JP5509644B2 - Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery - Google Patents

Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery Download PDF

Info

Publication number
JP5509644B2
JP5509644B2 JP2009071662A JP2009071662A JP5509644B2 JP 5509644 B2 JP5509644 B2 JP 5509644B2 JP 2009071662 A JP2009071662 A JP 2009071662A JP 2009071662 A JP2009071662 A JP 2009071662A JP 5509644 B2 JP5509644 B2 JP 5509644B2
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
lithium secondary
lithium
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009071662A
Other languages
Japanese (ja)
Other versions
JP2010225423A (en
Inventor
英郎 坂田
明天 高
博之 有馬
瞳 中澤
俊郎 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009071662A priority Critical patent/JP5509644B2/en
Publication of JP2010225423A publication Critical patent/JP2010225423A/en
Application granted granted Critical
Publication of JP5509644B2 publication Critical patent/JP5509644B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池の電極合剤用スラリー、電極、その製造方法およびリチウム二次電池に関する。   The present invention relates to a slurry for an electrode mixture of a lithium secondary battery, an electrode, a production method thereof, and a lithium secondary battery.

リチウム二次電池の電極は、電極活物質および結着剤を水性分散媒に混練分散させたスラリーを集電体に塗工し乾燥して製造されている。なかでも正極活物質としてはリチウム含有遷移金属複合酸化物が有用であり、結着剤としてはポリテトラフルオロエチレン(PTFE)が使用され、集電体としてはアルミニウム箔に代表される金属箔が用いられている。しかし、PTFEは正極活物質との接着性は良好であるが集電体との接着性に難がある。また、リチウム含有遷移金属複合酸化物は硬い材料であるため、正極の柔軟性を損なう傾向にある。   An electrode of a lithium secondary battery is manufactured by applying a slurry obtained by kneading and dispersing an electrode active material and a binder in an aqueous dispersion medium to a current collector and drying it. Among them, lithium-containing transition metal composite oxide is useful as the positive electrode active material, polytetrafluoroethylene (PTFE) is used as the binder, and metal foil typified by aluminum foil is used as the current collector. It has been. However, although PTFE has good adhesion to the positive electrode active material, it has difficulty in adhesion to the current collector. Further, since the lithium-containing transition metal composite oxide is a hard material, it tends to impair the flexibility of the positive electrode.

集電体や電極活物質との接着性を改善するため、結着剤としてPTFEとテトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)とを併用し、FEPの融点(240〜270℃)以上の温度(具体的には280℃または300℃)に加熱することによりFEPを溶融してPTFE同士の接着およびPTFEと集電体との接着力を向上させようとしている(特許文献1〜3)。   In order to improve the adhesion to the current collector and electrode active material, PTFE and tetrafluoroethylene / hexafluoropropylene copolymer (FEP) are used in combination as a binder, and the melting point of FEP (240 to 270 ° C.) or higher The FEP is melted by heating to a temperature of 280 ° C. (specifically, 280 ° C. or 300 ° C.) to improve the adhesion between the PTFE and the adhesion between the PTFE and the current collector (Patent Documents 1 to 3). .

また、特許文献4にはPTFEとVdF系重合体を結着剤として使用する有機溶剤系の正極合剤ペーストが記載されている。   Patent Document 4 describes an organic solvent-based positive electrode mixture paste using PTFE and a VdF polymer as a binder.

特開2000−149954号公報JP 2000-149954 A 特開2001−216957号公報JP 2001-216957 A 特開2001−266854号公報JP 2001-266854 A 特開平10−134819号公報JP-A-10-134819

しかし、FEPの融点以上、具体的には280℃以上の温度に加熱するためには特別の加熱処理装置が必要になるほか、エネルギー的にも不利である。   However, in order to heat to a temperature higher than the melting point of FEP, specifically 280 ° C. or higher, a special heat treatment apparatus is required, which is disadvantageous in terms of energy.

また、最近の正極活物質は表面コート等の技術により活物質のアルカリ性を抑える技術が開発され特許文献4のように水を溶媒として使用した場合でも使用できるようになった。   Moreover, the technique of suppressing the alkalinity of an active material was developed for the recent positive electrode active material by techniques, such as surface coating, and even if water was used as a solvent like patent document 4, it became possible to use.

本発明は、比較的低い温度での熱処理を行うことで充分な接着力を確保でき、しかもリチウム二次電池特性に悪影響を与えない電極を低コストで提供することを目的とする。   An object of the present invention is to provide an electrode that can secure a sufficient adhesive force by performing a heat treatment at a relatively low temperature and that does not adversely affect the characteristics of a lithium secondary battery at a low cost.

本発明は、電極活物質(a)と結着剤(b)と融点が240℃未満の低融点フッ素樹脂(c)と水性分散媒(d)とを含むリチウム二次電池の電極合剤用スラリーに関する。   The present invention provides an electrode mixture for a lithium secondary battery comprising an electrode active material (a), a binder (b), a low melting point fluororesin (c) having a melting point of less than 240 ° C., and an aqueous dispersion medium (d). Regarding slurry.

低融点フッ素樹脂(c)としては、エチレン/テトラフルオロエチレン系共重合体およびフッ化ビニリデン系重合体よりなる群から選ばれる少なくとも1種が好ましい。   The low melting point fluororesin (c) is preferably at least one selected from the group consisting of an ethylene / tetrafluoroethylene copolymer and a vinylidene fluoride polymer.

電極活物質(a)がリチウム含有遷移金属複合酸化物(a1−1)を含む正極活物質(a1)である場合、リチウム含有遷移金属複合酸化物(a1−1)としては、式(1):LiaMn2-b1 b4(式中、0.9≦a;0≦b≦1.5;M1はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、式(2):LiNi1-c2 c2(式中、0≦c≦0.5;M2はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、またはLiCo1-d3 d2(式中、0≦d≦0.5;M3はFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が好ましい。 When the electrode active material (a) is a positive electrode active material (a1) containing a lithium-containing transition metal composite oxide (a1-1), the lithium-containing transition metal composite oxide (a1-1) is represented by the formula (1) : Li a Mn 2 -b M 1 b O 4 (where 0.9 ≦ a; 0 ≦ b ≦ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, V , Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge), a lithium-manganese spinel composite oxide represented by the formula (2): LiNi 1− c M 2 c O 2 (where 0 ≦ c ≦ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga) And at least one metal selected from the group consisting of In, Si and Ge) Or LiCo 1-d M 3 d O 2 ( where, 0 ≦ d ≦ 0.5; M 3 is Fe, Ni, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, A lithium-cobalt composite oxide represented by (at least one metal selected from the group consisting of Sr, B, Ga, In, Si, and Ge) is preferable.

また本発明は、電極活物質(a)と結着剤(b)、融点が240℃未満の低融点フッ素樹脂(c)および水性分散媒(d)を含むリチウム二次電池用の電極合剤用スラリーを集電体に塗工し、低融点フッ素樹脂(c)の融点以上で240℃未満の温度にて熱処理する工程を含むリチウム二次電池の電極の製造方法にも関する。   The present invention also provides an electrode mixture for a lithium secondary battery comprising an electrode active material (a) and a binder (b), a low melting point fluororesin (c) having a melting point of less than 240 ° C., and an aqueous dispersion medium (d). The present invention also relates to a method for producing an electrode for a lithium secondary battery, which includes a step of applying a slurry for a current collector to a heat treatment at a temperature not lower than 240 ° C. but not lower than the melting point of the low melting point fluororesin (c).

本発明はまた、本発明の製造方法で得られるリチウム二次電池用の電極にも関する。   The present invention also relates to an electrode for a lithium secondary battery obtained by the production method of the present invention.

