JP5494234B2 - 三次元形状計測装置、キャリブレーション方法、およびロボット - Google Patents

三次元形状計測装置、キャリブレーション方法、およびロボット Download PDF

Info

Publication number
JP5494234B2
JP5494234B2 JP2010121574A JP2010121574A JP5494234B2 JP 5494234 B2 JP5494234 B2 JP 5494234B2 JP 2010121574 A JP2010121574 A JP 2010121574A JP 2010121574 A JP2010121574 A JP 2010121574A JP 5494234 B2 JP5494234 B2 JP 5494234B2
Authority
JP
Japan
Prior art keywords
feature point
unit
coordinate value
calibration
calibration block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010121574A
Other languages
English (en)
Other versions
JP2011247759A (ja
Inventor
敏則 長橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010121574A priority Critical patent/JP5494234B2/ja
Publication of JP2011247759A publication Critical patent/JP2011247759A/ja
Application granted granted Critical
Publication of JP5494234B2 publication Critical patent/JP5494234B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、三次元形状計測装置、キャリブレーション方法、およびロボットに関する。
スリット光源が射出したスリット光を計測対象物体に照射し、その計測対象物体の表面に映るスリット光の輝線(光切断線)をカメラで撮像して、計測対象物体の三次元形状を計測する光切断法による三次元形状計測装置では、カメラが撮像した計測対象物体の画像における位置と、実空間における位置とを対応させるためのキャリブレーション(校正)が必要である。
そこで従来、カメラの歪補正と高さ方向のキャリブレーションとを同時に行って校正作業全体にかかる時間を短縮することのできるキャリブレーション装置が知られている(例えば、特許文献1参照)。特許文献1に開示されたキャリブレーション装置では、各列に階段状ブロックを配置するとともに、一列おきの階段状ブロックを前列よりも一段低く配置したキャリブレーションブロックを用いて校正作業を行うものである。
特開2007−33039号公報
しかしながら、特許文献1に開示されたキャリブレーション装置は、キャリブレーションブロック上の輝線を合成して得られる格子図形から画像上の座標を求めてキャリブレーションに用いるため、キャリブレーションブロック全体を確実に計測して画像上の格子図形と対応させる必要があり、キャリブレーション作業に長時間がかかっていた。
そこで、本発明は上記問題に鑑みてなされたものであり、三次元形状計測における高さ方向のキャリブレーションを効率的に且つ高精度に行う、三次元形状計測装置およびキャリブレーション方法を提供することを目的とする。
[1]上記の課題を解決するため、本発明の一態様である三次元形状計測装置は、スリット光を射出する光源部と、キャリブレーション用ブロックが載置される載置台と、前記キャリブレーション用ブロックに照射される前記スリット光の光切断線を撮像する撮像部と、前記載置台と前記光源部および前記撮像部の組合せとの少なくとも一方を移動させる移動部と、前記撮像部が撮像した撮像画像から前記光切断線を検出する光切断線検出部と、前記光切断線から特徴点を検出して特徴点座標値を計算し、この特徴点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた特徴点情報を生成する特徴点情報生成部と、前記特徴点座標値と前記移動ピッチとから世界座標系における前記特徴点の三次元座標値に変換する変換行列を計算する変換行列計算部と、前記特徴点情報と前記変換行列とに基づいて、撮像画像の画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求めて校正用データを生成する三次元座標変換部と、を備え、前記キャリブレーション用ブロックは、前記載置台に載置される底部からの高さ寸法が異なる複数の平面部を有し、前記複数の平面部それぞれに、前記スリット光の照射により生じる光切断線と非平行である直線の輪郭を有し、その輪郭を境にして光反射率が異なるパターンが形成され、前記特徴点情報生成部は、複数の前記特徴点座標値に基づいて前記パターンの頂点座標値を計算し、この頂点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた頂点情報を生成して前記特徴点情報に追加する、ことを特徴とする。
本発明の一態様によれば、三次元形状計測装置は、キャリブレーション用ブロックを撮像することにより得られる特徴点の特徴点座標値と移動部の移動ピッチとから世界座標系における特徴点の三次元座標値に変換する変換行列を求め校正用データを生成するため、従来のようにキャリブレーション用ブロック全体を確実に計測する必要がなく、高さ方向のキャリブレーションを効率的に且つ高精度に行うことができる。
[2]上記[1]記載の三次元形状計測装置において、前記光切断線検出部は、前記撮像画像から輝度の重心位置を求めることによって前記光切断線を検出することを特徴とする。
これにより、三次元形状計測装置は、撮像画像の光切断線に含まれるノイズの影響を除外して高精度に光切断線を検出することができる。
こで、キャリブレーション用ブロックの複数の平面部それぞれには、互いに光反射率が異なる幾何学的模様のパターンが形成されることが好ましい。これにより、三次元形状計測装置は、平面部のパターンにスリット光が照射されたときに、同一の高さの平面上から様々な位置の特徴点を検出することができる。
れにより、三次元形状計測装置は、移動部の移動ピッチよりも細かく且つ撮像画像の画素ピッチの影響を受けることなく特徴点情報を求めることができる。
]上記の課題を解決するため、本発明の一態様である三次元形状計測装置のキャリブレーション方法は、三次元形状計測装置のキャリブレーション方法において、キャリブレーション用ブロックが載置された載置台とスリット光を射出する光源部および前記キャリブレーション用ブロックに照射される前記スリット光の光切断線を撮像する撮像部の組合せとの少なくとも一方を移動させるステップと、前記撮像部が撮像した撮像画像から前記光切断線を検出するステップと、前記光切断線から特徴点を検出して特徴点座標値を計算し、この特徴点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた特徴点情報を生成するステップと、前記特徴点座標値と前記移動ピッチとから世界座標系における前記特徴点の三次元座標値に変換する変換行列を計算するステップと、前記特徴点情報と前記変換行列とに基づいて、撮像画像の画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求めて校正用データを生成するステップと、を有し、前記キャリブレーション用ブロックは、前記載置台に載置される底部からの高さ寸法が異なる複数の平面部を有し、前記複数の平面部それぞれに、前記スリット光の照射により生じる光切断線と非平行である直線の輪郭を有し、その輪郭を境にして光反射率が異なるパターンが形成され、前記特徴点情報を生成するステップは、複数の前記特徴点座標値に基づいて前記パターンの頂点座標値を計算し、この頂点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた頂点情報を生成して前記特徴点情報に追加する、ことを特徴とする。
本発明の一態様によれば、三次元形状計測装置は、キャリブレーション用ブロックを撮像することにより得られる特徴点の特徴点座標値と移動部の移動ピッチとから世界座標系における特徴点の三次元座標値に変換する変換行列を求め校正用データを生成するため、従来のようにキャリブレーション用ブロック全体を確実に計測する必要がなく、高さ方向のキャリブレーションを効率的に且つ高精度に行うことができる。
]上記の課題を解決するため、本発明の一態様であるロボットは、スリット光を射出する光源部と、キャリブレーション用ブロックが載置される載置台と、前記キャリブレーション用ブロックに照射される前記スリット光の光切断線を撮像する撮像部と、前記載置台と前記光源部および前記撮像部の組合せとのいずれか一方が取り付けられたハンド部と、前記ハンド部が可動自在に取り付けられたアーム部と、前記撮像部が撮像した撮像画像から前記光切断線を検出する光切断線検出部と、前記光切断線から特徴点を検出して特徴点座標値を計算し、この特徴点座標値と前記ハンド部の一方向の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた特徴点情報を生成する特徴点情報生成部と、前記特徴点座標値と前記移動ピッチとから世界座標系における前記特徴点の三次元座標値に変換する変換行列を計算する変換行列計算部と、前記特徴点情報と前記変換行列とに基づいて、撮像画像の画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求めて校正用データを生成する三次元座標変換部と、を備え、前記キャリブレーション用ブロックは、前記載置台に載置される底部からの高さ寸法が異なる複数の平面部を有し、前記複数の平面部それぞれに、前記スリット光の照射により生じる光切断線と非平行である直線の輪郭を有し、その輪郭を境にして光反射率が異なるパターンが形成され、前記特徴点情報生成部は、複数の前記特徴点座標値に基づいて前記パターンの頂点座標値を計算し、この頂点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた頂点情報を生成して前記特徴点情報に追加する、ことを特徴とする。
本発明の一態様によれば、ロボットは、キャリブレーション用ブロックを撮像することにより得られる特徴点の特徴点座標値とハンド部の一方向の移動ピッチとから世界座標系における特徴点の三次元座標値に変換する変換行列を求め校正用データを生成するため、従来のようにキャリブレーション用ブロック全体を確実に計測する必要がなく、高さ方向のキャリブレーションを効率的に且つ高精度に行うことができる。
本発明の一実施形態である三次元形状計測装置がキャリブレーションを行っている様子を模式的に示した、三次元形状計測装置およびキャリブレーション用ブロックの斜視図である。 同実施形態における、三次元形状計測装置の主要な機能構成を示すブロック図である。 同実施形態における、キャリブレーション用ブロックの外観の斜視図である。 同実施形態において、キャリブレーション用ブロックの各段上平面にパターンニングされるパターンの例である。 同実施形態において、三次元形状計測装置が実行する校正用データの生成処理の手順を示すフローチャートである。 同実施形態において、キャリブレーション用ブロックが搬送されたときの、パターンが輝線を通過する様子を模式的に示した図である。 同実施形態において、三次元形状計測装置が実行する三次元形状計測の処理手順を示すフローチャートである。 三次元形状計測装置の一部の機能が組み込まれたロボットがキャリブレーションを行っている様子を示した、ロボットおよびキャリブレーション用ブロックならびに載置台の斜視図である。
以下、本発明を実施するための形態について、図面を参照して詳細に説明する。図1は、本発明の一実施形態である三次元形状計測装置がキャリブレーションを行っている様子を模式的に示した、三次元形状計測装置およびキャリブレーション用ブロックの斜視図である。同図における三次元形状計測装置1は、光切断法によって計測対象物体(キャリブレーション用ブロックを含む。)の外部形状を計測する装置であり、キャリブレーションモードまたは通常計測モードに切り換えられて動作する。光切断法とは、例えば、スリット光源と計測対象物体とを相対的に移動させながら、スリット光源が計測対象物体にスリット光を照射し、撮像装置が計測対象物体の表面に映る輝線(光切断線)を撮像して二次元の輝線画像を取得し、画像処理装置がその輝線画像に基づいて計測対象物体の三次元形状を得る方法である。
三次元形状計測装置1は、スリット光源部11と、撮像部12と、載置台40とを含んで構成される。そして、同図において、載置台40には、撮像部12が撮像した画像における位置と実空間における位置との整合をとるために用いられるキャリブレーション用ブロック100が載置されている。
図2は、三次元形状計測装置1の主要な機能構成を示すブロック図である。なお、同図において、図1に示した構成と同一の構成については同一の符号を付している。図2に示すように、三次元形状計測装置1は、光学測定部10と、制御部20と、載置台駆動部30と、載置台40とを含んで構成される。以下、図1および図2を併せ参照して三次元形状計測装置1の構成について説明する。
光学測定部10は、光切断法によって三次元形状計測を行う測定ユニットであり、スリット光源部11と、撮像部12とを含んで構成される。
スリット光源部11は、スリット光SLを射出する光源である。このスリット光SLは、扇形状に広がって空間に射出される。スリット光SLは、例えばレーザー光を用いるのがよい。スリット光源部11は、スリット光SLの中心光軸が鉛直軸と非平行である所定の角度を有して設置される。
キャリブレーション用ブロック100を載せた載置台40は、載置台駆動部30の駆動によって搬送方向Aの向きに移動し、それによってキャリブレーション用ブロック100が搬送方向Aの向きに搬送される。スリット光源部11から射出されたスリット光SLが搬送中のキャリブレーション用ブロック100の上面側に設けられた段上平面に照射されると、その照射部分から反射光RLが反射される。
撮像部12は、例えば、デジタルカメラまたはデジタルビデオカメラである。撮像部12は、その光学系の光軸がスリット光SLの中心光軸と非平行である所定の角度で傾斜する位置、具体的には反射光RLを光学系に入射させて撮像可能な位置に設置される。このとき、キャリブレーション用ブロック100の反射部分は、光切断線である輝線LLとして可視化される。撮像部12は、その輝線LLを撮像して撮像画像データを制御部20に供給する。
制御部20は、三次元形状計測装置1全体を制御するものであり、CPU(Central Processing Unit)と半導体記憶部と(いずれも不図示)を含んで構成される。制御部20は、その機能上、計測制御部21と、光切断線検出部22と、反射位置計算部(特徴点情報生成部)23と、変換行列計算部24と、三次元座標変換部25と、記憶部26とを含んで構成される。
計測制御部21は、光学測定部10および載置台駆動部30を制御する。具体的には、計測制御部21は、スリット光源部11に対して、スリット光SLの射出の開始および停止を制御する。また、計測制御部21は、撮像部12に対して、計測対象物体の表面に映った輝線LLの撮像の開始および停止を制御したり、撮像画像データを光切断線検出部22に供給させる制御をしたりする。また、計測制御部21は、載置台駆動部30に対して、載置台40を少なくとも搬送方向Aの方向に移動させる制御を行う。
また、計測制御部21は、反射位置計算部23に対して、載置台駆動部30の移動ピッチを供給する。この移動ピッチとは、単位時間あたりの載置台40の移動量である。
光切断線検出部22は、撮像部12から供給された撮像画像データを取り込み、その画像から光切断線の位置を検出する。撮像部12の撮像性能によっては、画像に含まれる輝線LLの画像(輝線画像)にノイズが含まれたり太く撮像されていたりする場合がある。そこで、光切断線検出部22は、画像から輝度の重心位置を求めることにより光切断線の位置を高精度に検出する。
具体的には、光切断線検出部22は、画像平面をxy座標系としたときの座標値(imin,jmin)から座標値(imax,jmax)までのウィンドウにおけるx軸方向の輝度の重心位置xを、下記の式(1)を計算することにより求める。なお、式(1)において、(x,y)は、画像平面の座標値であり、I(x,y)は、座標値(x,y)における輝度値である。
Figure 0005494234
そして、光切断線検出部22は、重心位置xとこの位置に対応するy軸方向の位置であるyとを、当該ウィンドウにおける重心座標値(x,y)として記憶する。さらに、光切断線検出部22は、ウィンドウをシフトさせながら式(1)の計算を行って光切断線の位置を検出する。
反射位置計算部23は、光切断線検出部22で検出された光切断線の輝度の変化点である特徴点を検出して画像平面における特徴点座標値を計算する。そして、反射位置計算部23は、キャリブレーションモードにおいて、特徴点座標値と、計測制御部21から供給された移動ピッチと、当該特徴点に対応するキャリブレーション用ブロック100の所定の属性データとを関連づけた特徴点情報を生成して記憶部26に記憶する。この特徴点情報については、後述する動作説明の欄において具体的に説明する。
変換行列計算部24は、画像平面の二次元座標値と載置台駆動部30の移動ピッチとから計測対象物体の位置を規定する世界座標系の三次元座標値を求めるための変換行列のセット(変換行列セット)を計算して記憶部26に記憶する。
三次元座標変換部25は、キャリブレーションモードにおいては、記憶部26からそれぞれ読み出した特徴点情報および変換行列セットに基づいて、撮像画像データの画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求める。そして、三次元座標変換部25は、二次元座標値から三次元座標値に変換するためのキャリブレーションを行って校正用データを生成し記憶部26に記憶する。また、三次元座標変換部25は、通常計測モードにおいては、キャリブレーションの結果に基づいて計測対象物体の三次元座標を計算した後、記憶部26に記憶された校正用データを読み込んで、計測対象物体の移動ピッチに応じた三次元座標値の補正を行う。
記憶部26は、反射位置計算部23が生成した特徴点情報と、変換行列計算部24が計算した変換行列セットと、三次元座標変換部25が生成した校正用データとを記憶する。また、記憶部26は、キャリブレーション用ブロック100の外形寸法とパターンの位置に関する情報とを含むリファレンスデータを予め記憶する。
載置台駆動部30は、計測制御部21から供給される移動方向指示と移動ピッチとの制御情報に基づいて、載置台40をその載置面に平行な面における二次元の方向に移動させる。
図3は、キャリブレーション用ブロック100の外観の斜視図である。同図に示すように、キャリブレーション用ブロック100は、4段の階段形状部を有して一体的に形成されている。なお、階段は必ずしも4段である必要はなく複数段あればよい。また、キャリブレーション用ブロック100は中空または凹型であってもよい。キャリブレーション用ブロック100は、その底部110を載置台40の載置面に合わせて載置するものであり、底部110は設置の安定性を確保するために、面または少なくとも4箇所の支持部を有している。底部110と反対側の階段形状部には、底部110の載置面と平行であり、且つ垂直方向の寸法がそれぞれ異なる段上平面101−104が設けられている。
キャリブレーション用ブロック100には、スリット光SLとして例えばレーザー光が照射されるので、その照射部分の温度は高くなる傾向にある。よって、キャリブレーション用ブロック100は、熱膨張率の小さな材質であることが好ましい。キャリブレーション用ブロック100は、その材質を、例えばカーボンブラック、ガラス、またはステンレス鋼をとすることができる。これらの中で、カーボンブラックは、ガラスやステンレス鋼に比べて質量を小さくできる点において優れており、材質としては好ましい。
キャリブレーション用ブロック100の段上平面101−104それぞれには、所定のパターンPが形成(パターンニング)されている。図4は、キャリブレーション用ブロック100の段上平面101−104それぞれにパターンニングされるパターンの例である。同図に示すように、パターンPは、幾何学的模様であるパターンAPとパターンRPとを含んでいる。同図は、ハッチング模様のパターンAPと模様のない複数のパターンRPとがパターンPに設けられたように表されているが、これらのパターン色は同図で表現された模様および色に限定されるものではない。パターンPとして重要なことは、スリット光SLの照射に対するパターンAPとパターンRPとの光反射率が異なるようにパターンニングされることである。本実施形態では、パターンRPがパターンAPよりも反射率が大きくなるようにパターンニングされている。また、パターンP上に表現される幾何学的模様は、列(4個のパターンRPの組)として一意の模様である。
キャリブレーション用ブロック100へのパターンPのパターンニング方法としては、薄膜蒸着法、エッチング法、フォトレジスト法等の細密パターンニング技術を用いるのがよい。
キャリブレーション用ブロック100は、本実施形態である三次元形状計測装置1以外の形状計測装置によって外形寸法とパターンPの特徴点(各パターンRPの頂点等)の位置とが測定されている。そして、例えば、パターンRPごとに、頂点座標値と底部110から当該パターンRPがパターンニングされた段上平面までの高さ寸法とを、当該パターンRPの識別番号に関連づけたリファレンスデータが作成されている。このリファレンスデータは、前述したとおり記憶部26に予め記憶される。
次に、三次元形状計測装置1がキャリブレーション用ブロック100を用いてキャリブレーションを行うキャリブレーションモードの動作について説明する。図5は、三次元形状計測装置1が実行する「校正用データの生成処理」の手順を示すフローチャートである。キャリブレーション用ブロック100が、その搬送方向が図3に示す搬送方向Aの向きになるように載置台40に載置されたのち、三次元形状計測装置1が計測制御部21に対してキャリブレーションモードの動作開始指示を与えると、図5に示すフローチャートの処理が開始される。
ステップS501において、計測制御部21は、スリット光源部11に対して照射開始を指示する。そして、この指示を受けたスリット光源部11は、スリット光SLの照射を開始する。次に、ステップS502において、計測制御部21は、撮像部12に対して撮像開始を指示する。そして、この指示を受けた撮像部12は撮像を開始する。次に、ステップS503において、計測制御部21は、載置台駆動部30に対して駆動開始を指示する。そして、この指示を受けた載置台駆動部30は、載置台40の移動を開始する。
次に、ステップS504において、撮像部12は、キャリブレーション用ブロック100の表面に映った輝線LLを撮像して、撮像画像データを光切断線検出部22に供給する。次に、ステップS505において、光切断線検出部22は、撮像画像データを取り込み、前述したように画像から輝度の重心位置を求めることによってその画像から光切断線の位置を検出する。次に、ステップS506において、反射位置計算部23は、光切断線検出部22で検出された光切断線から特徴点を探索する。この「特徴点の探索処理」についてはその詳細を後述する。
次に、ステップS507において、反射位置計算部23は、光切断線から特徴点を検出した場合(ステップS507:YES)は、ステップS508の処理に移る。一方、反射位置計算部23は、光切断線から特徴点を検出しなかった場合(ステップS507:NO)は、ステップS509の処理に移る。ステップS508において、反射位置計算部23は、検出した特徴点の画像平面における特徴点座標値を計算する。次に、反射位置計算部23は、特徴点座標値と、計測制御部21から供給された移動ピッチと、当該特徴点に対応するキャリブレーション用ブロック100の所定の属性データとを関連づけた特徴点情報を生成して記憶部26に記憶する。この「特徴点情報の生成処理」についても、その詳細を後述する。
次に、ステップS509において、計測制御部21は、キャリブレーション用ブロック100の4つの段上平面101−104にパターンニングされた4つのパターンPが輝線LLによって走査終了したか否かを判定し、走査終了したと判定した場合(S509:YES)はステップS510の処理に移り、走査終了していないと判定した場合(S509:NO)はステップS504の処理に戻る。ステップS510において、反射位置計算部23は、記憶部26に記憶された特徴点情報を読み込んで、データを補間して記憶部26に記憶する。この「特徴点情報の補間処理」についても、その詳細を後述する。
次に、ステップS511において、変換行列計算部24は、画像平面の二次元座標値と載置台駆動部30の移動ピッチとから計測対象物体の位置を規定する世界座標系の三次元座標値を求めるための変換行列セットを計算して記憶部26に記憶する。この「変換行列セットの計算処理」についても、その詳細を後述する。
次に、ステップS512において、三次元座標変換部25は、記憶部26からそれぞれ読み出した特徴点情報および変換行列セットに基づいて、撮像画像データの画像平面の二次元座標値とそれに対応する世界座標系の三次元座標値との組み合わせを求める。そして、三次元座標変換部25は、二次元座標値から三次元座標値に変換するためのキャリブレーションを行って校正用データを生成し記憶部26に記憶する。この「校正用データの生成処理」についても、その詳細を後述する。
次に、上述した動作説明における、反射位置計算部23による「特徴点の探索処理」および「特徴点情報の生成処理」について具体的に説明する。図6は、キャリブレーション用ブロック100が搬送方向Aの向きに搬送された場合に、パターンP(同図では、パターンAPおよび1個のパターンRPを拡大して示す。)が輝線LLを通過する様子を模式的に示した図である。なお、同図では、図を分かり易くするために、パターンPを固定して、輝線LLを輝線LL1から輝線LL6まで移動させたときの相対的な位置関係を表している。
図6に示すように、撮像部12は、輝線LL1,LL2,LL3,・・・,LL6の各輝線を順次撮像して光切断線検出部22に供給する。まず、同図において、撮像部12が輝線LL1を撮像して撮像画像データを光切断線検出部22に供給すると、光切断線検出部22は、画像から輝度の重心座標置を算出することによって光切断線の位置を検出し反射位置計算部23に供給する。
次に、反射位置計算部23は、輝線LL1から得られた光切断線上で輝度の変化する個所を特徴点C1,C2として検出する。つまり、特徴点C1,C2は、輝線LL1が映っているパターンP上の反射率の変化点に対応する。反射位置計算部23は、特徴点C1,C2を検出すると、画像における特徴点C1,C2に対応する特徴点座標値を計算する。そして、その特徴点座標値と、計測制御部21から供給された移動ピッチと、特徴点C1,C2に対応するキャリブレーション用ブロック100の所定の属性データとを関連づけた特徴点情報を生成して記憶部26に記憶する。
所定の属性データとは、キャリブレーション用ブロック100の底部110から、対象特徴点に対応するパターンRPがパターンニングされた段上平面までの高さ寸法と、当該パターンRPの識別番号とを含む情報である。例えば、図6における特徴点C1,C2に対応するパターンRPが、図3における段上平面103にパターンニングされたパターンP中の幾何学的パターンであって、走査開始後の1番目の幾何学的パターンから数えて95番目の幾何学的パターンである場合、その属性データは、底部110から段上平面103までの高さ寸法、および識別番号“95”である。反射位置計算部23は、記憶部26からリファレンスデータを読み込み、輝線LLがキャリブレーション用ブロック100の段上平面104のパターンRPの1行目から段上平面101のパターンRPの4行目(最終行)までを走査しながら幾何学的パターンの個数を計数していくことによってパターンRPを特定し、属性データを求めることができる。
上記の特徴点C1,C2の検出の動作、および特徴点情報の記憶部26への記憶の動作と同様に、反射位置計算部23は、同図に図示された特徴点C3−C8を含む特徴点を検出して特徴点情報を生成し記憶部26に記憶する。
次に、反射位置計算部23による「特徴点情報の補間処理」について具体的に説明する。記憶部26には、輝線LL1−LL6の走査によって検出された特徴点C1−C8に係る特徴点情報が既に記憶されている。反射位置計算部23は、記憶部26からこれらの特徴点情報を読出し、まず、特徴点C1−C4に対応する各特徴点座標値からパターンRPの頂点T1の頂点座標値を計算する。つまり、特徴点C1,C3を通る線分と特徴点C2,C4を通る線分とが交差する点が頂点T1である。そして、同様にして、特徴点C5−C8に対応する各特徴点座標値からパターンRPの頂点T4の頂点座標値を計算する。さらに、同様にして、特徴点C1−C8に対応する各特徴点座標値からパターンRPの頂点T2,T3の各頂点座標値を計算する。
反射位置計算部23は、頂点T1−T4の各頂点座標値と、計測制御部21から供給された移動ピッチと、頂点T1−T4に対応するキャリブレーション用ブロック100の所定の属性データとを関連づけた頂点情報を生成して、記憶部26に記憶された特徴点情報に追加する。これにより、反射位置計算部23は、輝線の移動ピッチよりも細かく且つ画素ピッチの影響を受けることなく特徴点情報を求めることができる。
パターンRPを幾何的に単純な形状であって、その輪郭が輝線LLと平行にならないような形状とすることにより、上記のようにパターンRPの頂点の座標値を容易に求めることができる。しかも、検出された特徴点の幾何学的な配列から頂点を算出する方法であるため、撮像部12の解像度、載置台40の移動ピッチに依存せず、高精度に頂点座標を求めることができる。
なお、上記の説明はパターンRPのうち1つの幾何学的パターンについての頂点T1−T4の算出の例であるが、このような計算をパターンPの他のパターンRP全て、または1列おきや1行おき等予め定められた規則にしたがって行う。
次に、変換行列計算部24による「変換行列セットの計算処理」および三次元座標変換部25による「校正用データの生成処理」について具体的に説明する。撮像画像データの画像平面の二次元座標値を(x y)とし、計測対象物体の位置を規定する世界座標系の三次元座標値を(X Y Z)とすると、それぞれの同次座標値q(ボールド体),Q(ボールド体)は式(2)で表され、また、座標の変換式は式(3)のように表される。なお、「ボールド体」の記載は、その直前の文字がボールド体で表記されることを示し、当該文字で示されるデータが行列またはベクトルであることを意味する。
Figure 0005494234
Figure 0005494234
なお、式(3)において、sは、スケールパラメーターである。また、M(ボールド体)は、撮像部12の内部パラメーター行列である。
内部パラメーター行列M(ボールド体)は、以下の要素を含んでいる。
:x軸方向の焦点距離(画素単位での表現)
:y軸方向の焦点距離(画素単位での表現)
:画像中心である主点(x座標)
:画像中心である主点(y座標)
W(ボールド体)は、撮像部12の外部パラメーター行列であり、以下の要素を含んでいる。
R(ボールド体):世界座標からカメラ座標への変換を表す回転行列
t(ボールド体):世界座標からカメラ座標への変換を表す並進行列
なお、世界座標は、キャリブレーション用ブロック100の最初に配置した位置の座標である。
撮像部12が備える撮像レンズにレンズ歪がある場合は、変換行列計算部24は、画像平面の二次元座標値(x y)を(x)として式(4)を計算してレンズ歪を補正する。なお、式(4)において、k,k,kは、撮像レンズの径方向のレンズ歪を示す係数であり、p,pは、撮像レンズの円周方向のレンズ歪を示す係数である。また、rは撮像レンズの半径である。
Figure 0005494234
スリット光源部11から射出されるスリット光SLの空間における広がりは平面とみなすことができ、その場合は式(5)のような平面の式で表すことができる。なお、式(5)において、A,B,Cは、平面を規定するためのパラメーターである。
Figure 0005494234
また、キャリブレーション用ブロック100の段上平面101−104のそれぞれは平面であるため、式(6)のような平面の式で表すことができる。なお、式(6)において、A,B,Cは、キャリブレーション用ブロック100の段上平面101−104の平面を規定するためのパラメーターである。
Figure 0005494234
ここで、以下の説明を簡単にするために、式(3)のq(ボールド体)=s・M(ボールド体)・W(ボールド体)・Q(ボールド体)を式(7)のように置き換える。
Figure 0005494234
つまり、式(7)において、pij(1≦i≦3,1≦j≦4)の要素で構成される3行4列の行列は、s・M(ボールド体)・W(ボールド体)・Q(ボールド体)に対応する。
三次元座標変換部25がZ(高さ)を計算するためのキャリブレーションについて説明する。式(8)は、式(7)を一部展開した式である。
Figure 0005494234
式(5)および式(8)から式(9)が得られる。
Figure 0005494234
式(9)は、同一の高さZの反射位置は、画像平面では直線になり、そのy切片の差は高さZに比例することを示している。よって、三次元座標変換部25がキャリブレーション用ブロック100を用いて高さZと画像平面上の位置(y切片)の関係を校正用データとして求めておく。これにより、三次元座標変換部25は任意の高さZを求めることができる。つまり、計測用物体の高さZは、そのy座標値をy、キャリブレーション用ブロック100の高さをZ、y座標値をyとした場合に、式(10)のように表すことができる。
Figure 0005494234
次に、三次元座標変換部25がX,Yを計算するためのキャリブレーションについて説明する。式(8)から式(11)が得られる。
Figure 0005494234
次に、三次元座標変換部25が計測対象物体の移動を補正するためのキャリブレーションについて説明する。キャリブレーション用ブロック100が最初に設置された場所において世界座標を規定するが、載置台40の移動によって計測対象物体の移動方向は、世界座標のX,Y,Z軸の各方向に一致するとは限らない。よって、移動量と移動方向とを補正する必要がある。
移動ピッチをMとし、移動方向を示す単位ベクトルを(u,u,u)とすると、式(6)に示すキャリブレーション用ブロック100の平面は平行移動されるため、式(6)の平面の式は式(12)のように表される。
Figure 0005494234
載置台40は、キャリブレーション用ブロック100の底部110(XY平面)に平行に移動すればよいので、u=0になり、三次元座標変換部25は、u,uを求めることができる。また、式(12)の平面の式は式(13)になる。
Figure 0005494234
式(8)および式(13)から式(14)の関係式が導かれる。
Figure 0005494234
式(14)を、世界座標の三次元座標値(X,Y,Z)を求める式に変換して簡略化すると式(15)のように表すことができる。
Figure 0005494234
式(15)において、kij(1≦i≦3,1≦j≦3)の要素で構成される3行3列の行列である行列k(ボールド体)と、s1,s2,s3を要素とする3行1列の行列s(ボールド体)との組み合わせが変換行列セットである。x,y,M、X,Y,Zは観測量であるので、変換行列計算部24は、変換行列セットを、複数のサンプリングにより統計的に精度よく求めるのが望ましい。例えば、変換行列計算部24は、複数のサンプリングによって複数の変換行列セットを求め、それらの各要素の平均値を計算することにより変換行列セットの最適値を求める。そして、変換行列計算部24は、求めた変換行列セットを記憶部26に記憶する。
三次元座標変換部25は、記憶部26に記憶された変換行列セットを読み込んで、任意の観測量x,y,Mからキャリブレーション用ブロック100の世界座標系の三次元座標値(X Y Z)を求めて二次元座標値と三次元座標値との複数の組み合わせを生成する。
次に、三次元座標変換部25は、これら生成した組み合わせを式(9)、式(11)、および式(13)に適用して、画像平面と実空間とのキャリブレーションを行うための校正用データを生成する。
次に、三次元形状計測装置1が計測対象物体を用いて実際の三次元形状計測を行う通常計測モードの動作について説明する。図7は、三次元形状計測装置1が実行する三次元形状計測の処理手順を示すフローチャートである。計測対象物体が載置台40に載置されたのち、三次元形状計測装置1が計測制御部21に対して通常計測モードの動作開始指示を与えると、図7に示すフローチャートの処理が開始される。
ステップS701からステップS705までの処理は、前述したステップS501からステップS505までの処理と同一であるため、その説明を省略する。
ステップS706において、反射位置計算部23は、光切断線検出部22で検出された光切断線から特徴点を検出する。次に、ステップS707において、三次元座標変換部25は、前述した式(10)の計算を実行して計測対象物体のZを計算する。次に、ステップS708において、三次元座標変換部25は、前述した式(11)の計算を実行して計測対象物体のX,Yを計算する。次に、ステップS709において、三次元座標変換部25は、記憶部26に記憶された校正用データを読み込んで、計測対象物体の移動ピッチMに応じた三次元座標値(X Y Z)の補正を行う。
次に、ステップS710において、計測制御部21は、計測対象物体が輝線LLによって走査終了したか否かを判定し、走査終了したと判定した場合(S710:YES)はこのフローチャートの処理を終了し、走査終了していないと判定した場合(S710:NO)はステップS704の処理に戻る。
以上説明したとおり、本発明の一実施形態である三次元形状計測装置1は、キャリブレーション用ブロックを撮像することにより得られる特徴点の特徴点座標値と移動部の移動ピッチとから世界座標系における特徴点の三次元座標値に変換する変換行列を求め校正用データを生成するため、従来のようにキャリブレーション用ブロック全体を確実に計測する必要がなく、高さ方向のキャリブレーションを効率的に且つ高精度に行うことができる。
なお、本実施形態では、固定した光学測定部10に対して載置台40を移動させる例について説明したが、これ以外にも、固定した載置台40に対して光学測定部10を搬送方向Aと逆の方向に移動させるようにしてもよい。例えば、質量の大きな計測対象物体を測定する場合、載置台40を移動させるよりもスリット光源部11を移動させる方が駆動部を小型化且つ低コストに実現することができる。
また、載置台40と光学測定部10との両方を移動させるようにしてもよい。
また、スリット光源部11が射出するスリット光SLは、レーザー光以外にも、例えばハロゲン光とすることができる。ハロゲン光によるスリット光を射出するスリット光源部11は、光量の大きなスリット光を射出することができる。
また、三次元形状計測装置1の一部または全部の機能を、例えば、アーム部およびハンド部の伸縮、屈伸、旋回等の動作が可能なロボットに組み込んでもよい。このロボットは、例えば、3軸以上の自由度を有し、アーム部およびハンド部が可動自在な産業用ロボットである。このロボットについて、より具体的な例を説明する。
図8は、三次元形状計測装置1の一部の機能が組み込まれたロボットがキャリブレーションを行っている様子を示した、ロボットおよびキャリブレーション用ブロックならびに載置台の斜視図である。同図に示すように、ロボット8は、地面に固定された支持台81と、旋回および屈伸動作が可能なアーム部82と、回転および首振り動作が可能なハンド部83とを含んで構成される。そして、ハンド部83には、スリット光源部11および撮像部12が固定支持されたフレーム84が取り付けられている。また、キャリブレーション用ブロック100は、地面に固定された載置台40に載置される。
ロボット8は、不図示のロボットコントローラーの制御によって、アーム部82とハンド部83とを複合的に動作させ、スリット光源部11および撮像部12を移動方向Bの方向に移動させる。なお、支持台81は、地面の他に壁や天井等の地面に対して固定された場所に設置してもよい。
また、本実施形態のようにスリット光源部11と撮像部12とを固定設置するとともに、ロボット8のハンド部83に、載置台40をその載置面が大地に対して水平になるように取り付けて移動方向Bと反対方向に移動させるようにしてもよい。
また、ロボット8のハンド部83に、撮像部12を取り付けて空間中を自在に移動させるようにしてもよい。このように撮像部12を自在に移動可能にすることにより、計測対象物体の死角をなくして三次元形状計測を行うことができる。
また、本実施形態である三次元形状計測装置の一部、例えば制御部の機能をコンピューターで実現するようにしてもよい。この場合、その機能を実現するためのプログラムをコンピューター読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピューターシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピューターシステム」とは、OS(Operating System)や周辺機器のハードウェアを含むものとする。また、「コンピューター読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、光ディスク、メモリカード等の可搬型記録媒体、コンピューターシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピューター読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピューターシステム内部の揮発性メモリのように、一定時間プログラムを保持するものを含んでもよい。また上記のプログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピューターシステムにすでに記録されているプログラムとの組み合わせにより実現するものであってもよい。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計等も含まれる。
1 三次元形状計測装置
8 ロボット
10 光学測定部
11 スリット光源部
12 撮像部
20 制御部
21 計測制御部
22 光切断線検出部
23 反射位置計算部(特徴点情報生成部)
24 変換行列計算部
25 三次元座標変換部
26 記憶部
30 載置台駆動部
40 載置台
81 支持台
82 アーム部
83 ハンド部
84 フレーム
100 キャリブレーション用ブロック
A 搬送方向
B 移動方向
SL スリット光
LL 輝線
RL 反射光

Claims (4)

  1. スリット光を射出する光源部と、
    キャリブレーション用ブロックが載置される載置台と、
    前記キャリブレーション用ブロックに照射される前記スリット光の光切断線を撮像する撮像部と、
    前記載置台と前記光源部および前記撮像部の組合せとの少なくとも一方を移動させる移動部と、
    前記撮像部が撮像した撮像画像から前記光切断線を検出する光切断線検出部と、
    前記光切断線から特徴点を検出して特徴点座標値を計算し、この特徴点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた特徴点情報を生成する特徴点情報生成部と、
    前記特徴点座標値と前記移動ピッチとから世界座標系における前記特徴点の三次元座標値に変換する変換行列を計算する変換行列計算部と、
    前記特徴点情報と前記変換行列とに基づいて、撮像画像の画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求めて校正用データを生成する三次元座標変換部と、
    を備え
    前記キャリブレーション用ブロックは、前記載置台に載置される底部からの高さ寸法が異なる複数の平面部を有し、前記複数の平面部それぞれに、前記スリット光の照射により生じる光切断線と非平行である直線の輪郭を有し、その輪郭を境にして光反射率が異なるパターンが形成され、
    前記特徴点情報生成部は、複数の前記特徴点座標値に基づいて前記パターンの頂点座標値を計算し、この頂点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた頂点情報を生成して前記特徴点情報に追加する、
    とを特徴とする三次元形状計測装置。
  2. 前記光切断線検出部は、前記撮像画像から輝度の重心位置を求めることによって前記光切断線を検出することを特徴とする請求項1記載の三次元形状計測装置。
  3. 三次元形状計測装置のキャリブレーション方法において、
    キャリブレーション用ブロックが載置された載置台とスリット光を射出する光源部および前記キャリブレーション用ブロックに照射される前記スリット光の光切断線を撮像する撮像部の組合せとの少なくとも一方を移動させるステップと、
    前記撮像部が撮像した撮像画像から前記光切断線を検出するステップと、
    前記光切断線から特徴点を検出して特徴点座標値を計算し、この特徴点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた特徴点情報を生成するステップと、
    前記特徴点座標値と前記移動ピッチとから世界座標系における前記特徴点の三次元座標値に変換する変換行列を計算するステップと、
    前記特徴点情報と前記変換行列とに基づいて、撮像画像の画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求めて校正用データを生成するステップと、
    を有し、
    前記キャリブレーション用ブロックは、前記載置台に載置される底部からの高さ寸法が異なる複数の平面部を有し、前記複数の平面部それぞれに、前記スリット光の照射により生じる光切断線と非平行である直線の輪郭を有し、その輪郭を境にして光反射率が異なるパターンが形成され、
    前記特徴点情報を生成するステップは、複数の前記特徴点座標値に基づいて前記パターンの頂点座標値を計算し、この頂点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた頂点情報を生成して前記特徴点情報に追加する、
    とを特徴とする三次元形状計測装置のキャリブレーション方法。
  4. スリット光を射出する光源部と、
    キャリブレーション用ブロックが載置される載置台と、
    前記キャリブレーション用ブロックに照射される前記スリット光の光切断線を撮像する撮像部と、
    前記載置台と前記光源部および前記撮像部の組合せとのいずれか一方が取り付けられたハンド部と、
    前記ハンド部が可動自在に取り付けられたアーム部と、
    前記撮像部が撮像した撮像画像から前記光切断線を検出する光切断線検出部と、
    前記光切断線から特徴点を検出して特徴点座標値を計算し、この特徴点座標値と前記ハンド部の一方向の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた特徴点情報を生成する特徴点情報生成部と、
    前記特徴点座標値と前記移動ピッチとから世界座標系における前記特徴点の三次元座標値に変換する変換行列を計算する変換行列計算部と、
    前記特徴点情報と前記変換行列とに基づいて、撮像画像の画像平面の二次元座標値とこの二次元座標値に対応する世界座標系の三次元座標値との組み合わせを求めて校正用データを生成する三次元座標変換部と、
    を備え
    前記キャリブレーション用ブロックは、前記載置台に載置される底部からの高さ寸法が異なる複数の平面部を有し、前記複数の平面部それぞれに、前記スリット光の照射により生じる光切断線と非平行である直線の輪郭を有し、その輪郭を境にして光反射率が異なるパターンが形成され、
    前記特徴点情報生成部は、複数の前記特徴点座標値に基づいて前記パターンの頂点座標値を計算し、この頂点座標値と前記移動部の移動ピッチと前記キャリブレーション用ブロックの所定の属性データとを関連付けた頂点情報を生成して前記特徴点情報に追加する、
    とを特徴とするロボット。
JP2010121574A 2010-05-27 2010-05-27 三次元形状計測装置、キャリブレーション方法、およびロボット Expired - Fee Related JP5494234B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010121574A JP5494234B2 (ja) 2010-05-27 2010-05-27 三次元形状計測装置、キャリブレーション方法、およびロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010121574A JP5494234B2 (ja) 2010-05-27 2010-05-27 三次元形状計測装置、キャリブレーション方法、およびロボット

Publications (2)

Publication Number Publication Date
JP2011247759A JP2011247759A (ja) 2011-12-08
JP5494234B2 true JP5494234B2 (ja) 2014-05-14

Family

ID=45413195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010121574A Expired - Fee Related JP5494234B2 (ja) 2010-05-27 2010-05-27 三次元形状計測装置、キャリブレーション方法、およびロボット

Country Status (1)

Country Link
JP (1) JP5494234B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111562562B (zh) * 2020-04-28 2023-04-14 重庆市天实精工科技有限公司 基于tof的3d成像模块校准方法
JP7522347B2 (ja) 2020-11-06 2024-07-25 株式会社デンソーウェーブ 計測システム
CN113452988B (zh) * 2021-06-10 2023-03-10 江西晶浩光学有限公司 标靶、基于标靶的三维摄像模组检测***及检测方法
CN115139283B (zh) * 2022-07-18 2023-10-24 中船重工鹏力(南京)智能装备***有限公司 基于随机标记点阵的机器人手眼标定方法
CN116907368A (zh) * 2023-08-26 2023-10-20 广州市西克传感器有限公司 基于多个3d相机高度图单晶硅棒直径自动测量的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2623367B2 (ja) * 1990-11-05 1997-06-25 株式会社ユニスン 三次元形状測定装置の校正方法
JPH08292019A (ja) * 1995-04-20 1996-11-05 Mazda Motor Corp 物品検出装置の校正方法
JP3715489B2 (ja) * 1999-11-29 2005-11-09 アンリツ株式会社 プリント基板検査装置
JP2002107128A (ja) * 2000-10-02 2002-04-10 Sanyo Electric Co Ltd 形状測定装置
JP2007033039A (ja) * 2005-07-22 2007-02-08 Moritex Corp 光切断法による3次元形状計測装置における光学ヘッド部のキャリブレーション方法及び装置
JP4896828B2 (ja) * 2007-07-02 2012-03-14 株式会社神戸製鋼所 形状検出方法及び形状検出装置

Also Published As

Publication number Publication date
JP2011247759A (ja) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5943547B2 (ja) 非接触測定を行う装置および方法
JP4480488B2 (ja) 計測装置、コンピュータ数値制御装置及びプログラム
JP5140761B2 (ja) 測定システムを較正する方法、コンピュータプログラム、電子制御装置、及び、測定システム
JP4238891B2 (ja) 三次元形状測定システム、三次元形状測定方法
JP4885584B2 (ja) レンジファインダ校正方法及び装置
JP5494234B2 (ja) 三次元形状計測装置、キャリブレーション方法、およびロボット
KR20180107324A (ko) 3차원 비접촉 스캐닝 시스템의 현장 교정
JP2011504586A (ja) 物体の三次元形状を光学的に測定する方法
WO2016171263A1 (ja) 形状測定装置及び形状測定方法
JP2009017480A (ja) カメラキャリブレーション装置およびそのプログラム
JP2010197198A (ja) 画像の差分による高精度ステレオカメラキャリブレーション
JPWO2017146202A1 (ja) 三次元形状データおよびテクスチャ情報生成システム、撮影制御プログラム、及び三次元形状データおよびテクスチャ情報生成方法
JP2010281621A (ja) 三次元形状計測装置
JP5494267B2 (ja) 三次元形状計測装置、三次元形状計測装置のキャリブレーション方法、およびロボット装置
JP2021117228A (ja) 三次元形状測定装置及び三次元形状測定方法
WO2018168757A1 (ja) 画像処理装置、システム、画像処理方法、物品の製造方法、プログラム
JP2007508557A (ja) 三次元物体を走査するための装置
JP2012050013A (ja) 撮像装置、画像処理装置、画像処理方法及び画像処理プログラム
JP2014145735A (ja) 形状測定装置、構造物製造システム、評価装置、形状測定方法、構造物製造方法、及び形状測定プログラム
JP6921036B2 (ja) レーザ較正装置、その較正方法、及びレーザ較正装置を含む画像入力装置
WO2020012707A1 (ja) 3次元測定装置及び方法
JP4077755B2 (ja) 位置検出方法、その装置及びそのプログラム、並びに、較正情報生成方法
WO2005073669A1 (en) Semi and fully-automatic camera calibration tools using laser-based measurement devices
JP5786999B2 (ja) 三次元形状計測装置、三次元形状計測装置のキャリブレーション方法
JP2022152480A (ja) 3次元計測装置、3次元計測方法、プログラム、システム、及び物品の製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5494234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees