JP5505149B2 - Conductive particles, method for producing the same, and anisotropic conductive adhesive - Google Patents

Conductive particles, method for producing the same, and anisotropic conductive adhesive Download PDF

Info

Publication number
JP5505149B2
JP5505149B2 JP2010157923A JP2010157923A JP5505149B2 JP 5505149 B2 JP5505149 B2 JP 5505149B2 JP 2010157923 A JP2010157923 A JP 2010157923A JP 2010157923 A JP2010157923 A JP 2010157923A JP 5505149 B2 JP5505149 B2 JP 5505149B2
Authority
JP
Japan
Prior art keywords
melamine
resin
particles
conductive particles
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010157923A
Other languages
Japanese (ja)
Other versions
JP2010229554A (en
Inventor
亮子 佐藤
学 平川
雅夫 土谷
憲明 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2010157923A priority Critical patent/JP5505149B2/en
Publication of JP2010229554A publication Critical patent/JP2010229554A/en
Application granted granted Critical
Publication of JP5505149B2 publication Critical patent/JP5505149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、樹脂粒子の表面に金属薄膜が形成された導電粒子に関する。   The present invention relates to conductive particles in which a metal thin film is formed on the surface of resin particles.

異方性導電フィルムに配合される比較的潰れやすい導電粒子として、樹脂粒子の表面に無電解メッキ金属薄膜を形成したものが広く使用されている。このような導電粒子における樹脂粒子と無電解メッキ金属薄膜との間の密着性を向上させるために、樹脂粒子の表面をクロム酸や過マンガン酸などの強力な酸化剤で樹脂粒子の表面を粗化することが行われている。   As conductive particles that are relatively easily crushed in an anisotropic conductive film, those in which an electroless plated metal thin film is formed on the surface of resin particles are widely used. In order to improve the adhesion between the resin particles and the electroless plated metal thin film in such conductive particles, the surface of the resin particles is roughened with a strong oxidizing agent such as chromic acid or permanganic acid. It has been done.

しかし、このような酸化剤は重金属を含むため、環境負荷が大きく、導電粒子に残留した場合に導電粒子が適用される電子デバイスの性能に悪影響を及ぼすことが懸念される。そこで、そのような酸化剤を使用せずに、樹脂粒子と無電解メッキ金属薄膜との間の密着性を向上させるために、樹脂粒子の表面をメラミン樹脂で被覆し、メラミン樹脂被膜上に無電解メッキ金属薄膜を形成することが提案されている(特許文献1)。   However, since such an oxidizing agent contains heavy metals, there is a concern that the environmental load is large, and when it remains on the conductive particles, it adversely affects the performance of the electronic device to which the conductive particles are applied. Therefore, in order to improve the adhesion between the resin particles and the electroless plating metal thin film without using such an oxidizing agent, the surface of the resin particles is coated with a melamine resin, and the melamine resin coating is not coated. It has been proposed to form an electroplated metal thin film (Patent Document 1).

特開2007−262495号公報JP 2007-262495 A

しかしながら、無電解メッキ薄膜を形成する前に、樹脂粒子の表面にメラミン樹脂被膜を形成した場合、樹脂粒子表面の一部が無電解メッキ金属薄膜で被覆されていない導電粒子が少なからず存在するという問題があった。また、無電解メッキ処理により、導電粒子が凝集し、一次粒子(単一粒子)で存在している割合が低下するという問題があった。このような問題を伴う導電粒子は、異方性導電接着剤用途に不向きなものである。   However, when the melamine resin coating is formed on the surface of the resin particles before forming the electroless plating thin film, there are not a few conductive particles in which part of the resin particle surface is not coated with the electroless plating metal thin film. There was a problem. In addition, there is a problem that the electroconductive plating aggregates the conductive particles and the ratio of primary particles (single particles) is reduced. Conductive particles with such problems are unsuitable for anisotropic conductive adhesive applications.

本発明の目的は、上述した従来の問題を解決しようとするものであり、樹脂粒子表面の一部が無電解メッキ金属薄膜で被覆されていない導電粒子の割合を極力抑制し、しかも凝集せずに一次粒子(単一粒子)で存在している割合が高く、異方性導電接着剤用途に適した導電粒子を提供することである。   An object of the present invention is to solve the above-described conventional problems, and suppresses the proportion of conductive particles in which a part of the resin particle surface is not coated with an electroless plating metal thin film as much as possible, and does not aggregate. The ratio of primary particles (single particles) is high, and conductive particles suitable for anisotropic conductive adhesive applications are provided.

本発明者らは、メラミン樹脂に代えて、メラミン樹脂の原料であって加熱により自己縮合しうるメラミン化合物を、樹脂粒子の表面に吸着させ、その後で無電解メッキ金属薄膜を形成した導電粒子が、無電解メッキ金属薄膜で被覆されていない割合が非常に低く、しかも、単一粒子率が高いものであることを見出し、本発明を完成させるに至った。   Instead of the melamine resin, the present inventors have adsorbed a melamine compound, which is a raw material of the melamine resin, which can be self-condensed by heating, on the surface of the resin particles, and then the conductive particles formed with an electroless plated metal thin film The inventors have found that the proportion not covered with the electroless-plated metal thin film is very low and that the single particle ratio is high, and have completed the present invention.

即ち、本発明は、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子と、その表面に形成された無電解メッキ金属薄膜とからなる導電粒子を提供する。   That is, the present invention provides conductive particles comprising resin particles having a melamine adsorption treatment for adsorbing a melamine compound capable of self-condensation by heating, and an electroless plated metal thin film formed on the surface.