さらに本発明は、本発明の電極を正極および/または負極とし、非水電解液を備えるリチウム二次電池にも関する。   Furthermore, the present invention also relates to a lithium secondary battery including the non-aqueous electrolyte using the electrode of the present invention as a positive electrode and / or a negative electrode.

本発明によれば、比較的低い温度での熱処理を行うことで充分な接着力を確保でき、しかもリチウム二次電池特性に悪影響を与えない電極を低コストで提供することができる。   According to the present invention, a sufficient adhesive force can be ensured by performing a heat treatment at a relatively low temperature, and an electrode that does not adversely affect the characteristics of the lithium secondary battery can be provided at a low cost.

本発明のリチウム二次電池の電極合剤用スラリーは、電極活物質(a)と結着剤(b)と融点が240℃未満の低融点フッ素樹脂(c)と水性分散媒(d)とを含む。   The slurry for the electrode mixture of the lithium secondary battery of the present invention comprises an electrode active material (a), a binder (b), a low melting point fluororesin (c) having a melting point of less than 240 ° C., and an aqueous dispersion medium (d). including.

以下、各成分について説明する。   Hereinafter, each component will be described.

(a)電極活物質
本発明の電極合剤用スラリーは正極用にも負極用にも使用できる。したがって、電極活物質も正極活物質(a1)でも負極活物質(a2)でもよい。
(A) Electrode active material The slurry for electrode mixture of this invention can be used for positive electrodes and negative electrodes. Therefore, the electrode active material may be the positive electrode active material (a1) or the negative electrode active material (a2).

(a1)正極活物質
正極活物質としては、リチウム含有遷移金属複合酸化物(a1−1)、リチウム含有リン酸(a1−2)などがあげられる。
(A1) Positive electrode active material Examples of the positive electrode active material include lithium-containing transition metal composite oxide (a1-1) and lithium-containing phosphoric acid (a1-2).

(a1−1)リチウム含有遷移金属複合酸化物
正極活物質(a1)としては、式(A1):
Lix1 y2 1-y2
(式中、0.4≦x≦1;0.3≦y≦1;M1はNiおよびMnよりなる群から選ばれる少なくとも1種;M2はCo、AlおよびFeよりなる群れから選ばれる少なくとも1種)で示されるリチウム含有複合金属酸化物である。
(A1-1) Lithium-containing transition metal composite oxide As the positive electrode active material (a1), the formula (A1):
Li x M 1 y M 2 1-y O 2
(Wherein 0.4 ≦ x ≦ 1; 0.3 ≦ y ≦ 1; M 1 is at least one selected from the group consisting of Ni and Mn; M 2 is selected from the group consisting of Co, Al and Fe) A lithium-containing composite metal oxide represented by at least one).

具体的には、
式(A1−1):
LiNixCoyAlz2
(式中、0.7≦x≦1;0≦y≦0.3;0≦z≦0.03;0.9≦x+y+z≦1.1)、
式(A1−2):
LiNixCoyMnz2
(式中、0.3≦x≦0.6;0≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)、
式(A1−3):
LixMnz2
(式中、0.4≦x≦0.6;0.9≦z≦1)、または
式(A1−4):
LiFexCoyMnz2
(式中、0.3≦x≦0.6;0.1≦y≦0.4;0.3≦z≦0.6;0.9≦x+y+z≦1.1)
で示されるリチウム含有複合金属酸化物が好ましい。
In particular,
Formula (A1-1):
LiNi x Co y Al z O 2
(Wherein 0.7 ≦ x ≦ 1; 0 ≦ y ≦ 0.3; 0 ≦ z ≦ 0.03; 0.9 ≦ x + y + z ≦ 1.1),
Formula (A1-2):
LiNi x Co y Mn z O 2
(Wherein 0.3 ≦ x ≦ 0.6; 0 ≦ y ≦ 0.4; 0.3 ≦ z ≦ 0.6; 0.9 ≦ x + y + z ≦ 1.1),
Formula (A1-3):
Li x Mn z O 2
(Wherein 0.4 ≦ x ≦ 0.6; 0.9 ≦ z ≦ 1), or formula (A1-4):
LiFe x Co y Mn z O 2
(Wherein 0.3 ≦ x ≦ 0.6; 0.1 ≦ y ≦ 0.4; 0.3 ≦ z ≦ 0.6; 0.9 ≦ x + y + z ≦ 1.1)
The lithium-containing composite metal oxide represented by

式(A1−1)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiNi0.8Co0.22、LiNi0.7Co0.32、LiNi0.82Co0.15Al0.032、LiNi0.7Co0.2Al0.12、LiNi0.85Co0.1Al0.52などがあげられ、なかでもLiNi0.82Co0.15Al0.032(NCA)が好ましい。 Specific examples of the lithium-containing composite metal oxide represented by the formula (A1-1) include, for example, LiNi 0.8 Co 0.2 O 2 , LiNi 0.7 Co 0.3 O 2 , LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.7 Co 0.2 Al Examples thereof include 0.1 O 2 and LiNi 0.85 Co 0.1 Al 0.5 O 2. Among them, LiNi 0.82 Co 0.15 Al 0.03 O 2 (NCA) is preferable.

式(A1−2)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiNi0.5Mn0.52、LiNi0.75Mn0.252、LiNi0.25Mn0.752、LiNi1/3Co1/3Mn1/32、LiNi0.4Co0.2Mn0.42、LiNi0.3Co0.5Mn0.22などがあげられ、なかでもLiNi1/3Co1/3Mn1/32(NCM)が好ましい。 Specific examples of the lithium-containing composite metal oxide represented by the formula (A1-2) include, for example, LiNi 0.5 Mn 0.5 O 2 , LiNi 0.75 Mn 0.25 O 2 , LiNi 0.25 Mn 0.75 O 2 , LiNi 1/3 Co 1 / 3 Mn 1/3 O 2 , LiNi 0.4 Co 0.2 Mn 0.4 O 2 , LiNi 0.3 Co 0.5 Mn 0.2 O 2, etc., among which LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) preferable.

式(A1−3)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLi0.5MnO2(スピネルマンガン)、LiMnO2などがあげられる。 Specific examples of the lithium-containing composite metal oxide represented by the formula (A1-3) include Li 0.5 MnO 2 (spinel manganese), LiMnO 2 and the like.

式(A1−4)で示されるリチウム含有複合金属酸化物の具体例としては、たとえばLiFe1/3Co1/3Mn1/32、Li0.5Fe1/3Co1/3Mn1/32、LiFe0.4Co0.3Mn0.32、Li0.5Fe0.4Co0.3Mn0.32などがあげられる。 Specific examples of the lithium-containing composite metal oxide represented by the formula (A1-4) include, for example, LiFe 1/3 Co 1/3 Mn 1/3 O 2 , Li 0.5 Fe 1/3 Co 1/3 Mn 1 / 3 O 2 , LiFe 0.4 Co 0.3 Mn 0.3 O 2 , Li 0.5 Fe 0.4 Co 0.3 Mn 0.3 O 2 and the like can be mentioned.

そのほか、LiCoO2、LiNiO2、LiMn24なども使用できる。 In addition, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and the like can also be used.

なかでも具体的には、LiCoO2、LiMnO2、LiNiO2、LiMn24、LiNi0.8Co0.15Al0.052、またはLiNi1/3Co1/3Mn1/32が、エネルギー密度が高く、高出力なリチウム二次電池を提供できる点から好ましい。 Specifically, LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNi 1/3 Co 1/3 Mn 1/3 O 2 has an energy density. It is preferable from the viewpoint of providing a high and high output lithium secondary battery.

