良好な含浸が期待できる。 Further, in the method of manufacturing a large diameter / long FRP pipe according to the present invention, basically, VaRTM molding is performed. Therefore, when the resin introduced from the outside of the mold is injected into the cavity, for example, The resin can be injected using a differential pressure between the atmospheric pressure applied to the resin tank containing the injected resin and the vacuum pressure by the vacuum suction described above. However, when the resin introduced from the outside of the mold is injected into the cavity, the pressure resin can be injected. In this way, the pressurized resin is more reliably injected along the cavity inner surface. However, in this case, it is necessary to consider the magnitude relationship with the internal pressure of the hollow portion of the flexible hollow core so that the flexible hollow core expanded toward the cavity inner surface is not contracted by the resin pressure. In other words, the internal pressure of the hollow part of the flexible hollow core needs to be at least equal to or higher than the resin pressure. Regarding the pressure injection of the resin, for example, the resin may be injected under pressure (for example, about 3 kg / cm 2 at the maximum) by a resin injection machine. At that time, after the resin reaches the vacuum suction line, all the resin injection lines and vacuum suction lines are closed, and the resin is kept pressurized for a while (for example, for several minutes to several tens of minutes). It is also possible to apply a hydrostatic pressure of the resin in the cavity. In this way, better impregnation of the injected resin into the reinforcing fiber base can be expected.

また、本発明に係る大口径・長尺FRPパイプの製造方法においては、上記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせるに際し、オーバーラップ部のパイプ周方向長さを、成形すべきFRPパイプの直径等に応じて、例えば20mm以上200mm以下の範囲から設定すればよい。このように適切なオーバーラップ代に設定しておくことにより、可撓性中空中子の膨張に伴って積層基材が膨張される際にも、オーバーラップ部の基材端間に隙間が生じるような事態は防止できる。   Moreover, in the manufacturing method of the large-diameter / long FRP pipe according to the present invention, the both side portions in the width direction of the laminated base materials are folded to the flexible hollow core side, and the end portions of the both sides in the width direction are When the pipes are overlapped, the length in the pipe circumferential direction of the overlap part may be set, for example, from a range of 20 mm or more and 200 mm or less according to the diameter of the FRP pipe to be formed. By setting the appropriate overlap margin in this way, a gap is generated between the base material ends of the overlap portion even when the laminated base material is expanded as the flexible hollow core expands. Such a situation can be prevented.

また、積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせるに際し、積層方向に隣接する基材のオーバーラップ部の位置をパイプ周方向に互いにずらすことが好ましい。つまり、隣接基材のオーバーラップ部の位置が重ならないようにし、局所的に積層基材の厚みが不要に厚くならないようにする。この場合、全ての積層基材について、オーバーラップ部のパイプ周方向における位相をずらすことが好ましい。例えば、全層について、オーバーラップ部の位置が全く同じ位相にこないように、予めプログラミングしておくのが最適である。   In addition, when the both sides of the laminated base materials in the width direction are folded to the flexible hollow core side and the ends of the both sides in the width direction are overlapped, the overlap portions of the base materials adjacent to each other in the lamination direction The positions are preferably shifted from each other in the pipe circumferential direction. That is, the position of the overlap portion of the adjacent base material is not overlapped, and the thickness of the laminated base material is not locally increased unnecessarily. In this case, it is preferable to shift the phase of the overlap portion in the pipe circumferential direction for all the laminated base materials. For example, it is optimal to pre-program all layers so that the position of the overlap portion does not come in exactly the same phase.

また、本発明に係る大口径・長尺FRPパイプの製造方法においては、上記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳んだ状態での各基材の周長を、可撓性中空中子の膨張完了後の状態での可撓性中空中子の周長よりも短くした状態にて、可撓性中空中子内包折り畳み基材を成形型のキャビティ内に配置するようにすることもできる。すなわち、強化繊維基材は、強化繊維が真直状態である場合が最も強度、弾性率が高い。積層基材は厚み方向(パイプ半径方向)外側にいくにしたがって当然に周長は長くなる。ただし、1プライの基材の厚みは通常1mm以下と非常に薄いので、各層の周長はほんの僅かしか違わない。そして、現実的に各基材層を規定の周長に合わせて中空中子を包み込んでいくことは困難である。そのため、規定の周長より長くなった層の基材は、緩みが発生して真直状態ではなくなるおそれがある。そこで、その緩みの回避策として、各層の基材で可撓性中空中子を包み込む際に、包み込んだ(折り畳んだ状態での)基材の周長を規定の周長より短くしておくと、可撓性中空中子が膨張する際に規定の周長まで膨らもうとするので、短い周長の基材のオーバーラップ部は可撓性中空中子の膨張力によってずれて、基材の緩みを抑制できるようになる。   Further, in the method for manufacturing a large-diameter / long FRP pipe according to the present invention, the circumference of each base material in a state where both side portions in the width direction of each of the stacked base materials are folded toward the flexible hollow core side. In a state where the length is shorter than the circumferential length of the flexible hollow core in the state after completion of the expansion of the flexible hollow core, the flexible hollow core inner folding substrate is placed in the cavity of the mold. It can also be arranged. That is, the reinforcing fiber base has the highest strength and elastic modulus when the reinforcing fiber is in a straight state. As a matter of course, the circumferential length of the laminated base material becomes longer as it goes outward in the thickness direction (pipe radial direction). However, since the thickness of the base material for one ply is usually very thin, 1 mm or less, the circumference of each layer is only slightly different. And it is difficult to actually enclose the hollow core so that each base material layer has a predetermined circumference. Therefore, there is a possibility that the base material of the layer having a length longer than the prescribed peripheral length is loosened and is not straight. Therefore, as a preventive measure for the looseness, when the flexible hollow core is wrapped with the base material of each layer, the peripheral length of the wrapped base material (when folded) is shorter than the prescribed peripheral length. When the flexible hollow core expands, it tends to expand to a specified peripheral length, so that the overlap portion of the short peripheral base material is displaced by the expansion force of the flexible hollow core, and the base material It will be possible to suppress the looseness of.

また、上記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせるに際し、基材の少なくともオーバーラップ部に熱可塑性樹脂粒子を予め散布しておき、該熱可塑性樹脂粒子を加熱することによりオーバーラップされる基材の端部同士を仮止めするようにすることもできる。すなわち、オーバーラップ部に熱可塑性樹脂粒子を予め散布して固着させておき、基材を積層して折り畳む際に、アイロンやコテで点付けして仮止めしておくのである。このような仮止めにより、可撓性中空中子を内包した折り畳みを成形型のキャビティ内に搬送、配置する際や、可撓性中空中子が膨張して基材を押し上げていく際に、基材のズレやしわ等の発生を抑制することができる。   In addition, when the both side portions in the width direction of each of the laminated base materials are folded to the flexible hollow core side and the end portions on both side portions in the width direction are overlapped with each other, at least the overlap portion of the base material is thermoplastic. It is also possible to disperse the particles in advance and temporarily fix the overlapping end portions of the base material by heating the thermoplastic resin particles. That is, the thermoplastic resin particles are spread and fixed in advance on the overlap portion, and when the base material is laminated and folded, it is spotted and temporarily fixed with an iron or a trowel. With such temporary fixing, when the folding containing the flexible hollow core is transported and arranged in the cavity of the mold, or when the flexible hollow core expands and pushes up the substrate, Generation | occurrence | production of the shift | offset | difference of a base material, wrinkles, etc. can be suppressed.

また、上記可撓性中空中子を伸縮性を有するゴム製の中子から構成し、該ゴム製中子の初期外径を、成形すべきFRPパイプの内径の90%以上(かつ、成形すべきFRPパイプの内径未満)に設定しておくこともできる。すなわち、伸縮性を有するゴム製中子とする場合にも、成形のための膨張時間が永くなりすぎないようにするため、大きな膨張代を見込んでおく必要はない。あるいは、可撓性中空中子を樹脂フィルム(例えば、熱可塑性樹脂フィルム)のシートを熱融着して筒状に形成した中子から構成し、該フィルムシート熱融着中子の初期外径を、成形すべきFRPパイプの内径と同径かそれ以上に設定しておくこともできる。すなわち、フィルムシート自体はほとんど伸びないので、成形すべきFRPパイプの内径と同径かそれよりも少し大きな初期外径としておき、緩みやしわ等が発生した場合にあっても所定の膨張径まで確実に膨張できるようにしておく。   Further, the flexible hollow core is formed of a rubber core having elasticity, and the initial outer diameter of the rubber core is 90% or more of the inner diameter of the FRP pipe to be molded (and molded). Less than the inner diameter of the power FRP pipe). That is, even when a rubber core having elasticity is used, it is not necessary to allow for a large expansion allowance so that the expansion time for molding does not become too long. Alternatively, the flexible hollow core is composed of a core formed in a tubular shape by heat-sealing a sheet of a resin film (for example, a thermoplastic resin film), and the initial outer diameter of the film-sheet heat-sealing core Can be set equal to or larger than the inner diameter of the FRP pipe to be molded. That is, since the film sheet itself hardly stretches, the initial outer diameter is the same as or slightly larger than the inner diameter of the FRP pipe to be molded, and even when looseness or wrinkles occur, the film expands to a predetermined expansion diameter. Make sure it can expand.

また、本発明に係る大口径・長尺FRPパイプの製造方法においては、上述したキャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインと、キャビティ内面の少なくとも最下部またはその近傍に設けられた2本の樹脂注入ラインとを、上下方向における位置を逆転させた成形型を用いることもできる。すなわち、成形型の下側から真空吸引し、成形型の上側から樹脂注入してもよい。また、可撓性中空中子の中空部を加圧したり、注入する樹脂を加圧したりしない、いわゆる完全な真空RTM(VaRTM)成形方法で該パイプ成形を行う場合は、上型は用いず、その代わりに、下型に可撓性中空中子を内包する積層基材を配設後、所定の寸法のフィルムでバギングして成形することもできる。   In the method for manufacturing a large-diameter / long FRP pipe according to the present invention, the vacuum suction line provided at least at the uppermost part of the cavity inner surface or the vicinity thereof, and at least the lowermost part of the cavity inner surface or the vicinity thereof. It is also possible to use a molding die in which the positions of the two resin injection lines are reversed in the vertical direction. That is, vacuum suction may be performed from the lower side of the mold, and resin may be injected from the upper side of the mold. In addition, when the pipe is molded by a so-called complete vacuum RTM (VaRTM) molding method that does not pressurize the hollow portion of the flexible hollow core or pressurize the resin to be injected, the upper mold is not used. Alternatively, a laminated base material containing a flexible hollow core may be disposed in the lower mold, and then bagged with a film having a predetermined dimension.

さらに、本発明に係る大口径・長尺なFRPパイプの製造方法においては、上記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳んで可撓性中空中子を複数枚の基材で包み込むまでの工程を、前記成形型とは別の作業台(基材積層架台)上で行い、そこから、可撓性中空中子を内包した折り畳み基材を成形型内に移送するようにすることができる。可撓性中空中子を内包した折り畳み基材の成形型内への移送は、自動搬送とすることが好ましい。   Furthermore, in the method for manufacturing a large-diameter / long FRP pipe according to the present invention, the flexible hollow core is obtained by folding both side portions in the width direction of the laminated base materials to the flexible hollow core side. The process up to wrapping with a plurality of base materials is performed on a work table (base material stack) different from the above-mentioned mold, and from there, the folding base material containing the flexible hollow core is placed in the mold. Can be transferred to. It is preferable that the folding base material containing the flexible hollow core is automatically transferred into the mold.

本発明に係る大口径・長尺なFRPパイプの製造方法によれば、従来方法では成形が困難なほど大口径でかつ長尺のFRPパイプを成形するに際し、成形すべきパイプの各部位に確実に望ましい形態で樹脂を注入・含浸させることができ、目標とする所定性能の大口径・長尺FRPパイプを複雑な工程を伴うことなく複雑な装置を必要とせずに容易に効率よくしかも安価に製造することができる。その結果、成形品の使用場所近くで、一般道路では搬送が困難なほどの大型のFRPパイプの製造が可能となる。   According to the method for producing a large-diameter / long FRP pipe according to the present invention, when forming a large-diameter and long-sized FRP pipe that is difficult to form by the conventional method, it is ensured that each part of the pipe to be formed is fixed. The resin can be injected and impregnated in a desirable form, and the large-diameter / long-length FRP pipe with the target predetermined performance can be easily and efficiently made inexpensively without complicated processes. Can be manufactured. As a result, it is possible to manufacture a large FRP pipe that is difficult to convey on a general road near the place where the molded product is used.

本発明の一実施態様に係る大口径・長尺なFRPパイプの製造方法における可撓性中空中子および強化繊維シート基材の積層状態を示す概略横断面図である。It is a schematic cross-sectional view which shows the lamination | stacking state of a flexible hollow core and a reinforced fiber sheet base material in the manufacturing method of the large diameter and long FRP pipe which concerns on one embodiment of this invention. 図1の積層における基材端部のオーバーラップ状態の例を示す概略横断面図である。It is a schematic cross-sectional view which shows the example of the overlapping state of the base-material edge part in the lamination | stacking of FIG. 成形型内に配置された可撓性中空中子内包基材の中子膨張前の状態を示す概略横断面図である。It is a schematic cross-sectional view which shows the state before core expansion | swelling of the flexible hollow core inclusion base material arrange | positioned in a shaping | molding die. 成形型内に配置された可撓性中空中子内包基材の中子膨張後の状態および樹脂注入の状態を示す概略横断面図である。It is a schematic cross-sectional view which shows the state after core expansion | swelling of the flexible hollow core inclusion base material arrange | positioned in a shaping | molding die, and the state of resin injection | pouring. 本発明の実施に用いる大口径・長尺なFRPパイプの製造装置の一例を示す概略平面図である。It is a schematic plan view which shows an example of the manufacturing apparatus of the large diameter and long FRP pipe used for implementation of this invention. 図5の装置のパイプ横断面方向に見た概略縦断面図である。It is the schematic longitudinal cross-sectional view seen in the pipe cross-sectional direction of the apparatus of FIG.

以下に、本発明の実施の形態について、図面を参照しながら説明する。
図1〜図6は、本発明の一実施態様に係る大口径・長尺なFRPパイプ(直径約1m、長さ約20m、肉厚約4mm)の製造方法を示している。先ず、図5、図6に示す大口径・長尺なFRPパイプの製造装置1の全体を参照するに、所定の幅を有し成形すべきFRPパイプの全長にわたってパイプ長手方向に延びる強化繊維シート基材2が、強化繊維基材クリール3から繰り出され、繰り出された複数枚の強化繊維シート基材2が、基材積層架台4上で所定形態に積層される。積層された基材2の上に、可撓性中空中子5が、その中空部が収縮し全体がシート状になった状態で配置される。そして、基材積層架台4上で、図1、図2に示すように、積層された各基材2の幅方向両側部分を可撓性中空中子5側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせて、可撓性中空中子5を複数枚の基材2で包み込む。可撓性中空中子5は、前述の如く、ゴム製中子や、フィルムシート熱融着中子に形成されている。オーバーラップ部6、7の位置は、成形すべきFRPパイプの周方向に位相をずらすことが好ましい。また、オーバーラップ長(オーバーラップ部6、7のパイプ周方向長さ)L1、L2は、前述の如く20mm以上200mm以下に設定すればよい。因みに、強化繊維シート基材2は、東レ株式会社製炭素繊維”T300”平織物(目付:300g/m2 )を12層積層したものである。
Embodiments of the present invention will be described below with reference to the drawings.
1 to 6 show a manufacturing method of a large-diameter / long FRP pipe (diameter: about 1 m, length: about 20 m, wall thickness: about 4 mm) according to an embodiment of the present invention. First, referring to the entire large-diameter / long FRP pipe manufacturing apparatus 1 shown in FIGS. 5 and 6, a reinforcing fiber sheet having a predetermined width and extending in the pipe longitudinal direction over the entire length of the FRP pipe to be molded. The base material 2 is drawn out from the reinforcing fiber base material creel 3, and the plurality of drawn out reinforcing fiber sheet base materials 2 are laminated in a predetermined form on the base material stacking frame 4. On the laminated base material 2, the flexible hollow core 5 is arrange | positioned in the state which the hollow part shrunk and the whole became a sheet form. Then, on the base material stack 4, as shown in FIGS. 1 and 2, the both side portions of each base material 2 in the width direction are folded toward the flexible hollow core 5, and the ends of the both side portions in the width direction are folded. The portions are overlapped, and the flexible hollow core 5 is wrapped with a plurality of base materials 2. As described above, the flexible hollow core 5 is formed in a rubber core or a film sheet heat fusion core. The positions of the overlap portions 6 and 7 are preferably shifted in phase in the circumferential direction of the FRP pipe to be formed. Further, the overlap lengths (lengths in the pipe circumferential direction of the overlap portions 6 and 7) L1 and L2 may be set to 20 mm or more and 200 mm or less as described above. Incidentally, the reinforcing fiber sheet substrate 2 is obtained by laminating 12 layers of carbon fiber “T300” plain fabric (weight per unit: 300 g / m 2 ) manufactured by Toray Industries, Inc.

基材積層架台4上で図1、図2に示したように所定の形態に可撓性中空中子5を内包した折り畳み基材8は、図3に示すように、横断面円形のキャビティ9を形成可能な成形型10のキャビティ9内に移送されて配置される。移送は、例えば自動搬送によることが好ましい。本実施態様では、成形型10は、下型11と上型12で構成され、下型11上の所定位置に可撓性中空中子内包基材8が配置された後、チェーンブロック13等を用いて上型12が閉じられる。このとき、下型11と上型12との間は、例えばO−リング31で真空シールされる。図3に示す状態では、可撓性中空中子内包基材8は未だ折り畳まれたままである。   As shown in FIG. 1 and FIG. 2, the folded base material 8 including the flexible hollow core 5 in a predetermined form on the base material stack 4 is a cavity 9 having a circular cross section as shown in FIG. Is transferred and placed in the cavity 9 of the mold 10 capable of forming the mold. The transfer is preferably performed by automatic conveyance, for example. In this embodiment, the molding die 10 is composed of a lower die 11 and an upper die 12, and after the flexible hollow core inclusion base material 8 is arranged at a predetermined position on the lower die 11, the chain block 13 and the like are moved. In use, the upper mold 12 is closed. At this time, the lower mold 11 and the upper mold 12 are vacuum-sealed with, for example, an O-ring 31. In the state shown in FIG. 3, the flexible hollow core inclusion base material 8 is still folded.

図3の状態から図4の状態への動作を説明する。成形型10のキャビティ9内面の少なくとも最上部に設けられパイプ長手方向(図3、図4における紙面と垂直の方向)に延びる真空吸引ライン14a、14b(本実施態様では、パイプ周方向における左右2箇所にてパイプ長手方向に延びる2本の真空吸引ラインが設けられている。)を介して、キャビティ9内面と積層基材8との間から、真空吸引ライン14a、14bに接続された真空ポンプ15を用い、樹脂トラップ16を介して真空吸引することにより、可撓性中空中子5がキャビティ9内面に向けて膨張される。同時に、可撓性中空中子5の膨張に伴いその外周面上に配置されている積層基材8がキャビティ9内面に押し付けられる。   The operation from the state of FIG. 3 to the state of FIG. 4 will be described. Vacuum suction lines 14a and 14b provided in at least the uppermost part of the inner surface of the cavity 9 of the mold 10 and extending in the pipe longitudinal direction (direction perpendicular to the paper surface in FIGS. 3 and 4) (in this embodiment, left and right 2 in the pipe circumferential direction) Two vacuum suction lines extending in the longitudinal direction of the pipe are provided at the locations.) The vacuum pump connected to the vacuum suction lines 14a and 14b from between the inner surface of the cavity 9 and the laminated base material 8 15 and vacuum suction through the resin trap 16, the flexible hollow core 5 is expanded toward the inner surface of the cavity 9. At the same time, the laminated base material 8 disposed on the outer peripheral surface of the flexible hollow core 5 is pressed against the inner surface of the cavity 9 as the flexible hollow core 5 expands.

可撓性中空中子5がキャビティ9内面に向けて所定の形態に膨張された状態に維持され、上記真空吸引が継続されつつ、キャビティ9内面の少なくとも最下部に設けられパイプ周方向における左右2箇所にてパイプ長手方向に延びる2本の樹脂注入ライン17a、17bを介して、成形型10の外部より導入される樹脂貯槽18中の樹脂19のキャビティ9内への注入が開始される。上記真空吸引ライン14a、14bと樹脂注入ライン17a、17bの上下方向の位置は、逆転してもよいので、図6には上下逆転した位置にて示してある。   The flexible hollow core 5 is maintained in a state of being expanded in a predetermined shape toward the inner surface of the cavity 9, and the vacuum suction is continued, and the left and right 2 in the pipe circumferential direction are provided at least at the lowermost portion of the inner surface of the cavity 9. Injection of the resin 19 in the resin storage tank 18 introduced from the outside of the mold 10 into the cavity 9 is started via two resin injection lines 17a and 17b extending in the longitudinal direction of the pipe at the location. Since the positions of the vacuum suction lines 14a and 14b and the resin injection lines 17a and 17b in the vertical direction may be reversed, they are shown in FIG.

注入された樹脂がキャビティ9内面に沿ってパイプ周方向に流動し(図4においては、パイプ周方向の左右半周分にわたって下方から上方に向かって流動し)、キャビティ9内面の最上部に設けられた真空吸引ライン14a、14bに到達したことを確認(樹脂トラップ16等で確認可能)した後、樹脂注入ライン17a、17bを介しての樹脂注入および真空吸引ライン14a、14bを介しての真空吸引が停止されるとともに樹脂注入ライン17a、17bおよび真空吸引ライン14a、14bと成形型10外部との連通が図示を省略したバルブ操作等により遮断される。十分に樹脂が注入され、注入された樹脂が十分に基材8に含浸された状態が保持されて、注入樹脂が硬化される。樹脂硬化は、常温硬化、加熱硬化のいずれも可能である。樹脂が硬化することにより、所定の大口径・長尺FRPパイプの成形が完了する。   The injected resin flows in the pipe circumferential direction along the inner surface of the cavity 9 (in FIG. 4, it flows from the lower side to the upper side over the left and right half circumferences in the pipe circumferential direction) and is provided at the uppermost part of the inner surface of the cavity 9 After confirming that the vacuum suction lines 14a and 14b have been reached (can be confirmed with the resin trap 16 or the like), the resin injection through the resin injection lines 17a and 17b and the vacuum suction through the vacuum suction lines 14a and 14b are performed. Is stopped and the communication between the resin injection lines 17a and 17b and the vacuum suction lines 14a and 14b and the outside of the mold 10 is blocked by a valve operation or the like not shown. The resin is sufficiently injected, the state where the injected resin is sufficiently impregnated in the base material 8 is maintained, and the injected resin is cured. Resin curing can be performed at normal temperature or heat curing. When the resin is cured, the molding of a predetermined large diameter and long FRP pipe is completed.

本実施態様では、キャビティ9内面の最下部に設けられた樹脂注入ライン17a、17bから最上部に設けられた真空吸引ライン14a、14bに至る左右半周分の各キャビティ9内面の途中部位に、パイプ長手方向に延び、注入樹脂が到達してくるまでは真空吸引ラインとして機能し樹脂到達後は成形型の外部より導入される樹脂の注入ラインに切り換え可能な真空吸引兼樹脂注入ライン21a、21b、22a、22bが少なくとも一つづつ(図示例では、左右2つづつ)設けられている。そして、最上部に設けられた真空吸引ライン14a、14bを介しての真空吸引は継続しつつ、各真空吸引兼樹脂注入ライン21a、21b、22a、22bに注入樹脂が到達した時点で該真空吸引兼樹脂注入ライン21a、21b、22a、22bが真空吸引ラインから樹脂注入ラインに順次切り換えられる。例えば、代表して図4に真空吸引兼樹脂注入ライン22aについて切り替えの様子を示すように、真空吸引兼樹脂注入ライン22aの部分に樹脂注入ライン17bからの注入樹脂が到達するまでは、真空吸引兼樹脂注入ライン22aはバルブ23を開きバルブ24を閉じることにより真空吸引ラインとして利用され、注入樹脂が到達した時点で、真空吸引兼樹脂注入ライン22aはバルブ23を閉じバルブ24を開くことにより樹脂注入ラインとして利用される。その上位に位置する真空吸引兼樹脂注入ライン22bについても同様に注入樹脂が到達した時点で真空吸引ラインから樹脂注入ラインに切り換えられる。真空吸引兼樹脂注入ライン21a、21b側についても同様に、注入樹脂が到達した時点で真空吸引ラインから樹脂注入ラインに順次切り換えられる。このように、キャビティ9内面に沿う樹脂流路を適宜分割し、分割された樹脂流路に対して樹脂の注入進行方向に順次真空吸引路から樹脂注入路に切り換えていくことにより、各分割樹脂流路に確実に樹脂を充満させることができ、最終的にキャビティ9内面に沿う樹脂流路の全長にわたって良好に樹脂を充満させることができる。換言すれば、とくに大口径のFRPパイプの成形において、キャビティ9内面に沿って進む注入樹脂の先端部を、より確実にかつより円滑に良好な状態にて先に進めることができるようになり、より確実にパイプ周方向全周にわたって樹脂を注入、充満できるようになる。   In the present embodiment, pipes are provided in the middle of the inner surfaces of the cavities 9 for the left and right half circumferences from the resin injection lines 17a, 17b provided at the lowermost part of the inner surface of the cavity 9 to the vacuum suction lines 14a, 14b provided at the uppermost part. The vacuum suction and resin injection lines 21a, 21b, and 22a that extend in the longitudinal direction and function as a vacuum suction line until the injection resin arrives and can be switched to the resin injection line introduced from the outside of the mold after reaching the resin. , 22b are provided at least one each (in the illustrated example, two on the left and two on the left). Then, the vacuum suction through the vacuum suction lines 14a and 14b provided at the top is continued, and the vacuum suction is performed when the injected resin reaches the vacuum suction / resin injection lines 21a, 21b, 22a and 22b. The cum resin injection lines 21a, 21b, 22a and 22b are sequentially switched from the vacuum suction line to the resin injection line. For example, as shown in FIG. 4 representatively showing the switching of the vacuum suction / resin injection line 22a, the vacuum suction is performed until the injection resin from the resin injection line 17b reaches the portion of the vacuum suction / resin injection line 22a. The cum / resin injection line 22a is used as a vacuum suction line by opening the valve 23 and closing the valve 24. When the injected resin arrives, the vacuum suction / resin injection line 22a closes the valve 23 and opens the valve 24 to open the resin. Used as an injection line. Similarly, the vacuum suction / resin injection line 22b positioned above the same is switched from the vacuum suction line to the resin injection line when the injected resin arrives. Similarly, the vacuum suction / resin injection lines 21a and 21b are sequentially switched from the vacuum suction line to the resin injection line when the injected resin arrives. As described above, the resin flow paths along the inner surface of the cavity 9 are appropriately divided, and the divided resin flow paths are sequentially switched from the vacuum suction path to the resin injection path in the resin injection progress direction. The resin can be surely filled in the flow path, and finally the resin can be satisfactorily filled over the entire length of the resin flow path along the inner surface of the cavity 9. In other words, particularly in the molding of a large-diameter FRP pipe, the tip of the injected resin that advances along the inner surface of the cavity 9 can be advanced in a better state more reliably and smoothly. The resin can be poured and filled more reliably over the entire circumference of the pipe.

なお、本発明においては、図4に2点鎖線で示すように、加圧ポンプ41を設け、可撓性中空中子5の中空部に導入される空気を加圧したり、加圧ポンプ42を設け、例えば樹脂貯槽18内を加圧して成形型10内へ加圧樹脂を注入したりすることも可能である。   In the present invention, as shown by a two-dot chain line in FIG. 4, a pressurizing pump 41 is provided to pressurize the air introduced into the hollow portion of the flexible hollow core 5, For example, it is possible to pressurize the inside of the resin storage tank 18 and inject the pressurized resin into the mold 10.

本発明に係る大口径・長尺なFRPパイプの製造方法は、あらゆる大口径・長尺FRPパイプの製造に適用でき、とくに、オイルライザー用掘削土石の搬送パイプ、海水淡水化用海水取水管、オイルライン用パイプ、ボーリング用掘削土石搬送ケーシングチューブ等の製造に好適なものである。   The method for manufacturing large-diameter / long FRP pipes according to the present invention can be applied to the manufacture of all large-diameter / long FRP pipes. It is suitable for manufacturing oil line pipes, drilling debris transport casing tubes for boring, and the like.

1 大口径・長尺なFRPパイプの製造装置
2 強化繊維シート基材
3 強化繊維基材クリール
4 基材積層架台
5 可撓性中空中子
6、7 オーバーラップ部
8 可撓性中空中子内包基材
9 キャビティ
10 成形型
11 下型
12 上型
13 チェーンブロック
14a、14b 真空吸引ライン
15 真空ポンプ
16 樹脂トラップ
17a、17b 樹脂注入ライン
18 樹脂貯槽
19 樹脂
21a、21b、22a、22b 真空吸引兼樹脂注入ライン
23、24 バルブ
31 O−リング
41、42 加圧ポンプ
DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus of large diameter and long FRP pipe 2 Reinforced fiber sheet base material 3 Reinforced fiber base material creel 4 Base material laminated frame 5 Flexible hollow core 6, 7 Overlap part 8 Flexible hollow core inclusion Base material 9 Cavity 10 Mold 11 Lower mold 12 Upper mold 13 Chain block 14a, 14b Vacuum suction line 15 Vacuum pump 16 Resin trap 17a, 17b Resin injection line 18 Resin storage tank 19 Resins 21a, 21b, 22a, 22b Vacuum suction and resin Injection line 23, 24 Valve 31 O-ring 41, 42 Pressure pump

Claims (19)

(1)所定の幅を有し成形すべきFRPパイプの全長にわたってパイプ長手方向に延びる強化繊維シート基材を複数枚積層し、
(2)積層された基材の上に、可撓性中空中子をその中空部が収縮し全体がシート状になった状態で配置し、
(3)積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせて、可撓性中空中子を複数枚の基材で包み込み、
(4)可撓性中空中子を内包した折り畳み基材を、横断面円形のキャビティを形成可能な成形型のキャビティ内に配置し、
(5)成形型のキャビティ内面の少なくとも最上部またはその近傍に設けられパイプ長手方向に延びる真空吸引ラインを介して、キャビティ内面と前記積層された基材との間から真空吸引することにより、前記可撓性中空中子をキャビティ内面に向けて膨張させるとともに該膨張に伴い可撓性中空中子の外周面上の前記積層された基材をキャビティ内面に押し付け、
(6)前記真空吸引を継続しつつ、キャビティ内面の少なくとも最下部またはその近傍に設けられパイプ周方向における左右2箇所にてパイプ長手方向に延びる2本の樹脂注入ラインを介して、成形型の外部より導入される樹脂のキャビティ内への注入を開始し、
(7)注入された樹脂がキャビティ内面に沿ってパイプ周方向に流動し前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインに到達したことを確認した後、前記樹脂注入ラインを介しての樹脂注入および前記真空吸引ラインを介しての真空吸引を停止するとともに前記樹脂注入ラインおよび前記真空吸引ラインと成形型外部との連通を遮断し、
(8)その状態に保持して注入樹脂を硬化させる、
ステップを有することを特徴とするFRPパイプの製造方法。
(1) Laminating a plurality of reinforcing fiber sheet substrates having a predetermined width and extending in the pipe longitudinal direction over the entire length of the FRP pipe to be molded;
(2) On the laminated base material, the flexible hollow core is disposed in a state where the hollow portion is contracted and the whole is in a sheet shape,
(3) Fold both sides in the width direction of each laminated base material to the side of the flexible hollow core, and overlap the ends of the both sides in the width direction to form a plurality of flexible hollow cores. Wrapped in wood,
(4) A folding base material containing a flexible hollow core is disposed in a cavity of a mold that can form a cavity having a circular cross section,
(5) By vacuum suction from between the cavity inner surface and the laminated base material through a vacuum suction line provided in at least the uppermost part of the cavity inner surface of the mold or in the vicinity thereof and extending in the pipe longitudinal direction, The flexible hollow core is expanded toward the inner surface of the cavity and the laminated base material on the outer peripheral surface of the flexible hollow core is pressed against the inner surface of the cavity along with the expansion.
(6) While continuing the vacuum suction, through two resin injection lines provided in at least the lowermost part of the cavity inner surface or in the vicinity thereof and extending in the pipe longitudinal direction at two left and right positions in the pipe circumferential direction, Start injection of resin introduced from outside into the cavity,
(7) After confirming that the injected resin flows in the pipe circumferential direction along the cavity inner surface and reaches a vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof, the resin injection line is The resin injection through and the vacuum suction through the vacuum suction line is stopped and the communication between the resin injection line and the vacuum suction line and the outside of the mold is cut off,
(8) Hold the state to cure the injected resin.
The manufacturing method of the FRP pipe characterized by having a step.
前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインも、パイプ周方向における左右2箇所に設けられており、一方の真空吸引ラインを介して、キャビティ内面と前記積層された基材との間のパイプ周方向における半周分から真空吸引し、他方の真空吸引ラインを介して、キャビティ内面と前記積層された基材との間のパイプ周方向における残りの半周分から真空吸引する、請求項1に記載のFRPパイプの製造方法。   The vacuum suction lines provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof are also provided at two places on the left and right sides in the pipe circumferential direction. The vacuum suction is performed from the half circumference in the pipe circumferential direction between the second pipe and the other half circumference in the pipe circumferential direction between the inner surface of the cavity and the laminated base material through the other vacuum suction line. A method for producing the FRP pipe according to 1. 前記キャビティ内面の少なくとも最下部またはその近傍に設けられた2本の樹脂注入ラインから、前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインに至る左右半周分の各キャビティ内面の途中部位に、パイプ長手方向に延び、注入樹脂が到達してくるまでは真空吸引ラインとして機能し樹脂到達後は成形型の外部より導入される樹脂の注入ラインに切り換え可能な真空吸引兼樹脂注入ラインが少なくとも一つ設けられており、前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインを介しての真空吸引は継続しつつ、各真空吸引兼樹脂注入ラインに注入樹脂が到達した時点で該真空吸引兼樹脂注入ラインを真空吸引ラインから樹脂注入ラインに順次切り換える、請求項1または2に記載のFRPパイプの製造方法。   Halfway between each cavity inner surface from the two resin injection lines provided at least in the lowermost part of the cavity inner surface or in the vicinity thereof to a vacuum suction line provided in the uppermost part of the cavity inner surface or in the vicinity thereof A vacuum suction / resin injection line that extends in the longitudinal direction of the pipe and functions as a vacuum suction line until the injection resin reaches the site, and can be switched to the resin injection line introduced from the outside of the mold after reaching the resin. At least one is provided, and when the suction resin reaches each vacuum suction / resin injection line while continuing vacuum suction through the vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof The vacuum suction / resin injection line is sequentially switched from the vacuum suction line to the resin injection line. FRP pipe manufacturing method according to. 前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインを介しての真空吸引を継続しつつ樹脂を注入し、該真空吸引ラインに到達した樹脂に空気混入が無くなったことを確認後、真空吸引および樹脂注入を停止する、請求項1〜3のいずれかに記載のFRPパイプの製造方法。   After injecting resin while continuing vacuum suction through the vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof, and confirming that there is no air mixing in the resin that has reached the vacuum suction line The manufacturing method of the FRP pipe according to any one of claims 1 to 3, wherein vacuum suction and resin injection are stopped. 前記キャビティ内への樹脂注入が終了した後、成形型の外部より導入される樹脂のキャビティ内への注入を停止し、前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインを介しての真空吸引によるキャビティ内からの樹脂吸引を所定の樹脂量になるまで継続した後、該真空吸引ラインを介しての吸引を停止する、請求項1〜3のいずれかに記載のFRPパイプの製造方法。   After the resin injection into the cavity is completed, the injection of the resin introduced from the outside of the mold into the cavity is stopped, and through a vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof. The FRP pipe according to any one of claims 1 to 3, wherein the suction of the resin from the cavity by all vacuum suction is continued until a predetermined resin amount is reached, and then suction through the vacuum suction line is stopped. Production method. 前記成形型を下型と上型から構成し、下型上に前記可撓性中空中子を内包した折り畳み基材を配置後、上型を閉じて両型間を真空シールする、請求項1〜5のいずれかに記載のFRPパイプの製造方法。   The molding die is composed of a lower die and an upper die, and a folding base material containing the flexible hollow core is disposed on the lower die, and then the upper die is closed and a vacuum seal is formed between the two die. The manufacturing method of the FRP pipe in any one of -5. 前記可撓性中空中子の中空部は空気の出入り自在に形成されており、前記可撓性中空中子をキャビティ内面に向けて膨張させる際に、中空部内にキャビティ内の空気を導入させる、請求項1〜6のいずれかに記載のFRPパイプの製造方法。   The hollow portion of the flexible hollow core is formed so that air can freely enter and exit, and when the flexible hollow core is expanded toward the inner surface of the cavity, the air in the cavity is introduced into the hollow portion. The manufacturing method of the FRP pipe in any one of Claims 1-6. 前記可撓性中空中子の中空部は空気の出入り自在に形成されており、前記可撓性中空中子をキャビティ内面に向けて膨張させる際に、該可撓性中空中子の中空部内に加圧気体を注入する、請求項1〜6のいずれかに記載のFRPパイプの製造方法。   The hollow portion of the flexible hollow core is formed so that air can freely enter and exit. When the flexible hollow core is expanded toward the inner surface of the cavity, the hollow portion of the flexible hollow core is inserted into the hollow portion of the flexible hollow core. The manufacturing method of the FRP pipe in any one of Claims 1-6 which inject | pour pressurized gas. 成形型の外部より導入される樹脂をキャビティ内に注入するに際し、注入樹脂を収容した樹脂タンクにかかる大気圧と、前記真空吸引による真空圧との差圧を利用して樹脂を注入する、請求項1〜8のいずれかに記載のFRPパイプの製造方法。   When injecting resin introduced from the outside of the mold into the cavity, the resin is injected using a differential pressure between the atmospheric pressure applied to the resin tank containing the injected resin and the vacuum pressure by the vacuum suction. Item 9. A method for producing an FRP pipe according to any one of Items 1 to 8. 成形型の外部より導入される樹脂をキャビティ内に注入するに際し、加圧樹脂を注入する、請求項1〜5、8のいずれかに記載のFRPパイプの製造方法。   The method for producing an FRP pipe according to any one of claims 1 to 5, wherein a pressurized resin is injected when the resin introduced from the outside of the mold is injected into the cavity. 前記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせるに際し、オーバーラップ部のパイプ周方向長さを20mm以上200mm以下とする、請求項1〜10のいずれかに記載のFRPパイプの製造方法。   When the both sides in the width direction of the laminated base materials are folded to the flexible hollow core side and the ends of the both sides in the width direction are overlapped, the pipe circumferential length of the overlap portion is 20 mm or more and 200 mm. The manufacturing method of the FRP pipe in any one of Claims 1-10 made as follows. 前記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせるに際し、積層方向に隣接する基材のオーバーラップ部の位置をパイプ周方向に互いにずらす、請求項1〜11のいずれかに記載のFRPパイプの製造方法。   Folding both sides of the laminated base materials in the width direction to the side of the flexible hollow core, and overlapping the end portions of the both sides in the width direction, the position of the overlap part of the base material adjacent in the lamination direction The manufacturing method of the FRP pipe in any one of Claims 1-11 which mutually shifts in a pipe circumferential direction. 全ての積層基材について、オーバーラップ部のパイプ周方向における位相をずらす、請求項12に記載のFRPパイプの製造方法。   The manufacturing method of the FRP pipe of Claim 12 which shifts the phase in the pipe circumferential direction of an overlap part about all the laminated base materials. 前記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳んだ状態での各基材の周長を、可撓性中空中子の膨張完了後の状態での可撓性中空中子の周長よりも短くした状態にて、可撓性中空中子内包折り畳み基材を成形型のキャビティ内に配置する、請求項1〜13のいずれかに記載のFRPパイプの製造方法。   The circumferential length of each base material in a state where both side portions in the width direction of each of the stacked base materials are folded to the flexible hollow core side is the flexibility in the state after the expansion of the flexible hollow core is completed. The manufacturing of the FRP pipe according to any one of claims 1 to 13, wherein the flexible hollow core inner folding base material is disposed in the cavity of the molding die in a state shorter than the circumference of the conductive hollow core. Method. 前記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳み、幅方向両側部分の端部同士をオーバーラップさせるに際し、基材の少なくともオーバーラップ部に熱可塑性樹脂粒子を予め散布しておき、該熱可塑性樹脂粒子を加熱することによりオーバーラップされる基材の端部同士を仮止めする、請求項1〜14のいずれかに記載のFRPパイプの製造方法。   Folding both side portions of the laminated base materials in the width direction to the flexible hollow core side and overlapping the end portions of both side portions in the width direction with thermoplastic resin particles at least in the overlap portion of the base material The manufacturing method of the FRP pipe in any one of Claims 1-14 which spread | disperse beforehand and temporarily fixes the edge parts of the base material overlapped by heating this thermoplastic resin particle. 前記可撓性中空中子を伸縮性を有するゴム製の中子から構成し、該ゴム製中子の初期外径を、成形すべきFRPパイプの内径の90%以上に設定しておく、請求項1〜15のいずれかに記載のFRPパイプの製造方法。   The flexible hollow core is composed of a rubber core having elasticity, and the initial outer diameter of the rubber core is set to 90% or more of the inner diameter of the FRP pipe to be molded. Item 16. A method for producing an FRP pipe according to any one of Items 1 to 15. 前記可撓性中空中子を樹脂フィルムのシートを熱融着して筒状に形成した中子から構成し、該フィルムシート熱融着中子の初期外径を、成形すべきFRPパイプの内径と同径かそれ以上に設定しておく、請求項1〜15のいずれかに記載のFRPパイプの製造方法。   The flexible hollow core is composed of a core formed in a tubular shape by thermally fusing a resin film sheet, and the initial outer diameter of the film sheet heat-fusible core is the inner diameter of the FRP pipe to be molded. The manufacturing method of the FRP pipe in any one of Claims 1-15 set to the same diameter or more than that. 前記キャビティ内面の少なくとも最上部またはその近傍に設けられた真空吸引ラインと、前記キャビティ内面の少なくとも最下部またはその近傍に設けられた2本の樹脂注入ラインとを、上下方向における位置を逆転させた成形型を用いる、請求項1〜17のいずれかに記載のFRPパイプの製造方法。   The vacuum suction line provided at least at the uppermost part of the cavity inner surface or in the vicinity thereof and the two resin injection lines provided at least at the lowermost part of the cavity inner surface or in the vicinity thereof are reversed in the vertical direction. The manufacturing method of the FRP pipe in any one of Claims 1-17 using a shaping | molding die. 前記積層された各基材の幅方向両側部分を可撓性中空中子側に折り畳んで可撓性中空中子を複数枚の基材で包み込むまでの工程を、前記成形型とは別の作業台上で行い、そこから、可撓性中空中子を内包した折り畳み基材を成形型内に移送する、請求項1〜18のいずれかに記載のFRPパイプの製造方法。   The process of folding the both sides of the laminated base materials in the width direction to the flexible hollow core side and wrapping the flexible hollow core with a plurality of base materials is performed separately from the mold The manufacturing method of the FRP pipe in any one of Claims 1-18 which performs on a stand and transfers the folding base material which included the flexible hollow core into a shaping | molding die from there.
JP2009294189A 2009-12-25 2009-12-25 Manufacturing method of FRP pipe Active JP5522517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294189A JP5522517B2 (en) 2009-12-25 2009-12-25 Manufacturing method of FRP pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294189A JP5522517B2 (en) 2009-12-25 2009-12-25 Manufacturing method of FRP pipe

Publications (2)

Publication Number Publication Date
JP2011131523A JP2011131523A (en) 2011-07-07
JP5522517B2 true JP5522517B2 (en) 2014-06-18

Family

ID=44344771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294189A Active JP5522517B2 (en) 2009-12-25 2009-12-25 Manufacturing method of FRP pipe

Country Status (1)

Country Link
JP (1) JP5522517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3048634B1 (en) * 2016-03-11 2018-04-06 Safran Aircraft Engines DEVICE AND METHOD FOR INJECTION MOLDING A LIQUID POLYMER
KR102457318B1 (en) * 2020-03-26 2022-10-21 (주)플로닉스 Pipe connection structure using flare member and method of manufacturing same

Also Published As

Publication number Publication date
JP2011131523A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
WO2010092979A1 (en) Method for bonding cylindrical members, method for manufacturing composite cylindrical body, method for molding fiber-reinforced resin molded object and molded object
KR101274263B1 (en) composite tube production
JP6066548B2 (en) Method for producing hollow member made from composite fiber and molding system for carrying out the method
JPH04270610A (en) Crossover formation device for consolidating composite material
JP2013022834A (en) Composite material of fiber-reinforced resin and lightweight core, and method and apparatus for producing the same
EP3010703B1 (en) Method for infusing resin into a composite laminate
JP5522517B2 (en) Manufacturing method of FRP pipe
JP2018149737A (en) Method of manufacturing reinforcing layer
TWI744119B (en) Method for manufacturing fiber reinforced resin molded article, and manufacturing device thereof
JP2003025347A (en) Vacuum rtm molding method
WO2014115668A1 (en) Method for molding hollow molding and method for manufacturing fiber reinforced plastic
JP6153766B2 (en) Outline cowl with expansion region
KR20120115665A (en) Hollow composite structural articles formed by incremental pressure assisted resin transfer molding and method for making the same
JP7230833B2 (en) METHOD AND APPARATUS FOR MANUFACTURING FIBER REINFORCED RESIN MOLDED PRODUCTS
JP6897607B2 (en) How to manufacture high pressure tank
JP2021112855A (en) Manufacturing method and apparatus for fiber-reinforced resin molded products
CN110948909A (en) Forming method of square equal-section large-size composite material box
TW202140248A (en) Method and apparatus for manufacturing a shell body by using a three-dimensional structure fiber cloth and a three-dimensional vacuum infusion process
CN111577530A (en) Foam filling type blade trailing edge bonding angle and preparation method thereof
JP5427543B2 (en) Cylindrical member joining method, cylindrical molded body molding method, and molded body
KR102640006B1 (en) A method of sealing a detachable mandrel using a shrink film and a method of forming a pressure vessel using a sealed detachable mandrel
JP2011073288A (en) Method of molding joint for fiber-reinforced resin pipe
JP2018001459A (en) Fiber-reinforced resin molding of branch pipe, and method for producing fiber-reinforced resin molding of branch pipe
JP5374304B2 (en) Fiber reinforced resin cheese molding method
KR101887759B1 (en) Manufacturing apparatus of hybrid pin and method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R151 Written notification of patent or utility model registration

Ref document number: 5522517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151