また、本発明は、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子と、その表面に形成された無電解メッキ金属薄膜とからなる導電粒子の製造方法であって、
樹脂粒子の表面に対し、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理工程、
メラミン吸着処理が施された樹脂粒子の表面に、無電解メッキ促進用の触媒を析出させる触媒化処理工程、及び
触媒化処理工程が施された樹脂粒子の表面に、無電解メッキにより金属薄膜を形成する無電解メッキ処理工程
を有することを特徴とする製造方法を提供する。
The present invention also relates to a method for producing conductive particles comprising resin particles having a melamine adsorption treatment for adsorbing a melamine compound capable of self-condensation by heating, and an electroless plated metal thin film formed on the surface. There,
A melamine adsorption treatment process for adsorbing a melamine compound capable of self-condensation by heating to the surface of the resin particles;
A catalyst treatment process for depositing a catalyst for promoting electroless plating on the surface of resin particles subjected to melamine adsorption treatment, and a metal thin film formed on the surface of resin particles subjected to the catalyst treatment process by electroless plating There is provided a manufacturing method characterized by having an electroless plating process to be formed.

更に、本発明は、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子と、その表面に形成された無電解メッキ金属薄膜とからなる導電粒子が、絶縁性接着剤中に分散してなる異方性導電接着剤を提供する。   Furthermore, the present invention provides a conductive particle comprising a resin particle having a melamine adsorption treatment for adsorbing a melamine compound capable of self-condensation by heating, and an electroless plated metal thin film formed on the surface. Provided is an anisotropic conductive adhesive dispersed in an adhesive.

本発明の導電粒子は、樹脂粒子の表面に無電解メッキ金属薄膜が形成されたものであるが、その樹脂粒子として、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施されたものを使用する。このため、樹脂粒子表面の一部が無電解メッキ金属薄膜で被覆されていない導電粒子の割合が極力抑制され、しかも凝集せずに一次粒子(単一粒子)で存在している導電粒子の割合が高くなる。   The conductive particles of the present invention are obtained by forming an electroless plated metal thin film on the surface of resin particles, and the resin particles are subjected to melamine adsorption treatment for adsorbing melamine compounds that can be self-condensed by heating. Use the same thing. For this reason, the ratio of the conductive particles in which a part of the resin particle surface is not coated with the electroless plating metal thin film is suppressed as much as possible, and the ratio of the conductive particles existing as primary particles (single particles) without agglomeration. Becomes higher.

<導電粒子>
本発明の導電粒子は、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子と、その表面に形成された無電解メッキ金属薄膜とから構成されている。
<Conductive particles>
The conductive particles of the present invention are composed of resin particles having a melamine adsorption treatment for adsorbing a melamine compound that can be self-condensed by heating, and an electroless plated metal thin film formed on the surface.

(樹脂粒子)
本発明の導電粒子を構成する樹脂粒子としては、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子を使用する。ここで、自己縮合しうるメラミン化合物とは、加熱により自己縮合してメラミン樹脂に変化しうる状態のメラミン化合物であり、例えば、メラミンのアミノ基の窒素原子にメチロール基や2−ヒドロキシエチル基が1〜6個結合した化合物が挙げられる。具体的には、モノメチロールメラミン、ジメチロールメラミン、テトラメチロールメラミン、ペンタメチロールメラミン、ヘキサメチロールメラミン等のメチロールメラミン、N−(2−ヒドロキシエチル)メラミン、N,N′−ビス(2−ヒドロキシエチル)メラミン、N,N′,N″−トリス(2−ヒドロキシエチル)メラミン等のエチロールメラミンを挙げることができる。中でも、無電解メッキ金属薄膜を安定的に形成できる点からメチロールメラニン、特にトリメチロールメラミンを好ましく使用することができる。
(Resin particles)
As the resin particles constituting the conductive particles of the present invention, resin particles having a surface subjected to melamine adsorption treatment for adsorbing a melamine compound capable of self-condensation by heating are used. Here, the self-condensable melamine compound is a melamine compound that can be self-condensed by heating to change into a melamine resin. For example, a methylol group or 2-hydroxyethyl group is present on the nitrogen atom of the amino group of melamine. The compound which 1-6 pieces couple | bonded is mentioned. Specifically, methylol melamine such as monomethylol melamine, dimethylol melamine, tetramethylol melamine, pentamethylol melamine, hexamethylol melamine, N- (2-hydroxyethyl) melamine, N, N′-bis (2-hydroxyethyl) ) Ethylol melamine such as melamine, N, N ′, N ″ -tris (2-hydroxyethyl) melamine, etc. Among them, methylol melanin, especially trimethyl melanin is particularly preferable because it can stably form an electroless plated metal thin film. Methylol melamine can be preferably used.

メラミン吸着処理としては、導電粒子の製造方法に関し後述するように、例えば、メラミン化合物の水溶液に樹脂粒子を投入し、1〜10時間撹拌する処理が挙げられる。この際、必要に応じ加熱してもよいが、メラミン化合物の自己縮合が生じる温度にまで加熱することは避ける必要がある。メラミン吸着処理を施した樹脂粒子は、メラミン化合物の水溶液から濾別し、水で洗浄後、メラミン化合物の自己縮合が生じないように乾燥しておくことができる。   Examples of the melamine adsorption treatment include a treatment in which resin particles are added to an aqueous solution of a melamine compound and stirred for 1 to 10 hours, as will be described later with respect to the method for producing conductive particles. At this time, heating may be performed as necessary, but it is necessary to avoid heating to a temperature at which self-condensation of the melamine compound occurs. The resin particles subjected to the melamine adsorption treatment can be filtered from an aqueous solution of the melamine compound, washed with water, and then dried so as not to cause self-condensation of the melamine compound.

このようなメラミン化合物の樹脂粒子の吸着量に関し、吸着量のコントロールは、主としてメラミン吸着処理液中のメラミン化合物濃度、処理温度、処理時間により行うことができる。一般に、吸着量が少なすぎると無電解メッキ金属薄膜に欠損部分が増大する傾向があり、多すぎるとメッキ金属の析出を阻害する傾向があるので、そのような弊害が生じないように吸着量をコントロールすることが好ましい。   Regarding the adsorption amount of the resin particles of such a melamine compound, the adsorption amount can be controlled mainly by the concentration of the melamine compound in the melamine adsorption treatment solution, the treatment temperature, and the treatment time. In general, if the amount of adsorption is too small, there is a tendency for defects to increase in the electroless plated metal thin film. If the amount is too large, the deposition of plating metal tends to be inhibited. It is preferable to control.

