JP5506202B2 - 荷電粒子ビーム装置 - Google Patents

荷電粒子ビーム装置 Download PDF

Info

Publication number
JP5506202B2
JP5506202B2 JP2009018951A JP2009018951A JP5506202B2 JP 5506202 B2 JP5506202 B2 JP 5506202B2 JP 2009018951 A JP2009018951 A JP 2009018951A JP 2009018951 A JP2009018951 A JP 2009018951A JP 5506202 B2 JP5506202 B2 JP 5506202B2
Authority
JP
Japan
Prior art keywords
sample
particle beam
alignment
charged particle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009018951A
Other languages
English (en)
Other versions
JP2010177479A (ja
JP2010177479A5 (ja
Inventor
康浩 門脇
志剛 王
コックケン スイット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009018951A priority Critical patent/JP5506202B2/ja
Publication of JP2010177479A publication Critical patent/JP2010177479A/ja
Publication of JP2010177479A5 publication Critical patent/JP2010177479A5/ja
Application granted granted Critical
Publication of JP5506202B2 publication Critical patent/JP5506202B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本発明は、試料を搭載する試料ステージを備えた荷電粒子ビーム装置に係り、特に、ステージ駆動による摩擦熱の影響により発生する試料位置変化等に因らず、適正な測定点に対する視野位置合わせを行うことが可能な荷電粒子ビーム装置に関する。
試料表面の分析装置として、表面を荷電粒子線プローブで走査し、放出される二次電子,イオン,電磁波などの信号の量ないしエネルギーを解析して表面性状を分析するものは、表面の微細形状,構成元素等に関する情報を用意に得られる利点があり、特にプローブとして電子を、放出信号として二次電子を用い、二次電子量を画面上の輝度に変換して表面形状像を得る走査電子顕微鏡(SEM:Scanning Electron Microscope)は広く実用に供されている。
荷電粒子ビーム装置の一種である走査電子顕微鏡は、半導体素子の測定、或いは検査装置として、用いられることもあり、二次電子等の検出に基づいて形成されるラインプロファイルから、パターンの寸法を測定する測長型走査電子顕微鏡や、参照画像と試料画像の比較によって、欠陥を抽出する欠陥検査用走査電子顕微鏡が知られている。
これら荷電粒子ビーム照射装置は、評価対象であるマスクやウエハを真空内に設置された試料ステージに搭載し、試料ステージを所定の位置へ移動することにより測定を行っている。近年の半導体素子の高集積化にともなう高精度化およびパターンの複雑化により、マスクやウエハ上パターンの寸法精度に対する要求は高くなっており、その精度保証のために測定点数も増加している。そのため、一枚の試料を測定する間の試料ステージの移動距離は長くなり、試料ステージで生じる摩擦熱も増加する。そのため、試料ステージの伸縮や試料ステージ駆動部の構成部品の変形により試料ステージに搭載された試料位置のずれも大きくなる。その結果、測定開始から前記摩擦熱により位置が変化した試料は最終的には測定パターンが荷電粒子ビームの視野外になってしまい測定ができないこととなる。
この問題に対して、例えば特許文献1では、試料ステージの温度と試料の位置ずれ量の関係をあらかじめ決めておき、温度変化に応じてあらかじめ決めた量だけ位置ずれの補正を行っている。
また、装置内部が真空で保持される荷電粒子ビーム照射装置は水冷却装置を使用するのが一般的だが、容積量が大きい試料ステージを一定温度に制御するのは応答性が悪いため困難である。
特開2003−188075号公報
近年、マスクやウエハ上のデバイスパターンの高精度化およびパターンの複雑化にともない寸法精度に対する要求が高くなっている。寸法精度保障のために一枚の試料に対する測定または観察点数は増加する一方であり、数千点を超える評価を行う場合もある。真空内に搭載される荷電粒子ビーム照射装置の試料ステージは一般的に可動部分を摺動する方式であり、評価点数の増加に伴いステージ駆動系の移動距離が増加し摩擦による熱の発生量も多くなる。
この摩擦熱が干渉計を設置した試料室やステージ位置測定用ミラーが搭載された試料テーブルを膨張させるため、実際には試料位置は動いていないにもかかわらず干渉計と位置測定用ミラーの距離が変化することにより試料が動いているかの様な現象を発生させたり、試料ステージの構成部品の変形により実際に試料位置を変化させたりする。これらの試料位置変化量が小さい場合は、試料ステージが測定パターンの目標位置座標に駆動した後に前記測定パターン位置を正確に測定するためにあらかじめ登録してある測定点周辺の特徴的なパターン(以下これを「アドレッシングパターン」と呼び、パターンを検出する動作を「アドレッシング」と呼ぶ。)を見つけられなくても、荷電粒子ビーム偏向器で装置固有の動作に従いアドレッシングパターンを探すことは出来るが測長時間が延びるという問題があった。更に位置変化量が大きい場合は、荷電粒子ビーム偏向器が偏向できる領域を超えてしまいアドレッシングパターンを見つけられず測定が行われないという問題があり、これらの問題は熱の影響を受け続ける測定中は持続される。
また、摩擦熱による作用は試料を並行移動させるだけではなく回転方向へも移動させるため、試料内の位置依存で変化量や変化方向が変わる。したがって、ある小さい領域内のアドレッシングは試料位置の変化に対しアドレッシングパターンを検出できていても、試料内の測定場所が大きく変わった場合にはアドレッシングで荷電粒子ビーム偏向器の偏向領域を超えてしまう可能性があった。特に試料の回転が中心付近を回転中心として発生している場合には、その中心の両側ではパターンの移動は反対方向となる。そのため、測定点のアドレッシングの結果から試料位置の変化量を試料内全域の値として求めることは適当ではなく、更に測定位置の変化が少ない場合には回転中心を求めることは困難である。一方、あらかじめ試料ステージの温度変化に対する位置補正量を求めておく方法は、試料内の測定位置や測定点数が測定により異なる場合(特にマスクの測定)に摩擦熱が試料ステージに与える影響が一定ではないため好適ではない。
以下に、測定点数が多数存在し、ステージの累積移動距離が大きくなるような場合であっても、ステージ機構から生じる摩擦熱に依らず、測定のための視野合わせを高精度に行うことを目的とする荷電粒子ビーム装置を説明する。
上記目的を達成するための一態様として、試料上に設けられたアライメントパターンの位置座標を検出することによって、アライメントを実行する制御装置を備えた荷電粒子ビーム装置において、試料室、或いは試料ステージの温度を測定する温度センサを備え、前記制御装置は、試料上に形成されたアドレッシングパターンへの偏向器による偏向量、或いは試料上の複数の測定位置に対する測定回数が、所定値を越えた場合に、当該温度センサによる温度測定を実行し、当該温度測定に基づいて、前記アライメントを実行する制御温度を求めることを特徴とする荷電粒子ビーム装置を提案する。
また、上記目的を達成するための他の態様として、試料上に設けられたアライメントパターンの位置座標を検出することによって、アライメントを実行する制御装置を備えた荷電粒子ビーム装置において、前記制御装置は、試料上に形成されたアドレッシングパターンへの偏向器による偏向量、或いは試料上の複数の測定位置に対する測定回数が、所定値を越えたときの試料ステージの累積移動距離を検出し、当該累積移動距離に基づいて、アライメントを実行する累積移動距離を求めることを特徴とする荷電粒子ビーム装置を提案する。
上記構成によれば、測定点数が多数存在し、ステージの累積移動距離が嵩んでも、適正なタイミングでのアライメントを行うことが可能となるので、ステージ機構の温度変化に依らず、適正に測定のための視野合わせを行うことが可能となる。
荷電粒子ビーム装置の概略構成図(実施例1)。 アライメント制御装置の一例を説明する図(実施例1)。 ステージ機構が発する熱によって生じる試料の位置ずれを説明する図(実施例1)。 ステージの温度変化に基づいて、アライメント制御の実施条件を検出し、当該実施条件に基づいて、アライメントを実行する手順を説明するフローチャート(前段)。 ステージの温度変化に基づいて、アライメント制御の実施条件を検出し、当該実施条件に基づいて、アライメントを実行する手順を説明するフローチャート(後段)。 荷電粒子ビーム装置の概略構成図(実施例2)。 アライメント制御装置の一例を説明する図(実施例2)。 ステージの累積移動距離に基づいて、アライメント制御の実施条件を検出し、当該実施条件に基づいて、アライメントを実行する手順を説明するフローチャート(前段)。 ステージの累積移動距離に基づいて、アライメント制御の実施条件を検出し、当該実施条件に基づいて、アライメントを実行する手順を説明するフローチャート(後段)。
以下に説明する実施例の主たる目的の1つは、試料ステージの摩擦熱による試料の位置変化を荷電粒子ビーム偏向系への補正および試料ステージの温度変化量や移動量を測定ごとに管理しアライメント動作を制御することにより、高効率および高信頼性の測長を実現することである。
以下に、試料の位置変化量を求めて荷電粒子ビームの偏向器を制御する手段と試料ステージの温度変化量を管理しアライメント制御をする手段を有する荷電粒子ビーム装置を説明する。
また、試料の位置変化量を求めて荷電粒子ビームの偏向器を制御する手段と試料ステージの移動量を管理しアライメント制御をする手段を説明する。
荷電粒子ビーム装置では、試料ステージの駆動のみで正確なパターン位置の測定をすることは困難であるため、一度測定パターンが存在する目標座標へ試料ステージで移動した後にあらかじめ登録しておいたアドレッシングパターンを荷電粒子ビーム偏向器で検出し正確な測定パターン位置を求めている。これは試料ステージに比べて、荷電粒子ビーム偏向器の位置精度が優れているためである。試料ステージが測定のための移動を繰返し熱膨張が発生すると試料ステージに搭載された試料位置が変化するため、測定開始前のアライメントで定められた測定点座標と実際に検出されるアドレッシングパターンまでの距離が変化していくことになる。そのため、パターンの測定毎にその変化量をあらかじめ荷電粒子ビーム偏向系へ加算しておくことにより、アドレッシングパターンを検出する時に荷電粒子ビームの走査エリアを変更して探すことが無くなり、試料ステージの熱膨張の影響が小さい場合には効率的な測定が可能となる。
ただし、試料内の測定位置が大きく変わる場合には、試料の回転により前記の補正方向が反対になる可能性があるため、アドレッシングを行う前に前測定点と目標座標との距離を確認し、この距離があらかじめ設定した規定値を超える場合には荷電粒子ビーム偏向系へ加算した変化量はリセットするのが良い。また、荷電粒子ビームの偏向器には偏向範囲に制限があるため、試料の位置変化がこの量を超える場合についても考慮する必要がある。アライメントは一般的に試料の外周付近のパターン位置を検出し試料の中心位置と回転量を求めるため試料の位置ずれの傾向が分かり、これを利用するのが好適である。
測定開始前のアライメントにおけるアライメント各点の座標とあらかじめ規定した回数で実施したアライメントにおける各点の座標から算出した位置変化量の最大値と、その間の温度変化量と荷電粒子ビームの偏向範囲から許容できる位置ずれ量を用いて測定中にアライメントを実施する管理温度を決定する。
荷電粒子ビーム照射装置では、試料ステージの温度変化は試料ステージの移動による摩擦熱が原因であるため、試料ステージの温度変化のわりに試料ステージの移動量を管理し、アライメントを行う方法も好適である。測定開始前のアライメントにおけるアライメント各点の座標とあらかじめ規定した回数で実施したアライメントにおける各点の座標から算出した位置変化量の最大値と、その間の試料ステージ移動量と荷電粒子ビームの偏向範囲から許容できる位置ずれ量を用いて測定中にアライメントを実施する試料ステージの管理移動量を決定する。
上述のような構成によれば、試料ステージ駆動系の摺動による発熱を原因とした試料ステージ構成部品の膨張が引き起こす試料位置変化を、荷電粒子ビーム偏向系への補正動作によりパターンを探す無駄な動作を排除することと試料ステージの温度変化量や移動量を管理することによるアライメント制御により測定の失敗を防止することが可能となる。
本実施例では、試料ステージの駆動による摩擦熱により生じる試料位置の変化の制御を荷電粒子ビームの偏向動作と試料ステージの温度管理や移動量管理によるアライメント動作の実施という方法で実現した。
図1は、荷電粒子ビーム装置の一例であるSEMの構成を説明する図である。なお、以下に説明する実施例では、SEMの測定,検査対象を、半導体デバイスの露光行程に用いられるマスクとした例を説明するが、これに限られることはなく、例えば、半導体ウェハを測定、検査対象とすることも可能である。
電子ビーム106は電子源101より放出され、電子レンズ102により収束し、荷電粒子ビームを走査するための偏向器103およびアドレッシングやステージの位置誤差を補正するために使用する走査中心位置を補正する偏向器(以下これを「イメージシフト」と呼ぶ。)104により試料109上の所望の位置へ走査される。この荷電粒子ビームの走査によって発生した二次電子は検出器105により検出されて画像処理装置111に入り、像信号に変換され画像表示装置113に試料像として表示される。真空排気装置110により1×10-4Pa程度の高真空に保たれた試料室107内に装置外部から搬送された試料109は試料テーブル108に搭載され測定にともない試料室内を移動する。この移動制御はステージ制御装置119が行っており、試料室107に設置されたステージ干渉計116と試料テーブル108上に搭載された測定用ミラー117で試料テーブルの位置を監視し、駆動モータ118で試料テーブルを所望の位置へ移動している。また、試料室107には温度を測定するための温度センサ114が設置されている。これらの荷電粒子ビームの走査,画像情報の処理,寸法測定,ステージの移動等の全体的な制御をSEM制御装置112が行っており、このSEM制御装置112内のアライメント制御装置115が試料室107の温度変化を用いてアライメント動作の制御を行うものである。なお、温度を測定する場所は試料テーブル108でも良い。
図2はアライメント制御装置115を詳細に説明するものであり、イメージシフト管理装置201はイメージシフト量算出部とイメージシフト量記憶部からなり、温度変化管理装置202は温度変化量算出部と温度記憶部,アライメント制御温度記憶部からなり、アライメント量管理装置203はアライメント変化量算出部とアライメント量記憶部からなる。
図3は試料ステージに搭載されたマスクの位置変化について説明するためのものである。マスク301は測定開始直後の状態を示しており、4つのアライメント点303にてアライメントを実施することにより測長系のX軸Y軸の移動がマスクと平行になっている様子を示している。それに対しマスク302はマスク内の測定を繰り返し行った後の状態を示しており、試料ステージが摩擦熱の影響を受けて熱膨張した場合、熱の分布や試料ステージ摺動部の熱による変化により試料室,試料ステージおよび試料ステージ摺動部が影響を受け、マスク位置は平行移動だけではなく回転方向へも移動するものと考えられる。このマスクの回転による移動量はマスク内の場所によって異なり、図3の例では回転の中心近傍である左下の測定点304に比べて右上の測定点305は移動量が大きくなる。そのため、例えば左下の測定点304の近傍を測定している場合は位置変化量が小さいために測定が可能であっても、測定ポイントが右上の測定点305へ移動した時には測定点の位置変化量が大きく、視野内にアドレッシングパターンが見つけられなかった場合にはアドレッシングパターンを捜す必要が生じ測定時間が増大する。更に位置変化量が大きい場合にはイメージシフト104の偏向可能領域を超えてしまいアドレッシングパターンを見つけられず測定が行われない。
図4および図5は、図1の装置により試料ステージの温度変化を用いて測定中にアライメント制御を行うフローチャートである。図4のステップ401でSEM制御装置112からの命令により測定が開始される。ステップ402では温度センサ114が試料室107の温度を測定し、温度変化管理装置202に記憶する。ステップ403ではマスク上の外周近傍のパターン位置を検出することによりアライメントを行い、使用した各パターンのステージ絶対座標をアライメント量管理装置203に記憶しておく。ステップ404では1点前の測定で算出したアドレッシングパターンの位置ずれ量をイメージシフト管理装置201のイメージシフト記憶部から読み出し、イメージシフト量の初期値とすることにより、視野内にアドレッシング用のパターンが存在しやすくなるため、視野の位置を変更してパターンを探す必要が無く、ステップ405において効率的なアドレッシングが実現できる。
ただし、測定位置座標が前測定点と大きく変わる場合にはマスクの回転により補正方向が異なる可能性があるため、ステップ404でイメージシフト管理装置201のイメージシフト量記憶部の情報をリセットし、イメージシフト量に補正量が入らない状態でアドレッシングを行う。ステップ406ではアドレッシングパターンを検出した時のイメージシフト量、或いはアドレッシングの際に取得された画像から取得される画像中心とアドレッシングパターンとの距離に関する情報と、測定点からアドレッシングパターンまでの設計値の差分をイメージシフト管理装置201のイメージシフト量算出部で算出し、アドレッシングパターンの位置ずれ量としてイメージシフト量記憶部に記憶され、これが次の測定点のステップ404でイメージシフト量の初期値として読み出されることになる。
ステップ407では測定が行われ、ステップ408で全ての点の測定が終了していないことを確認し、終了していなければステップ409へ進む。ステップ409では前記ステップ406で更新したイメージシフト量がイメージシフト管理装置201でしきい値以下であることを確認する。イメージシフトは偏向器であるため偏向領域には制限があり、あらかじめ偏向領域を超えないようにしきい値を設定しておく必要がある。
ここでイメージシフト量がしきい値を超えた場合には図5へ進むが、超えていない場合にはステップ410へ進み、測定が規定回数を超えているかを確認し、超えている場合は図5へ進み、超えていない場合は次パターン測定のためステップ404へ戻る。この規定回数はアドレッシングにおいて視野内に目標とするパターンが入る回数が目安となるが、アドレッシング倍率やマスク内の測定位置,試料ステージの温度,パターン等により回数が変わるため実験やシミュレーションにより事前に決めておく。
図5のステップ501ではステップ409でイメージシフト量が規定値を超えた時またはステップ410で測定が規定回数を超えた時の試料室107の温度を温度センサ114により測定し、温度変化管理装置202の温度変化量算出部で初期温度からの温度変化量を算出すると同時に基準温度として記憶する。ステップ502ではステップ403と同一点にてアライメントを再度実施することにより、この時のアライメントに使用した各パターンの座標とステップ403でアライメント量管理装置203に記憶しておいた測定開始前の座標を比較し、アライメント量変化量算出部で位置変化の絶対値の最大量を算出する。ステップ503ではステップ501で算出した温度変化量dTとステップ502の位置変化最大量dLから1℃あたりの位置変化量の最大値が算出でき、この値とステップ406のイメージシフト量のしきい値Dからアライメントを実施する温度変化量Tを以下の式から算出する。
T=(D*dT)/dL
これをアライメント制御温度として温度変化管理装置202のアライメント制御温度記憶部へ記憶することにより、以降のフローでアライメントを制御する温度変化量となる。ステップ504では各点の測定前に試料室107の温度を測定し、ステップ505で温度変化管理装置202に記憶した基準温度との比較から温度変化量を算出する。この変化量が温度変化管理装置202へ記憶されているアライメント制御温度を超えるまではステップ404から408と同様にステップ506から510にて測定を行い、アライメント制御温度を超えた場合にはステップ511でアライメントを行うとともに温度変化管理装置203に記憶した基準温度をリセットし、次のステップ504で測定した試料ステージの温度を新しい基準温度として温度変化管理装置202に記憶する。
図6は、荷電粒子ビーム装置の一例であるSEMの構成を示し、実施例1とは試料室107の温度を測定するための温度センサが設置されていない点が異なる。
図7はアライメント制御装置115を詳細に説明するものであり、イメージシフト管理装置701はイメージシフト量算出部とイメージシフト量記憶部からなり、ステージ移動距離管理装置702はステージ移動量算出部とステージ移動量記憶部,アライメント移動量記憶部からなり、アライメント量管理装置703はアライメント変化量算出部とアライメント量記憶部からなる。
図8および図9は、図6の装置により試料ステージの移動量変化を用いて測定中にアライメント制御を行うフローチャートである。図8のステップ401でSEM制御装置112からの命令により測定が開始される。ステップ801ではステージ移動距離管理装置702のステージ移動量記憶部の値を初期化するが、これ以降は全ての動作における試料ステージの移動量を加算していく。試料ステージの移動時にSEM制御装置112からステージ制御装置119へ発せられるステージ目標座標とステージ制御装置119から移動前のステージ座標を取得し、ステージ移動距離管理装置702のステージ移動量算出部で移動量を算出しステージ移動量記憶部に累積加算していく。以降、ステップ404から410までの処理を繰り返し行う。
図9のステップ901ではステップ409でイメージシフト量が規定値を超えた時またはステップ410で測定が規定回数を超えた時の試料ステージの移動量をステージ移動距離管理装置702のステージ移動量記憶部で確認する。ステップ502ではステップ403と同一点にてアライメントを再度実施することにより、この時のアライメントに使用した各パターンの座標とステップ403でアライメント量管理装置203に記憶しておいた測定開始前の座標を比較し、位置ずれの最大量を算出する。ステップ902ではステップ901で確認した試料ステージの移動量Ltとステップ502の位置変化最大量dLおよびステップ406のイメージシフト量のしきい値Dからアライメントを実施するステージ移動距離Sを以下の式から算出する。
S=(D*Lt)/dL
この量をアライメント制御移動距離としてステージ移動距離管理装置702へ記憶することにより、以降のフローでアライメントを制御する試料ステージの移動量となる。ステップ903では試料ステージの移動量をステージ移動距離管理装置702で確認し、この移動量がアライメント制御移動距離を超えるまではステップ404から408と同様にステップ506から510にて測定を行い、アライメント制御移動距離を超えた場合にはステップ511でアライメントを行うと同時にステージ移動距離管理装置702のステージ移動量記憶部の値を一度初期化し、以降の試料ステージの動作に対して移動距離の累積加算を行っていく。
101 電子源
102 電子レンズ
103 偏向器
104 イメージシフト
105 検出器
106 電子ビーム
107 試料室
108 試料テーブル
109 試料
110 真空排気装置
111 画像処理装置
112 SEM制御装置
113 画像表示装置
114 温度センサ
115 アライメント制御装置
116 ステージ干渉計
117 測定用ミラー
118 駆動モータ
119 ステージ制御装置
301 マスク(測定前)
302 マスク(測定中)
303 アライメント点
304 測定点(左下)
305 測定点(右上)

Claims (4)

  1. 荷電粒子ビーム源と、
    当該荷電粒子ビーム源から放出される荷電粒子ビームの走査位置を偏向する偏向器と、
    複数の測定位置に対して、前記荷電粒子ビームの走査位置が位置付けられるように、前記試料を移動する試料ステージと、
    前記試料上に設けられた複数のアライメントパターンを用いて試料の回転成分を補正するアライメントと、前記荷電粒子ビームの走査に基づいて得られる画像に対し、予め登録されたパターンデータを用いて所定のパターン位置を特定するアドレッシングを実行する制御装置を備えた荷電粒子線装置において、
    前記試料室、或いは試料ステージの温度を測定する温度センサを備え、
    前記制御装置は、
    記アドレッシングを実行したときのアドレッシングパターンの所定位置からの位置ずれ量、或いは前記試料上の複数の測定位置に対する測定回数が、所定値を越えたときに前記温度センサによって測定された第1の温度と、前記試料測定前に前記温度センサによって測定された第2の温度との変化量を求め、当該変化量に基づいて、アライメントを実施する温度と初期温度間の温度変化量を算出する温度変化管理装置を備えたことを特徴とする荷電粒子線装置。
  2. 請求項1において、
    前記温度変化管理装置は、以下の演算式に基づいて、前記温度変化量を算出することを特徴とする荷電粒子ビーム装置。
    T=(D×dT)/dL
    T:温度変化量
    D:走査位置を偏向する偏向器に設定されたしきい値
    dT:第1の温度と第2の温度間の変化量
    dL:複数のアライメントパターンを用いた試料測定前の第1のアライメントと、第2の温度が測定されたときに行う複数のアライメントパターンを用いた第2のアライメントとの間の複数のアライメントパターン間の位置変化の中の最大の位置変化
  3. 荷電粒子ビーム源と、
    当該荷電粒子ビーム源から放出される荷電粒子ビームの走査位置を偏向する偏向器と、
    複数の測定位置に対して、前記荷電粒子ビームの走査位置が位置付けられるように、前記試料を移動する試料ステージと、
    前記試料上に設けられた複数のアライメントパターンを用いて試料の回転成分を補正するアライメントと、前記荷電粒子ビームの走査に基づいて得られる画像に対し、予め登録されたパターンデータを用いて所定のパターン位置を特定するアドレッシングを実行する制御装置を備えた荷電粒子線装置において、
    前記制御装置は、
    記アドレッシングを実行したときのアドレッシングパターンの所定位置からの位置ずれ量、或いは前記試料上の複数の測定位置に対する測定回数が、所定値を越えたときの前記試料ステージの第1の累積移動距離を求め、当該第1の累積移動距離に基づいて、アライメントを実施する累積異動距離と初期累積移動距離間の累積移動距離変化量を算出するステージ移動距離管理装置を備えたことを特徴とする荷電粒子線装置。
  4. 請求項3において、
    前記ステージ移動距離管理装置は、以下の演算式に基づいて、前記累積移動距離変化量を算出することを特徴とする荷電粒子ビーム装置。
    S=(D×LT)/dL
    S:累積移動距離変化量
    D:走査位置を偏向する偏向器に設定されたしきい値
    LT:第1の累積移動距離
    dL:第1の累積移動距離移動前に行われる複数のアライメントパターンを用いた第1のアライメントと、第1の累積移動距離移動後に行われる複数のアライメントパターンを用いた第2のアライメントとの間の複数のアライメントパターン間の位置変化の中の最大の位置変化
JP2009018951A 2009-01-30 2009-01-30 荷電粒子ビーム装置 Expired - Fee Related JP5506202B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009018951A JP5506202B2 (ja) 2009-01-30 2009-01-30 荷電粒子ビーム装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009018951A JP5506202B2 (ja) 2009-01-30 2009-01-30 荷電粒子ビーム装置

Publications (3)

Publication Number Publication Date
JP2010177479A JP2010177479A (ja) 2010-08-12
JP2010177479A5 JP2010177479A5 (ja) 2011-05-12
JP5506202B2 true JP5506202B2 (ja) 2014-05-28

Family

ID=42708123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009018951A Expired - Fee Related JP5506202B2 (ja) 2009-01-30 2009-01-30 荷電粒子ビーム装置

Country Status (1)

Country Link
JP (1) JP5506202B2 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03102752A (ja) * 1989-09-18 1991-04-30 Hitachi Ltd 試料ステージの制御方法
JPH0613299A (ja) * 1992-06-25 1994-01-21 Hitachi Ltd 電子ビーム描画方法およびその描画装置
JPH0636997A (ja) * 1992-07-15 1994-02-10 Hitachi Ltd 電子線描画装置
JP2002286663A (ja) * 2001-03-26 2002-10-03 Jeol Ltd 試料分析および試料観察装置
JP3569254B2 (ja) * 2001-12-19 2004-09-22 株式会社日立ハイテクノロジーズ 電子ビーム描画装置
JP2005197338A (ja) * 2004-01-05 2005-07-21 Sumitomo Heavy Ind Ltd 位置合わせ方法及び処理装置
JP4557682B2 (ja) * 2004-11-09 2010-10-06 株式会社東芝 電子ビーム描画装置、偏向アンプ、及び電子ビーム描画方法
JP2010123354A (ja) * 2008-11-18 2010-06-03 Hitachi High-Technologies Corp 荷電粒子線装置
JP5588944B2 (ja) * 2011-09-05 2014-09-10 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡

Also Published As

Publication number Publication date
JP2010177479A (ja) 2010-08-12

Similar Documents

Publication Publication Date Title
JP2011017569A (ja) 荷電粒子線装置
JP2006332296A (ja) 電子ビーム応用回路パターン検査における焦点補正方法
US9627173B2 (en) Stage device and charged particle beam apparatus using the stage device
JP5202136B2 (ja) 荷電粒子線装置
KR102422827B1 (ko) 하전 입자 빔 시스템, 및 중첩 시프트량 측정 방법
US10586676B2 (en) Charged particle beam device
US11342156B2 (en) Charged particle beam apparatus, sample alignment method of charged particle beam apparatus
JP6018789B2 (ja) 荷電粒子線装置
US20230245851A1 (en) Method for calibrating a scanning charged particle microscope
JP5506202B2 (ja) 荷電粒子ビーム装置
JP2007192594A (ja) パターン画像取得方法およびパターン画像取得装置
JP5171071B2 (ja) 撮像倍率調整方法及び荷電粒子線装置
JP5478426B2 (ja) 計測または検査装置およびそれを用いた計測または検査方法
KR102632277B1 (ko) 스테이지 이동 제어 장치 및 하전 입자선 시스템
JP5473556B2 (ja) 半導体検査装置の座標補正方法及び半導体検査装置
JP6121727B2 (ja) 走査電子顕微鏡
JP5337531B2 (ja) 荷電粒子線装置
US20230375338A1 (en) Pattern Measurement Device
JP2013178877A (ja) 荷電粒子線装置
JP6138471B2 (ja) 荷電粒子線装置
JP2007273188A (ja) パターン照合方法およびパターン照合装置
JP2009301812A (ja) 試料検査装置、及び試料検査方法
WO2002025691A1 (fr) Procede d'inspection d'un faisceau d'electrons et dispositif associe
JPH0887974A (ja) 試料の高さ変位の補正方法,試料の高さ測定方法,電子ビームの自動焦点合わせ方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140318

R150 Certificate of patent or registration of utility model

Ref document number: 5506202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees