JP5483097B2 - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP5483097B2
JP5483097B2 JP2010127936A JP2010127936A JP5483097B2 JP 5483097 B2 JP5483097 B2 JP 5483097B2 JP 2010127936 A JP2010127936 A JP 2010127936A JP 2010127936 A JP2010127936 A JP 2010127936A JP 5483097 B2 JP5483097 B2 JP 5483097B2
Authority
JP
Japan
Prior art keywords
vibration
floor
layer
damping
damping mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010127936A
Other languages
Japanese (ja)
Other versions
JP2011252341A (en
Inventor
徹也 半澤
健太郎 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2010127936A priority Critical patent/JP5483097B2/en
Publication of JP2011252341A publication Critical patent/JP2011252341A/en
Application granted granted Critical
Publication of JP5483097B2 publication Critical patent/JP5483097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、建物の梁や床に生じる上下振動を制御するための制振構造に関する。   The present invention relates to a vibration damping structure for controlling vertical vibration generated in a beam or floor of a building.

建物の床や梁では剛性の不足や外乱振動との共振によって居住者が不快感を感じるような上下振動が生じる場合がある。それに対する対策として、たとえば特許文献1に示されるようなTMD(チューンド・マス・ダンパー:動吸振器)を梁や床に対して設置することが提案されている。これは梁や床の振動に対して同調して振動する錘(付加質量)を設置することにより、その錘を大きく振動させることによって梁や床の上下方向の振動の低減を図るものである。   On the floor and beam of a building, vertical vibrations that may cause residents to feel uncomfortable due to lack of rigidity or resonance with disturbance vibrations may occur. As a countermeasure against this, for example, it has been proposed to install a TMD (tuned mass damper) as shown in Patent Document 1 on a beam or a floor. By installing a weight (additional mass) that vibrates in synchronism with the vibration of the beam or the floor, the vibration of the beam or the floor is reduced by greatly vibrating the weight.

また、特許文献2には、回転慣性質量を利用することで小さい質量体により大きな付加質量が得られてTMDとして有効に機能するという制振機構が提案されている。これは回転慣性質量ダンパーとばね要素(付加ばねとしての板ばね)からなる制振機構を下階の床と上階の床との間に支柱(サポート)を介して設置することによりそれらの間で生じる上下方向の相対振動により回転慣性質量ダンパーを作動させて制振効果を得るというものである。   Further, Patent Document 2 proposes a vibration damping mechanism in which a large additional mass is obtained from a small mass body by using the rotational inertial mass and functions effectively as a TMD. This is achieved by installing a damping mechanism consisting of a rotary inertia mass damper and a spring element (a leaf spring as an additional spring) between the lower floor and the upper floor via a support (support). The vibration inertia effect is obtained by operating the rotary inertia mass damper by the vertical relative vibration generated in the above.

特開平10−252253号公報JP-A-10-252253 特開2009−174677号公報JP 2009-174777 A

特許文献1に示される従来一般のTMDでは充分な制振効果を得るために必要となる付加質量は一般に1トン程度と大きくなるので、制振対象の梁や床に大きな負担がかかるばかりでなく、付加質量を数個所に分けて分散配置する必要があるのでスペース確保や施工性の点でも問題がある。   In the conventional general TMD disclosed in Patent Document 1, the additional mass required to obtain a sufficient vibration damping effect is generally as large as about 1 ton, so that not only a heavy load is imposed on the beam and floor to be damped. In addition, since it is necessary to divide and add the additional mass into several places, there is a problem in terms of securing space and workability.

特許文献2に示される制振機構は、大きな付加質量を必要としない点で有利であるが、この制振機構が確実に作動して充分な制振効果が得られるためには上階と下階との間で上下方向の相対振動が生じる必要があり、そのためには上階あるいは下階いずれか一方が固定端であるか、あるいはそれらの振動特性、特に双方の固有振動数に有意な差があることが前提となる。
しかし、一般の多層建物では地下階や屋上階を除く中間階の各階の振動特性はほぼ同等であることが通常であるから、上記の制振機構を一般的な多層建物の中間階に単に設置しても有効に作動し得るものとはならず、充分な制振効果が期待できない。
The vibration damping mechanism disclosed in Patent Document 2 is advantageous in that it does not require a large additional mass, but in order for this vibration damping mechanism to operate reliably and to obtain a sufficient vibration damping effect, the upper floor and the lower floor are advantageous. Relative vibration in the vertical direction must occur between the floor and either of the upper floor or the lower floor is a fixed end, or a significant difference in their vibration characteristics, especially the natural frequency of both. It is assumed that there is.
However, in general multi-layer buildings, the vibration characteristics of each floor of the intermediate floor excluding the basement floor and rooftop floor are usually the same, so the above damping mechanism is simply installed on the intermediate floor of a general multi-layer building. Even if it does not operate effectively, a sufficient damping effect cannot be expected.

上記事情に鑑み、本発明は上記の制振機構を一般的な建物の中間階に設置しても優れた制振効果が得られる有効適切な制振構造を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide an effective and appropriate damping structure that can provide an excellent damping effect even if the damping mechanism is installed on an intermediate floor of a general building.

本発明は建物の床架構を対象として該床架構に生じる上下方向の振動を制御するための制振構造であって、振動特性が同等な複数の層を制振対象層としてそれら各層の床架構どうしを支柱により連結することにより、各床架構の剛性と前記支柱の剛性および各層の質量とにより定まる高次モードの上下振動が励起されるように構成し、前記制振対象層のいずれかの床架構と、該床架構とは振動特性が異なる他の層の床架構との間に、それらの間で生じる上下方向の相対振動により作動する主制振機構を設置するとともに、前記制振対象層の各層の床架構どうしの間に、それらの間で生じる前記高次モードの上下方向の相対振動により作動する副制振機構を設置してなることを特徴とする。   The present invention relates to a vibration control structure for controlling vertical vibration generated in a floor structure for a building floor structure, and a plurality of layers having equivalent vibration characteristics are used as vibration control target layers. By connecting the columns with columns, it is configured to excite a vertical vibration of a higher-order mode determined by the rigidity of each floor frame, the rigidity of the columns and the mass of each layer, and Between the floor frame and the floor frame of another layer having vibration characteristics different from that of the floor frame, a main vibration control mechanism that operates by relative vibration in the vertical direction generated between them is installed, and the vibration control target A sub-damping mechanism is provided between the floor frames of each layer, which is operated by the relative vibration in the vertical direction of the higher-order mode generated between them.

本発明においては、前記制振対象層を最上階の床架構および少なくともその下階の床架構を含む複数層に設定するとともに、前記制振対象層とは振動特性が異なる他の層として建物の屋上層を設定し、前記主制振機構を屋上階の床架構と最上階の床架構との間に設置することが考えられる。   In the present invention, the vibration suppression target layer is set to a plurality of layers including the floor structure of the uppermost floor and at least the floor structure of the lower floor, and the vibration control target layer is different from the vibration suppression target layer as another layer of the building It is conceivable that a roof layer is set and the main vibration control mechanism is installed between the floor structure on the roof floor and the floor structure on the top floor.

本発明においては、前記主制振機構および前記副制振機構の双方を、回転慣性質量ダンパーと、該回転慣性質量ダンパーに対して直列に接続した付加ばねと、前記回転慣性質量ダンパーに対して並列に接続した付加減衰とにより構成することが好ましい。   In the present invention, both the main damping mechanism and the sub damping mechanism are connected to a rotary inertia mass damper, an additional spring connected in series to the rotary inertia mass damper, and the rotary inertia mass damper. It is preferable to configure with additional attenuation connected in parallel.

本発明によれば、固有振動数が同等であって振動特性に有意な差がないことから制振機構を設置しても充分な効果が得られないような複数の層を制振対象層として、それら各層を支柱により連結したうえで各層間に副制振機構を設置し、かつそれらの層のいずれかと振動特性の異なる他の層との間に主制振機構を設置することにより、主制振機構および副制振機構が効果的に作動して制振対象層の床架構に対する充分な制振効果を得ることが可能となる。   According to the present invention, since the natural frequencies are equal and there is no significant difference in vibration characteristics, a plurality of layers for which sufficient effects cannot be obtained even if a vibration suppression mechanism is installed are used as vibration suppression target layers. By connecting these layers with struts, installing a secondary damping mechanism between each layer, and installing a main damping mechanism between one of these layers and another layer with different vibration characteristics, The vibration damping mechanism and the secondary vibration damping mechanism are effectively operated to obtain a sufficient vibration damping effect for the floor frame of the vibration control target layer.

本発明の制振構造の概要を示す図である。It is a figure which shows the outline | summary of the damping structure of this invention. 同、解析モデル(非連結、非制振の場合)を示す図である。It is a figure which shows an analysis model (in the case of non-connection and non-vibration suppression) same as the above. 同、固有値解析結果(非連結、非制振の場合)を示す図である。It is a figure which shows an eigenvalue analysis result (in the case of a non-connection and non-vibration suppression) similarly. 同、固有モード(非連結、非制振の場合)を示す図である。It is a figure which shows a natural mode (in the case of non-connection and non-vibration suppression) same as the above. 同、解析結果(非連結、非制振の場合)を示す図である。It is a figure which shows an analysis result (in the case of non-connection and non-vibration suppression) same as the above. 同、固有値解析結果(連結、制振の場合)を示す図である。It is a figure which shows an eigenvalue analysis result (in the case of a connection and vibration suppression) similarly. 同、固有モード(連結、制振の場合)を示す図である。It is a figure which shows an eigenmode (in the case of a connection and vibration suppression) same as the above. 同、解析結果(連結、非制振の場合)を示す図であるIt is a figure which shows an analysis result (in the case of a connection and non-vibration suppression) same as the above. 同、主制振機構および副制振機構の諸元の設定例を示す図である。It is a figure which shows the example of a setting of the item of a main damping mechanism and a sub damping mechanism. 同、解析結果(連結、制振の場合)を示す図である。It is a figure which shows an analysis result (in the case of a connection and vibration suppression) same as the above. 同、解析結果(連結、一部制振の場合)を示す図である。It is a figure which shows an analysis result (in the case of a connection and partial vibration suppression) same as the above. 同、歩行荷重を示す図である。It is a figure which shows a walking load similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly. 同、解析結果を示す図である。It is a figure which shows an analysis result similarly.

以下、本発明の制振構造の一実施形態を具体的な設計例を挙げて説明する。
本実施形態は、図1に模式的に示すように1スパン7層(7階建て)の建物への適用例であって、屋上層を除く頂部の3層(すなわち5F〜7Fの床架構a,b,cにより構成されている各層)を制振対象層として、それら各層の床架構a,b,cに生じる上下振動を特許文献2に示されているような制振機構によって抑制することを基本とするものである。
但し、上述したようにそれら各層の振動特性には有意な差がなく各床架構a,b,cの固有振動数は実質的に同等であることから、各層の間に単に制振機構を設置することでは充分な制振効果が得られないことから、本発明では各層の床架構a,b,cどうしを支柱10により連結することで各層に高次モードの上下振動を励起させたうえで、それら各層の間に副制振機構Bを設置するとともに、最上階(7F)の床架構cとそれとは振動特性の異なる屋上階(RF)の床架構dとの間に主制振機構Aを設置することにより、それら主制振機構Aおよび副制振機構Bにより制振対象層全体の上下振動を効果的に抑制することを主眼とする。
Hereinafter, an embodiment of the vibration damping structure of the present invention will be described with a specific design example.
The present embodiment is an application example to a 1-span 7-story (7-story) building as schematically shown in FIG. 1, and the top three layers (that is, 5F to 7F floor frame a) excluding the rooftop layer , B, and c) are used as vibration control target layers, and vertical vibrations generated in the floor structures a, b, and c of these layers are suppressed by a vibration control mechanism as shown in Patent Document 2. It is based on.
However, as described above, there is no significant difference in the vibration characteristics of each layer, and the natural frequencies of the floor frames a, b, and c are substantially equal. Therefore, a damping mechanism is simply installed between the layers. Therefore, in the present invention, the floor structures a, b, and c of each layer are connected to each other by the support column 10 to excite high-order mode vertical vibrations in each layer. The sub vibration damping mechanism B is installed between these layers, and the main vibration damping mechanism A is provided between the top floor (7F) floor frame c and the roof floor (RF) floor frame d having different vibration characteristics. The main purpose is to effectively suppress the vertical vibration of the entire layer to be controlled by the main damping mechanism A and the secondary damping mechanism B.

本実施形態での解析モデルを図2に示す。
制振対象層の各層のスパン中央を加振点とし、上下方向および回転方向を考慮して、水平方向は拘束する。
このモデルについての固有値解析結果を図3に示し、固有モードを図4に示す。図4からこの建物では3〜6次に5〜7Fの固有モードがあるが、それらは近接していて振動特性に有意な差はないことが分かる。
この場合のフーリエスペクトル比を図5に示す。これから、この建物では図3および図4にみられる固有振動数において大きな応答が生じていることが分かる。
An analysis model in the present embodiment is shown in FIG.
The horizontal direction is constrained in consideration of the vertical direction and the rotation direction, with the center of the span of each layer of the vibration suppression target layer as the excitation point.
The eigenvalue analysis result for this model is shown in FIG. 3, and the eigenmode is shown in FIG. It can be seen from FIG. 4 that this building has eigenmodes 3 to 6 and 5 to 7 F, but they are close to each other and there is no significant difference in vibration characteristics.
The Fourier spectrum ratio in this case is shown in FIG. From this, it can be seen that this building has a large response at the natural frequency seen in FIGS.

本発明では、上記の建物に対し、図1に示すように5〜7Fの床架構a,b,cどうしをそれぞれ支柱10により連結する。支柱10としてはたとえば鋼管を用いれば良く、その剛性を適切に設定することにより、各層に初期の固有振動数とは異なるモードを励起せしめることができる。
たとえば、支柱10として径φ76.3mm(板厚4mm)の鋼管を設置した場合の固有値解析結果を図6に示し、その場合の固有モードを図7に示す。これより、支柱10の設置により6次および7次の高次モードが新たに発生していることが分かる。
この場合のフーリエスペクトル比を図8に示す。これから図5では見られない高次の振動が生じていることが分かる。
In the present invention, 5 to 7F floor frames a, b, and c are connected to the above-mentioned building by the columns 10 as shown in FIG. For example, a steel pipe may be used as the support column 10, and a mode different from the initial natural frequency can be excited in each layer by appropriately setting the rigidity.
For example, FIG. 6 shows the eigenvalue analysis results when a steel pipe having a diameter of 76.3 mm (plate thickness 4 mm) is installed as the support column 10, and FIG. 7 shows the eigenmode in that case. From this, it can be seen that the 6th-order and 7th-order higher-order modes are newly generated by the installation of the support column 10.
FIG. 8 shows the Fourier spectrum ratio in this case. From this, it can be seen that higher-order vibrations not seen in FIG. 5 are generated.

このように、本発明では制振対象層どうしを支柱10により連結することで、当初は近接していた固有振動数の振動モードをまとめるとともに、それとは離れた高次の振動モードを発生させることができる。
そこで、そのうえで本発明では、図1に示すように、各層の床架構a,b,cの間(すなわち5Fおよび6F)にそれぞれ副制振機構Bを設置するとともに、それらとは振動特性の異なる屋上層(制振対象層以外の他の層)の床架構dと最上階の床架構cとの間(すなわち7F)には主制振機構Aを設置する。
As described above, in the present invention, the vibration target layers are connected to each other by the support column 10 so that the vibration modes of the natural frequencies that are close to each other are gathered together and a higher order vibration mode that is separated from the vibration modes is generated. Can do.
Therefore, in the present invention, as shown in FIG. 1, the sub vibration damping mechanism B is installed between the floor frames a, b, and c (that is, 5F and 6F) of each layer, and the vibration characteristics are different from those. The main vibration damping mechanism A is installed between the floor frame d of the rooftop layer (the layer other than the vibration suppression target layer) and the floor frame c of the uppermost floor (that is, 7F).

それら主制振機構Aおよび副制振機構Bは、図1に示すようにいずれも特許文献2に示される制振機構と同様に、回転慣性質量ダンパー1と、その回転慣性質量ダンパー1に対して直列に接続された付加ばね2と、回転慣性質量ダンパー1に対して並列に接続された付加減衰3とにより構成されたものであり、それらの諸元を各層の床架構a〜dの剛性と支柱10の剛性および各層の質量に対応させて適正に設定することにより、それら主制振機構Aおよび副制振機構Bがいずれも有効に作動し得て、制振対象層全体に対する優れた制振効果が得られる。   As shown in FIG. 1, the main damping mechanism A and the secondary damping mechanism B are similar to the damping mechanism shown in Patent Document 2 with respect to the rotary inertia mass damper 1 and the rotary inertia mass damper 1. The additional springs 2 connected in series and the additional damping 3 connected in parallel to the rotary inertia mass damper 1 are used to determine the specifications of the floor frames a to d of each layer. By properly setting according to the rigidity of the support column 10 and the mass of each layer, both the main damping mechanism A and the secondary damping mechanism B can be effectively operated, and excellent for the entire damping target layer. Damping effect can be obtained.

たとえば、上記のように支柱10として径φ76.3mm(板厚4mm)の鋼管を用いる場合において、図9に示すように、7Fに設置する主制振機構Aとして回転慣性質量ダンパー1の慣性質量を4000kg、付加ばね2の同調ばね値を2.543×106N/m、付加減衰3の減衰係数を3.178×104Ns/mとし、5〜6Fに設置する副制振機構Bとして回転慣性質量ダンパー1による慣性質量を4000kg、付加ばね2の同調ばね値を1.1679×107N/m、付加減衰3の減衰係数を6.052×104Ns/mとした場合には、フーリエスペクトル比は図10に示すようになり、これから広い領域にわたって応答の小さい振動系が得られることが分かる。 For example, when a steel pipe having a diameter of 76.3 mm (plate thickness 4 mm) is used as the support column 10 as described above, as shown in FIG. 9, the inertial mass of the rotary inertial mass damper 1 is used as the main damping mechanism A installed at 7F. Is 4000kg, the tuning spring value of the additional spring 2 is 2.543 × 10 6 N / m, the damping coefficient of the additional damping 3 is 3.178 × 10 4 Ns / m, and the rotary inertia mass is installed as the secondary damping mechanism B installed at 5-6F When the inertial mass of the damper 1 is 4000 kg, the tuning spring value of the additional spring 2 is 1.1679 × 10 7 N / m, and the damping coefficient of the additional damping 3 is 6.052 × 10 4 Ns / m, the Fourier spectrum ratio is as shown in FIG. From this, it can be seen that a vibration system having a small response over a wide region can be obtained.

なお、参考までに、支柱10を設置したうえで最上階に主制振機構Aのみを設置した場合(副制振機構Bを省略した場合)のフーリエスペクトル比を図11に示す。この場合は、低次の振動モードの応答は低減できるが、本発明のように高次の振動モードの応答は低減できないことがわかる。   For reference, FIG. 11 shows a Fourier spectrum ratio in the case where only the main damping mechanism A is installed on the top floor after the support 10 is installed (when the auxiliary damping mechanism B is omitted). In this case, it can be seen that the response of the low-order vibration mode can be reduced, but the response of the high-order vibration mode cannot be reduced as in the present invention.

制振対象の床架構a,b,cに対して図12に示すような歩行荷重を与えた場合の応答加速度の解析結果(1/3オクターブバンド)を、非制振の場合と比較して図13〜15に示す。これから、本発明によれば各階の応答レベルを充分に低減させることができることが分かる。   The analysis result of response acceleration (1/3 octave band) when the walking load as shown in Fig. 12 is applied to the floor structures a, b, c to be controlled is compared with the case of non-vibration control. As shown in FIGS. From this, it can be seen that according to the present invention, the response level of each floor can be sufficiently reduced.

以上のように、本発明によれば、従来においては振動特性に有意な差がない(固有振動数が同等)であることから制振機構を設置しても充分な効果が得られないような中間階に対しても、それら各層を支柱10により連結したうえで制振機構を設置することにより、制振機構を効果的に作動させ得て充分な制振効果を得ることが可能となる。   As described above, according to the present invention, there is no significant difference in vibration characteristics in the prior art (the natural frequency is equivalent), so that a sufficient effect cannot be obtained even if a vibration damping mechanism is installed. Also for the intermediate floor, by connecting these layers with the support column 10 and installing the vibration damping mechanism, the vibration damping mechanism can be effectively operated and a sufficient vibration damping effect can be obtained.

なお、上記実施形態では制振対象層を建物頂部の3層に設定するとともに、それらとは振動特性が異なる他の層として屋上層を設定し、したがって主制振機構Aを最上階に設置してその下階に副制振機構Bを設置することとしたが、これは解析上の一例であって、制振対象層および他の層の設定は建物全体の構造や形態、要求される制振性能等の諸条件を考慮して任意に設定すれば良く、たとえば他の層を地下階や地上1階(接地階)として中間階全体を制振対象層とすることも可能であるし、あるいは中間階に敢えて振動特性の異なる層を確保してその上下に制振対象層を設定することも可能である。   In the above embodiment, the vibration suppression target layers are set to the three layers at the top of the building, and the rooftop layer is set as another layer having different vibration characteristics from those, so the main vibration control mechanism A is installed on the top floor. The sub-damping mechanism B is installed on the lower floor, but this is an example in the analysis. The setting of the vibration suppression target layer and other layers depends on the structure and form of the entire building and the required control. What is necessary is just to set arbitrarily in consideration of various conditions such as vibration performance, for example, it is possible to make the other floors the basement floor or the first floor above ground (the ground floor) and the entire intermediate floor as the vibration control target layer, Alternatively, it is also possible to secure layers having different vibration characteristics on the intermediate floor and set the vibration suppression target layers above and below the layers.

また、本発明においては上記実施形態のように主制振機構Aおよび副制振機構Bをいずれも回転慣性質量ダンパー1と付加ばね2と付加減衰3とにより構成することが好ましいが、それに限るものではなく、支柱10の剛性および床架構a〜dの本来の剛性、並びにそれらの質量との関連において最適な制振効果が得られるように各諸元を設定可能なものであれば良く、その限りにおいて回転慣性質量ダンパー以外の他の形式のダンパーを採用して適宜の制振機構を構成することも可能である。
勿論、支柱10の構造や設置位置、所要本数等についても、制振対象の床架構に対して所望の高次振動モードを励起させるように任意に設計すれば良い。
In the present invention, it is preferable that the main damping mechanism A and the secondary damping mechanism B are each constituted by the rotary inertia mass damper 1, the additional spring 2, and the additional damping 3, as in the above-described embodiment. As long as each specification can be set so as to obtain the optimum vibration damping effect in relation to the rigidity of the column 10 and the original rigidity of the floor frames a to d and their masses, As long as that is the case, it is possible to adopt a damper of a different type other than the rotary inertia mass damper to configure an appropriate vibration damping mechanism.
Of course, the structure, installation position, required number, and the like of the column 10 may be arbitrarily designed so as to excite a desired higher-order vibration mode for the floor frame to be controlled.

a,b,c 床架構(振動特性が同等な複数の層:制振対象層)
d 床架構(制振対象層とは振動特性が異なる他の層)
A 主制振架構
B 副制振架構
1 回転慣性質量ダンパー
2 付加ばね
3 付加減衰
10 支柱
a, b, c Floor frame (multiple layers with equivalent vibration characteristics: layers subject to vibration suppression)
d Floor frame (other layers with different vibration characteristics from the target vibration control layer)
A Main vibration control frame B Sub vibration control frame 1 Rotary inertia mass damper 2 Additional spring 3 Additional damping 10 Post

Claims (3)

建物の床架構を対象として該床架構に生じる上下方向の振動を制御するための制振構造であって、
振動特性が同等な複数の層を制振対象層としてそれら各層の床架構どうしを支柱により連結することにより、各床架構の剛性と前記支柱の剛性および各層の質量とにより定まる高次モードの上下振動が励起されるように構成し、
前記制振対象層のいずれかの床架構と、該床架構とは振動特性が異なる他の層の床架構との間に、それらの間で生じる上下方向の相対振動により作動する主制振機構を設置するとともに、
前記制振対象層の各層の床架構どうしの間に、それらの間で生じる前記高次モードの上下方向の相対振動により作動する副制振機構を設置してなることを特徴とする制振構造。
A damping structure for controlling vertical vibration generated in a floor frame for a floor frame of a building,
By connecting multiple floors with the same vibration characteristics as the vibration control target layers and connecting the floor frames of each layer with support columns, the upper and lower modes of the higher order mode determined by the rigidity of each floor structure, the rigidity of the support columns, and the mass of each layer Configure to excite vibrations,
A main vibration control mechanism that operates between a floor structure of any one of the vibration suppression target layers and a floor structure of another layer having vibration characteristics different from that of the floor structure by vertical relative vibration generated therebetween. And installing
Between the floor frames of each layer of the vibration suppression target layer, a secondary vibration suppression mechanism that operates by vertical relative vibration in the higher-order mode generated between them is installed. .
請求項1記載の制振構造であって、
前記制振対象層を最上階の床架構および少なくともその下階の床架構を含む複数層に設定するとともに、前記制振対象層とは振動特性が異なる他の層として建物の屋上層を設定し、前記主制振機構を屋上階の床架構と最上階の床架構との間に設置してなることを特徴とする制振構造。
The vibration damping structure according to claim 1,
The vibration control target layer is set to a plurality of layers including a floor structure on the uppermost floor and at least a floor structure on the lower floor, and a rooftop layer of a building is set as another layer having different vibration characteristics from the vibration control target layer. The vibration damping structure is characterized in that the main vibration damping mechanism is installed between a floor frame on the roof floor and a floor frame on the top floor.
請求項1または2記載の制振構造であって、
前記主制振機構および前記副制振機構の双方を、回転慣性質量ダンパーと、該回転慣性質量ダンパーに対して直列に接続した付加ばねと、前記回転慣性質量ダンパーに対して並列に接続した付加減衰とにより構成してなることを特徴とする制振構造。
A vibration damping structure according to claim 1 or 2,
Both the main damping mechanism and the sub damping mechanism are a rotary inertia mass damper, an additional spring connected in series to the rotary inertia mass damper, and an addition connected in parallel to the rotary inertia mass damper Damping structure characterized by comprising damping.
JP2010127936A 2010-06-03 2010-06-03 Vibration control structure Active JP5483097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127936A JP5483097B2 (en) 2010-06-03 2010-06-03 Vibration control structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127936A JP5483097B2 (en) 2010-06-03 2010-06-03 Vibration control structure

Publications (2)

Publication Number Publication Date
JP2011252341A JP2011252341A (en) 2011-12-15
JP5483097B2 true JP5483097B2 (en) 2014-05-07

Family

ID=45416461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127936A Active JP5483097B2 (en) 2010-06-03 2010-06-03 Vibration control structure

Country Status (1)

Country Link
JP (1) JP5483097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098866B2 (en) * 2012-11-20 2017-03-22 清水建設株式会社 Vertical vibration control structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364248B2 (en) * 2007-06-29 2013-12-11 株式会社竹中工務店 Anti-vibration studs

Also Published As

Publication number Publication date
JP2011252341A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP4968682B2 (en) Vibration reduction mechanism and specification method thereof
JP2009513898A (en) FORK DAMPER AND METHOD OF USING THE DAMPER
JP5725331B2 (en) Beam vibration reduction mechanism
JP2011256591A (en) Seismic control system for plural structures using large roof
JP5516934B2 (en) Vibration control mechanism
JP5483097B2 (en) Vibration control structure
JP5316849B2 (en) Damping structure
JP5777044B2 (en) Beam vibration reduction mechanism
JP5473000B2 (en) Vertical vibration control system for building floor
JP5458374B2 (en) Vibration control system
JP5146770B2 (en) Damping structure and its specification method
JP5495013B2 (en) Vibration control mechanism
JP5639766B2 (en) Floor structure
JP7037320B2 (en) Vibration control building
JP2015055267A (en) Intermediate base isolation structure
JP6397544B2 (en) Intermediate seismic isolation structure
JP6456774B2 (en) Vibration control structure
JP6505272B2 (en) Intermediate seismic isolation structure
JP2004003280A (en) Damping device for building including vibrationproof device for housing
JP3193182B2 (en) Multiple mode control mass damper
JP7312343B2 (en) How to set the specifications of the damping device
JP7112918B2 (en) Seismic damping reinforcement method for existing buildings
JP5382457B2 (en) Connected vibration control structure
JP6710086B2 (en) Vibration control equipment for building structures
JP2010242450A (en) Vibration control method, vibration control structure, and aseismatic reinforcing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140205

R150 Certificate of patent or registration of utility model

Ref document number: 5483097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150