導電粒子のコアとなる樹脂粒子の材料としては、従来の異方性導電接着剤に配合されている金属被覆樹脂粒子を構成している樹脂材料を適用することができる。例えば、メラミン樹脂、スチレン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、アクリル樹脂等を挙げることができる。   As the material of the resin particles that serve as the core of the conductive particles, a resin material constituting the metal-coated resin particles blended in the conventional anisotropic conductive adhesive can be applied. For example, melamine resin, styrene resin, polyimide resin, polyamide resin, polyester resin, acrylic resin, and the like can be given.

導電粒子のコアとなる樹脂粒子の粒径は、導電粒子の使用目的(例えば、異方性導電接着剤用の導電粒子、導電性接着剤用の導電粒子、電磁波シールドシート用の導電粒子等)によるが、例えば導電粒子を異方性導電接着剤に配合する場合には、0.5〜10μm、好ましくは2〜5μmである。   The particle size of the resin particles serving as the core of the conductive particles is the purpose of use of the conductive particles (for example, conductive particles for anisotropic conductive adhesive, conductive particles for conductive adhesive, conductive particles for electromagnetic wave shielding sheet, etc.) However, for example, when the conductive particles are blended in the anisotropic conductive adhesive, the thickness is 0.5 to 10 μm, preferably 2 to 5 μm.

なお、本発明の導電粒子を構成する樹脂粒子は、メラミン吸着処理に続いて触媒化処理が施されていることが好ましい。これにより、無電解メッキ金属薄膜の形成速度を速め、密着性を向上させることができる。   In addition, it is preferable that the resin particle which comprises the electrically-conductive particle of this invention is subjected to the catalyst treatment after the melamine adsorption treatment. Thereby, the formation speed of an electroless-plated metal thin film can be increased, and adhesiveness can be improved.

触媒化処理としては、従来の無電解メッキで行われている触媒化処理を適用することができる。   As the catalyzing treatment, a catalyzing treatment performed by conventional electroless plating can be applied.

触媒化処理によりパラジウムを析出させた場合の析出量に関し、析出量のコントロールは、主として触媒化処理液中のパラジウム化合物の種類や濃度、触媒化処理温度、還元剤の種類や濃度により行うことができる。一般に、析出量が少なすぎると無電解メッキ金属薄膜に欠損部分が増大する傾向があり、多すぎても析出量に見合った効果が得られず、触媒化処理コストが増大する傾向があるので、そのような弊害が生じないように析出量をコントロールすることが好ましい。   Regarding the amount of precipitation when palladium is precipitated by the catalytic treatment, the amount of precipitation is controlled mainly by the type and concentration of the palladium compound in the catalytic treatment solution, the catalytic treatment temperature, and the type and concentration of the reducing agent. it can. Generally, if the amount of precipitation is too small, the electroless plating metal thin film tends to have a defect portion, and if it is too much, an effect commensurate with the amount of precipitation cannot be obtained, and the catalytic treatment cost tends to increase. It is preferable to control the amount of precipitation so as not to cause such harmful effects.

(無電解メッキ金属薄膜)
本発明の導電粒子を構成する無電解メッキ金属薄膜としては、無電解メッキにより形成された金薄膜、ニッケル薄膜、胴薄膜、銀薄膜、パラジウム薄膜等を例示することができる。中でも、異方性導電接続信頼性の観点からニッケル薄膜を好ましく使用することができる。
(Electroless plated metal thin film)
Examples of the electroless plating metal thin film constituting the conductive particles of the present invention include a gold thin film, a nickel thin film, a body thin film, a silver thin film, a palladium thin film, and the like formed by electroless plating. Among these, a nickel thin film can be preferably used from the viewpoint of anisotropic conductive connection reliability.

無電解メッキ金属薄膜の膜厚としては、使用する金属種により異なるが、薄すぎると無電解メッキ金属薄膜の欠損部分が増大する傾向にあり、そのような欠損部分を有する導電粒子を異方性導電接着剤に適用すると導通信頼性が低下する傾向がある。厚すぎると導電粒子が凝集し易くなる傾向があるので、好ましくは10〜500nm、より好ましくは40〜200nmである。   The film thickness of the electroless plated metal thin film varies depending on the type of metal used, but if it is too thin, there is a tendency for the defective part of the electroless plated metal thin film to increase, and the conductive particles having such a defective part are anisotropic. When applied to a conductive adhesive, the conduction reliability tends to decrease. If the thickness is too thick, the conductive particles tend to aggregate, so the thickness is preferably 10 to 500 nm, more preferably 40 to 200 nm.

無電解メッキ金属薄膜の形成は、従来の無電解メッキ法に準じて行うことができる。   The electroless plating metal thin film can be formed according to a conventional electroless plating method.

<導電粒子の製造方法>
本発明の導電粒子は、以下に説明するように、メラミン吸着処理工程、触媒化処理工程及び無電解メッキ処理工程を有する製造方法により好ましく製造することができる。以下に工程毎に説明する。なお、触媒化処理工程を省略した場合でも、樹脂粒子の表面に無電解メッキ金属薄膜を形成することができるが、樹脂粒子に対する無電解メッキ金属薄膜の密着性が低下することが懸念されるので、省略しない方が好ましい。
<Method for producing conductive particles>
As will be described below, the conductive particles of the present invention can be preferably produced by a production method having a melamine adsorption treatment step, a catalyst treatment step and an electroless plating treatment step. Below, it demonstrates for every process. Even when the catalytic treatment step is omitted, an electroless plated metal thin film can be formed on the surface of the resin particles, but there is a concern that the adhesion of the electroless plated metal thin film to the resin particles may be reduced. It is preferable not to omit it.

(メラミン吸着処理工程)
メラミン吸着処理工程は、樹脂粒子の表面に対し、加熱により自己縮合しうるメラミン化合物を吸着させる工程である。このようなメラミン化合物を樹脂粒子の表面に吸着させる手法としては、自己縮合させないように吸着させることができる手法であれば適用することができる。例えば、このようなメラニン化合物の溶液(好ましくは水溶液)に樹脂粒子を浸漬することが挙げられる。
(Melamine adsorption treatment process)
The melamine adsorption treatment step is a step of adsorbing a melamine compound that can be self-condensed by heating on the surface of the resin particles. As a technique for adsorbing such a melamine compound on the surface of the resin particles, any technique that can adsorb so as not to cause self-condensation can be applied. For example, the resin particles are immersed in a solution (preferably an aqueous solution) of such a melanin compound.

例えば、メラミン化合物としてトリメチロールメラミンを使用した場合、好ましくは精製水1Lにトリメチロールメラミン5〜10gと、樹脂粒子10〜20gとを投入し、1〜3時間撹拌する処理を例示することができる。この際、加熱してもよいが、トリメチロールメラミンの自己縮合が生じる温度(100℃以上)にまで加熱することは避ける必要がある。通常は20〜60℃である。メラミン吸着処理を施した樹脂粒子は、メラミン化合物の水溶液から濾別し、水洗後、メラミン化合物の自己縮合が生じないように自然乾燥すればよい。   For example, when trimethylol melamine is used as the melamine compound, it is preferable to add 5 to 10 g of trimethylol melamine and 10 to 20 g of resin particles to 1 L of purified water and stir for 1 to 3 hours. . At this time, although heating may be performed, it is necessary to avoid heating to a temperature (100 ° C. or higher) at which self-condensation of trimethylolmelamine occurs. Usually, it is 20-60 degreeC. The resin particles subjected to the melamine adsorption treatment may be filtered from an aqueous solution of the melamine compound, washed with water, and then naturally dried so that self-condensation of the melamine compound does not occur.

(触媒化処理工程)
触媒化処理工程は、メラミン吸着処理が施された樹脂粒子の表面に、無電解メッキ促進用の触媒を析出させる工程である。触媒化処理としては、従来の無電解メッキで行われている触媒化処理を適用することができる。この場合、処理温度は、加熱により自己縮合しうるメラミン化合物の自己縮合を生じさせない温度である。例えば、センシタイジング−アクチベーティング法やキャタライジング−アクセラレーティング法により触媒金属、好ましくはパラジウムを適用して樹脂表面に析出させる処理を例示することができる。
(Catalysis process)
The catalyst treatment step is a step of depositing a catalyst for accelerating electroless plating on the surface of the resin particles subjected to the melamine adsorption treatment. As the catalyzing treatment, a catalyzing treatment performed by conventional electroless plating can be applied. In this case, the treatment temperature is a temperature that does not cause self-condensation of the melamine compound that can be self-condensed by heating. For example, a treatment in which a catalyst metal, preferably palladium, is applied to the resin surface by a sensitizing-activating method or a catalyzing-accelrating method can be exemplified.

(センシタイジング−アクチベーティング法)
メラミン吸着処理が施された樹脂粒子を、センシタイザー液に5〜80℃で10秒〜10分間浸漬し、水洗し、次いでアクチベーター液に5〜80℃で10秒〜10分間浸漬する。アクチベーター液から樹脂粒子を濾別して水洗し乾燥する。センシタイザー液及びアクチベーター液としては公知のものが使用できる。例えば、センシタイザー液の具体例としては、塩化第1錫5〜50g/l(リットル)と塩酸(塩化水素換算)5〜50g/lとを含有する水溶液を挙げることができる。また、アクチベーター液としては、パラジウム塩0.05〜1.0g/lを含有する水溶液が挙げられる。ここで、パラジウム塩としては、塩化パラジウム、塩化パラジウムナトリウム、塩化パラジウムカリウム、テトラアンミン塩化パラジウムなどを挙げることができる。
(Sensitizing-activating method)
The resin particles subjected to the melamine adsorption treatment are immersed in a sensitizer solution at 5 to 80 ° C. for 10 seconds to 10 minutes, washed with water, and then immersed in an activator solution at 5 to 80 ° C. for 10 seconds to 10 minutes. The resin particles are filtered off from the activator solution, washed with water and dried. Known sensitizer liquids and activator liquids can be used. For example, specific examples of the sensitizer liquid include an aqueous solution containing 5 to 50 g / l of stannous chloride and 5 to 50 g / l of hydrochloric acid (in terms of hydrogen chloride). Moreover, as an activator liquid, the aqueous solution containing 0.05-1.0 g / l of palladium salt is mentioned. Here, examples of the palladium salt include palladium chloride, sodium palladium chloride, potassium palladium chloride, and tetraammine palladium chloride.

(キャタライジング−アクセラレーティング法)
メラミン吸着処理が施された樹脂粒子を、5〜80℃で10秒〜50分間、キャタライザー液に浸し、水洗し、ついで5〜80℃で10秒〜50分間、アクセラレーター液に浸漬する。アクセラレーター液から樹脂粒子を濾別して水洗し乾燥する。キャタライザー液及びアクセラレーター液としては公知のものが使用できる。例えば、キャタライザー液としては、塩化第1錫5〜50g/lと上述したようなパラジウム塩0.05〜1.0g/lと塩酸(塩化水素換算)5〜50g/lとを含有するコロイド液が挙げられ、また、アクセラレーター液としては、塩酸が挙げられる。
(Catalyzing-Accelerating method)
The resin particles subjected to the melamine adsorption treatment are immersed in a catalyzer solution at 5 to 80 ° C. for 10 seconds to 50 minutes, washed with water, and then immersed in an accelerator solution at 5 to 80 ° C. for 10 seconds to 50 minutes. The resin particles are filtered off from the accelerator liquid, washed with water and dried. A well-known thing can be used as a catalyzer liquid and an accelerator liquid. For example, as a catalyzer solution, a colloid solution containing 5 to 50 g / l stannous chloride, 0.05 to 1.0 g / l palladium salt as described above, and 5 to 50 g / l hydrochloric acid (in terms of hydrogen chloride). Moreover, hydrochloric acid is mentioned as an accelerator liquid.

その他に、触媒化処理工程としては、メラミン吸着処理が施された樹脂粒子10gを、塩化パラジウム水溶液(0.5〜1.0g/l)200〜400mlに投入した後、50〜70℃で5秒〜20分加熱撹拌し、その後、次亜リン酸水溶液(30〜60g/l)50〜200mlを加入し、更に10〜30分間撹拌を続け、パラジウムを析出させる処理が挙げられる。   In addition, as a catalyst treatment step, 10 g of resin particles subjected to the melamine adsorption treatment are put into 200 to 400 ml of an aqueous palladium chloride solution (0.5 to 1.0 g / l), and then 5 at 50 to 70 ° C. For example, there is a treatment in which the mixture is heated and stirred for 2 to 20 minutes, and then added with 50 to 200 ml of a hypophosphorous acid aqueous solution (30 to 60 g / l) and further stirred for 10 to 30 minutes to precipitate palladium.

(無電解メッキ処理工程)
無電解メッキ処理工程は、触媒化処理工程が施された樹脂粒子の表面に、無電解メッキにより金属薄膜を形成しする工程であり、従来より公知の無電解銅メッキ、ニッケルメッキ、金メッキ、銀メッキ、錫メッキなどを使用目的に応じて、選択することできる。中でも、無電解ニッケルメッキを好ましく適用することができる。このような無電解メッキ処理工程を経ることにより本発明の導電粒子を得ることができる。
(Electroless plating process)
The electroless plating treatment step is a step of forming a metal thin film by electroless plating on the surface of the resin particles that have been subjected to the catalytic treatment step. Conventionally known electroless copper plating, nickel plating, gold plating, silver Plating, tin plating, etc. can be selected according to the purpose of use. Among these, electroless nickel plating can be preferably applied. The conductive particles of the present invention can be obtained through such an electroless plating process.

<異方性導電接着剤>
以上説明した本発明の導電粒子は、異方性導電接着剤に配合する導電粒子として好ましく適用することができる。即ち、この異方性導電接着剤は、上述した、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子の表面に無電解メッキ金属薄膜を形成してなる導電粒子を、異方性導電接着剤中に5〜12容量%となるように、絶縁性接着剤に公知の分散手法により分散したものである。通常、ペースト状接着剤、あるいはフィルムに成形して異方性導電フィルムとして使用される。
<Anisotropic conductive adhesive>
The conductive particles of the present invention described above can be preferably applied as conductive particles to be blended in an anisotropic conductive adhesive. That is, the anisotropic conductive adhesive is formed by forming an electroless plating metal thin film on the surface of the resin particles on which the melamine adsorption treatment for adsorbing the melamine compound capable of self-condensation by heating is performed. The particles are dispersed in the insulating adhesive by a well-known dispersion method so as to be 5 to 12% by volume in the anisotropic conductive adhesive. Usually, it is formed into a paste-like adhesive or a film and used as an anisotropic conductive film.

絶縁性接着剤としては、従来公知の絶縁性接着剤を適用することができ、好ましくは、熱硬化型エポキシ系接着剤を使用することができる。そのような熱硬化型エポキシ系接着剤は、膜形成樹脂、液状エポキシ樹脂(硬化成分)、硬化剤、シランカップリング剤等の構成成分を公知の方法で均一に混合することにより調製することができる。これらの構成成分は、接着層に求める特性等に応じて公知のものから適宜選択して使用することができる。   A conventionally well-known insulating adhesive can be applied as the insulating adhesive, and a thermosetting epoxy adhesive can be preferably used. Such a thermosetting epoxy adhesive can be prepared by uniformly mixing components such as a film-forming resin, a liquid epoxy resin (curing component), a curing agent, and a silane coupling agent by a known method. it can. These components can be appropriately selected from known ones according to the characteristics required for the adhesive layer.

膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂等を挙げることができ、これらの2種以上を併用することができる。これらの中でも、製膜性、加工性、接続信頼性の観点から、フェノキシ樹脂を好ましく使用することができる。   Examples of the film-forming resin include phenoxy resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin resin, and the like. be able to. Among these, a phenoxy resin can be preferably used from the viewpoint of film forming property, workability, and connection reliability.

液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などを挙げることができ、これらの2種以上を併用することができる。   Examples of liquid epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, novolac type epoxy resins, modified epoxy resins thereof, and alicyclic epoxy resins, and these two or more types should be used in combination. Can do.

硬化剤としては、ポリアミン、イミダゾール等のアニオン系硬化剤やスルホニウム塩などのカチオン系硬化剤、フェノール系硬化剤等の潜在性硬化剤を挙げることができる。   Examples of the curing agent include anionic curing agents such as polyamine and imidazole, cationic curing agents such as sulfonium salts, and latent curing agents such as phenolic curing agents.

シランカップリング剤としては、エポキシ系シランカップリング剤、アクリル系シランカップリング剤等を挙げることができる。これらのシランカップリング剤は、主としてアルコキシシラン誘導体である。   Examples of the silane coupling agent include an epoxy silane coupling agent and an acrylic silane coupling agent. These silane coupling agents are mainly alkoxysilane derivatives.

熱硬化型エポキシ系接着剤には、必要に応じて充填剤、軟化剤、促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などを配合することができる。   If necessary, the thermosetting epoxy adhesive may contain a filler, a softener, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher agent, and the like.

本発明の導電粒子は、異方性導電接着剤の他、等方性導電接着剤、磁性シールド剤に使用する導電粒子に適用することができる。   The conductive particles of the present invention can be applied to conductive particles used for isotropic conductive adhesives and magnetic shielding agents in addition to anisotropic conductive adhesives.

以下、発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

実施例1
(メラミン吸着処理)
平均粒径3.0μmのポリメチルメタクリレート(PMMA)粒子(MX−300、総研化学(株))10gを、2Lコニカルビーカー中の精製水1Lに投入し、更にメチロールメラミン(ニカレジンS−260、日本カーバイド工業(株))5gを投入し、60℃で3時間撹拌することによりメラミン吸着処理を行った。時間経過後、樹脂粒子を濾過により回収し、水で洗浄し、自然乾燥した。
Example 1
(Melamine adsorption treatment)
10 g of polymethylmethacrylate (PMMA) particles (MX-300, Soken Chemical Co., Ltd.) having an average particle size of 3.0 μm were introduced into 1 L of purified water in a 2 L conical beaker, and further methylolmelamine (Nical Resin S-260, Japan). Carbide Industry Co., Ltd. (5 g) was added and the mixture was stirred at 60 ° C. for 3 hours for melamine adsorption treatment. After a lapse of time, the resin particles were collected by filtration, washed with water, and air dried.

(触媒化処理)
メラミン吸着処理を施した樹脂粒子(約10g)を、表面処理剤としてアミン系界面活性剤を10g/lの割合で溶解しているイオン交換水1Lに投入し撹拌しながら60℃に昇温した。そこへ塩化パラジウム水溶液(1g/L)を250mlを投入し、60℃で10分間撹拌した。次いで、次亜リン酸水溶液(60g/L)200mlを投入し、更に30分間撹拌を続け、表面にパラジウムが析出した樹脂粒子を含有するスラリー液を得た。
(Catalytic treatment)
The resin particles (about 10 g) subjected to the melamine adsorption treatment were added to 1 L of ion-exchanged water in which an amine-based surfactant was dissolved at a rate of 10 g / l as a surface treatment agent, and the temperature was raised to 60 ° C. while stirring. . Thereto, 250 ml of palladium chloride aqueous solution (1 g / L) was added and stirred at 60 ° C. for 10 minutes. Next, 200 ml of an aqueous hypophosphorous acid solution (60 g / L) was added, and stirring was further continued for 30 minutes to obtain a slurry liquid containing resin particles having palladium deposited on the surface.

(無電解メッキ処理)
メラミン吸着処理、続いて触媒化処理を施した樹脂粒子を含有するスラリー液にイオン交換水を添加することにより全量を5Lとし、そのスラリー液に酒石酸ナトリウム濃度が8g/Lとなるように酒石酸ナトリウムを添加し、60℃に昇温させた。この混合液に、145g/L濃度の次亜リン酸ナトリウムと60g/L濃度の水酸化ナトリウムとを含む還元液600mLと、100g/L濃度の硫酸ニッケル水溶液600mLとを、定量ポンプでそれぞれ3ml/分の速度で滴下した。還元液と硫酸ニッケル水溶液との滴下終了後、ニッケルイオンの還元に伴って発生する水素の発泡が治まるまで撹拌を続けた。発泡が治まった後、樹脂粒子の表面に無電解ニッケルメッキ薄膜が形成された導電粒子を濾別し、水で洗浄後、100℃の真空乾燥器中で乾燥した。得られた導電粒子のニッケル薄膜の平均膜厚は80〜100nmであった。
(Electroless plating treatment)
Ion exchange water is added to the slurry liquid containing the resin particles subjected to melamine adsorption treatment and then catalyzed treatment to make the total volume 5 L, and the sodium tartrate concentration in the slurry liquid is 8 g / L. Was added and the temperature was raised to 60 ° C. To this mixed solution, 600 mL of a reducing solution containing 145 g / L sodium hypophosphite and 60 g / L sodium hydroxide, and 600 mL of 100 g / L nickel sulfate aqueous solution were each 3 ml / Added dropwise at a rate of minutes. After completion of the dropwise addition of the reducing solution and the nickel sulfate aqueous solution, stirring was continued until the bubbling of hydrogen generated along with the reduction of nickel ions subsided. After the foaming had subsided, the conductive particles having the electroless nickel plating thin film formed on the surface of the resin particles were filtered off, washed with water, and dried in a vacuum dryer at 100 ° C. The average film thickness of the nickel thin film of the obtained conductive particles was 80 to 100 nm.

比較例1
メラミン吸着処理を行わなかった以外は、実施例1と同様の操作により比較例1の導電粒子を得た。
Comparative Example 1
Conductive particles of Comparative Example 1 were obtained by the same operation as Example 1 except that the melamine adsorption treatment was not performed.

比較例2
メラミン吸着処理を行った後、触媒化処理前に、樹脂粒子を、トリメチロールメラミンの加熱により自己縮合が生じてしまう150℃という温度で6時間乾燥処理をしたこと以外は、実施例1と同様の操作により比較例2の導電粒子を得た。
Comparative Example 2
After performing the melamine adsorption treatment and before the catalyst treatment, the resin particles were the same as in Example 1 except that the resin particles were subjected to a drying treatment at a temperature of 150 ° C. for 6 hours due to heating of trimethylolmelamine. As a result, the conductive particles of Comparative Example 2 were obtained.

<評価>
実施例1及び比較例1、2の導電粒子について、メッキ成膜欠陥率とメッキ粒子凝集状態とを以下に説明するように試験・評価した。得られた結果を表1に示す。
<Evaluation>
For the conductive particles of Example 1 and Comparative Examples 1 and 2, the plating film formation defect rate and the plating particle aggregation state were tested and evaluated as described below. The obtained results are shown in Table 1.

(メッキ成膜欠陥率)
倍率1000倍の走査電子顕微鏡(JSM−6510A、日本電子(株))により、1000個の導電粒子を観察し、粒子表面積の50%以上にわたってメッキ剥れが観察された導電粒子の割合(欠陥率)を求めた。実用上、欠陥率は1.0%以下であることが望まれる。
(Plating film deposition defect rate)
1000 conductive particles were observed with a scanning electron microscope (JSM-6510A, JEOL Ltd.) at a magnification of 1000 times, and the proportion of conductive particles in which plating peeling was observed over 50% or more of the particle surface area (defect rate) ) In practice, the defect rate is desirably 1.0% or less.

(単一粒子率)
粒子像解析装置(FPIA3000、シスメックス社)を用いて、凝集していない一次粒子の割合(単一粒子率)を求めた。
(Single particle ratio)
Using a particle image analyzer (FPIA3000, Sysmex Corporation), the ratio of primary particles not aggregated (single particle ratio) was determined.

Figure 0005505149
Figure 0005505149

表1からわかるように、実施例1の導電粒子は、実用上問題のない、レベルの低いメッキ成膜欠陥率と高い単一粒子率とを示した。他方、比較例1及び2の導電粒子は、実用上問題のある、レベルの高いメッキ成膜欠陥率と低い単一粒子率とを示した。   As can be seen from Table 1, the conductive particles of Example 1 exhibited a low level of plating film formation defect rate and a high single particle rate that had no practical problems. On the other hand, the conductive particles of Comparative Examples 1 and 2 exhibited a high level of plating film formation defect rate and a low single particle rate, which had practical problems.

実施例2
実施例1で得られた導電粒子20質量部、フェノキシ樹脂(YP50、東都化成(株))30質量部、液状エポキシ樹脂(EP−828、三菱化学(株))30質量部、イミダゾール系硬化剤(HX3941HP、旭化成(株))30質量部とを均一に混合し、この混合物を、バーコータを用いて剥離フィルム状に塗布し、80℃で5分間プレベークすることにより異方性導電フィルムを作製した。得られた異方性導電フィルムを、千鳥配置された金バンプを有する試験用ICチップ(バンプサイズ1800μm、バンプ高さ15μm、外側バンプ列と内側バンプ列間の距離20μm、各列内のバンプ間の距離20μm)と、対応するガラス基板との間に挟持させ、加熱加圧ヘッドにて200℃で圧力60MPaで5秒間の加熱加圧を行った。その際の外側バンプと内側バンプの導通抵抗(Ω)を常法に従って測定した。いずれも1Ω以下であり、良好な導通であった。
Example 2
20 parts by mass of conductive particles obtained in Example 1, 30 parts by mass of phenoxy resin (YP50, Toto Kasei Co., Ltd.), 30 parts by mass of liquid epoxy resin (EP-828, Mitsubishi Chemical Co., Ltd.), imidazole curing agent (HX3941HP, Asahi Kasei Co., Ltd.) 30 parts by mass were uniformly mixed, and this mixture was applied to a release film using a bar coater, and prebaked at 80 ° C. for 5 minutes to produce an anisotropic conductive film. . The obtained anisotropic conductive film was used as a test IC chip (bump size 1800 μm 2 , bump height 15 μm, distance between outer bump row and inner bump row 20 μm, bumps in each row, with staggered gold bumps. And a corresponding glass substrate, and was heated and pressed at 200 ° C. and a pressure of 60 MPa for 5 seconds with a heating and pressing head. The conduction resistance (Ω) between the outer and inner bumps at that time was measured according to a conventional method. All were 1Ω or less, and good conduction was obtained.

本発明の導電粒子は、樹脂粒子の表面に無電解メッキ金属薄膜が形成されたものであるが、その樹脂粒子として、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施されたものを使用する。このため、樹脂粒子表面の一部が無電解メッキ金属薄膜で被覆されていない導電粒子の割合が極力抑制され、しかも凝集せずに一次粒子(単一粒子)で存在している導電粒子の割合が高くなる。よって、異方性導電接着剤に配合する導電粒子として有用である。   The conductive particles of the present invention are obtained by forming an electroless plated metal thin film on the surface of resin particles, and the resin particles are subjected to melamine adsorption treatment for adsorbing melamine compounds that can be self-condensed by heating. Use the same thing. For this reason, the ratio of the conductive particles in which a part of the resin particle surface is not coated with the electroless plating metal thin film is suppressed as much as possible, and the ratio of the conductive particles existing as primary particles (single particles) without agglomeration. Becomes higher. Therefore, it is useful as conductive particles to be blended in the anisotropic conductive adhesive.

Claims (11)

加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子と、その表面に形成された無電解メッキ金属薄膜とからなる導電粒子。   Conductive particles comprising resin particles having a melamine adsorption treatment for adsorbing a melamine compound capable of self-condensation upon heating, and an electroless plated metal thin film formed on the surface. 無電解メッキ金属薄膜が、無電解ニッケルメッキ薄膜である請求項1記載の導電粒子。   The conductive particles according to claim 1, wherein the electroless plating metal thin film is an electroless nickel plating thin film. 加熱により自己縮合しうるメラミン化合物が、メチロールメラミンである請求項1又は2記載の導電粒子。   The conductive particles according to claim 1 or 2, wherein the melamine compound capable of self-condensation by heating is methylolmelamine. 該樹脂粒子が、メラミン吸着処理に続いて触媒化処理が施されている請求項1〜3のいずれかに記載の導電粒子。   The conductive particles according to claim 1, wherein the resin particles are subjected to a catalytic treatment subsequent to the melamine adsorption treatment. 触媒化処理により樹脂粒子表面にパラジウムが析出している請求項記載の導電粒子。 The conductive particles according to claim 4 , wherein palladium is deposited on the surface of the resin particles by the catalyst treatment. 加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理が表面に施された樹脂粒子と、その表面に形成された無電解メッキ金属薄膜とからなる導電粒子の製造方法であって、
樹脂粒子の表面に対し、加熱により自己縮合しうるメラミン化合物を吸着させるメラミン吸着処理工程、
メラミン吸着処理が施された樹脂粒子の表面に、無電解メッキ促進用の触媒を析出させる触媒化処理工程、及び
触媒化処理工程が施された樹脂粒子の表面に、無電解メッキにより金属薄膜を形成する無電解メッキ処理工程
を有することを特徴とする製造方法。
A method for producing conductive particles comprising a resin particle having a melamine adsorption treatment for adsorbing a melamine compound capable of self-condensation by heating, and an electroless plated metal thin film formed on the surface,
A melamine adsorption treatment process for adsorbing a melamine compound capable of self-condensation by heating to the surface of the resin particles;
A catalyst treatment process for depositing a catalyst for promoting electroless plating on the surface of resin particles subjected to melamine adsorption treatment, and a metal thin film formed on the surface of resin particles subjected to the catalyst treatment process by electroless plating A manufacturing method comprising an electroless plating treatment step to be formed.
メラミン吸着処理工程は、加熱により自己縮合しうるメラミン化合物の溶液に樹脂粒子を浸漬することである請求項6記載の製造方法。   The production method according to claim 6, wherein the melamine adsorption treatment step is to immerse the resin particles in a solution of a melamine compound capable of self-condensation by heating. 触媒化処理工程は、メラミン吸着処理が施された樹脂粒子を、塩化パラジウム水溶液に投入した後、還元剤を投入することによりパラジウムを樹脂粒子表面を析出させることである請求項7記載の製造方法。   8. The production method according to claim 7, wherein the catalytic treatment step is to deposit the resin particle surface by adding a reducing agent after the resin particles subjected to the melamine adsorption treatment are put into an aqueous palladium chloride solution. . メラミン吸着処理工程及び触媒化処理工程の処理温度が、加熱により自己縮合しうるメラミン化合物の自己縮合を生じさせない温度である請求項6〜8のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 6 to 8, wherein the treatment temperatures of the melamine adsorption treatment step and the catalyzing treatment step are temperatures that do not cause self-condensation of a melamine compound capable of self-condensation by heating. 請求項1〜5のいずれかに記載の導電粒子が、絶縁性接着剤中に分散してなる異方性導電接着剤。   An anisotropic conductive adhesive comprising the conductive particles according to claim 1 dispersed in an insulating adhesive. フィルム状に成形されている請求項10記載の異方性導電接着剤。   The anisotropic conductive adhesive according to claim 10, wherein the anisotropic conductive adhesive is formed into a film.
JP2010157923A 2010-06-16 2010-07-12 Conductive particles, method for producing the same, and anisotropic conductive adhesive Active JP5505149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157923A JP5505149B2 (en) 2010-06-16 2010-07-12 Conductive particles, method for producing the same, and anisotropic conductive adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010137571 2010-06-16
JP2010137571 2010-06-16
JP2010157923A JP5505149B2 (en) 2010-06-16 2010-07-12 Conductive particles, method for producing the same, and anisotropic conductive adhesive

Publications (2)

Publication Number Publication Date
JP2010229554A JP2010229554A (en) 2010-10-14
JP5505149B2 true JP5505149B2 (en) 2014-05-28

Family

ID=43045632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157923A Active JP5505149B2 (en) 2010-06-16 2010-07-12 Conductive particles, method for producing the same, and anisotropic conductive adhesive

Country Status (1)

Country Link
JP (1) JP5505149B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107460454A (en) * 2017-09-20 2017-12-12 吴国明 A kind of method of phase-inversion technologies deposition Nanoalloy film layer
CN107641801A (en) * 2017-09-20 2018-01-30 吴国明 A kind of inversion of phases smithcraft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3253921B2 (en) * 1998-06-15 2002-02-04 奥野製薬工業株式会社 Electroless partial plating method
JP4849930B2 (en) * 2006-03-28 2012-01-11 日本化学工業株式会社 Conductive electroless plating powder and method for producing the same

Also Published As

Publication number Publication date
JP2010229554A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5184612B2 (en) Conductive powder, conductive material containing the same, and method for producing the same
KR101922575B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
KR101261184B1 (en) Coated conductive particles and method for producing same
US20100327237A1 (en) Conductive particle and method for producing conductive particle
JP5472332B2 (en) Conductive particle, method for producing the same, method for producing insulating coated conductive particle, and anisotropic conductive adhesive film
JP5512306B2 (en) Method for producing conductive particles
TWI570750B (en) Conductive particle and conductive material having the same
JP2009280790A (en) Particulate electroconductive material for anisotropic electroconductive adhesive and method for producing the same and anisotropic electroconductive adhesive
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials
JP5505149B2 (en) Conductive particles, method for producing the same, and anisotropic conductive adhesive
TW201740391A (en) Conductive particle, insulation coated conductive particle, anisotropic conductive adhesive, connecting structure, and method for manufacturing conductive particle
JP5505156B2 (en) Conductive particles, method for producing the same, and anisotropic conductive adhesive
JP6263228B2 (en) Conductive particles and conductive material containing the same
JP2015197955A (en) Conductive particle
WO2011158783A1 (en) Conductive particles, method for producing same and anisotropically conductive adhesive
JP6286852B2 (en) Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP5695768B2 (en) Conductive powder and conductive material including the same
KR20220100631A (en) Electroconductive particle, its manufacturing method, and electroconductive material containing same
KR20220100632A (en) Electroconductive particle, its manufacturing method, and electroconductive material containing same
JP2012082500A (en) Method for producing electroless-plated metal-covering resin material, and anisotropic conductive adhesive
JP6507552B2 (en) Conductive particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5505149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250