JP5521411B2 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP5521411B2
JP5521411B2 JP2009159041A JP2009159041A JP5521411B2 JP 5521411 B2 JP5521411 B2 JP 5521411B2 JP 2009159041 A JP2009159041 A JP 2009159041A JP 2009159041 A JP2009159041 A JP 2009159041A JP 5521411 B2 JP5521411 B2 JP 5521411B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor laser
laser device
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009159041A
Other languages
English (en)
Other versions
JP2011014792A (ja
Inventor
雄太 吉田
祥男 狩野
隆浩 横山
真 中島
英治 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2009159041A priority Critical patent/JP5521411B2/ja
Priority to US12/813,235 priority patent/US8619829B2/en
Priority to CN2010102097319A priority patent/CN101944706B/zh
Publication of JP2011014792A publication Critical patent/JP2011014792A/ja
Application granted granted Critical
Publication of JP5521411B2 publication Critical patent/JP5521411B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

本発明は複数の発光部を有するマルチビーム形式の半導体レーザ装置に係り、特にジャンクションアップマウント構成の半導体レーザ装置に関する。
従来、この種の半導体レーザ装置は例えばレーザビームプリンタなどの電子機器に用いられている。この半導体レーザ装置では、各々発光部(エミッタ)が形成された複数の帯状リッジ部の上にそれぞれ帯状電極(上部電極)が設けられると共に、これら帯状電極それぞれには外部取り出し用のパッド電極が電気的に接続されている。また、隣り合うエミッタの間には分離溝が設けられ、各エミッタは独立に駆動される(例えば特許文献1)。このようなマルチビームレーザ装置では、近年の装置のコンパクト化に伴ってビームピッチが数十μm程度の狭ピッチとなっている。
図11はこのような狭ピッチタイプのマルチビームレーザ装置の平面構成を表すものである。このマルチビームレーザ装置は次のような手順で作製されている。すなわち基板100上にエミッタを含む複数のリッジ部101を帯状に形成したのち、各リッジ部101の上に蒸着法により上部電極102を形成する。次に、これらリッジ部101間に分離溝103を形成することにより各エミッタ間の電気的分離を行ってから、一度全面を絶縁膜104により覆う。そののち絶縁膜104に上部電極102それぞれに対するコンタクト窓105を形成する。このコンタクト窓105は図11に示したように配線層106の直下のみに形成される場合もあり、あるいはこの直下部分に配線層106が位置する部分以外の領域(放熱領域)を含めて同時に形成される場合もある。これら複数のコンタクト窓105は、上部電極102と配線層106およびパッド電極107との電気的接続が目的であるので、各エミッタに対して均等な大きさに作製されている。
特開2000−269601号公報 特開平12−021785号公報
しかしながら、上述のような狭ピッチのマルチレーザ装置において、複数のエミッタにおいて同時発光がなされた場合には、各ビームは他のビームからの熱の影響を受ける。そのため特に中央部分のビームは両端側のビームよりも温度が高くなって長波長化する。すなわち複数のビーム間でその発振波長の大きさに差を生じるという問題があった。
また、このような長波長化の問題は構造基板に形成されたマルチレーザ装置でも生じていた。すなわちSDH構造(Separated Double Heterostructure)を有する半導体レーザ(例えば特許文献2)でも複数のビーム間でその発振波長の大きさに差が生じている。但し、狭ピッチの場合とは逆に、SDH構造では両端側のビームが長波長化するという問題があった。SDH構造の半導体レーザは、半導体層の成長時に(111)B面が出現することを利用して製造されるものであり、両端側と中央側のエミッタでは活性層幅・高さが異なる傾向がある。そのためエミッタの発振波長は中央から両端側になるにつれて次第に長波長化すると考えられる。
このように従来のマルチビームレーザ装置においては、狭ピッチ化に伴うビーム相互間の影響や構造上の問題に起因して所望の発振波長を得ることができず、マルチビーム全体にわたって均一な波長を得ることができないという問題があった。
本発明はかかる問題点に鑑みてなされたもので、その目的は、狭ピッチ化や構造上の問題に起因するビームの長波長化を抑制し、各発光部において所望の発振波長を得ることの可能な半導体レーザ装置を提供することにある。
本発明の半導体レーザ装置は、帯状に3つ以上並列配置されると共に延在方向の端面からビームを発生する発光部と、発光部各々の上面に沿って設けられた複数の第1電極と、複数の第1電極の全面を覆うと共に、第1電極毎に対応してコンタクト用開口を有する絶縁膜と、複数の発光部とは異なる部位に第1電極に対応付けて設けられた複数の第2電極と、絶縁膜上に設けられると共に、コンタクト用開口を介して第2電極各々と対応する第1電極とを電気的に接続する配線層と、絶縁膜に対して発光部毎に設けられると共に、第1電極を露出させる複数の窓領域とを備えたものであり、窓領域の面積は、複数の発光部のうち中央の発光部では相対的に狭く、両端側の発光部では相対的に広くなっている。
るいは、複数の発光部のうち両端側の発光部では相対的に狭く、中央の発光部では相対的に広くなる。レーザ構造がSDH構造の構造基板上に形成されたものである場合には前者の態様、レーザ構造が通常の基板に形成され、かつ狭ピッチ化されたものである場合には後者の態様とすることが望ましい。なお、狭ピッチとは、ビームピッチが数十μm程度以下のものをいう。
本発明の半導体レーザ装置では、放熱用の窓領域の面積を、並列配置された複数の発光部の位置に対応させて異ならせる(例えば中央部では相対的に広くする一方両端部では狭くする、あるいはその逆とする)ことにより、各発光部での放熱機能を制御することができ、よって長波長化が抑制される。
本発明の半導体レーザ装置によれば、上部電極上の絶縁膜に各発光部に対応して放熱用の窓領域を設けると共に、これら窓領域の少なくとも2つの領域において互いの面積が異なるようにしたので、各発光部での放熱機能を制御することができる。よってビームの長波長化を抑制し、各発光部において所望の発振波長を得ることができると共に、全ビームにおける発振波長の均一化を図ることが可能になる。
本発明の第1の実施の形態に係る半導体レーザ装置の平面図である。 図1の半導体レーザ装置の一部を表す斜視図である。 図2のIII−III線に沿った断面構成を表す図である。 図1の半導体レーザ装置によるビーム位置と波長との関係を従来例と比較して表す特性図である。 変形例1に係る平面図である。 変形例2に係る平面図である。 本発明の第2の実施の形態に係る半導体レーザ装置の平面図である。 図6の半導体レーザ装置の一部を表す斜視図である。 図7のVIII−VIII線に沿った断面構成を表す図である。 変形例3を表す平面図である。 従来の半導体レーザ装置の構成を表す平面図である。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態
SDH構造を有するマルチビームレーザ装置の例
2.変形例1
窓領域のパターンの変形例
3.変形例2
配線層のパターンの変形例
4.第2の実施の形態
他のマルチビームレーザ装置の例
5.変形例3
[第1の実施の形態]
図1は本発明の第1の実施の形態に係る半導体レーザ装置1の平面構成の一例を表したものである。この半導体レーザ装置1はSDH構造を有する端面発光型のマルチビーム半導体レーザ装置である。
この半導体レーザ装置1は、複数(ここでは一例として8個)のリッジ部11(11A〜11H)を有する構造基板10の各リッジ部11にレーザ構造を備えたものである。リッジ部11A〜11Hは図1においてy軸方向に帯状に延在し、互いに並列配置されている。リッジ部11A〜11Hにはそれぞれ発光部(エミッタ)12が設けられており、各々延在方向の端面からレーザビームを出射するようになっている。
各リッジ部11の上面には上部電極13(第1電極)が設けられている。この上部電極13は発光部12に対する1組の電極(p側電極およびn側電極)のうちの一方の電極(ここではn側電極)に相当する。リッジ部11A〜11Hは分離溝14により互いに分離されている。ここでは8個のリッジ部11のうち例えば2つのリッジ部11D,11Eが「中央のリッジ部」、リッジ部11A,11Hがそれぞれ「両端側のリッジ部」となる。
これら上部電極13は絶縁膜15により覆われている。絶縁膜15の上部電極13毎に対向する位置にはコンタクト用開口16が設けられている。これらコンタクト用開口16は後述の配線層18と上部電極13との電気的接続を行うためのものである。複数のリッジ部11および分離溝14を間にして構造基板10の表面の両脇にはそれぞれリッジ部11の延在方向に平行に4個,計8個のパッド電極17(第2電極)が配列されている。絶縁膜15上には、これらパッド電極17それぞれに対応して上部電極13に直交する方向に複数の配線層18が配列されている。これら配線層18により上部電極13と対応するパッド電極17とが電気的に接続されている。配線層18は後述(図2)のように分離溝14上に架橋されている。この配線層18と上部電極13とは絶縁膜15に設けられたコンタクト用開口16を介して接触している。
絶縁膜15には、また、リッジ部11毎に上部電極13に対向して複数の窓領域19(19A〜19H)が設けられている。この窓領域19は、中央のリッジ部11D,11Eの窓領域19D,19Eが相対的に狭く、両端側のリッジ部11A,11Hの窓領域19A,19Hが相対的に広くなっている。また、この窓領域19の面積はリッジ部11の中央から両端側になるにつれて順次段階的に広くなっている。窓領域19A〜19Hそれぞれの面積は、各リッジ11毎に設けられた複数の窓パターンの合計による。なお、本実施の形態では、コンタクト用開口16は窓領域19と一体の開口パターンとして形成されているが、一体化することなく別々に形成するようにしてもよい。
前述のようにSDH構造を有する半導体レーザでは、両端側と中央側のエミッタでは活性層幅・高さが異なる傾向がある。その理由は以下のように考えられる。SDH構造を有するレーザでは、(111)B面が結晶成長することがなく、そのため(111)B面に供給された原料はリッジ部上の(100)面上に移動(マイグレート)しリッジ部上面の成長速度が速くなる、という特徴を有している。中央のリッジ部11D,11Eでは両隣にも同じレーザ構造が存在するので、(111)B面の領域が多くなり、その分リッジ部上面の成長速度がより速くなる。これに対して、両側のリッジ部11A,11Hでは片側にしかレーザ構造が存在しないため(111)B面の領域が少なく、そのためリッジ部上面の成長速度が遅い。このようなことから中央のエミッタの活性層の幅が相対的に狭く、厚くなっている。すなわち、両端側と中央側のエミッタでは活性層幅・高さが異なり、その結果、両端側のエミッタの発振波長が中央のエミッタのそれに比べて長波長化すると推測される。
図2はこの半導体レーザ装置1の概略構成の一例を斜視的に表したものであり、図3は図1のIII−III線に沿った断面構造を表すものである。なお、ここでは簡略化して図1のy軸方向の中央2列のみを示している。構造基板10は、(100)面方位を有するp型のGaAs基板20の一主面にリッジ部11(11A〜11H)を有するものである。リッジ部11A〜11Hは[011]方向に延在している。これら帯状のリッジ部11A〜11Hは、例えばGaAs基板20上に[011]方向に延びる所定幅の帯(ストライプ)状のレジスパターンを形成したのち、このレジスパターンをマスクとしてGaAs基板20のウエットエッチングを行うことにより形成される。
構造基板10上には半導体層21が設けられ、この半導体層21にリッジ部11A〜11H毎の発光部12が含まれている。半導体層21は、例えばMOCVD(Metal Organic Chemical Vapor Deposition ;有機金属化学気相成長)法により成長されたバッファ層22、クラッド層23、活性層24およびクラッド層25A,25Bおよびコンタクト層26をこの順に含むものである。例えば、バッファ層22はp型GaAs、クラッド層23はp型AlGaAs、活性層24はAlGaAs、クラッド層25A,25Bはn型AlGaAs、コンタクト層26はn型GaAsによりそれぞれ構成されている。p型不純物としては例えばマグネシウム(Mg)、亜鉛(Zn)など、n型不純物としては例えばケイ素(Si)またはセレン(Se)などが挙げられる。なお、図示しないがリッジ部11A〜11Hの各側面には例えばp型AlGaAs層,n型AlGaAs層およびp型AlGaAs層を含む電流ブロック層が設けられている。
リッジ部11の配列方向の両端部にはリッジ部11と同等の高さを有する帯状の台座部27が設けられている。この台座部27上に前述のパッド電極17が設けられている。分離溝14は構造基板10の上部にまで達し、これにより半導体層21は分離溝14によって複数に空間分離されている。なお、分離溝14が構造基板10にまで達しないで半導体層21が分離溝14によって完全に空間分離されていない態様としてもよい。あるいは分離溝14を絶縁材料により埋め込むようにしてもよい。
分離溝14の幅(分離溝14の延在方向と直交する方向の幅)は、リッジ部11の幅(リッジ部11の延在方向(共振器方向)と直交する方向の幅)よりも狭くなっている。
各リッジ部11にはリッジ部11をリッジ部11の延在方向から挟み込む一対の前端面S1および後端面S2が形成されており、これら前端面S1および後端面S2によって共振器が構成されている。一対の前端面S1および後端面S2は例えばへき開によって形成されたものであり、所定の間隙を介して互いに対向配置されている。
パッド電極17はリッジ部11と平行な方向に一列に配置されているが、これらパッド電極17はリッジ部11の延在方向において互い違いに(千鳥足状に)配置されていてもよい。パッド電極17の形状は図1に示したような四角形に限るものではなく任意であり、例えば円形、楕円形あるいは三角形状などの多角形状としてもよい。
構造基板10の裏面には下部電極28が設けられている。この下部電極28は構造基板10の裏面全体に形成されており、構造基板10と電気的に接続されている。
上部電極13、パッド電極17および配線層18は、例えば、金(Au)とゲルマニウム(Ge)との合金、ニッケル(Ni)および金(Au)とを構造基板10側からこの順に積層して構成されている。これら上部電極13、パッド電極17および配線層18は上記以外の材料の積層構造としてもよい。また、上部電極13、パッド電極17および配線層18は同一の材料によって構成されていてもよいし、互いに異なる材料によって構成されていてもよい。絶縁膜15は例えばSiN、SiO2 、SiON、Al23 またはAlNによって構成されている。下部電極28は例えば、チタン(Ti)、白金(Pt)および金(Au)をリッジ部11の上面側からこの順に積層して構成されている。
次に、図1〜図3を参照して絶縁膜15への窓領域19の形成工程を中心に半導体レーザ装置1の製造方法の一例について説明する。
まず、帯状のリッジ部11(11A〜11H)を有する構造基板10の各リッジ部11上に、バッファ層22、クラッド層23、活性層24およびクラッド層25A,25Bおよびコンタクト層26を含む発光部12を形成したのち、各リッジ部11A〜11Hの上に蒸着法により上部電極13を形成する。次いで、リッジ部11間に分離溝14を設けることにより各エミッタ間の電気的分離を行ってから、例えば蒸着法により全面に絶縁膜15を形成する。
次に、例えばレジストマスクを利用したエッチングにより絶縁膜15に対して上部電極13と配線層18とのコンタクト用開口16を形成すると同時に、放熱用の窓領域19(19A〜19H)を形成する。ここでは、窓領域19A〜19Hは、前述のように中央のリッジ部11D,11Eの窓領域19D,19Eが相対的に狭く、両端側のリッジ部11A,11Hの窓領域19A,19Hが相対的に広くなるようにする。そののち、蒸着法等により全面に上述の材料からなる金属層を形成し,パターニングすることによりパッド電極17および配線層18を形成する。これにより上部電極13が配線層18を介してパッド電極17に電極的に接続される。一方、構造基板10の裏面には下部電極28を形成する。このようにして本実施の形態の半導体レーザ装置1が完成する。
本実施の形態の半導体レーザ装置1では、各発光部12において上部電極13と下部電極28との間に所定の電圧が印加されると、活性層24の電流注入領域(発光領域)に電流が注入され、これにより電子と正孔の再結合による発光が生じる。この光は一対の前端面S1および後端面S2により反射され、所定の波長でレーザ発振を生じ、レーザビームとして各発光部12の前端面S1から外部に射出される。
ここで、本実施の形態では、絶縁膜15に放熱用として設ける窓領域19の面積を、中央部のリッジ部11D,11Eでは相対的に狭く、かつ両端部のリッジ部11A,11Hでは広くすると共に、これに合わせて中間のリッジ部11B,11C、11F,11Gの面積を段階的に変化させている。そのため窓領域19による放熱機能は中央から両端側になるにつれて高くなっている。これにより本実施の形態では、構造基板10に起因して発生するビームの長波長化が緩和され、この緩和の程度は窓領域19の大きさに比例して両端側のビームになるにつれて大きくなる。よって全ビームにわたって略均一な発振波長を得ることが可能になる。
ちなみに、図4は本実施の形態によるビーム位置A〜Hと波長との関係を従来例(図11)と比較して表したものである。ビーム位置A〜Hはリッジ11A〜11Hの位置に対応しており、aが本実施の形態の半導体レーザ装置1、bが従来例の結果をそれぞれ示している。これによれば両端側に近い位置ほど長波長化の抑制効果が大きいことが分かる。よって、この半導体レーザ装置1を例えばレーザビームプリンタ等に適用した場合には、安定した印字動作がなされる。
(変形例1)
窓領域19のパターンの位置や大きさ,形状などは上記実施の形態のものに限定されるものではなく、窓領域19による放熱機能がレーザビーム毎に段階的に変化する態様であれば任意である。図5はその一例を表したものである。
(変形例2)
図6は配線層18のパターンの変形例を示したもので、上部電極13との接触部分において配線層18に翼片18aを設けて十字型としたものである。これにより配線層18と上部電極13との接触面積をより確保することが可能になる。
[第2の実施の形態]
図7は本発明の第2の実施の形態に係る半導体レーザ装置2の平面構成の一例を表したものである。この半導体レーザ装置2は端面発光型の通常のLD(laser diode)構造を有するものである。
この半導体レーザ装置2は、基板30上に設けられた複数(ここでは8個)のリッジ部31(31A〜31H)各々にレーザ構造を備えたものである。リッジ部31A〜31Hは図7においてy軸方向に帯状に延在し、互いに並列配置されている。リッジ部31A〜31Hにはそれぞれ発光部(エミッタ)32が設けられており、各々延在方向の端面からレーザビームを生ずるようになっている。なお、リッジ部31A〜31Hの両側にはリッジ部31A〜31Hと同構造のダミーのリッジ部31Iが設けられているが、これらは発光に寄与するものではない。各リッジ部31の上面には上部電極33(第1電極)が設けられている。この上部電極33は発光部32に対する1組の電極(p側電極およびn側電極)のうちの一方の電極(ここではp側電極)に相当する。リッジ部31A〜31Hは分離溝34により互いに分離されている。ここでは8個のリッジ部31のうち例えば2つのリッジ部31D,31Eがそれぞれ「中央のリッジ部」、リッジ部31A,31Hがそれぞれ「両端側のリッジ部」となる。
これら上部電極33は絶縁膜35により覆われている。絶縁膜35には上部電極33毎に後述の配線層38と上部電極33との電気的接続のためのコンタクト用開口36が設けられている。複数のリッジ部31を間にして基板30の表面の両側にはそれぞれリッジ部31の延在方向に平行に4個,計8個のパッド電極37(第2電極)が配列されている。絶縁膜35上には、これらパッド電極37それぞれに対応して上部電極33に直交する方向に複数の配線層38が配列されている。これら配線層38により対応する上部電極33とパッド電極37とが電気的に接続されている。配線層38は分離溝34上に架橋されている。この配線層38と上部電極33とは絶縁膜35に設けられたコンタクト用開口36を介して接触している。ここではコンタクト用開口36は後述の窓領域39と一体の開口パターンにより形成されているが、一体化することなく別々に形成するようにしてもよい。以上の構成は第1の実施の形態と実質的に同じである。
本実施の形態においても、絶縁膜35にはリッジ部31A〜31H毎に上部電極33に対向してそれぞれ窓領域39(39A〜39H)が設けられている。この窓領域39は、中央のリッジ部31D,31Eの窓領域39D,39Eが相対的に広く、両端側のリッジ部31A,31Hの窓領域39A,39Hが相対的に狭くなっている。また、この窓領域39の面積はリッジ部31の両端側から中央になるにつれて順次広くなっている。窓領域39の面積が各リッジ31毎に複数の窓パターンの合計によることは上記実施の形態と同様である。
前述のようにビーム間が狭ピッチのマルチレーザ装置では、複数のエミッタにおいて同時発光がなされた場合に各ビームは他のビームからの熱の影響を受ける。そのため特に中央のリッジ部31D,31Eではビームの温度が高くなって発振波長が長くなるという問題があった。このようなことから本実施の形態では、構造基板を用いた第1の実施の形態とは逆に、窓領域39の面積をリッジ部31の両端側から中央になるにつれて段階的に広くなるようにしたものである。
図8はこの半導体レーザ装置2の概略構成の一例を斜視的に表したものであり、図9は図8のVIII−VIII線に沿った断面構造を表している。なお、図8では図7に示したダミーのリッジ部31Iは省略している。この半導体レーザ装置2は基板30上に半導体層40を備えたものである。半導体層40には、基板30側から下部クラッド層41、活性層42、上部クラッド層43およびコンタクト層44がこの順に含まれている。なお、図示しないが、半導体層40には上記した層以外の層(例えば、バッファ層やガイド層など)がさらに設けられていてもよい。
リッジ部31の配列方向の両端部にはリッジ部31と同等の高さを有する帯状の台座部45が設けられている。この台座部45上にパッド電極37が設けられている。半導体層40が分離溝34によって空間分離されている点などは上記実施の形態の分離溝14の場合と同様である。
リッジ部31は、少なくとも下部クラッド層41の上部、活性層42、上部クラッド層43およびコンタクト層44を含んでおり、これらにより発光部32が構成されている。なお、図9にはリッジ部31が基板30の上部、下部クラッド層41、活性層42、上部クラッド層43およびコンタクト層44を含んでいる場合が例示されている。上部電極33はコンタクト層44および上部クラッド層43と電気的に接続されている。
基板30は例えばp型GaAsにより構成されている。p型不純物としては例えばマグネシウム(Mg)、亜鉛(Zn)などが挙げられる。下部クラッド層41は例えばp型AlGaAsにより構成されている。活性層42は例えばアンドープのAlGaAsにより構成されている。この活性層42においては上部電極33との対向領域を含む帯状の領域が発光領域となる。この発光領域は上部電極33からの電流が注入される電流注入領域に対応している。上部クラッド層43は例えばn型AlGaAs、コンタクト層44は例えばn型GaAsにより構成されている。n型不純物としては例えばケイ素(Si)またはセレン(Se)などが挙げられる。
分離溝34の幅(分離溝34の延在方向と直交する方向の幅)は、リッジ部31の幅(リッジ部31の延在方向(共振器方向)と直交する方向の幅)よりも狭くなっている。具体的には、リッジ部31のが数十μm程度(例えば30μm)となっているときに、分離溝34の幅は数μm程度(例えば3μm)となっている。すなわち本実施の形態の半導体レーザ装置2はビームピッチが数十μm程度の狭ピッチタイプのレーザである。
基板30の裏面には下部電極46が設けられている。この下部電極46は、例えば基板30の裏面全体に形成されており、基板30と電気的に接続されている。
上部電極33、パッド電極37および配線層38は、例えば、金(Au)とゲルマニウム(Ge)との合金、ニッケル(Ni)および金(Au)とを基板30側からこの順に積層して構成されている。これら上部電極33、パッド電極37および配線層38は、上記以外の材料の積層構造となっていてもよい。また、上部電極33、パッド電極37および配線層38は、互いに同一の材料によって構成されていてもよいし、互いに異なる材料によって構成されていてもよい。絶縁膜35は、例えばSiN、SiO2 、SiON、Al23 またはAlNによって構成されている。下部電極46は、例えばチタン(Ti)、白金(Pt)および金(Au)をリッジ部31の上面側からこの順に積層して構成されている。
次に、図7〜図9を参照して絶縁膜35への窓領域39の形成工程を中心に半導体レーザ装置2の製造方法の一例について説明する。
まず、基板30上にエミッタを含む複数のリッジ部31(31A〜31H)を形成したのち、各リッジ部31A〜31Hの上に蒸着法により上部電極33を形成する。次いで、リッジ部31間に分離溝34を設けることにより各エミッタ間の電気的分離を行ってから、例えば蒸着法により全面に絶縁膜35を形成する。
次に、例えばレジストマスクを利用したエッチングにより、絶縁膜35に対して上部電極33と配線層38とのコンタクト用開口36を形成すると同時に、放熱用の窓領域39(39A〜39H)を形成する。ここでは、窓領域39A〜39Hは、上述のように中央のリッジ部31D,31Eの窓領域39D,39Eが相対的に広く、両端側のリッジ部31A,31Hの窓領域39A,39Hが相対的に狭くなるようにする。そののち、蒸着法等により全面に上述の材料からなる金属層を形成し,パターニングすることによりパッド電極37および配線層38を形成する。一方、基板30の裏面には下部電極46を形成する。このようにして本実施の形態の半導体レーザ装置2が製造される。
本実施の形態の半導体レーザ装置2では、各発光部32において上部電極33と下部電極46との間に所定の電圧が印加されると、活性層42の電流注入領域(発光領域)に電流が注入され、これにより電子と正孔の再結合による発光が生じる。この光は一対の前端面S1および後端面S2により反射され、所定の波長でレーザ発振を生じ、レーザビームとして各リッジ部31の前端面S1から外部に射出される。
ここで、本実施の形態では、上記第1の実施の形態とは逆に、絶縁膜35に放熱用として設ける窓領域39の面積を、中央部のリッジ部31D,31Eでは広く、両端部のリッジ部31A,31Hでは狭くすると共に、これに合わせて中間のリッジ部31B,31C、31F,31Gの面積を段階的に変化させている。そのため窓領域39による放熱機能は両端側から中央に近づくにつれて高くなっている。これにより本実施の形態では、狭ピッチ化に伴って発生するビームの長波長化が緩和され、この緩和の程度は窓領域39の大きさに比例して両端側から中央のビームになるにつれて大きくなる。よって全ビームにわたって略均一な発振波長を得ることが可能になる。すなわちこの半導体レーザ装置2をレーザビームプリンタ等に適用した場合においても、安定した印字動作がなされる。
以上、第1および第2の実施の形態およびその変形例を挙げて本発明を説明したが、本発明は上記実施の形態等に限定されるものではなく、種々変形可能である。
例えば、上記各実施の形態等では、リッジ部11(31)の両脇に台座部27(45)を設けた例について説明したが、これら台座部27(45)をなくしてもよい。そのようにした場合には、パッド電極17(37)は構造基板10(基板30)の上面のうち、台座部をなくすることによって露出した領域に形成すればよい。
また、上記実施の形態では複数のパッド電極17(37)をリッジ部11(31)の両脇に2分割して配置しているが、図10に示したように全てを片側のみに配置させるようにしてもよい(変形例3)。
また、上記実施の形態では1のパッド電極17(37)に対して1の上部電極13(33)が対応するようにしたが、1のパッド電極17(37)に対して複数の上部電極13(33)が電気的に接続される構成、すなわち1のパッド電極により複数のエミッタを同時に駆動するようにしてもよい。更に、半導体レーザ装置1,2はレーザプリンタに限らず、その他の電子機器にも適用できることはいうまでもない。
また、上記各実施の形態等では、AlGaAs系の化合物半導体レーザ装置を例にして本発明を説明したが、他の化合物半導体レーザ装置、例えば、AlGaInP系、GaInAsP系などの赤色半導体レーザ装置、GaInN系およびAlGaInN系などの窒化ガリウム系の半導体レーザ装置、ZnCdMgSSeTeなどのII−VI族の半導体レーザ装置にも適用可能である。また、AlGaAs系、InGaAs系、InP系、GaInAsNP系などの、発振波長が可視域とは限らないような半導体レーザ装置にも適用可能である。
加えて、上記実施の形態では、絶縁膜15(35)に設ける窓領域19(39)の面積を中央から両端側にかけて段階的に広く(第1の実施の形態)あるいは段階的に狭く(第2の実施の形態)なるようにしたが、その中間部分については必ずしもすべてが段階的に変化する必要はない。例えば隣接する2つのリッジ部11,31の窓領域が同じである構成が一部に含まれていてもよい。要は、SDH構造などの構造上あるいは狭ピッチ化に伴い生ずるビームの長波長化を実使用において支障のない程度に抑制できるものであればよく、窓領域の面積が厳密な意味で比例的に変化しなくてもよい。更には、少なくとも2つの発光部(エミッタ)を備えたマルチビームレーザ装置において、窓領域の面積(すなわち上部電極の露出面積)がビーム位置による長波長化の程度に応じて互いに異なる構成が含まれていればよい。
また、本発明において、「窓領域の面積が互いに異なる」とは、面積の最も小さな窓領域の、その面積が零(すなわち窓領域がない)の場合も含むものである。例えば第1の実施の形態の中央のリッジ部11D,11E、第2の実施の形態の両端のリッジ部31A,31Hについては他の位置のリッジ部に比べて長波長化する虞が最も低いことから、これらについては窓領域を設けない構成とすることも可能である。
更に、上記実施の形態では、長波長化を抑制することにより複数のビームの均一化を図るようにしているが、窓領域の大きさを調整することにより、ビーム間の発振波長をずらすことも可能である。
1,2…半導体レーザ装置、10…構造基板、11,30…基板、31…リッジ部、12,32…発光部(エミッタ)、13,33…上部電極(第1電極)、14,34…分離溝、15,45…絶縁膜、16,36…コンタクト用開口、17,37…パッド電極(第2電極)、18,38…配線層、19,39…窓領域

Claims (6)

  1. 帯状に3つ以上並列配置されると共に延在方向の端面からビームを発生する発光部と、
    前記発光部各々の上面に沿って設けられた複数の第1電極と、
    前記複数の第1電極の全面を覆うと共に、前記第1電極毎に対応してコンタクト用開口を有する絶縁膜と、
    前記複数の発光部とは異なる部位に前記第1電極に対応付けて設けられた複数の第2電極と、
    前記絶縁膜上に設けられると共に、前記コンタクト用開口を介して前記第2電極各々と前記対応する第1電極とを電気的に接続する配線層と、
    前記絶縁膜に対して前記発光部毎に設けられると共に、前記第1電極を露出させる複数の窓領域とを備え、
    前記窓領域の面積は、前記複数の発光部のうち中央の発光部では相対的に狭く、両端側の発光部では相対的に広くなっている
    半導体レーザ装置。
  2. 前記両端側と中央側の発光部は、その活性層の幅・高さが異なる
    請求項記載の半導体レーザ装置。
  3. 前記発光部は分離溝を間にして帯状に並列配置された複数のリッジ部にそれぞれ設けられている
    請求項1記載の半導体レーザ装置。
  4. 前記配線層は前記分離溝上に架橋されている
    請求項記載の半導体レーザ装置。
  5. 前記複数の第2電極は、前記リッジ部および前記分離溝を両脇から挟み込む2つの領域に2分割して配置されている
    請求項記載の半導体レーザ装置。
  6. 前記複数の第2電極は全て、前記リッジ部および前記分離溝を両脇から挟み込む2つの領域のうち一方の領域に配置されている
    請求項記載の半導体レーザ装置。
JP2009159041A 2009-07-03 2009-07-03 半導体レーザ装置 Active JP5521411B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009159041A JP5521411B2 (ja) 2009-07-03 2009-07-03 半導体レーザ装置
US12/813,235 US8619829B2 (en) 2009-07-03 2010-06-10 Semiconductor laser device
CN2010102097319A CN101944706B (zh) 2009-07-03 2010-06-25 半导体激光设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009159041A JP5521411B2 (ja) 2009-07-03 2009-07-03 半導体レーザ装置

Publications (2)

Publication Number Publication Date
JP2011014792A JP2011014792A (ja) 2011-01-20
JP5521411B2 true JP5521411B2 (ja) 2014-06-11

Family

ID=43412637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009159041A Active JP5521411B2 (ja) 2009-07-03 2009-07-03 半導体レーザ装置

Country Status (3)

Country Link
US (1) US8619829B2 (ja)
JP (1) JP5521411B2 (ja)
CN (1) CN101944706B (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981092B2 (ja) * 2011-03-23 2016-08-31 ローム株式会社 マルチビーム半導体レーザ装置
JP5890104B2 (ja) * 2011-03-23 2016-03-22 ローム株式会社 マルチビーム半導体レーザ装置
JP2013077753A (ja) * 2011-09-30 2013-04-25 Sumitomo Electric Device Innovations Inc 半導体レーザ及びその製造方法
CN106936069A (zh) * 2015-12-30 2017-07-07 中国科学院苏州纳米技术与纳米仿生研究所 一种面发射激光器及其制备方法
JP6627651B2 (ja) * 2016-06-09 2020-01-08 三菱電機株式会社 レーザ素子、レーザ素子の製造方法
CN112204833A (zh) * 2018-05-30 2021-01-08 华为技术有限公司 激光器芯片设计

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4462657B2 (ja) * 1998-06-04 2010-05-12 ソニー株式会社 半導体発光素子およびその製造方法
JP4154757B2 (ja) 1998-07-06 2008-09-24 ソニー株式会社 AlGaAs層の成長方法および半導体レーザの製造方法
JP4457427B2 (ja) 1999-03-18 2010-04-28 ソニー株式会社 半導体発光装置とその製造方法
JP2001144367A (ja) * 1999-11-11 2001-05-25 Mitsubishi Electric Corp 半導体レーザ装置及びその駆動方法
JP4662006B2 (ja) * 2001-05-11 2011-03-30 ソニー株式会社 マルチビーム半導体発光装置
JP2003008145A (ja) * 2001-06-27 2003-01-10 Sony Corp 半導体レーザおよびその製造方法
JP2003179297A (ja) * 2001-12-13 2003-06-27 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体レーザ
JP4590820B2 (ja) * 2002-12-16 2010-12-01 富士ゼロックス株式会社 面発光型半導体レーザおよびその製造方法
EP1770836B1 (de) * 2005-09-29 2015-04-22 OSRAM Opto Semiconductors GmbH Laserdiodenvorrichtung, Laseranordnung mit mindestens einer Laserdiodevorrichtung und optisch gepumpter Laser
US7767595B2 (en) * 2006-10-26 2010-08-03 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5092432B2 (ja) * 2007-02-02 2012-12-05 富士ゼロックス株式会社 面発光型半導体レーザ、面発光型半導体レーザの製造方法、光学装置、光照射装置、情報処理装置、光送信装置、光空間伝送装置および光伝送システム
JP5029079B2 (ja) * 2007-03-15 2012-09-19 富士ゼロックス株式会社 半導体素子および光学装置
JP4573882B2 (ja) * 2007-05-24 2010-11-04 三洋電機株式会社 半導体レーザ装置
JP4965354B2 (ja) * 2007-06-20 2012-07-04 株式会社リコー 半導体レーザ装置、光書込器およびプリンタ装置

Also Published As

Publication number Publication date
CN101944706A (zh) 2011-01-12
CN101944706B (zh) 2012-08-08
US8619829B2 (en) 2013-12-31
JP2011014792A (ja) 2011-01-20
US20110002354A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
US8022424B2 (en) Semiconductor device and method of manufacturing it
JP5521411B2 (ja) 半導体レーザ装置
US8179941B2 (en) Laser diode and method of manufacturing the same
US7580436B2 (en) Surface-emitting type semiconductor laser and method for manufacturing the same
US7653110B2 (en) Semiconductor laser apparatus and method for mounting semiconductor laser apparatus
US20210384701A1 (en) Semiconductor laser apparatus and semiconductor laser device
JP2011029339A (ja) 半導体素子およびその製造方法
US8802468B2 (en) Semiconductor light emitting device and fabrication method for semiconductor light emitting device
JP2011014632A (ja) 半導体レーザ
JP4697488B2 (ja) マルチビーム半導体レーザ
JP2009283605A (ja) 半導体レーザ
JP3857294B2 (ja) 半導体レーザ
JP2001015851A (ja) 半導体レーザ素子及びその作製方法
US20230130363A1 (en) Quantum cascade laser element and quantum cascade laser device
JP2001244560A (ja) 半導体発光装置の製造方法及び半導体発光装置
JP6140101B2 (ja) 半導体光装置
JP4799847B2 (ja) 半導体レーザ素子及びその製造方法
US5157682A (en) Integrated semiconductor laser device
JPS63122187A (ja) 半導体レ−ザ
US20230117347A1 (en) Quantum cascade laser element and quantum cascade laser device
JP5437109B2 (ja) 半導体レーザ装置
JP4977992B2 (ja) 半導体発光装置およびその製造方法
JP6958592B2 (ja) 面発光型半導体レーザ素子
WO2023140224A1 (ja) 半導体レーザ装置及び半導体レーザ素子の製造方法
US20230139139A1 (en) Quantum-cascade laser element and quantum-cascade laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R151 Written notification of patent or utility model registration

Ref document number: 5521411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250