(a1−2)リチウム含有リン酸
式:
LiMPO4
(式中、MはFeおよび/またはMn)で示されるリチウム含有リン酸が例示できる。なかでも、具体的にはLiFePO4は大型で安全性を重視するリチウム二次電池を提供できる点から好ましい。
(A1-2) Lithium-containing phosphate formula:
LiMPO 4
A lithium-containing phosphoric acid represented by (wherein M is Fe and / or Mn) can be exemplified. Among these, specifically, LiFePO 4 is preferable because it can provide a lithium secondary battery that is large and places importance on safety.

正極活物質(a1)の配合量は、正極合剤用スラリー全体の50〜99質量%、さらには80〜99質量%が、電池容量が高い点から好ましい。   The compounding amount of the positive electrode active material (a1) is preferably 50 to 99% by mass, more preferably 80 to 99% by mass, based on the whole slurry for positive electrode mixture, from the viewpoint of high battery capacity.

(a2)負極活物質
本発明で負極に使用する負極活物質(a2)としては炭素材料があげられ、リチウムイオンを挿入可能な金属酸化物や金属窒化物などもあげられる。炭素材料としては天然黒鉛、人造黒鉛、熱分解炭素類、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛などがあげられ、リチウムイオンを挿入可能な金属酸化物としては、スズやケイ素、チタンを含む金属化合物、たとえば酸化スズ、酸化ケイ素、チタン酸リチウムなどがあげられ、金属窒化物としては、Li2.6Co0.4Nなどがあげられる。
(A2) Negative electrode active material Examples of the negative electrode active material (a2) used for the negative electrode in the present invention include carbon materials, such as metal oxides and metal nitrides into which lithium ions can be inserted. Examples of carbon materials include natural graphite, artificial graphite, pyrolytic carbons, cokes, mesocarbon microbeads, carbon fibers, activated carbon, and pitch-coated graphite. Metal oxides capable of inserting lithium ions include tin and Examples of the metal compound include silicon and titanium, such as tin oxide, silicon oxide, and lithium titanate. Examples of the metal nitride include Li 2.6 Co 0.4 N.

負極活物質(a2)の配合量は、負極合剤用スラリー全体の50〜99質量%、さらには80〜99質量%が、電池容量が高い点から好ましい。   The compounding amount of the negative electrode active material (a2) is preferably 50 to 99% by mass, and more preferably 80 to 99% by mass, based on the entire slurry for the negative electrode mixture, from the viewpoint of high battery capacity.

(b)結着剤
本発明で用いる結着剤としては、ポリテトラフルオロエチレン(PTFE)(b1)があげられる。
(B) Binder The binder used in the present invention includes polytetrafluoroethylene (PTFE) (b1).

PTFE(b1)は、主として電極活物質間の接着のために用いられる。PTFEはテトラフルオロエチレンの単独重合体であってもよいし、ヘキサフルオロプロピレン(HFP)やパーフルオロ(アルキルビニルエーテル)(PAVE)などの他の単量体が少量共重合された変性PTFEであってもよい。   PTFE (b1) is mainly used for adhesion between electrode active materials. PTFE may be a homopolymer of tetrafluoroethylene, or modified PTFE obtained by copolymerizing a small amount of other monomers such as hexafluoropropylene (HFP) and perfluoro (alkyl vinyl ether) (PAVE). Also good.

結着剤(b)の配合量は、電極合剤用スラリー全体の0.5〜15質量%、さらには0.5〜10質量%が、電池容量が高い点から好ましい。   The blending amount of the binder (b) is preferably 0.5 to 15% by mass, more preferably 0.5 to 10% by mass of the whole slurry for electrode mixture, from the viewpoint of high battery capacity.

(c)低融点フッ素樹脂
低融点フッ素樹脂(c)も結着剤として機能するが、主として電極活物質(a)や結着剤(b)と集電体との接着力の増強用として機能する。
(C) Low melting point fluororesin The low melting point fluororesin (c) also functions as a binder, but mainly functions to enhance the adhesion between the electrode active material (a) or the binder (b) and the current collector. To do.

低融点フッ素樹脂(c)としては、エチレン(E)/テトラフルオロエチレン(TFE)系共重合体およびフッ化ビニリデン(VdF)系重合体よりなる群から選ばれる少なくとも1種が好ましい。   The low melting point fluororesin (c) is preferably at least one selected from the group consisting of ethylene (E) / tetrafluoroethylene (TFE) copolymers and vinylidene fluoride (VdF) polymers.

E/TFE系共重合体としては、たとえば融点が155〜200℃のE/TFE/HFP3元共重合体(EFEP)が例示できる。   Examples of the E / TFE copolymer include an E / TFE / HFP terpolymer (EFEP) having a melting point of 155 to 200 ° C.

VdF系重合体としては、たとえば融点が160〜180℃のVdF単独重合体(PVdF)、融点が120〜135℃のVdF/TFE2元共重合体、融点が160〜170℃のVdF/HFP2元共重合体、融点が130〜155℃のVdF/TFE/HFP3元共重合体などが例示できる。   Examples of the VdF polymer include a VdF homopolymer (PVdF) having a melting point of 160 to 180 ° C, a VdF / TFE binary copolymer having a melting point of 120 to 135 ° C, and a VdF / HFP binary copolymer having a melting point of 160 to 170 ° C. Examples thereof include polymers and VdF / TFE / HFP terpolymers having a melting point of 130 to 155 ° C.

これらのうち、電池特性が良好な点からはPVdF、VdF/TFE/HFP3元共重合体、VdF/TFE2元共重合体、VdF/HFP2元共重合体などが好ましく、電解液安定性が良好な点からはPVdF、VdF/TFE/HFP3元共重合体、VdF/TFE2元共重合体などが好ましい。   Among these, PVdF, VdF / TFE / HFP terpolymer, VdF / TFE binary copolymer, VdF / HFP binary copolymer and the like are preferable from the viewpoint of good battery characteristics, and electrolyte stability is good. From the viewpoint, PVdF, VdF / TFE / HFP terpolymer, VdF / TFE binary copolymer, and the like are preferable.

(d)水性分散媒
水性分散媒(d)としては、水が最も好ましい。また、エタノールなどの親水性の有機溶媒を併用してもよい。
(D) Aqueous dispersion medium As the aqueous dispersion medium (d), water is most preferable. Moreover, you may use together hydrophilic organic solvents, such as ethanol.

水性分散媒(d)の配合量は、電極合剤用スラリーの残余の量であり、塗工がしやすくなる量とすればよい。   The amount of the aqueous dispersion medium (d) is the remaining amount of the slurry for electrode mixture, and may be an amount that facilitates coating.

(e)他の成分
必要に応じて、成分(a)〜(d)に加えて、リチウム二次電池の電極の製造に使用する添加剤を配合することができる。そうした添加剤としては、正極用にはたとえば導電材、増粘剤、他の重合体、界面活性剤などがあげられ、負極用には正極と同様に導電材、増粘剤、他の重合体、界面活性剤などがあげられる。
(E) Other components In addition to the components (a) to (d), additives used for the production of the electrode of the lithium secondary battery can be blended as necessary. Examples of such additives include conductive materials, thickeners, other polymers and surfactants for the positive electrode, and conductive materials, thickeners and other polymers for the negative electrode as in the positive electrode. And surfactants.

導電材としては、たとえばアセチレンブラック、ケッチェンブラックなどの導電性カーボンブラック;グラファイト、炭素繊維などの炭素質材料があげられる。   Examples of the conductive material include conductive carbon black such as acetylene black and ketjen black; and carbonaceous materials such as graphite and carbon fiber.

増粘剤としては、カルボキシメチルセルロース(CMC)、アクリル酸系樹脂などが例示できる。   Examples of the thickener include carboxymethyl cellulose (CMC) and acrylic resin.

アクリル酸系樹脂は増粘作用のほか、集電体との接着性を向上させる働きも期待できる。アクリル酸系樹脂としては、酸化電位が高いものが好ましく、たとえばポリアクリル酸、ポリアクリル酸アンモニウム、ポリアクリル酸ナトリウム、アクリル酸系共重合体のアンモニウム塩およびアクリル酸系共重合体のナトリウム塩よりなる群から選ばれる少なくとも1種が好ましく例示できる。これらの対リチウム換算の酸化電位は4.3V以上である。また、ポリアクリル酸、アクリル酸系共重合体のアンモニウム塩およびアクリル酸系共重合体のナトリウム塩の市販品としては、たとえば東亞合成(株)製のA−10H、A−93、A−7100、A−30、A−7185などが例示できる。なお、「アクリル酸系」とは、アクリル酸に限らず、メタクリル酸も含む概念である。   Acrylic resins can be expected to have a thickening effect and an improved adhesion to the current collector. As the acrylic resin, those having a high oxidation potential are preferable. For example, polyacrylic acid, ammonium polyacrylate, sodium polyacrylate, ammonium salt of acrylic copolymer, and sodium salt of acrylic copolymer. Preferably, at least one selected from the group consisting of These oxidation potentials in terms of lithium are 4.3 V or more. Examples of commercially available products of polyacrylic acid, ammonium salt of acrylic acid copolymer and sodium salt of acrylic acid copolymer include, for example, A-10H, A-93, and A-7100 manufactured by Toagosei Co., Ltd. , A-30, A-7185, and the like. The “acrylic acid type” is a concept including not only acrylic acid but also methacrylic acid.

アクリル酸系樹脂の配合量は、電極合剤用スラリー全体の0.2〜20質量%、さらには0.5〜10質量%が好ましい。配合量が少なくなると電極集電体との接着性が弱くなり、多くなりすぎるとスラリーの粘度が高くなりすぎて、塗工しにくくなるほか、活物質表面を樹脂が覆い抵抗が高くなり電池容量が小さくなる傾向がある。   The blending amount of the acrylic resin is preferably 0.2 to 20% by mass, more preferably 0.5 to 10% by mass, based on the entire electrode mixture slurry. If the amount is too small, the adhesion to the electrode current collector will be weak. Tends to be smaller.

他の重合体としては、従来からリチウム二次電池用電極に配合されている各種の樹脂やゴムがあげられ、本発明の効果を損なわない量で配合してもよい。具体的にはアクリルゴムやフッ素ゴムなどがあげられる。   Examples of other polymers include various resins and rubbers that have been conventionally blended in electrodes for lithium secondary batteries, and may be blended in amounts that do not impair the effects of the present invention. Specific examples include acrylic rubber and fluorine rubber.

これらの成分を適宜混合し、撹拌などによって均一な混合物として電極合剤用スラリーが調製される。   These components are appropriately mixed, and an electrode mixture slurry is prepared as a uniform mixture by stirring or the like.

本発明の電極の製造方法では、本発明の電極合剤用スラリーを集電体に塗工し、低融点フッ素樹脂(c)の融点以上で240℃未満の温度にて熱処理する。   In the method for producing an electrode of the present invention, the slurry for electrode mixture of the present invention is applied to a current collector and heat-treated at a temperature not lower than the melting point of the low melting point fluororesin (c) and lower than 240 ° C.

正極または負極集電体としては、化学的に安定な電子伝導体であれば特に限定されない。かかる集電体を構成する材料としては、例えば、アルミニウムやその合金、ステンレス鋼、ニッケルやその合金、チタンやその合金、炭素、導電性樹脂などの他に、アルミニウムまたはステンレス鋼の表面にカーボンまたはチタンを処理させたものなどが用いられる。これらの中でも、アルミニウムおよびアルミニウム合金が特に好ましい。これらの材料は表面を酸化して用いることもできる。また、表面処理により集電体表面に凹凸を付けることにより接着性が上がるため好ましい。   The positive electrode or negative electrode current collector is not particularly limited as long as it is a chemically stable electron conductor. Examples of the material constituting the current collector include aluminum and its alloys, stainless steel, nickel and its alloys, titanium and its alloys, carbon, conductive resin, etc., as well as carbon or aluminum on the surface of aluminum or stainless steel. A material obtained by treating titanium is used. Of these, aluminum and aluminum alloys are particularly preferable. These materials can also be used after oxidizing the surface. Further, it is preferable that the surface of the current collector is roughened to improve the adhesion.

塗工方法としては、通常の方法でよく、たとえばスリットダイコーター、リバースロールコーター、リップコーター、ブレードコーター、ナイフコーター、グラビアコーター、およびディップコーターなどを用いて行うことができる。   As a coating method, a normal method may be used, and for example, a slit die coater, a reverse roll coater, a lip coater, a blade coater, a knife coater, a gravure coater, and a dip coater can be used.

集電体にスラリーが塗工された電極は、熱処理に供される。   The electrode with the slurry applied to the current collector is subjected to heat treatment.

熱処理は、低融点フッ素樹脂(c)の融点以上で240℃未満の温度で行う。熱処理温度は、低融点フッ素樹脂(c)の種類にもよるが、エネルギーコストの面から200℃以下、さらには150℃以下が好ましい。240℃以上、特に280℃以上で熱処理すると製造設備やエネルギーコストで不利となる。   The heat treatment is performed at a temperature not lower than 240 ° C. and not lower than the melting point of the low melting point fluororesin (c). Although the heat treatment temperature depends on the type of the low melting point fluororesin (c), it is preferably 200 ° C. or lower, more preferably 150 ° C. or lower from the viewpoint of energy cost. Heat treatment at 240 ° C. or higher, particularly 280 ° C. or higher, is disadvantageous in manufacturing equipment and energy costs.

熱処理は、塗工後直ちに行ってもよいし、圧延(プレス)した後に行ってもよいし、自然乾燥させた後に行ってもよい。また、熱処理を2回以上行ってもよい。   The heat treatment may be performed immediately after coating, may be performed after rolling (pressing), or may be performed after being naturally dried. Moreover, you may perform heat processing 2 times or more.

熱処理時間は低融点フッ素樹脂(c)の種類や熱処理温度によって異なるが、通常、15分間〜7時間程度である。   The heat treatment time varies depending on the kind of the low melting point fluororesin (c) and the heat treatment temperature, but is usually about 15 minutes to 7 hours.

熱処理された電極は、通常、要すればさらに圧延処理された後、切断処理され、所定の厚さと寸法に加工されてリチウム二次電池用電極が得られる。圧延処理および切断処理は、通常の方法でよい。   The heat-treated electrode is usually further subjected to a rolling treatment if necessary, then a cutting treatment, and processed into a predetermined thickness and size to obtain a lithium secondary battery electrode. The rolling process and the cutting process may be ordinary methods.

本発明は、本発明の製造方法で製造されたリチウム二次電池用電極(正極または負極)にも関する。本発明のリチウム二次電池用電極は、集電体に、電極活物質(a)が、結着剤(b)と低融点フッ素樹脂(c)で接着されたものである。   The present invention also relates to an electrode (positive electrode or negative electrode) for a lithium secondary battery manufactured by the manufacturing method of the present invention. The electrode for a lithium secondary battery of the present invention is obtained by bonding an electrode active material (a) to a current collector with a binder (b) and a low melting point fluororesin (c).

この本発明の電極は集電体との接着力に優れているため、電極の柔軟性が向上しており、巻回型のリチウム二次電池のように巻いても割れや脱落は生じない。   Since the electrode of the present invention has excellent adhesive strength with the current collector, the flexibility of the electrode is improved, and cracking and dropping do not occur even when wound like a wound type lithium secondary battery.

また、本発明はリチウム二次電池にも関する。本発明のリチウム二次電池は、正極、負極および非水電解液を備えており、正極および/または負極として本発明のリチウム二次電池用電極を用いたものである。   The present invention also relates to a lithium secondary battery. The lithium secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and uses the electrode for the lithium secondary battery of the present invention as the positive electrode and / or the negative electrode.

なお、本発明の電極以外の電極を正極または負極の一方に用いる場合、それらの正極または負極は従来公知の電極を用いることができる。しかし、柔軟性の課題が大きい正極に本発明の電極を用いることが好ましい。   In addition, when using electrodes other than the electrode of this invention for one of a positive electrode or a negative electrode, those positive electrodes or negative electrodes can use a conventionally well-known electrode. However, it is preferable to use the electrode of the present invention for a positive electrode having a large flexibility problem.

非水電解液も、電解質塩と電解質塩の溶解用の有機溶媒を含む電解液でリチウム二次電池に使用される非水電解液であれば特に制限されない。   The non-aqueous electrolyte is not particularly limited as long as it is an electrolyte containing an electrolyte salt and an organic solvent for dissolving the electrolyte salt and is used in a lithium secondary battery.

電解質としては、たとえばLiPF6、LiBF4、LiN(SO2CF32、LiN(SO2252などの公知の電解質塩が例示でき、有機溶媒としては、たとえばエチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどの炭化水素系溶媒;HCF2CF2CH2OCF2CF2H、CF3COOCF3、CF3COOCH2CF3などのフッ素系溶媒、これらの混合溶媒などが例示できるが、これらのみに限定されるものではない。 Examples of the electrolyte include known electrolyte salts such as LiPF 6 , LiBF 4 , LiN (SO 2 CF 3 ) 2 , and LiN (SO 2 C 2 F 5 ) 2. Examples of the organic solvent include ethylene carbonate and dimethyl Hydrocarbon solvents such as carbonate, methyl ethyl carbonate, diethyl carbonate, propylene carbonate; fluorine solvents such as HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 COOCF 3 , CF 3 COOCH 2 CF 3 , and mixtures thereof Although a solvent etc. can be illustrated, it is not limited only to these.

本発明のリチウム二次電池にはセパレータを配置してもよい。セパレータとしては特に制限はなく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。また、Liデントライトによって起こる短絡などの防止のために安全性向上を目的として作られた、セパレータ上にアラミド樹脂を塗布したフィルムあるいはポリアミドイミドおよびアルミナフィラーを含む樹脂をセパレータ上に塗布したフィルムなどもあげられる(たとえば特開2007−299612号公報、特開2007−324073号公報参照)。   A separator may be disposed in the lithium secondary battery of the present invention. There is no restriction | limiting in particular as a separator, A microporous polyethylene film, a microporous polypropylene film, a microporous ethylene propylene copolymer film, a microporous polypropylene / polyethylene two-layer film, a microporous polypropylene / polyethylene / polypropylene three-layer film Etc. In addition, a film with an aramid resin coated on a separator or a film with a polyamide imide and an alumina filler coated on the separator was created to improve safety to prevent short circuits caused by Li dentlite. (For example, refer to JP 2007-299612 A and JP 2007-324073 A).

本発明のリチウム二次電池は、ハイブリッド自動車用や分散電源用の大型リチウム二次電池、携帯電話、携帯情報端末などの小型のリチウム二次電池などとして有用である。   The lithium secondary battery of the present invention is useful as a large-sized lithium secondary battery for a hybrid vehicle or a distributed power source, a small-sized lithium secondary battery such as a mobile phone or a personal digital assistant.

つぎに実施例をあげて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

なお、融点は、Thermal Analysis System(パーキンエルマー社製)を用いて、10mgのフッ素樹脂を30〜300℃の温度範囲で昇温スピード10℃/分で熱収支を測定し、2ndランのピークトップを融点とした。   The melting point was measured using a thermal analysis system (manufactured by PerkinElmer Co., Ltd.), and the heat balance of 10 mg of fluororesin was measured at a temperature rising rate of 10 ° C./min in the temperature range of 30 to 300 ° C. Was the melting point.

実施例1
90質量部のLiNi1/3Co1/3Mn1/32(日本化学工業(株)製)、3質量部のアセチレンブラック(電化ブラック工業(株)製)、17質量部のVdF/TFE/HFP3元共重合体(融点:140℃)水性分散液(ダイキン工業(株)製のVT−470ディスパージョン。固形分含量20質量%)、60質量部のCMCのナトリウム塩水溶液(商品名:第一工業製薬(株)製のセロゲン4H。固形分含量1質量%)を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の正極形成スラリーを調製した。このスラリーの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、CMCのナトリウム塩が0.6質量%、VdF/TFE/HFP3元共重合体が3.4質量%、PTFEが3質量%であった。
Example 1
90 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of acetylene black (manufactured by Denki Black Industry Co., Ltd.), 17 parts by mass of VdF / TFE / HFP terpolymer (melting point: 140 ° C.) aqueous dispersion (VT-470 dispersion manufactured by Daikin Industries, Ltd., solid content 20 mass%), 60 mass parts CMC sodium salt aqueous solution (trade name) : Serogen 4H manufactured by Daiichi Kogyo Seiyaku Co., Ltd. (solid content 1% by mass) was stirred with a double-arm kneader, and further 5.0 parts by mass of an aqueous PTFE suspension (solid content 60). (Mass%) was added to prepare a positive electrode forming slurry having a solid content of 50 mass%. The ratio of each component of the slurry (in the solid content) is 90% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, 0.6% by mass for sodium salt of CMC, VdF / TFE / HFP terpolymer was 3.4% by mass and PTFE was 3% by mass.

得られたスラリーを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained slurry was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

実施例2
VdF/TFE/HFP3元共重合体に代えて、VdF/HFP2元共重合体(融点:120℃)水性分散液(ダイキン工業(株)製のVP−50ディスパージョン。固形分含量20質量%)を用いたほかは実施例1と同様にして正極形成スラリーを調製した。このスラリーの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、VdF/HFP2元共重合体が3.4質量%、PTFEが3質量%、CMCのナトリウム塩が0.6質量%であった。
Example 2
Instead of VdF / TFE / HFP terpolymer, VdF / HFP binary copolymer (melting point: 120 ° C.) aqueous dispersion (VP-50 dispersion manufactured by Daikin Industries, Ltd., solid content 20 mass%) A positive electrode forming slurry was prepared in the same manner as in Example 1 except that was used. The proportion of each component of the slurry (in the solid content) was as follows: LiNi 1/3 Co 1/3 Mn 1/3 O 2 was 90% by mass, acetylene black was 3% by mass, and VdF / HFP binary copolymer was 3.4%. % By mass, 3% by mass of PTFE, and 0.6% by mass of sodium salt of CMC.

得られたスラリーを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて130℃で4時間熱処理を行い、シート状の正極を作製した。   The obtained slurry was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 130 ° C. for 4 hours in a hot air dryer, A positive electrode was produced.

実施例3
VdF/TFE/HFP3元共重合体に代えて、VdF単独重合体(PVdF)(融点:170℃)水性分散液(固形分含量20質量%)を用いたほかは実施例1と同様にして正極形成スラリーを調製した。このスラリーの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、PVdFが3.4質量%、PTFEが3質量%、CMCのナトリウム塩が0.6質量%であった。
Example 3
In the same manner as in Example 1, except that a VdF homopolymer (PVdF) (melting point: 170 ° C.) aqueous dispersion (solid content: 20% by mass) was used instead of the VdF / TFE / HFP terpolymer. A forming slurry was prepared. The ratio of each component of the slurry (in the solid content) was 90% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, 3.4% by mass for PVdF, and 3% for PTFE. The sodium salt of CMC was 0.6% by mass.

得られたスラリーを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで熱風乾燥機にて180℃で4時間時間熱処理を行い、シート状の正極を作製した。   The obtained slurry was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut to a predetermined size (300 mm × 100 mm), and then heat-treated at 180 ° C. for 4 hours in a hot air dryer. A positive electrode was produced.

実施例4
実施例1において、60質量部のCMCのナトリウム塩水溶液に代えて2.4質量部のポリアクリル酸樹脂水溶液(商品名:東亞合成(株)製のA−10H。固形分含量24.9質量%)を用いたほかは同様にして正極形成スラリーを調製し、さらに実施例1と同様にしてシート状の正極を作製した。
Example 4
In Example 1, instead of 60 parts by mass of CMC sodium salt aqueous solution, 2.4 parts by mass of polyacrylic acid resin aqueous solution (trade name: A-10H manufactured by Toagosei Co., Ltd., solid content 24.9 masses) %) Was used to prepare a positive electrode forming slurry, and a sheet-like positive electrode was prepared in the same manner as in Example 1.

実施例5
実施例1において、LiNi1/3Co1/3Mn1/32に代えて、LiCoO2を用いたほかは同様にして正極形成スラリーを調製し、さらに実施例1と同様にしてシート状の正極を作製した。
Example 5
A positive electrode forming slurry was prepared in the same manner as in Example 1 except that LiCoO 2 was used instead of LiNi 1/3 Co 1/3 Mn 1/3 O 2. A positive electrode was prepared.

実施例6
実施例1において、LiNi1/3Co1/3Mn1/32に代えて、LiMn24を用いたほかは同様にして正極形成スラリーを調製し、さらに実施例1と同様にしてシート状の正極を作製した。
Example 6
In Example 1, a positive electrode forming slurry was prepared in the same manner as in Example 1 except that LiMn 2 O 4 was used instead of LiNi 1/3 Co 1/3 Mn 1/3 O 2. A sheet-like positive electrode was produced.

実施例7
実施例1において、正極活物質としてLiNi1/3Co1/3Mn1/32に代えてLiFePO4を用いたほかは同様にして正極形成スラリーを調製し、さらに実施例1と同様にしてシート状の正極を作製した。
Example 7
In Example 1, a positive electrode forming slurry was prepared in the same manner as in Example 1 except that LiFePO 4 was used instead of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the positive electrode active material. Thus, a sheet-like positive electrode was produced.

比較例1
90質量部のLiNi1/3Co1/3Mn1/32(日本化学工業(株)製)、3質量部のアセチレンブラック(電化ブラック工業(株)製)、17質量部のFEP(融点:270℃)水性分散液(ダイキン工業(株)製のND−1。固形分含量20質量%)、60質量部のCMCのナトリウム塩水溶液(商品名:第一工業製薬(株)製のセロゲン4H。固形分含量1質量%)を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の正極形成スラリーを調製した。このスラリーの各成分割合(固形分中)は、LiNi1/3Co1/3Mn1/32が90質量%、アセチレンブラックが3質量%、FEPが3.4質量%、PTFEが3質量%、CMCのナトリウム塩が0.6質量%であった。
Comparative Example 1
90 parts by mass of LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Nippon Chemical Industry Co., Ltd.), 3 parts by mass of acetylene black (manufactured by Denki Black Industry Co., Ltd.), 17 parts by mass of FEP ( Melting point: 270 ° C.) aqueous dispersion (ND-1 manufactured by Daikin Industries, Ltd., solid content 20% by mass), 60 parts by mass of CMC sodium salt aqueous solution (trade name: manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) Serogen 4H. Solid content 1% by mass) was stirred with a double-arm kneader, and further 5.0 parts by mass of an aqueous PTFE suspension (solid content 60% by mass) was added. A 50% by mass positive electrode forming slurry was prepared. The proportion of each component of the slurry (in the solid content) is 90% by mass for LiNi 1/3 Co 1/3 Mn 1/3 O 2, 3% by mass for acetylene black, 3.4% by mass for FEP, and 3% for PTFE. The sodium salt of CMC was 0.6% by mass.

得られたスラリーを15μm厚のアルミニウム箔に塗布乾燥し、厚さが約120μmの塗膜を得た。この塗膜を全厚が80μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて150℃で4時間熱処理を行い、シート状の比較用正極を作製した。   The obtained slurry was applied to an aluminum foil having a thickness of 15 μm and dried to obtain a coating film having a thickness of about 120 μm. This coating film was pressed (rolled) to a total thickness of 80 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat treated at 150 ° C. for 4 hours in a hot air dryer, A comparative positive electrode was produced.

実施例8
93質量部の人造黒鉛粉末(日立化成(株)製。商品名MAG−D)、17質量部のVdF/TFE/HFP3元共重合体水性分散液(ダイキン工業(株)製のVT−470ディスパージョン。固形分含量20質量%)、60質量部のCMCのナトリウム塩水溶液(商品名:第一工業製薬(株)製のセロゲン4H。固形分含量1質量%)を双腕式練合機にて攪拌し、さらに5.0質量部のPTFEの水性懸濁液(固形分含量60質量%)を添加し、固形分含量50質量%の負極形成スラリーを調製した。このスラリーの各成分割合(固形分中)は、MAG−Dが93質量%、CMCのナトリウム塩が0.6質量%、VdF/TFE/HFP3元共重合体が3.4質量%、PTFEが3質量%であった。
Example 8
93 parts by weight of artificial graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name: MAG-D), 17 parts by weight of VdF / TFE / HFP terpolymer aqueous dispersion (VT-470 Disperser manufactured by Daikin Industries, Ltd.) John, solid content 20 mass%), 60 mass parts CMC sodium salt aqueous solution (trade name: Serogen 4H manufactured by Daiichi Kogyo Seiyaku Co., Ltd., solid content 1 mass%) in a double-arm kneader. Then, 5.0 parts by mass of an aqueous PTFE suspension (solid content: 60% by mass) was added to prepare a negative electrode forming slurry having a solid content of 50% by mass. Each component ratio (in the solid content) of this slurry is MAG-D 93% by mass, CMC sodium salt 0.6% by mass, VdF / TFE / HFP terpolymer, 3.4% by mass, and PTFE It was 3 mass%.

得られた負極形成スラリーを10μm厚の銅箔に塗布乾燥し、厚さが約130μmの塗膜を得た。この塗膜を全厚が92μmとなるようにプレス(圧延)した後、所定の寸法(300mm×100mm)に切断し、ついで、熱風乾燥機にて120℃で4時間熱処理を行い、シート状の負極を作製した。   The obtained negative electrode-forming slurry was applied to a 10 μm thick copper foil and dried to obtain a coating film having a thickness of about 130 μm. This coating film was pressed (rolled) to a total thickness of 92 μm, then cut into predetermined dimensions (300 mm × 100 mm), and then heat-treated at 120 ° C. for 4 hours in a hot air dryer, A negative electrode was produced.

比較例2
実施例8において、VdF/TFE/HFP3元共重合体に代えて、比較例1で使用したFEPを用いたほかは同様にして負極形成スラリーを調製し、さらに実施例8と同様にしてシート状の負極を作製した。
Comparative Example 2
In Example 8, a negative electrode-forming slurry was prepared in the same manner as in Example 8 except that the FEP used in Comparative Example 1 was used instead of the VdF / TFE / HFP terpolymer. A negative electrode was prepared.

試験例1(柔軟性の評価:巻き付け試験)
各実施例および比較例で作製したシート状の正極を直径2mmの円筒に巻き付けた後広げ、正極および負極の塗膜のクラックの発生を目視で調べた。結果を表1(正極)および表2(負極)に示す。
Test Example 1 (Evaluation of flexibility: winding test)
The sheet-like positive electrode produced in each Example and Comparative Example was wound around a cylinder having a diameter of 2 mm and then spread, and the occurrence of cracks in the coating film of the positive electrode and the negative electrode was examined visually. The results are shown in Table 1 (positive electrode) and Table 2 (negative electrode).

試験例2(接着性の評価:粘着テープ剥離試験)
各実施例および比較例で作製したシート状の正極および負極を(15mm×20mm)の大きさに切断し、5mm間隔で水平方向および垂直方向にそれぞれカッターナイフで傷を付けた。ついで、粘着テープを押し当てた後テープを引き剥がし、剥離試験前後の正極の重量から、剥離し試験後に正極および負極上に残った塗膜の割合(質量%)を算出した。結果を表1(正極)および表2(負極)に示す。
Test Example 2 (Evaluation of adhesion: adhesive tape peeling test)
The sheet-like positive electrode and negative electrode produced in each example and comparative example were cut into a size of (15 mm × 20 mm), and scratched with a cutter knife in the horizontal direction and the vertical direction at intervals of 5 mm. Next, the pressure-sensitive adhesive tape was pressed and then the tape was peeled off. From the weight of the positive electrode before and after the peel test, the ratio (mass%) of the coating film peeled off and remained on the positive electrode and the negative electrode was calculated. The results are shown in Table 1 (positive electrode) and Table 2 (negative electrode).

試験例3(電池特性)
(円筒型電池の作製)
実施例1〜5および比較例1における負極は、人造黒鉛粉末(日立化成(株)製。商品名MAG−D)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極とした。
Test Example 3 (Battery characteristics)
(Production of cylindrical battery)
The negative electrodes in Examples 1 to 5 and Comparative Example 1 were made of artificial graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name MAG-D) and styrene-butadiene rubber dispersed with distilled water in a solid content of 6% by mass. Then, a slurry mixed with a disperser is uniformly applied on a negative electrode current collector (copper foil having a thickness of 10 μm) and dried to form a negative electrode mixture layer. After compression molding with a press machine, cutting, and drying, the lead body was welded to form a strip-shaped negative electrode.

実施例8および比較例2における正極は、LiCoO2(日本化学工業(株)製)を90質量部とアセチレンブラック3質量部を加えて混合し、得られた混合物をあらかじめポリフッ化ビニリデン3質量部をN−メチルピロリドンに溶解させておいた溶液に加えてディスパーザーで混合してスラリー状としたものを正極集電体(厚さ15μmのアルミ箔)上に均一に塗布し、乾燥し、正極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の正極とした。 The positive electrode in Example 8 and Comparative Example 2 was prepared by adding 90 parts by mass of LiCoO 2 (manufactured by Nippon Chemical Industry Co., Ltd.) and 3 parts by mass of acetylene black, and mixing the resulting mixture with 3 parts by mass of polyvinylidene fluoride in advance. Was added to a solution dissolved in N-methylpyrrolidone and mixed with a disperser to form a slurry, which was uniformly applied on a positive electrode current collector (aluminum foil having a thickness of 15 μm), dried, and positive electrode A mixture layer was formed, and then compression-molded with a roller press, cut and then dried, and the lead body was welded to obtain a strip-like positive electrode.

実施例1〜5、8および比較例1〜2で作製したシート状の正極および負極にリード体を溶接して、帯状の正極および負極を作製した。   Lead bodies were welded to the sheet-like positive electrode and negative electrode produced in Examples 1 to 5, 8 and Comparative Examples 1 to 2, and belt-like positive and negative electrodes were produced.

ついで、帯状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電材の粗面側が外周側になるようにして巻回した。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。   Next, the belt-like positive electrode was overlapped with the belt-like negative electrode through a microporous polyethylene film (separator) having a thickness of 20 μm and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. In that case, it wound so that the rough surface side of the positive electrode current collector could be the outer peripheral side. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.

ついで、電解液としてLiPF6を電解質塩とするエチレンカーボネート/ジエチルカーボネート(=30/70(体積比))溶液(濃度1.0モル/リットル)を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エージングを行い、容量1800mAhの筒形のリチウム二次電池を作製した。 Next, an ethylene carbonate / diethyl carbonate (= 30/70 (volume ratio)) solution (concentration: 1.0 mol / liter) containing LiPF 6 as an electrolyte salt is injected into the battery case as the electrolyte solution, and the electrolyte solution becomes a separator or the like. After sufficiently infiltrating, a sealed lithium secondary battery having a capacity of 1800 mAh was prepared by sealing, precharging and aging.

このリチウム二次電池のサイクル特性(容量維持率)をつぎの要領で調べた。結果を表1(正極)および表2(負極)に示す。   The cycle characteristics (capacity maintenance ratio) of this lithium secondary battery were examined as follows. The results are shown in Table 1 (positive electrode) and Table 2 (negative electrode).

表1(正極)および表2(負極)の結果から、本発明の電極を用いたリチウム二次電池の電池特性は高いレベルで維持されていることが分かる。   From the results of Table 1 (positive electrode) and Table 2 (negative electrode), it can be seen that the battery characteristics of the lithium secondary battery using the electrode of the present invention are maintained at a high level.

(サイクル特性)
充放電電流をCで表示した場合、1800mAを1Cとして以下の充放電測定条件で測定を行う。
(Cycle characteristics)
When the charge / discharge current is represented by C, measurement is performed under the following charge / discharge measurement conditions with 1800 mA as 1C.

充放電条件
充電:0.5C、4.2Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C 2.5Vcut(CC放電)。
Charge / Discharge Condition Charging: Holds the charge current at 1 / 10C at 0.5C / 4.2V (CC / CV charge)
Discharge: 1C 2.5Vcut (CC discharge).

サイクル特性については上記の充放電条件で充放電試験を行い100サイクルの放電容量を測定する。サイクル特性についてはつぎの計算式で求められた値を容量維持率として記載する。
容量維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
As for the cycle characteristics, a charge / discharge test is performed under the above charge / discharge conditions, and a discharge capacity of 100 cycles is measured. Regarding the cycle characteristics, the value obtained by the following calculation formula is described as the capacity retention rate.
Capacity retention rate (%) = 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) × 100

Figure 0005509644
Figure 0005509644

Figure 0005509644
Figure 0005509644

表1および2の結果から、本発明の正極および負極が柔軟性に富むことが分かる。   From the results of Tables 1 and 2, it can be seen that the positive electrode and the negative electrode of the present invention are rich in flexibility.

表1および2の結果から、本発明の製造方法で作製した正極および負極は集電体における接着性に優れることが分かる。   From the results in Tables 1 and 2, it can be seen that the positive electrode and the negative electrode produced by the production method of the present invention are excellent in adhesiveness in the current collector.

表1および2の結果から、比較例1および比較例2に比べて実施例1〜8はいずれもサイクル特性が向上していることが分かる。この原因として塗膜と集電体との接着性が改善されているため、サイクル試験中に集電が不充分になることによるサイクル劣化が生じなかったものと考えられる。   From the results of Tables 1 and 2, it can be seen that the cycle characteristics of Examples 1 to 8 are improved compared to Comparative Example 1 and Comparative Example 2. As a cause of this, since the adhesion between the coating film and the current collector is improved, it is considered that the cycle deterioration due to insufficient current collection during the cycle test did not occur.

Claims (5)

電極活物質(a)と結着剤(b)と融点が240℃未満の低融点フッ素樹脂(c)と水性分散媒(d)とを含み、
電極活物質(a)が、リチウム含有遷移金属複合酸化物(a1−1)を含む正極活物質(a1)であり、
低融点フッ素樹脂(c)が、フッ化ビニリデン/テトラフルオロエチレン2元共重合体、又は、フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン3元共重合体である
リチウム二次電池の電極合剤用スラリー。
See contains an electrode active material (a) and binder (b) and low melting point melting point is lower than 240 ° C. fluororesin (c) an aqueous dispersion medium (d),
The electrode active material (a) is a positive electrode active material (a1) containing a lithium-containing transition metal composite oxide (a1-1),
The lithium secondary battery in which the low melting point fluororesin (c) is a vinylidene fluoride / tetrafluoroethylene binary copolymer or a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene terpolymer. Slurry for electrode mixture.
リチウム含有遷移金属複合酸化物(a1−1)が、式(1):LiaMn2-b1 b4(式中、0.9≦a;0≦b≦1.5;M1はFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、式(2):LiNi1-c2 c2(式中、0≦c≦0.5;M2はFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、またはLiCo1-d3 d2(式中、0≦d≦0.5;M3はFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物である請求項1に記載の電極合剤用スラリー。 The lithium-containing transition metal composite oxide (a1-1) has the formula (1): Li a Mn 2-b M 1 b O 4 (where 0.9 ≦ a; 0 ≦ b ≦ 1.5; M 1 Is at least one metal selected from the group consisting of Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge) Lithium-manganese spinel composite oxide, formula (2): LiNi 1-c M 2 c O 2 (where 0 ≦ c ≦ 0.5; M 2 is Fe, Co, Mn, Cu, Zn, Al , Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge), or a lithium-nickel composite oxide represented by LiCo 1 -d M 3 d O 2 (where, 0 ≦ d ≦ 0.5; M 3 is Fe, Ni, Mn, Cu, Zn, Al, Sn, r, V, Ti, Mg, Ca, Sr, B, Ga, In, claim 1 is a lithium-cobalt composite oxide expressed by at least one metal) selected from the group consisting of Si and Ge Slurry for electrode mixture. 請求項1又は2記載の電極合剤用スラリーを集電体に塗工し、低融点フッ素樹脂(c)の融点以上で240℃未満の温度にて熱処理する工程を含むリチウム二次電池の電極の製造方法。 An electrode for a lithium secondary battery, comprising a step of applying the slurry for an electrode mixture according to claim 1 or 2 to a current collector and performing a heat treatment at a temperature not lower than 240 ° C and not lower than the melting point of the low melting point fluororesin (c). Manufacturing method. 請求項記載の製造方法により得られるリチウム二次電池の電極。 The electrode of the lithium secondary battery obtained by the manufacturing method of Claim 3 . 請求項記載の電極を正極とし、非水電解液を備えるリチウム二次電池。 The electrode of claim 4, wherein a positive electrode, a lithium secondary battery comprising the nonaqueous electrolyte.
JP2009071662A 2009-03-24 2009-03-24 Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery Expired - Fee Related JP5509644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071662A JP5509644B2 (en) 2009-03-24 2009-03-24 Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071662A JP5509644B2 (en) 2009-03-24 2009-03-24 Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014050245A Division JP2014132591A (en) 2014-03-13 2014-03-13 Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010225423A JP2010225423A (en) 2010-10-07
JP5509644B2 true JP5509644B2 (en) 2014-06-04

Family

ID=43042400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071662A Expired - Fee Related JP5509644B2 (en) 2009-03-24 2009-03-24 Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5509644B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130143551A (en) 2010-09-30 2013-12-31 아사히 가라스 가부시키가이샤 Positive electrode material mixture for nonaqueous secondary cell, and positive electrode for nonaqueous secondary cell and secondary cell using the same
JP6589857B2 (en) * 2014-04-02 2019-10-16 日本ゼオン株式会社 Method for producing positive electrode for lithium ion secondary battery provided with electrolytic solution
CN105861822B (en) * 2016-04-06 2017-10-10 广州有色金属研究院 A kind of acids reduction leaching method of cobalt copper mixed oxidization ore deposit

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE310321T1 (en) * 1995-06-28 2005-12-15 Ube Industries NON-AQUEOUS SECONDARY BATTERY
JP3468956B2 (en) * 1995-12-01 2003-11-25 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
JP3937515B2 (en) * 1996-08-02 2007-06-27 宇部興産株式会社 Non-aqueous secondary battery
JP4366723B2 (en) * 1998-02-27 2009-11-18 宇部興産株式会社 Non-aqueous electrolyte secondary battery
JP2000040504A (en) * 1998-07-21 2000-02-08 Sony Corp Manufacture of positive mix for organic electrolyte battery
JP4830180B2 (en) * 2000-07-03 2011-12-07 パナソニック株式会社 Method for producing electrode plate for non-aqueous electrolyte secondary battery
JP2002030263A (en) * 2000-07-18 2002-01-31 Atofina Japan Kk Fluorine-based adhesive resin composition
JP2004039569A (en) * 2002-07-05 2004-02-05 Daikin Ind Ltd Additive for electrode
JP4135074B2 (en) * 2002-10-25 2008-08-20 ソニー株式会社 Negative electrode manufacturing method and battery manufacturing method
JP4752243B2 (en) * 2004-11-05 2011-08-17 ソニー株式会社 Negative electrode and battery, and method for producing the same
JP2006179439A (en) * 2004-12-24 2006-07-06 Sony Corp Anode and battery
JP2007128847A (en) * 2005-10-06 2007-05-24 Sony Corp Anode, battery, and their manufacturing method
JP5428126B2 (en) * 2005-10-07 2014-02-26 日立化成株式会社 Binder resin composition for non-aqueous electrolyte energy device electrode, non-aqueous electrolyte energy device electrode and non-aqueous electrolyte energy device using the same
JP4876535B2 (en) * 2005-11-01 2012-02-15 パナソニック株式会社 Manufacturing method of positive electrode plate for lithium secondary battery and lithium secondary battery using positive electrode by this manufacturing method

Also Published As

Publication number Publication date
JP2010225423A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5625917B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
JP5494497B2 (en) Slurry for positive electrode mixture of lithium secondary battery, positive electrode using the slurry, and lithium secondary battery
JP5382120B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
KR100958651B1 (en) Anode of Rechargeable Lithium Battery and Rechargeable Lithium Battery Employing the Same
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP2014132591A (en) Slurry for electrode mix of lithium secondary battery, electrode, method for manufacturing the same, and lithium secondary battery
EP2760066B1 (en) Positive electrode material for lithium-ion secondary battery and lithium-ion secondary battery
WO2006061940A1 (en) Lithium ion secondary battery and method for producing negative electrode thereof
JP2014199714A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2011001666A1 (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP6395371B2 (en) Negative electrode active material layer for lithium ion secondary battery and lithium ion secondary battery
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP5412853B2 (en) Method for producing positive electrode of lithium secondary battery, positive electrode and lithium secondary battery
WO2010146832A1 (en) Process for production of negative electrode for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery utilizing the negative electrode
JP2010287470A (en) Nonaqueous secondary battery and its manufacturing method
JP5636681B2 (en) Binder composition for electrode of lithium secondary battery
JP2006286496A (en) Polymer cell
JP2003257433A (en) Nonaqueous electrolyte secondary battery and binding agent
JP5509644B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode, method for producing the same, and lithium secondary battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP6249242B2 (en) Nonaqueous electrolyte secondary battery
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2013109931A (en) Electrode for nonaqueous electrolytic secondary battery use, and nonaqueous electrolytic secondary battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5509644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees