JP5493188B2 - イオン発生装置 - Google Patents

イオン発生装置 Download PDF

Info

Publication number
JP5493188B2
JP5493188B2 JP2009278232A JP2009278232A JP5493188B2 JP 5493188 B2 JP5493188 B2 JP 5493188B2 JP 2009278232 A JP2009278232 A JP 2009278232A JP 2009278232 A JP2009278232 A JP 2009278232A JP 5493188 B2 JP5493188 B2 JP 5493188B2
Authority
JP
Japan
Prior art keywords
ion
discharge current
ion generating
drive voltage
signal value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009278232A
Other languages
English (en)
Other versions
JP2011124007A (ja
Inventor
宏幸 小池
剛彦 伏見
宙志 浦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Tec Co Ltd
Original Assignee
U Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Tec Co Ltd filed Critical U Tec Co Ltd
Priority to JP2009278232A priority Critical patent/JP5493188B2/ja
Publication of JP2011124007A publication Critical patent/JP2011124007A/ja
Application granted granted Critical
Publication of JP5493188B2 publication Critical patent/JP5493188B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

本発明は、正イオンと負イオンを発生するイオン発生装置に関する。
従来から、正イオンと負イオンを交互に発生するイオン発生装置が知られている。特許文献1に記載のイオン発生装置においては、2つの放電針(イオン発生素子)にプラスの電圧とマイナスの電圧のいずれか一方の互いに異なる電圧を交互にそれぞれ印加して、正イオンと負イオンを交互に発生させている。このイオン発生装置は、発生したイオンによって流れる放電電流を検出して、この放電電流値に応じて2つの放電針に印加する電圧を制御している。
特開2004−273294号公報(図4)
ところで、本発明者らは、イオン発生素子がヒステリシスを有しており、印加する電圧を所定値だけ大きくしたときと小さくしたときでイオンの増減量が異なることを知見した。
ここで、例えば、イオン発生装置の2つのイオン発生素子からそれぞれ発生する正イオンと負イオンのイオン発生量を所定量近傍で均等にしようとする。すると、例えば、一方のイオン発生量が所定量よりも多くて、他方のイオン発生量が所定量よりも少なく、一方のイオン極性にイオンバランスが傾いている場合には、一方のイオン発生素子のイオン発生量を減らして、他方のイオン発生素子のイオン発生量を多くしようとする。
このような場合において、一方のイオン発生素子のイオン発生量を減らして、他方のイオン発生素子のイオン発生量を多くしようとすると、ヒステリシスにより、どちらかのイオン発生素子のイオン発生量が過剰に増減してしまう。すると、イオンバランスが安定することなく、2つのイオン発生素子から均等にイオンを発生することが困難となる。さらに、イオン発生素子のヒステリシスのみならず、イオン発生装置の構造がイオン発生量の過剰な増減に関与することがある。
そこで、本発明の目的は、イオンバランスを安定させ、2つのイオン発生素子から発生するイオン量を均等にしたイオン発生装置を提供することである。
本発明のイオン発生装置は、正イオン及び負イオンの異なるイオンを発生する2つのイオン発生素子と、前記2つのイオン発生素子からそれぞれ発生するイオンによって流れる放電電流信号をそれぞれ検出する2つの放電電流検出手段と、前記2つの放電電流検出手段によってそれぞれ検出された2つの信号値に基づいて、前記2つのイオン発生素子にそれぞれ印加する2つの駆動電圧を決定する駆動電圧決定手段と、前記駆動電圧決定手段によって決定した2つの駆動電圧を、前記2つのイオン発生素子にそれぞれ印加する2つの駆動電圧印加手段と、を備えており、前記駆動電圧決定手段は、前記2つの放電電流検出手段によってそれぞれ検出された2つの信号値の特定の組み合わせ領域において、前記駆動電圧決定手段による前記駆動電圧の加算、または、減算の一方を抑制する。そして、前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から所定のイオン発生量に対応する第1信号値を減算した値が0よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0以下の領域である。
本発明のイオン発生装置によると、2つの信号値の特定の組み合わせ領域において、駆動電圧決定手段による駆動電圧の加算、または、減算の一方を抑制することで、ヒステリシスによる一方のイオン発生素子から発生する過剰なイオンの増減を抑制し、イオンバランスを安定させ、2つのイオン発生素子から発生するイオン量を均等にすることができる。
このとき、前記駆動電圧決定手段は、より上に検出される側の前記イオン発生素子に印加する駆動電圧を減算し、0以下に検出される側の前記イオン発生素子に印加する駆動電圧を保持することが好ましい。これによると、ヒステリシスにより駆動電圧を加算したときのイオンの増加量が、駆動電圧を減算したときのイオンの減少量よりも大きい場合に、2つのイオン発生素子から発生するイオン量を均等にすることができる。
また、前記駆動電圧決定手段は、より上に検出される側の前記イオン発生素子に印加する駆動電圧を保持し、0以下に検出される側の前記イオン発生素子に印加する駆動電圧を加算してもよい。これによると、ヒステリシスにより駆動電圧を加算したときのイオンの増加量が、駆動電圧を減算したときのイオンの減少量よりも少ない場合に、2つのイオン発生素子から発生するイオン量を均等にすることができる。
また、前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも大きな第1閾値よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも小さな第2閾値よりも小さい領域であることが好ましい。これによると、一方のイオン発生素子からのイオン発生量が所定のイオン発生量よりも多く、さらに第1閾値に対応するイオン発生量よりも多く、他方のイオン発生素子からのイオン発生量が所定のイオン発生量よりも少なく、さらに第2閾値に対応するイオン発生量よりも少ない場合に、2つのイオン発生素子から発生するイオンによるイオンバランスを安定させ、2つのイオン発生素子から発生するイオン量を均等にすることができる。
また、前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも小さな閾値よりも小さい領域であってもよい。これによると、一方のイオン発生素子からのイオン発生量が所定のイオン発生量よりも多く、他方のイオン発生素子からのイオン発生量が所定のイオン発生量よりも少なく、さらに0よりも小さな閾値に対応するイオン発生量よりも少ない場合に、2つのイオン発生素子から発生するイオン量を均等にすることができる。
また、前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも大きな閾値よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも小さい領域であってもよい。これによると、一方のイオン発生素子からのイオン発生量が所定のイオン発生量よりも多く、さらに0よりも大きな閾値に対応するイオン発生量よりも多く、他方のイオン発生素子からのイオン発生量が所定のイオン発生量よりも少ない場合に、2つのイオン発生素子から発生するイオン量を均等にすることができる。
また、前記特定の組み合わせ領域は、前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値を、0よりも小さな第2閾値よりも小さい第1段階と、前記第2閾値以上0以下の第2段階と、0より大きく0よりも大きな第1閾値以下の第3段階と、前記第1閾値よりも大きい第4段階に区分し、前記2つの放電電流検出手段によって検出された信号値によって区分された2つの段階の差が2段階以上である領域であることが好ましい。これによると、放電電流検出手段によって検出された信号値から第1信号値を減算した値を4段階に区分することで、駆動電圧の決定が容易となる。
また、前記駆動電圧決定手段は、前記2つの放電電流検出手段によってそれぞれ検出された2つの信号値がともに前記第1閾値以下前記第2閾値以上の領域にあるとき、前記2つのイオン発生素子に印加する駆動電圧を保持することが好ましい。
2つの信号値の特定の組み合わせ領域において、駆動電圧決定手段による駆動電圧の加算、または、減算の一方を抑制することで、ヒステリシスによる一方のイオン発生素子から発生する過剰なイオンの増減を抑制し、イオンバランスを安定させ、2つのイオン発生素子から発生するイオン量を均等にすることができる。
本発明の一実施形態に係る除電装置の縦断面図である。 筐体へガスタンク及び素子ユニットを取り付ける前の斜視図である。 筐体へ素子ユニットを取り付ける前の斜視図である。 除電装置の模式平面図である。 素子ユニットを下方から見たときの斜視図である。 素子ユニットを上方から見たときの斜視図である。 イオン発生素子の平面図である。 図7の一点鎖線領域の拡大図である。 図1の概略部分拡大図である。 除電装置の電気的接続を示す概略図である。 除電装置の電気的構成を示すブロック図である。 電圧発生回路の内部回路図である。 2つのイオン発生素子にそれぞれ印加される電圧波形を示す図である。 除電時について説明する概略平面図である。
以下、本発明の好適な実施形態について、図面を参照しつつ説明する。本実施形態に係る除電装置は、搬送面上を一方向に搬送される、帯電した被除電対象物に対して正イオン及び負イオンを発生させて、除電対象物の除電を行う装置である。図1は、本発明の一実施形態に係る除電装置の縦断面図である。図2は、筐体へガスタンク及び素子ユニットを取り付ける前の斜視図である。図3は、筐体へ素子ユニットを取り付ける前の斜視図である。図4は、除電装置の模式平面図である。図5は、素子ユニットを下方から見たときの斜視図である。図6は、素子ユニットを上方から見たときの斜視図である。
図1に示すように、除電装置1(イオン発生装置)は、図示しない支持部材によって支持されており、その下方において図示しない搬送装置の搬送面30a上をY方向(図1の左から右に向かう搬送方向)に搬送される除電対象物30と所定の間隔を空けて対向している。
また、除電装置1は、後述する各種基板を収容する筐体2を有している。図1〜図4に示すように、筐体2は、X方向(搬送面30a内においてY方向と直交する方向)に長尺であり、Y方向に分離可能な左方筐体2aと右方筐体2bとから構成されている。また、筐体2は、その内部にY方向と平行に配置された平板であり、内部空間をZ方向(図1の上から下に向かう方向)に関して2つに仕切る仕切り板7を有している。
仕切り板7は、一端が右方筐体2bの下端に接続されて、Y方向と平行に左方筐体2aの下端と重なる位置まで延在している。右方筐体2bには、仕切り板7のX方向に沿った両端部から搬送面30a(Z方向)に向かって延び、互いに近づく方向(Y方向に関する中央)に向かって折れ曲がったL字状の2つの溝2cが形成されている。こうして、筐体2内における仕切り板7より上方の空間が上部空間となり、下方の空間が溝2cにより形成された開口部2eを有する下部空間となっている。この溝2cには後述するガスタンク6の突起6bが係合する。また、右方筐体2bの2つの溝2cよりもY方向に関する内側には、X方向に離間して配置された複数の嵌め込み孔2dの列がY方向に2列に並んで形成されている。
また、筐体2の上部空間には、X方向一端部から順に制御基板4及び複数の電源基板5が配置されている。筐体2の下部空間には、上方から順に複数のガスタンク6及び複数の素子ユニット3が配置されている。複数の素子ユニット3及び複数のガスタンク6はX方向に沿って隙間なくそれぞれ配置されている。また、X方向に沿って配置された複数のガスタンク6は連通している。そして、複数の素子ユニット3、複数のガスタンク6及び複数の電源基板5は、Z方向に沿ってそれぞれ重なっている。
制御基板4及び複数の電源基板5は、左方筐体2aと右方筐体2bとを分離した状態で、右方筐体2bの内壁面に固定され、左方筐体2aと右方筐体2bとを嵌合することで、筐体2の上部空間に収容される。このように、制御基板4及び複数の電源基板5は、筐体2内に容易にX方向に沿って配置可能となっている。
また、筐体2内には、複数の電源基板5とZ方向に沿ってそれぞれ重なる位置に配置され、対応する電源基板5と電気的に接続された複数のコネクタ42が設けられている。複数のコネクタ42は、後述する素子ユニット3の複数のコネクタ41と電気的に接続される。1つの電源基板5に対応する複数のコネクタ42は、X方向に並べて配置されており、電源基板5に対応したガスタンク6の中央近傍に形成された後述する2つの開口6cから下方に突出している。
また、図2に示すように、右方筐体2bの表面には、7セグメントLED85が配置されている。7セグメントLED85は、イオンを発生させていることが分かるような表示をするなどユーザに対して除電装置1の状態を表示する。
次に、素子ユニット3について説明する。図1に示すように、素子ユニット3は、樹脂により成型された支持体3aを有し、X方向に長尺な形状となっており、X方向から見たときに底面の一部を形成する逆ハの字状の2つの斜面3c、3dを有している。2つの斜面3c、3dには、安定化電極26a、26b(図9参照)をそれぞれ挟んで、X方向に長尺な板状のイオン発生素子11、12がそれぞれ配置されている。
また、図6に示すように、支持体3aのY方向に関する中央には、複数のコネクタ41がX方向に沿って配置されている。コネクタ41は、イオン発生素子11、12の後述する給電端子62、64、安定化電極26a、26b及び電流検出電極27a、27bと配線を介してそれぞれ電気的に接続される。そして、素子ユニット3が筐体2に取り付けられることで、複数のコネクタ41は、ガスタンク6の開口6cを介して複数のコネクタ42と嵌合して電気的に接続される。
また、図2〜図6に示すように、支持体3aのX方向に沿った両端には、X方向に離間し、Z方向に延出した2つの突起3eがそれぞれ形成されている。支持体3aの突起3eが筐体2の嵌め込み孔2dに嵌合することで、素子ユニット3は筐体2に着脱自在に取り付けられる。この支持体3aの突起3eは、Y方向に関する外側に付勢されて嵌め込み孔2dに嵌合されており、Y方向に関する内側に押圧することで、容易に筐体2の嵌め込み孔2dから取り外すことができる。この構成により、イオン発生素子11、12を触らず、素子ユニット3を筐体2に着脱することができる。また、X方向に並べて配置された複数の素子ユニット3のうち、交換したい素子ユニット3のみを容易に筐体2に着脱することができる。
図1〜図6に示すように、2つのイオン発生素子11、12は、長手方向をX方向と平行にして、Y方向に関して近接配置されており、支持体3aの2つの斜面3c、3dと対向している面と反対側の2つのイオン発生面11a、12a(図9参照)から正イオン及び負イオンのいずれか一方の互いに異なるイオンを発生する。本実施形態においては、搬送方向下流側に位置するイオン発生素子11のイオン発生面11aから負イオンを発生し、搬送方向上流側に位置するイオン発生素子12のイオン発生面12aから正イオンを発生する。
支持体3aの斜面3cは、除電対象物30の搬送される搬送面30aとの間で搬送方向下流側に45度開いた鋭角を形成している。したがって、斜面3cに配置されたイオン発生素子11のイオン発生面11aは、搬送面30aとの間で搬送方向下流側に45度開いた鋭角を形成している。また、支持体3aの斜面3dは、搬送面30aとの間で搬送方向上流側に45度開いた鋭角を形成している。したがって、斜面3dに配置されたイオン発生素子12のイオン発生面12aは、搬送面30aとの間で搬送方向上流側に45度開いた鋭角を形成している。つまり、2つのイオン発生面11a、12aは、搬送面30aに対して互いに反対方向に同じ角度で傾斜している。
また、素子ユニット3は、支持体3aの外面を覆うカバー9を有している。このカバー9により、2つのイオン発生素子11、12の周縁部を覆って、2つのイオン発生素子11、12を支持体3aにそれぞれ固定している。また、カバー9には、2つのイオン発生素子11、12のイオン発生面11a、12aの一部のイオン発生部を露出させるように開口が形成されているとともに、後述する複数のガス噴出口6aと対向する位置に複数の孔9aがそれぞれ形成されている。
また、カバー9のイオン発生素子11、12を搬送方向に関して挟んだ両側の表面には、電流検出電極27a、27bがそれぞれ配置されている。2つの電流検出電極27a、27bは、2つのイオン発生素子11、12からそれぞれ発生したイオンの電荷によって流れる放電電流をそれぞれ検出するためのものであり、2つのイオン発生素子11、12から除電対象物30へ向かって発生するイオン分布に影響が少ない箇所に配置されている。具体的には、イオン発生素子11、12よりも搬送面30aから離れた位置であって、イオン発生素子11、12よりも上方に配置されている。電流検出電極27a、27bには、カバー9の孔9aに対応した位置に孔が形成されている。なお、電極がイオン発生素子11、12から発生したイオンに接触して電荷を受け取ることで、この電極に流れる放電電流値をもってイオン発生量とみなす技術は、従来から知られている技術である。
次に、イオン発生素子11、12について説明する。図7は、イオン発生素子の平面図である。図8は、図7の一点鎖線領域の部分拡大図である。図9は、図1を概略化した部分拡大図である。なお、イオン発生素子11、12は、印加されるパルス電圧が異なることで、互いに極性の異なるイオンを発生するだけで、構成は同様であるため、イオン発生素子11についてのみ説明し、イオン発生素子12についての説明は省略する。
図5に示すように、イオン発生素子11は、複数の素子ユニット3がX方向に並べて配置されることにより、X方向に並んで配置される。図7〜9に示すように、イオン発生素子11は、誘電体15の表面15a及び裏面15bにイオン発生電極16及び誘導電極17a、17bをそれぞれ配置して構成されている。誘電体15の表面15aとは支持体3aの斜面3cと反対側の面であり、裏面15bとは斜面3cと対向する面である。
誘電体15は、マイカを接着剤により多数積層させた長尺な矩形状の板である。誘電体15は、本実施形態においては70μm厚となっている。なお、誘電体15は、マイカの積層体に限らず、セラミックス、ガラス、ポリマーなどであってもよい。また、誘電体15の表面15aには、電源基板5と電気的に接続されて、電源基板5から印加される電圧が給電される給電端子62、64がそれぞれ形成されている。給電端子62、64は、X方向に沿って重なり、且つ、イオン発生電極16の両端よりもX方向に関して内側に配置されている。給電端子62、64は、対応するコネクタ41と図示しない配線を介して電気的に接続されている。
イオン発生電極16は、誘電体15の表面15aにステンレスで形成されており、線状電極16aと線状電極16aから長手方向と直交する短手方向に突出した複数の微細な三角形状の突起電極16bとを有している。複数の突起電極16bは、X方向に沿って等間隔に線状電極16aを挟んで2列の千鳥状に配置されている。本実施形態においては、線状電極16aの幅X、突起電極16bの底辺の長さY及び突起電極16bの高さZは0.1mmとなっている。また、突起電極16bを形成する2つの辺から形成される角度αは、53.13度となっており、隣接する2つの突起電極16bの頂点16c間の距離Lは、0.3mmとなっている。
また、イオン発生電極16の一方端部(図7の下端部)は、イオン発生電極16の両端よりもX方向に関して内側に折れ曲がった配線61を介して給電端子62に電気的に接続されている。
誘導電極17a、17bは、誘電体15の裏面15bにイオン発生電極16と同様にステンレスで形成されており、イオン発生電極16と平行になっている。また、2本の線状電極17a、17bは、イオン発生電極16から誘導電極17a、17bを見たときに、イオン発生電極16の両側に配置されている。本実施形態において、突起電極16bから誘導電極17bまでの短手方向に関する距離Kは、0.05mmとなっている。なお、イオン発生電極16及び誘導電極17a、17bの材料は、ステンレスに限らず、カーボン、タングステン、アルミニウム、銅、金、タンタル、タングステンまたはニッケル等の単独金属、もしくは、これらの合金、さらには導電性セラミックスなどであってもよい。
また、誘導電極17a、17bの一方端部(図7の上端部)は、誘導電極17a、17bの両端よりもX方向に関して内側に折れ曲がった配線63及び図示しないスルーホールを介して給電端子64に電気的に接続されている。
また、誘電体15の表面15a全体には、誘電体15の表面15a及びイオン発生電極16を被覆する表面保護層18が形成されている。表面保護層18は、誘電体15の剥離防止や耐湿性向上を目的として形成されており、例えば、シリカ系コート材やアクリル系コート材からなる。
また、誘電体15の裏面15b全体には、誘電体15の裏面15b及び誘導電極17a、17bを被覆する裏面保護層19が形成されている。裏面保護層19は、例えば、シリコン系コート材やエポキシ系コート材からなる。
図9に示すように、イオン発生素子11の裏面保護層19と支持体3aの斜面3cとの間には、安定化電極26aが配置されている。この安定化電極26aには、イオン発生電極16から発生するイオンと同極性のバイアス電圧が印加されている。つまり、イオン発生素子11のイオン発生電極16からは負イオンを発生するため、イオン発生素子11に対応する安定化電極26aには、マイナスのバイアス電圧が印加されている。また、イオン発生素子12のイオン発生電極16からは正イオンを発生するため、イオン発生素子12に対応する安定化電極26bには、プラスのバイアス電圧が印加されている。本実施形態ではそれぞれマイナス12V、プラス12Vのバイアス電圧を印加している。
イオン発生素子11は、イオン発生電極16と誘導電極17a、17bとの間に、誘導電極17a、17bを基準電位としてマイナスのパルス電圧を印加することで、イオン発生電極16から負イオンを発生する。また、イオン発生素子12は、イオン発生電極16と誘導電極17a、17bとの間に、誘導電極17a、17bを基準電位としてプラスのパルス電圧を印加することで、イオン発生電極16から正イオンを発生する。
ここで、仮に、安定化電極26aが設けられておらず、イオン発生素子11のイオン発生電極16から負イオンの発生を継続すると、イオン発生電極16から発生するイオン量が減少する。これは、裏面保護層19がイオン発生電極16から発生するイオンと逆極性に帯電し、発生したイオンが引き寄せられるためと考えられる。支持体3aが特に樹脂製の場合はこの裏面保護層19に加えて支持体3aも帯電する。マイナスイオンを発生するイオン発生素子11に対して、本実施形態のように、マイナスのバイアス電圧を印加した安定化電極26aを設けることにより、裏面保護層19またはこれに追加して支持体3aが帯電することを防止する。これにより、イオン発生電極16から発生するイオン量は減少せず安定する。
図1〜図4に戻って、ガスタンク6は中空であり、X方向の両端部にガス入口6e及びガス出口6fを有している。そして、隣接する2つのガスタンク6において、一方のガスタンク6のガス入口6eと他方のガスタンク6のガス出口6fが連結されることで、その内部が連通している。ガスタンク6の中央には、X方向に並び、Z方向に貫通した2つの開口6cが形成されている。上述したように、ガスタンク6の開口6cから複数のコネクタ42が突出し、この開口6cを介して複数のコネクタ42と複数のコネクタ41は嵌合して電気的に接続される。
仮に、コネクタ42が、ガスタンク6の開口6cを介さず、ガスタンク6の周囲の空間からコネクタ41と嵌合されて電気的に接続されると、装置が大型化してしまう。そこで、ガスタンク6の開口6cを介してコネクタ42とコネクタ41とを嵌合して電気的に接続することで、装置を小型化することができる。特に、素子ユニット3が安定化電極26a、26bや放電電流検出電極27a、27bを備えて多機能化している場合は、接続部が増大し、コネクタが大型化するため、その効果はさらに大きい。
また、ガスタンク6の開口6cにコネクタ42が挿通されることで、ガスタンク6の位置を固定することができ、たとえガスタンク6が熱膨張したとしても、ガスタンク6の位置がずれにくい。また、コネクタ42のZ方向の長さ分だけガスタンク6の厚み(Z方向の長さ)を長くすることが可能であり、ガスタンク6の容積を大きくすることができる。さらに、ガスタンク6のZ方向に関して支持体3aの突起3e及び筐体2の嵌め込み孔2dと重なる位置には、Y方向に関して中央に凹んだ切り欠き6dが形成されている(図3参照)。これにより、支持体3aの突起3eを筐体2の嵌め込み孔2dに嵌合することで、ガスタンク6のXY平面に関する位置を固定することができる。
また、ガスタンク6の素子ユニット3と対向する面には、内部空間と外部空間とを連通させるようにZ方向に貫通し、内部空間がZ方向に向かってガスを送出する複数のガス噴出口6aをX方向に沿って離間して形成したガス送出列が、Y方向に関して素子ユニット3を挟んで2列配列されている。ガスタンク6のガス送出列が形成された面領域は、Z方向に突出した突出部6gとなっている。この突出部6gによりガスフローに所定の方向性を与え、安定したガスフローを行うことができる。そして、この2列の突出部6g間に素子ユニット3の一部が嵌合して、2つのイオン発生素子11、12は、Y方向に関して2列の突出部6g間に位置することとなる。
ガスタンク6は、図示しないガス供給源に接続されている。ガス供給源から供給されるガスとしては、エアガスまたは窒素などの不活性ガスが適当である。ガス供給源から供給されたガスは、ガスタンク6のガス噴出口6aから搬送面30aと直交する方向に向かってカバー9の孔9a及び電流検出電極27a、27bの孔を介して送出される。つまり、ガスタンク6の複数のガス噴出口6aから送出されたガスは、搬送方向に関して2つのイオン発生素子11、12を挟んで、搬送面30aと直交する方向に向かった状態でX方向に延在したガスカーテンを形成する。
ここで、2つのイオン発生素子11、12はイオンを発生するため、静電気によりゴミが付着しやすくなっている。そこで、2つのイオン発生素子11、12にそれぞれ対応してガスカーテンを形成することで、2つのイオン発生素子11、12のイオン発生面11a、12aから搬送面30aへ向かってそれぞれ発生するイオンの分布領域をガスカーテンによって周囲から遮断するため、周囲のゴミが2つのイオン発生面11a、12aに付着しづらくなる。また、2つのイオン発生面11a、12aからそれぞれ発生したイオンがより効率よく搬送面30aに流れ、一層効果的に除電対象物30の除電を行うことができる。また、ガスカーテンは2つのイオン発生素子11、12を挟んで形成されるので、2つのイオン発生面11a、12aから発生したイオンが分散するのを防止することができる。また、ガスカーテンは、搬送面30aと直交する方向に向かって形成されているため、2つのイオン発生面11a、12aから発生した正イオン及び負イオンが混在しにくくなり、中和しにくくなる。
次に、筐体2へのガスタンク6及び素子ユニット3の取り付けについて説明する。筐体2へのガスタンク6の取り付けは、図2に示すように、筐体2の溝2cにガスタンク6の突起6bを係合させて、ガスタンク6をX方向に沿ってスライドさせることで行われる。そして、筐体2にスライドして配置されたガスタンク6同士はガス入口6e及びガス出口6fによって連結され、筐体2の嵌め込み孔2dとガスタンク6の切り欠き6dがZ方向に沿って重なる位置に配置される。そして、筐体2内の各ガスタンク6とZ方向に沿って重なる位置に電源基板5及びコネクタ42を配置すると、図3に示すように、ガスタンク6の開口6cからコネクタ42が突出する。この状態で、素子ユニット3をZ方向に移動させて、支持体3aの突起3eをガスタンク6の切り欠き6dを介して筐体2の嵌め込み孔2dに嵌合することで、素子ユニット3は筐体2に確実に取り付けられるとともに、コネクタ42とコネクタ41とが嵌合して電気的に接続される。このようにして、素子ユニット3を筐体2に取り付けることで、コネクタ42とコネクタ41を確実に電気的に接続することができ、コネクタ42とコネクタ41を電気的に接続する作業を低減することができる。
このように、ガスタンク6を利用することでガスを噴出させる構成が簡単である。また、イオン発生素子11、12がそれぞれ設けられた複数の素子ユニット3は、筐体2にZ方向に沿って着脱自在に取り付けられている。したがって、例えば、長期使用により摩耗したり、損傷したりしたイオン発生素子11、12を交換やメンテナンスする場合において、他の素子ユニット3を取り付けたまま当該イオン発生素子11、12が設けられた素子ユニット3のみをZ方向に沿って容易に取り外すことができ、当該イオン発生素子11、12を容易に交換やメンテナンスすることができる。また、X方向に長い除電装置1を形成することができる。
次に、除電装置1の電気系統について図面を参照しつつ説明する。図10は、除電装置の電気的接続を示す概略図である。なお、図10においては、グランド線の図示を省略している。図11は、除電装置の電気的構成を示すブロック図である。図12は、電圧発生回路の内部回路図である。図13は、2つのイオン発生素子にそれぞれ印加される電圧波形を示す図である。図14は、除電時について説明する概略平面図である。
まず、除電装置1の電気的接続について説明する。図10に示すように、制御基板4と電源基板5は、プラス側とマイナス側の各駆動電圧信号線、放電電流信号線、電圧制御信号線及びPWM信号線を介して電気的に接続されている。電源基板5と素子ユニット3は、プラス側の誘導電極17とイオン発生電極16への駆動電圧供給線、マイナス側の誘導電極17とイオン発生電極16への駆動電圧供給線、プラス側とマイナス側の各放電電流検知線及び安定化電極バイアス線を介して電気的に接続されている。電源基板5と素子ユニット3の接続には、図3及び図6に示す電源基板5のコネクタ42と素子ユニット3のコネクタ41が使用される。
次に、制御基板4の内部構成について、図11を参照しつつ説明する。制御基板4には、各種動作を制御するプログラムやデータなどが格納されたROM(Read Only Memory)、各種動作を制御する信号を生成するために各種演算を実行するCPU(Central Processing Unit)、CPUでの演算結果などのデータを一時保管するRAM(Random Access Memory)などが含まれている。あるいは、制御基板4は、ロジックIC、ASICまたはFPGAなどで構成してもよい。また、制御基板4は、発振制御部81、電圧制御部82及び判断部83として機能する。なお、図3〜5に示すように、除電装置1が複数の電源基板5及び素子ユニット3の対をX方向に連結して構成されている場合、制御基板4は共用して使用することができる。制御基板4のCPUから各対への信号授受及び各対に対する制御処理は、周知のタイムシーケンシャル作用などによって十分迅速に行うことができる。
次に、電源基板5の内部構成について説明する。図11に示すように、電源基板5は、プラス側の電圧発生回路71と、マイナス側の電圧発生回路72と、プラス側の電流/電圧変換回路73と、マイナス側の電流/電圧変換回路74と、プラス側の安定化電極用電源75と、マイナス側の安定化電極用電源76と、を有している。
図12に示すように、2つの電圧発生回路71、72は、共通の電源51を有しており、駆動回路52と、トランス53と、2次回路54とをそれぞれ有している。電源51から出力された電圧は、対応する駆動回路52、トランス53、2次回路54を介して2つのイオン発生素子11、12にそれぞれ印加される。このとき、イオン発生素子11にはマイナスのパルス電圧が印加されるため、負イオンを発生し、イオン発生素子12にはプラスのパルス電圧が印加されるため、正イオンを発生する。
プラス側の電流/電圧変換回路73は、プラス側の電流検出電極27bに流れる放電電流を放電電圧に変換して放電電流信号として、放電電流信号線を介して、制御基板4に送る。マイナス側の電流/電圧変換回路74は、マイナス側の電流検出電極27aに流れる放電電流を放電電圧に変換して放電電流信号として、放電電流信号線を介して、制御基板4に送る。
プラス側の安定化電極用電源75は、イオン発生素子12のイオン発生電極16から発生するイオンと同極性のプラスのバイアス電圧を、安定化電極バイアス線を介して、安定化電極26bに印加する。マイナス側の安定化電極用電源76は、イオン発生素子11のイオン発生電極16から発生するイオンと同極性のマイナスのバイアス電圧を、安定化電極バイアス線を介して、安定化電極26aに印加する。
制御基板4の電圧制御部82は、駆動電圧決定部86と放電電流検出部87とを有している。放電電流検出部87には、2つの電流検出電極27a、27bによってそれぞれ検出された放電電流を電流/電圧変換回路73、74によって放電電圧に変換した放電電流信号が入力される。駆動電圧決定部86は、放電電流検出部87によって検出された2つの放電電流信号をデジタル値に変換して比較して、この比較結果に基づいて、電流検出電極27a、27bにより検出される放電電流信号が所望のイオン量に対応した目標信号値と一致するように、つまり2つのイオン発生素子11、12から目標とするイオン量をそれぞれ発生させるように電圧制御信号値(デジタル値)を生成する。電圧制御信号値から電圧値に変換された電圧制御信号は、電圧制御信号線を介して、制御基板4から電源基板5の2つの電圧発生回路71、72にそれぞれ送られる。2つの電圧発生回路71、72は各電圧制御信号を受けて、所望のイオン量に対応した目標電圧値と一致するように2つのイオン発生素子11、12にそれぞれ印加する駆動電圧を変化させる。すなわち、電圧制御部82は、電圧制御信号値の生成に際して、放電電流信号値と目標電圧値とが一致するようにフィードバック制御を行っている。
Figure 0005493188
具体的には、放電電流検出部87によってプラス側及びマイナス側の電流/電圧変換回路73、74からそれぞれ検出した放電電流信号値から所望のイオン量に対応した目標信号値を減算した値をΔとする。そして、駆動電圧決定部86は、Δの値に応じたイオン発生素子からのイオン発生状態を4つの状態に区分する。表1に示すように、Δが閾値よりも大きい、すなわち対応するイオン発生素子から閾値に対応したイオン量よりも多くのイオンが発生している場合には上とする。また、Δが0よりも大きく閾値よりも小さい、すなわち対応するイオン発生素子から所望のイオン量よりも多く、閾値に対応したイオン量よりも少ないイオンが発生している場合には中上とする。さらに、Δが0以下であり、(0−閾値)以上である、すなわち対応するイオン発生素子から所望のイオン量よりも少なく、(0−閾値)に対応したイオン量よりも多いイオンが発生している場合には中下とする。また、Δが(0−閾値)よりも小さい、すなわち対応するイオン発生素子から(0−閾値)に対応したイオン量よりも少ないイオンが発生している場合には下とする。なお、閾値は、使用環境やイオン発生状況に応じて適宜定められている。
そして、駆動電圧決定部86は、表1に示すマトリクス表に基づいて、プラス側のイオン発生素子からのイオン発生状態とマイナス側のイオン発生素子からのイオン発生状態を比較して、2つのイオン発生素子11、12にそれぞれ印加する駆動電圧を決定する。例えば、プラス側及びマイナス側のイオン発生状態がどちらも上であった場合、2つのイオン発生素子11、12にそれぞれ印加する駆動電圧を所定値だけ減少させる。
ここで、本発明者らは、イオン発生素子11、12がヒステリシスを有しており、印加する駆動電圧を所定値だけ加算したときと所定値だけ減算したときでイオンの増減量が異なることを知見した。より具体的には、本実施形態におけるイオン発生素子11、12においては、所定値だけ駆動電圧を加算したときのイオンの増量は、所定値だけ駆動電圧を減算したときのイオンの減量よりも大きいことを知見した。これからわかるように、イオン発生素子11、12には、駆動電圧を変化させたときに、イオン発生量が減りにくく増えやすいという特性があるため、イオン発生量を増やす制御を抑制して、減らす制御を積極的に行うことでイオンバランスを安定させることができると考えられる。
そこで、2つの放電電流信号が特定の組み合わせ領域である、すなわち、2つのイオン発生素子11、12からそれぞれ発生したイオン発生状態が、上と下のように基準値との差異が逆極性となり、且つ、差異の大きさが2段階以上であり、所定量の差を有している場合には、駆動電圧決定部86は、大きな状態に区分されたイオン発生素子に印加する駆動電圧を減少させ、小さな状態に区分されたイオン発生素子に印加する駆動電圧を保持するよう電圧発生回路71、72を制御する。
表1に示すように、2つのイオン発生素子11、12からのイオン発生状態の差が、2段階以上になる場合は6通りあり、そのうちプラス側が大きな状態となる場合が3通りあり、マイナス側が大きな状態となる場合が3通りある。例えば、プラス側が大きな状態となる3通りの場合は、プラス側が上、マイナス側が下の状態、プラス側が上、マイナス側が中下の状態、及び、プラス側が中上、マイナス側が下の状態の場合である。これらの場合には、駆動電圧決定部86は、プラス側のイオン発生素子12に印加する駆動電圧を所定値だけ減少させ、マイナス側のイオン発生素子11に印加する駆動電圧を保持するよう電圧発生回路71、72を制御する。
すると、マイナス側のイオン発生素子11からのイオン発生量は変わらず、プラス側のイオン発生素子12からのイオン発生量は減少し、マイナス側のイオン発生素子11からのイオン発生量に近づく。このように、イオン発生量が少ないマイナス側のイオン発生素子11からのイオン発生量の増大を抑制することで、2つのイオン発生素子11、12から発生するイオンによるイオンバランスを安定させ、2つのイオン発生素子11、12から発生するイオン量を均等にして、除電対象物に対して安定した除電を行うことができる。また、Δを4段階のイオン発生状態に区分することで、マトリクス表を参照するだけで、容易に駆動電圧を決定することができる。
また、マイナス側が大きな状態となる3通りの場合は、マイナス側が上、プラス側が下の状態、マイナス側が上、プラス側が中下の状態、及び、マイナス側が中上、プラス側が下の状態の場合であるが、同様にして駆動電圧が決定される。すなわち、駆動電圧決定部86において、マイナス側のイオン発生素子11に印加する駆動電圧を所定値だけ減少させ、プラス側のイオン発生素子12に印加する駆動電圧を保持するよう電圧発生回路71、72を制御する。
制御基板4の発振制御部81は、PWM信号線を介して、連結した電源基板5及び素子ユニット3の対をタイムシーケンシャルに選択するとともに、各対の2つのイオン発生素子11、12に対し駆動電圧を印加するタイミングに関するトリガー信号を、電源基板5の2つの電圧発生回路71、72にそれぞれ出力する。そして、2つの電圧発生回路71、72は、プラス側及びマイナス側駆動電圧供給線を介して、電圧制御信号値に基づいた駆動電圧をトリガー信号に合わせて、素子ユニット3のイオン発生素子11、12の給電端子62、64に印加する。
ここで、1つの素子ユニット3の2つのイオン発生素子11、12に印加される駆動電圧について詳細に説明する。図13に示すように、プラス側の電圧発生回路71は、プラスのバイアス電圧を印加するとともに、発振制御部81により制御されて、イオン発生素子12に対して1周期(例えば、10〜500Hz)の間に例えば2度連続してプラスのパルス電圧を印加する。また、マイナス側の電圧発生回路72は、マイナスのバイアス電圧を印加するとともに、発振制御部81により制御されて、イオン発生素子11に対して1周期の間に例えば2度連続してマイナスのパルス電圧を印加する。本実施形態において、パルス幅Bは5μs、パルス間隔Cは300μs、出力電圧Vは2.4kVpkとなっている。なお、この1周期におけるパルス電圧の数は発生させたいイオン発生量によって種々に変化させることができる。
また、電源基板5は、駆動電圧信号線を介して、2つのイオン発生素子11、12にそれぞれ印加する駆動電圧の一部を分圧して、駆動電圧信号として制御基板4の判断部83に送る。
判断部83は、電圧制御部82から放電電流信号及び電圧制御信号を受け、さらに電源基板5から駆動電圧信号を受けて、各ユニット3のイオン発生素子11、12のそれぞれの交換時期に関する判断などを行い、7セグメントLED85にその旨を表示させる。また、判断部83は、イオン発生素子11、12の交換時期が経過していると判断した場合に、イオンの発生を停止させるために、発振制御部81に対してトリガー信号を送信するのを停止させる信号を送信する。
次に、除電装置1による除電対象物30の除電工程について説明する。図14(a)に示すように、イオン発生素子11、12のY方向に沿った縦断面においては、イオン発生中心部であるイオン発生電極16部分からイオンが発生している。搬送面30aと直交する方向に関する、イオン発生素子11、12から搬送面30aまでの距離Mは、この2つのイオン発生素子11、12の2つのイオン発生電極16間の距離N以上となっている。本実施形態においては、距離Nは10mmとなっており、距離Mは10〜500mmが好ましい。この距離関係において、除電装置1は効果的に除電対象物30の除電を行うことができる。距離Mが距離N以下では、各イオン発生素子11、12から発生するイオン分布が搬送面30a上で独立した分布となり、除電対象物30に過帯電をもたらす恐れがある。距離Mを距離N以上とすることにより、搬送面30a上に各イオン発生素子11、12から発生するイオン分布の共存部分を形成し、除電対象物30の過帯電を防止することができる。また、距離Mがあまり大きすぎると、各イオン発生素子11、12から発生するイオンが搬送面30aまで運ばれてくるまでに外方向に拡散し、またイオンに過度な中和を生じさせる。距離Mは所定距離内に設定することが望ましい。
除電対象物30が搬送面30aに沿って搬送方向に搬送され、除電装置1と除電対象物30とが対向するとき、この発生した正イオン及び負イオンのうち、除電対象物30の帯電極性と逆極性のイオンは除電対象物30に引き寄せられることとなり、除電対象物30は除電される。このとき、上述したように各イオン発生素子11、12から発生する負イオン及び正イオンの分布に共存領域が存在することによって、除電対象物30の過帯電が防止される。
以上、本発明の好適な実施形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能なものである。例えば、本実施形態においては、2つのイオン発生素子11、12からのイオン発生状態が2段階以上離れている場合に、イオンの増大を抑制する制御を行ったが、3段階以上離れている場合にだけ、同様の制御を行うものであってもよい。
また、本実施形態においては、2つのイオン発生素子11、12のイオン発生状態領域を上下2段(マトリックスで4×4)に区分していたが、単に基準値に対して上下だけ(マトリックスで2×2)に区分してもよいし、上下2段以上の任意の段数に区分してもよい。
さらに、本実施形態においては、イオン発生状態における上と中上の閾値と下と中下の閾値は正負の符号が異なるだけで0を挟んで対称な値であったが、それぞれ任意の値でよく、対称な値でなくてもよい。
また、本実施形態におけるイオン発生素子11、12においては、所定値だけ駆動電圧を加算したときのイオンの増量は、所定値だけ駆動電圧を減算したときのイオンの減量よりも大きくなるという特性であったが、イオン発生素子の構成によっては、所定値だけ駆動電圧を大きくしたときのイオンの増量は、所定値だけ駆動電圧を小さくしたときのイオンの減量よりも小さくなるという特性もありえる。この場合、本実施形態とは逆に、駆動電圧の減算を抑制してもよい。具体的には、イオン発生量が多いイオン発生素子に印加する駆動電圧を保持し、イオン発生量が少ないイオン発生素子に印加する駆動電圧を加算する。これにより、イオン発生量が多いイオン発生素子からのイオン発生量の減少を抑制することで、2つのイオン発生素子11、12から発生するイオンによるイオンバランスを安定させ、2つのイオン発生素子11、12から発生するイオン量を均等にして、除電対象物に対して安定した除電を行うことができる。このように、駆動電圧決定部86は、ヒステリシスに合わせて、駆動電圧の加算、または、減算の一方を抑制すればよい。
なお、図1や図14に図示のように、例えばイオン発生素子11、12の逆ハの字状の2つの斜面を持つように配置された構造では、一方のイオン発生素子のイオン発生量を減らして、他方のイオン発生素子のイオン発生量を多くしようとすると、他方のイオン発生素子から必要以上にイオンが発生してしまう傾向がある。すなわち、必要以上に発生したイオンが逆極性のイオンと中和してしまい、他方のイオン極性にイオンバランスが傾いてしまう。さらに、逆極性のイオンは中和して、イオン量が所定量よりも少なくなってしまう。このようにして、イオン発生装置の構造上、イオン発生素子のヒステリシス特性が、イオン発生素子の構造によるイオン発生量の過剰な増減を助長することがあるが、本実施形態の駆動電圧の決定によりイオン発生量が過剰に増減することを防止できる。
加えて、イオン発生電極16の突起電極16bの形状は、三角形状に限らず、波状、円状、格子状などいかなる形状であってもよい。
さらに、イオン発生素子11、12に対する印加電圧は、図13の例では常時バイアス電圧を印加する方法を利用しているが、イオン発生のため、アース電圧(0ボルト)より所定のピークのパルス電圧を印加するような駆動方法でもよく、公知、周知の駆動方法が利用できる。
1 除電装置
11、12 イオン発生素子
27a、27b 電流検出電極
71、72 電圧発生回路
82 電圧制御部
86 駆動電圧決定部
87 放電電流検出部

Claims (8)

  1. 正イオン及び負イオンの異なるイオンを発生する2つのイオン発生素子と、
    前記2つのイオン発生素子からそれぞれ発生するイオンによって流れる放電電流信号をそれぞれ検出する2つの放電電流検出手段と、
    前記2つの放電電流検出手段によってそれぞれ検出された2つの信号値に基づいて、前記2つのイオン発生素子にそれぞれ印加する2つの駆動電圧を決定する駆動電圧決定手段と、
    前記駆動電圧決定手段によって決定した2つの駆動電圧を、前記2つのイオン発生素子にそれぞれ印加する2つの駆動電圧印加手段と、を備えており、
    前記駆動電圧決定手段は、前記2つの放電電流検出手段によってそれぞれ検出された2つの信号値の特定の組み合わせ領域において、前記駆動電圧決定手段による前記駆動電圧の加算、または、減算の一方を抑制し、
    前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から所定のイオン発生量に対応する第1信号値を減算した値が0よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0以下の領域であることを特徴とするイオン発生装置。
  2. 前記駆動電圧決定手段は、より上に検出される側の前記イオン発生素子に印加する駆動電圧を減算し、0以下に検出される側の前記イオン発生素子に印加する駆動電圧を保持することを特徴とする請求項に記載のイオン発生装置。
  3. 前記駆動電圧決定手段は、より上に検出される側の前記イオン発生素子に印加する駆動電圧を保持し、0以下に検出される側の前記イオン発生素子に印加する駆動電圧を加算することを特徴とする請求項に記載のイオン発生装置。
  4. 前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも小さな閾値よりも小さい領域であることを特徴とする請求項のいずれか1項に記載のイオン発生装置。
  5. 前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも大きな閾値よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも小さい領域であることを特徴とする請求項のいずれか1項に記載のイオン発生装置。
  6. 前記特定の組み合わせ領域は、一方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも大きな第1閾値よりも大きく、他方の前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値が0よりも小さな第2閾値よりも小さい領域であることを特徴とする請求項のいずれか1項に記載のイオン発生装置。
  7. 前記特定の組み合わせ領域は、
    前記放電電流検出手段によって検出された信号値から前記第1信号値を減算した値を、0よりも小さな第2閾値よりも小さい第1段階と、前記第2閾値以上0以下の第2段階と、0より大きく0よりも大きな第1閾値以下の第3段階と、前記第1閾値よりも大きい第4段階に区分し、
    前記2つの放電電流検出手段によって検出された信号値によって区分された2つの段階の差が2段階以上である領域であることを特徴とする請求項のいずれか1項に記載のイオン発生装置。
  8. 前記駆動電圧決定手段は、前記2つの放電電流検出手段によってそれぞれ検出された2つの信号値がともに前記第1閾値以下前記第2閾値以上の領域にあるとき、前記2つのイオン発生素子に印加する駆動電圧を保持することを特徴とする請求項6または7に記載のイオン発生装置。
JP2009278232A 2009-12-08 2009-12-08 イオン発生装置 Expired - Fee Related JP5493188B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278232A JP5493188B2 (ja) 2009-12-08 2009-12-08 イオン発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278232A JP5493188B2 (ja) 2009-12-08 2009-12-08 イオン発生装置

Publications (2)

Publication Number Publication Date
JP2011124007A JP2011124007A (ja) 2011-06-23
JP5493188B2 true JP5493188B2 (ja) 2014-05-14

Family

ID=44287713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278232A Expired - Fee Related JP5493188B2 (ja) 2009-12-08 2009-12-08 イオン発生装置

Country Status (1)

Country Link
JP (1) JP5493188B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947119B2 (ja) * 2012-06-14 2016-07-06 シャープ株式会社 掃除装置
CN107196191B (zh) * 2017-05-12 2019-11-05 青岛海尔空调器有限总公司 负离子发生装置、空调器和空气净化器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572541B2 (ja) * 2000-02-02 2004-10-06 春日電機株式会社 直流除電器の制御方法

Also Published As

Publication number Publication date
JP2011124007A (ja) 2011-06-23

Similar Documents

Publication Publication Date Title
EP2953431B1 (en) Plasma generator
MY138556A (en) Ion generating element, ion generating apparatus, and electric appliance
JP6653309B2 (ja) 電池監視装置
US20130258543A1 (en) Electric charge generating device
NZ603542A (en) Electroporation system with two electrodes having dielectric coatings forming a fluid pathway
JP5493188B2 (ja) イオン発生装置
CN101180547B (zh) 离子控制传感器
JP5476957B2 (ja) イオン発生装置
JP2006196291A5 (ja)
CN106714434B (zh) 成对电极共面放电等离子体发生装置
JPWO2008099569A1 (ja) 気体搬送装置および冷却装置取り付け構造
JP5231094B2 (ja) イオン発生装置
JP2010198990A (ja) 組電池ボックス
EP1221685A3 (en) Plasma display apparatus having reduced voltage drops along wiring lines
US20150312997A1 (en) Ion generation device and electrostatic neutralizer using same
JP2011124005A (ja) イオン発生装置
JP5314953B2 (ja) 除電装置
JP2010020907A (ja) イオン発生装置
JP5231091B2 (ja) 除電装置
JP2010003499A (ja) イオン発生装置
TR201900425T4 (tr) Sıvı püskürtmeli yazıcıya yönelik rezistör korumalı saptırma plakaları.
JP5049060B2 (ja) イオン発生方法及びイオン発生装置並びにこのイオン発生方法を用いた除電方法及び除電装置
JPH02155199A (ja) 静電気除去方法及びその装置
KR101040566B1 (ko) 정전기 제거용 모듈 바
JP2012134052A (ja) 帯電装置または除電装置用の電極基板ユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5493188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees