JP5487215B2 - Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet - Google Patents

Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet Download PDF

Info

Publication number
JP5487215B2
JP5487215B2 JP2011543380A JP2011543380A JP5487215B2 JP 5487215 B2 JP5487215 B2 JP 5487215B2 JP 2011543380 A JP2011543380 A JP 2011543380A JP 2011543380 A JP2011543380 A JP 2011543380A JP 5487215 B2 JP5487215 B2 JP 5487215B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength
hot
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011543380A
Other languages
Japanese (ja)
Other versions
JP2012514130A (en
Inventor
キョ−ユン イ、
クワン−グン チン、
ウル−ヨン チェ、
デ−ユン カン、
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Co Ltd
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2012514130A publication Critical patent/JP2012514130A/en
Application granted granted Critical
Publication of JP5487215B2 publication Critical patent/JP5487215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、自動車の内板及び構造部材に使用することができる鋼板及びその製造方法に関し、より詳しくは、高強度、高延伸鋼板及び熱延鋼板、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板の製造方法に関する。  The present invention relates to a steel plate that can be used for an inner plate and a structural member of an automobile, and a method for manufacturing the same, and more particularly, a high-strength, high-stretched steel plate and hot-rolled steel plate, cold-rolled steel plate, galvanized steel plate, and galvanized alloy. The present invention relates to a method for producing a chemical steel sheet.

最近、環境保存のために二酸化炭素の排出量を規制しており、自動車の燃費改善に対する要求が増加されている。また、衝突の際に乗客の安全を確保するために自動車その車体の衝突特性を中心とする安全性向上も要求されている。前記のような自動車その車体の軽量化と安定性をともに達成するための方案として高強度鋼板の加工性向上が要求されている。  Recently, carbon dioxide emissions have been regulated to preserve the environment, and demands for improving automobile fuel efficiency have increased. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centering on the collision characteristics of the automobile and the vehicle body. Improvement of workability of high-strength steel sheets is required as a method for achieving both the weight reduction and stability of the automobile as described above.

使用の鋼板の降伏強度と引張強度が増加すればするほど車体の軽量化効果が増加されるので自動車業界では、高強度鋼板を採用しようとする工夫が続いている。近頃には、引張強度980MPa級以上のAHSS(Advanced High Strength Steel)鋼の適用が行われている。しかし、980MPa級以上の高い強度の場合には、相対的に延伸率が下がるという短所がある。  As the yield strength and tensile strength of the steel sheet used increase, the weight reduction effect of the vehicle body increases, and therefore the automobile industry continues to devise to adopt high-strength steel sheets. Recently, AHSS (Advanced High Strength Steel) steel having a tensile strength of 980 MPa or higher is being applied. However, in the case of a high strength of 980 MPa or higher, there is a disadvantage that the stretching ratio is relatively lowered.

これを補完するために残留オーステナイトを活用するTRIP鋼の開発が行っているが、相変わらず引張強度と延伸率の積が25、000MPa%を超えることができず、強度と延伸率の均衡がよくないという短所がある。  In order to compensate for this, TRIP steel utilizing retained austenite has been developed, but the product of tensile strength and stretch ratio cannot exceed 25,000 MPa% as usual, and the balance between strength and stretch ratio is not good. There are disadvantages.

特許文献1を基に特許文献2と特許文献3などに高炭素高合金鋼を低温にて恒温変態させ微細なベイナイトを得て高軽度、高強度、高延性の鋼鉄を製造する方法が記述されている。  Based on Patent Document 1, Patent Document 2 and Patent Document 3 describe a method for producing high-mild, high-strength, high-ductility steel by obtaining high-temperature, high-alloy steels at low temperature to obtain fine bainite. ing.

前記の発明には、一定性分の鋼を均質化処理した後空冷を行って、この鋼をさらに加熱した後恒温変態させて少なくとも50%のベイナイト組織を有するか、または少なくとも65%以上のベイナイト組織を有し、組織の残りは残留オーステナイト相に構成される鋼を製造する方法を提案している。これを介してHv409以上の超高強度鋼を製造する方案を提示しているが、変態時間がかかりすぎて熱延や焼鈍工程に適用できないという短所がある。  In the above invention, the steel of a certain amount is homogenized and then air-cooled, and the steel is further heated and isothermally transformed to have at least 50% bainite structure, or at least 65% or more bainite. Proposes a method for producing a steel having a structure, the rest of the structure being composed of residual austenite phase. Through this, a method for producing ultra high strength steel of Hv409 or higher is presented, but it has a disadvantage that it takes too much transformation time and cannot be applied to hot rolling and annealing processes.

また、特許文献4では、一定成分からなる鋼材をオーステナイト化処理した後、Bs温度直下からBs−100℃間の温度にて恒温変態させることで1000MPa以上の引張強度と10%以上の延伸率を得る方法を提案しているが、Cr,Ni,Moなど高価の合金元素が添加されて製造単価が非常に高価であることと熱延鋼板にだけ制限されるという短所がある。  Moreover, in patent document 4, after carrying out the austenitizing process of the steel material which consists of a fixed component, the tensile strength of 1000 Mpa or more and the extending | stretching rate of 10% or more are carried out by carrying out the isothermal transformation at the temperature between Bs-100 degreeC right under Bs temperature. However, there are disadvantages in that expensive alloy elements such as Cr, Ni, and Mo are added and the manufacturing unit price is very expensive, and that only the hot-rolled steel sheet is limited.

Sandvikなどは、非特許文献1で、C:0.65〜0.99重量%、Si:2〜2.78重量%、Mn:0.5重量%、Cr:0.02〜0.79重量%、Ti:0〜0.03重量%の添加鋼を活用してオーステナイト熱処理した後、290〜380℃の温度で熱処理した超高強度鋼を提案しているが、Siの含量が非常に高く、圧延性が非常に劣るため、熱間圧延及び冷間圧延の適用が困難で、熱延鋼板だけに制限されるという短所がある。  Sandvik et al., Non-Patent Document 1, C: 0.65 to 0.99 wt%, Si: 2 to 2.78 wt%, Mn: 0.5 wt%, Cr: 0.02 to 0.79 wt% %, Ti: 0 to 0.03% by weight of added steel is used, and after the austenite heat treatment, an ultra high strength steel heat treated at a temperature of 290 to 380 ° C. is proposed, but the Si content is very high. Since the rollability is very inferior, it is difficult to apply hot rolling and cold rolling, and there is a disadvantage that it is limited only to hot rolled steel sheets.

英国特許9918240British patent 9918240 US6,884,306 B1US 6,884,306 B1 日本国特許3751250号Japanese Patent No. 3751250 大韓民国特許2007−0126202Korean Patent 2007-0126202

Metal Technology(p213〜220,1981)Metal Technology (p213-220, 1981)

本発明は、前記従来の問題を解決するために、鋼の成分系及びベイナイトと残留オーステナイトのラス(lath)幅を制御して高強度、高延伸の鋼板を提供して、また、本発明の他の目的は、高強度、高延伸の熱延鋼板、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板を製造することができる方法を提供することにある。  In order to solve the above-mentioned conventional problems, the present invention provides a high-strength, high-stretched steel sheet by controlling the composition system of steel and the lath width of bainite and retained austenite. Another object is to provide a method capable of producing a high-strength, high-stretched hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and galvanized alloyed steel sheet.

本発明の一実施例は、重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物を含む鋼板であって、前記鋼板の内部組織は、ベイナイトと残留オーステナイトからなり、ベイナイトの平均レス(lath)幅:0.3μm以下、残留オーステナイトの平均レス幅:0.3μm以下である鋼板に関する。前記鋼板は、降伏強度:700MPa以上、引張強度:980MPa以上、及び延伸率:20%以上であることができる。また、前記鋼板は重量%で、0.5%以下のMo及び1.0%以下のCrのうち1種または2種をさらに含むことができる。また、前記鋼板は、重量%で、0.005%以下のB及び0.06%以下のTiをさらに含むことができる。  In one embodiment of the present invention, by weight, C: 0.5 to 1.0%, Mn: 0.01 to 2.0%, Si: 1.0 to 2.0%, Al: 0.01 -2.0%, S: 0.012% or less, the remainder Fe, and other inevitable impurities, the internal structure of the steel plate is composed of bainite and residual austenite, the average bainite less ) Width: 0.3 μm or less, the average loess width of retained austenite: relating to a steel sheet having a width of 0.3 μm or less. The steel sheet may have a yield strength of 700 MPa or more, a tensile strength of 980 MPa or more, and a draw ratio of 20% or more. The steel sheet may further include one or two of 0.5% or less of Mo and 1.0% or less of Cr. The steel sheet may further include 0.005% or less B and 0.06% or less Ti by weight%.

また、本発明の他の実施例は、重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%,Al:0.01〜2.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物を含むスラブを熱間圧延してAr3変態点以上で熱間圧延を仕上げして、Ms(マルテンサイト変態開始温度)〜450℃の範囲で巻取りすることを含む、高強度高延伸熱延鋼板の製造方法に関する。  Moreover, the other Example of this invention is weight%, C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: A slab containing 0.01 to 2.0%, S: 0.012% or less, the balance Fe, and other inevitable impurities is hot-rolled and hot-rolled at the Ar3 transformation point or higher, and Ms ( The present invention relates to a method for producing a high-strength, high-stretched hot-rolled steel sheet including winding in a range of martensite transformation start temperature) to 450 ° C.

また、本発明の他の実施例は、重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%,Al:0.01〜1.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物を含む鋼を熱間圧延して、Ar3変態点以上で熱間圧延を仕上げる熱間圧延ステップ、前記のように熱間圧延された熱延鋼板を650℃以下で巻取りする巻取りステップ、前記熱延鋼板を冷間圧延した後、Ac3温度以上で焼鈍した後冷却するステップ、及び前記冷延鋼板をMs(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理する時効処理ステップを含む、高強度高延伸冷延鋼板の製造方法に関する。  Moreover, the other Example of this invention is weight%, C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: Hot rolling step of hot-rolling steel containing 0.01 to 1.0%, S: 0.012% or less, the balance Fe, and other inevitable impurities, and finishing hot rolling at an Ar3 transformation point or higher A winding step of winding the hot-rolled steel sheet hot-rolled as described above at 650 ° C. or lower, a step of cold-rolling the hot-rolled steel sheet, annealing it at an Ac3 temperature or higher, and cooling the cold-rolled steel sheet; The present invention relates to a method for producing a high-strength, high-stretched cold-rolled steel sheet, comprising an aging treatment step of over-aging the rolled steel sheet in a range of Ms (martensitic transformation start temperature) to 450 ° C.

また、本発明の他の実施例は、重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%,Al:0.01〜1.0%、S:0.012%以下、残部Fe及びその他の不可避な不純物を含むスラブを熱間圧延して、Ar3変態点以上で熱間圧延を仕上げる熱間圧延ステップ、前記のように熱間圧延された熱延鋼板を650℃以下で巻取りする巻取りステップ、前記熱延鋼板を冷間圧延した後、Ac3温度以上にて焼鈍した後冷却するステップ、前記冷延鋼板をMs(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理する時効処理ステップ、及び前記時効処理した冷延鋼板をメッキ槽を通過させて鋼板表面にメッキ層を形成させるステップを含む高強度高延伸亜鉛メッキ鋼板の製造方法に関する。  Moreover, the other Example of this invention is weight%, C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: Hot rolling step of hot rolling a slab containing 0.01 to 1.0%, S: 0.012% or less, the balance Fe and other inevitable impurities, and finishing the hot rolling at an Ar3 transformation point or higher, A winding step of winding the hot-rolled steel sheet hot-rolled as described above at 650 ° C. or lower, a step of cold-rolling the hot-rolled steel sheet, annealing at an Ac3 temperature or higher, and cooling the cold-rolled steel sheet, the cold-rolling An aging treatment step of over-aging the steel sheet in a range of Ms (martensitic transformation start temperature) to 450 ° C., and a step of passing the aging-treated cold-rolled steel sheet through a plating tank to form a plating layer on the steel sheet surface. The present invention relates to a method for producing a high-strength, highly-stretched galvanized steel sheet.

また、本発明の他の実施例は、重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%,Al:0.01〜1.0%、S:0.012%以下、残部Fe及びその他の不可避な不純物を含むスラブを熱間圧延して、Ar3変態点以上で熱間圧延を仕上げる熱間圧延ステップ、前記のように熱間圧延された熱延鋼板を650℃以下で巻取りする巻取りステップ、前記熱延鋼板を冷間圧延した後、Ac3温度以上にて焼鈍した後冷却するステップ、前記冷延鋼板をMs(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理する時効処理ステップ、前記時効処理した冷延鋼板をメッキ槽を通過させて鋼板表面にメッキ層を形成させるステップ及び前記メッキ層を形成した亜鉛メッキ鋼板を合金化熱処理して亜鉛メッキ合金化鋼板を製造するステップを含む、高強度高延伸亜鉛メッキ合金化鋼板の製造方法に関する。  Moreover, the other Example of this invention is weight%, C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: Hot rolling step of hot rolling a slab containing 0.01 to 1.0%, S: 0.012% or less, the balance Fe and other inevitable impurities, and finishing the hot rolling at an Ar3 transformation point or higher, A winding step of winding the hot-rolled steel sheet hot-rolled as described above at 650 ° C. or lower, a step of cold-rolling the hot-rolled steel sheet, annealing at an Ac3 temperature or higher, and cooling the cold-rolled steel sheet, the cold-rolling An aging treatment step of over-aging the steel sheet in a range of Ms (Martensite transformation start temperature) to 450 ° C., a step of passing the aging-treated cold-rolled steel sheet through a plating tank and forming a plating layer on the surface of the steel sheet, and the plating Alloying heat treatment of galvanized steel sheet Comprising the steps of manufacturing a lead-plated alloying steel, a method for producing a high-strength and high stretch galvanized alloyed steel.

本発明は、自動車鋼板の軽量化と衝突安定性の向上に寄与することができる、降伏強度が700MPa以上、引張強度が980MPa以上、及び延伸率が20%以上である、鋼板、熱延鋼板、冷延鋼板、亜鉛メッキ鋼板、及び亜鉛メッキ合金化鋼板を提供する。  The present invention can contribute to weight reduction of automobile steel plate and improvement of collision stability, steel plate, hot rolled steel plate, yield strength is 700 MPa or more, tensile strength is 980 MPa or more, and stretch ratio is 20% or more, A cold-rolled steel sheet, a galvanized steel sheet, and a galvanized alloyed steel sheet are provided.

図1は本発明による発明例13の微細組織の写真であり、図1Bは図1Aに示す写真の拡大写真である。FIG. 1 is a photograph of the microstructure of Invention Example 13 according to the present invention, and FIG. 1B is an enlarged photograph of the photograph shown in FIG. 1A. 図2は比較例18の微細組織の写真であり、図2Bは図2Aに示す写真の拡大写真である。2 is a photograph of the microstructure of Comparative Example 18, and FIG. 2B is an enlarged photograph of the photograph shown in FIG. 2A.

以下、本発明の成分系を説明する。  Hereinafter, the component system of the present invention will be described.

C:0.5〜1.0重量%
Cの含量が0.5重量%未満である場合には強度の確保は可能であるが、安定な残留オーステナイトの安定性が劣位して20%以上の延伸率の確保が困難となる恐れがある。一方、Cの含量が1.0重量%を超える場合には、ベイナイト変態が著しく遅くなりパーライトの生成が促進されることによってむしろ物性が劣化する恐れがある。よって、前記Cの含量は、0.5〜1.0重量%の範囲に限定することが好ましい。
C: 0.5 to 1.0% by weight
If the C content is less than 0.5% by weight, the strength can be ensured, but the stability of stable retained austenite is inferior, and it may be difficult to ensure a stretch ratio of 20% or more. . On the other hand, when the C content exceeds 1.0% by weight, the bainite transformation is remarkably slowed, and the formation of pearlite is promoted, so that the physical properties may be deteriorated. Therefore, the C content is preferably limited to a range of 0.5 to 1.0% by weight.

Mn:0.01〜2.0重量%
Mnは、鋼の製造工程のうちに不可避に含有されるSとFeが結合したFeS形成によって赤熱脆性を防止するために添加されるが、Mnの含量が0.01重量%未満である場合には、その含量が少な過ぎて赤熱脆性が生じる恐れがある。一方、Mnの含量が2.0重量%を超える場合には、ベイナイト変態速度を遅くして焼鈍工程の生産性を阻害する恐れがある。よって、前記Mnの含量は、0.01〜2.0重量%の範囲に限定することが好ましい。
Mn: 0.01 to 2.0% by weight
Mn is added in order to prevent red heat embrittlement by FeS formation in which S and Fe, which are inevitably contained in the steel manufacturing process, are combined, but the Mn content is less than 0.01% by weight. May be red brittle due to its low content. On the other hand, if the Mn content exceeds 2.0% by weight, the bainite transformation rate may be slowed to hinder the productivity of the annealing process. Therefore, the Mn content is preferably limited to a range of 0.01 to 2.0% by weight.

Si:1.0〜2.0重量%
Siは、パーライト変態を促進させて未変態オーステナイト中のCの含量を増加させて最終製品の残留オーステナイト分率を向上させるので、鋼中への積極的な添加を要する元素である。
Si: 1.0 to 2.0% by weight
Since Si promotes pearlite transformation and increases the content of C in untransformed austenite to improve the retained austenite fraction of the final product, it is an element that needs to be actively added to steel.

本発明のように残留オーステナイトを含有する変態組織鋼の生成のためには、Siは必然的に添加され、Siの含量が1.0重量%未満である場合には残留オーステナイトの安定化効果が大きくならない恐れがある。一方、Siの含量が2.0重量%を超える場合には熱間圧延及び冷間圧延の際にクラックが生じるなど圧延性が低下する恐れがある。よって、前記Siの含量は1.0〜2.0重量%の範囲に限定することが好ましい。  In order to produce a transformation structure steel containing retained austenite as in the present invention, Si is inevitably added, and when the Si content is less than 1.0% by weight, the effect of stabilizing retained austenite is obtained. There is a risk of not growing. On the other hand, if the Si content exceeds 2.0% by weight, the rollability may be deteriorated, for example, cracks may occur during hot rolling and cold rolling. Therefore, the Si content is preferably limited to a range of 1.0 to 2.0% by weight.

Al:0.01〜2.0重量%
Alは、二つの目的を有して添加されるが、その一つは鋼中に存在する酸素を除去して凝固の際に非金属介在物の形成を防止して、他の一つは本発明のように残留オーステナイトを安定化させるためのCのオーステナイトへの拡散を促進するためである。
Al: 0.01 to 2.0% by weight
Al is added for two purposes, one of which removes the oxygen present in the steel to prevent the formation of non-metallic inclusions during solidification and the other is the main. This is to promote diffusion of C to austenite for stabilizing retained austenite as in the invention.

Alの含量が0.01重量%未満である場合には、前記添加目的を達することができず、2.0重量%を超える場合には製鋼の原単位の上昇が問題になる恐れがある。よって、前記Alの含量は、0.01〜2.0重量%の範囲に限定することが好ましい。  When the Al content is less than 0.01% by weight, the purpose of the addition cannot be achieved, and when it exceeds 2.0% by weight, an increase in the basic unit of steel production may become a problem. Therefore, the content of Al is preferably limited to a range of 0.01 to 2.0% by weight.

しかし、本発明で冷間圧延の後に焼鈍を行う冷延鋼板、メッキ鋼板、メッキ合金化鋼板の場合には、Alの含量が過多になる場合にAc3温度が高くなることによってAc3以上の温度においての熱処理が実際的に困難になる恐れがあるので、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板に対しては上限を1.0重量%に限定することが好ましい。  However, in the case of the cold rolled steel sheet, the plated steel sheet, and the plated alloyed steel sheet, which are annealed after cold rolling in the present invention, the Ac3 temperature is increased when the Al content is excessive, so that the temperature is higher than Ac3. Therefore, it is preferable to limit the upper limit to 1.0% by weight for cold-rolled steel sheets, galvanized steel sheets, and galvanized alloyed steel sheets.

S:0.012重量%以下
前記Sは、FeS形成によって赤熱脆性の問題を誘発するので、Sの量を少なくするように管理することが必要であるので、0.012重量%以下に制限する。下限を規定しない理由は、前記の同じ理由でSの量を下げれば下げるほど有利であるため制限はしない。
S: 0.012 wt% or less Since S induces a red hot brittleness problem due to the formation of FeS, it is necessary to control the amount of S to be small, so it is limited to 0.012 wt% or less. . The reason why the lower limit is not specified is not limited because the lower the amount of S for the same reason, the more advantageous it is.

Mo及びCrは、必要に応じて選択的に添加される成分である。
Mo:0.5重量%以下
前記Moは、パーライト相の生成を抑制するために添加されるが、0.5重量%を超える場合には、高価のMoに起因して製造原価が急上昇する。よって、Moの含量は、0.5重量%以下の範囲に限定することが好ましい。
Mo and Cr are components that are selectively added as necessary.
Mo: 0.5 wt% or less The Mo is added to suppress the formation of a pearlite phase, but when it exceeds 0.5 wt%, the manufacturing cost rapidly increases due to expensive Mo. Therefore, the Mo content is preferably limited to a range of 0.5% by weight or less.

Cr:1.0重量%以下
前記Crは、フェライト生成を抑制しベイナイト変態を促進するために添加されることができるが、1.0重量%を超える場合にCr炭化物の形成が促進されることによって固溶C量が低減する恐れがある。よって、前記Crの含量は、1.0重量%以下の範囲に限定することが好ましい。
Cr: 1.0 wt% or less The Cr can be added to suppress ferrite formation and promote bainite transformation, but when it exceeds 1.0 wt%, formation of Cr carbide is promoted. Therefore, there is a risk that the amount of dissolved C may be reduced. Therefore, the Cr content is preferably limited to a range of 1.0% by weight or less.

B及びTiは、必要に応じて選択的に添加することができ、Bの効果を極大化するためには、不純物として存在するNとBが結合することを抑制するために、Tiを共に添加することができる。  B and Ti can be selectively added as necessary, and in order to maximize the effect of B, both Ti and Ti are added to suppress the bonding of N and B present as impurities. can do.

B:0.005重量%以下
前記Bは、フェライトの生成を抑制するためにさらに添加されるが、Bが0.005重量%を超える場合には、Fe23(C,B)6化合物の生成が促進され、フェライト生成がむしろ促進される恐れがある。よって、前記Bの含量は0.005重量%以下の範囲に限定することが好ましい。
B: 0.005 wt% or less The B is further added to suppress the formation of ferrite, but when B exceeds 0.005 wt%, the formation of Fe23 (C, B) 6 compound is There is a risk that ferrite formation is rather accelerated. Therefore, the B content is preferably limited to a range of 0.005% by weight or less.

Ti:0.06重量%以下
Tiの含量が0.06重量%を超える場合には、十分にN(通常0.01%以下の濃度に不純物として存在)を除去してからも、剰余Tiが多量に残ってCと結合する問題がある。よって、前記Tiの含量は、0.06重量%以下の範囲に限定することが好ましい。
Ti: 0.06% by weight or less When the Ti content exceeds 0.06% by weight, the residual Ti remains even after sufficiently removing N (usually present as an impurity at a concentration of 0.01% or less). There is a problem that a large amount remains and bonds with C. Accordingly, the Ti content is preferably limited to a range of 0.06% by weight or less.

以下、本発明の鋼板の内部組織、降伏強度、引張強度及び延伸率に対して説明する。  Hereinafter, the internal structure, yield strength, tensile strength, and stretch ratio of the steel sheet of the present invention will be described.

前記内部組織は、ベイナイトと残留オーステナイトからなっており、前記ベイナイトは等軸晶の多角形フェライトがない組織であって、炭化物が存在しないベイナイトが好ましい。  The internal structure is composed of bainite and retained austenite, and the bainite is a structure free from equiaxed polygonal ferrite, and is preferably bainite free from carbides.

一般的に、TRIP鋼の微細組織は、残留オーステナイトを含有しなければならなく、技術的には、が0%を超える残留オーステナイト分率で含有することによって、延性の向上に残留オーステナイトが実質的な役割を果たす鋼を意味する。よって、本発明の実施形態として、TRIP鋼である場合には、微細組織は、残留オーステナイト分率が0%を超えて残部はベイナイトであることが好ましい。但し、本発明の微細組織は、残留オーステナイト分率が10〜40%の範囲で、残部はベイナイトであることがより好ましい。残留オーステナイトの分率が10%未満である場合には、公知のTRIP鋼と類似な水準であり、40%を超える場合には残留オーステナイトの安定性が劣化されるためである。  Generally, the microstructure of TRIP steel must contain residual austenite, and technically, the residual austenite is substantially added to improve ductility by containing at a residual austenite fraction exceeding 0%. It means steel that plays an important role. Therefore, as an embodiment of the present invention, in the case of TRIP steel, it is preferable that the fine structure has a retained austenite fraction exceeding 0% and the balance is bainite. However, it is more preferable that the microstructure of the present invention has a retained austenite fraction in the range of 10 to 40% and the balance is bainite. This is because when the fraction of retained austenite is less than 10%, the level is similar to that of known TRIP steel, and when it exceeds 40%, the stability of retained austenite is deteriorated.

また、ベイナイト及び残留オーステナイトの平均ラス(lath)幅を、各々0.3μm以下に限定する。平均ラス幅が0.3μmを超える場合、組織が微細にできないため、強度の確保が困難である。よって、前記ベイナイトと残留オーステナイトの平均ラス幅は、0.3μm以下の範囲に限定することが好ましい。  Further, the average lath width of bainite and retained austenite is limited to 0.3 μm or less. When the average lath width exceeds 0.3 μm, it is difficult to secure strength because the structure cannot be made fine. Therefore, the average lath width of the bainite and retained austenite is preferably limited to a range of 0.3 μm or less.

また、前記鋼板は降伏強度が700MPa以上で、引張強度は980MPa以上であり、延伸率は20%以上である。降伏強度が700MPa未満である場合には自動車の構造部材として使用することには不適合であって、引張強度が980MPa以上である場合を超高強度鋼とする。また、延伸率が20%以上でないと延伸率が一定水準にないため、加工性向上の効果も期待することができない。  The steel sheet has a yield strength of 700 MPa or more, a tensile strength of 980 MPa or more, and a draw ratio of 20% or more. When the yield strength is less than 700 MPa, it is unsuitable for use as a structural member of an automobile, and the case where the tensile strength is 980 MPa or more is designated as ultra high strength steel. Moreover, since the stretch ratio is not at a certain level unless the stretch ratio is 20% or more, the effect of improving workability cannot be expected.

前記鋼板は、熱延鋼板、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板のうち1種である。  The said steel plate is 1 type among a hot-rolled steel plate, a cold-rolled steel plate, a galvanized steel plate, and a galvanized alloyed steel plate.

以下、本発明の熱延鋼板、冷延鋼板、亜鉛メッキ鋼板、亜鉛メッキ合金化鋼板の製造方法に対して説明する。  Hereinafter, the manufacturing method of the hot rolled steel sheet, cold rolled steel sheet, galvanized steel sheet, and galvanized alloyed steel sheet of the present invention will be described.

本発明に適する熱延鋼板の製造方法によるスラブを通常の方法で再加熱して熱間圧延を行う。  The slab by the manufacturing method of the hot rolled steel sheet suitable for this invention is reheated by a normal method, and hot rolling is performed.

熱延鋼板の場合、Ar3変態点以上にて熱間圧延を仕上げて、Ms(マルテンサイト変態開始温度)〜450℃の範囲で巻取りする。  In the case of a hot-rolled steel sheet, hot rolling is finished at an Ar3 transformation point or higher, and winding is performed in a range of Ms (martensitic transformation start temperature) to 450 ° C.

熱間圧延の仕上げ温度をAr3変態点以上に限定することは、二相域圧延が行われることを防止するためである。Ar3変態点未満である場合には、二相域圧延が行われて不均一結晶粒組織が発生する恐れがある。よって、熱間圧延の仕上げ温度は、Ar3変態点以上に限定することが好ましい。  The reason for limiting the hot rolling finishing temperature to the Ar3 transformation point or higher is to prevent the two-phase region rolling from being performed. When the temperature is less than the Ar3 transformation point, two-phase rolling may be performed to generate a non-uniform grain structure. Therefore, it is preferable to limit the hot rolling finishing temperature to the Ar3 transformation point or higher.

また、巻取り温度がMs未満である場合には、マルテンサイトに変態することによって、ベイナイトと残留オーステナイト組織を得ることが困難になる恐れがある。一方、巻取り温度が450℃を超えて巻取りを行う場合、パーライト変態が生じる恐れがある。よって、巻取り温度は、Ms〜450℃の範囲に限定することが好ましい。  When the coiling temperature is lower than Ms, transformation to martensite may make it difficult to obtain a bainite and residual austenite structure. On the other hand, when the winding temperature exceeds 450 ° C., pearlite transformation may occur. Therefore, the winding temperature is preferably limited to a range of Ms to 450 ° C.

冷延鋼板の場合、重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜1.0%,S:0.012%以下、残部Fe、及びその他の不可避な不純物を含む鋼を熱間圧延して、Ar3変態点以上にて熱間圧延を仕上げて650℃以下にて巻取りを行い、冷間圧延した後、Ac3温度以上にて焼鈍を行った後に冷却した後、Ms(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理を行う。  In the case of a cold-rolled steel sheet, by weight, C: 0.5 to 1.0%, Mn: 0.01 to 2.0%, Si: 1.0 to 2.0%, Al: 0.01 to 1 0.0%, S: 0.012% or less, remaining Fe, and other steels containing other inevitable impurities are hot-rolled and hot-rolled at the Ar3 transformation point or higher and wound at 650 ° C or lower. After performing cold rolling, annealing is performed at the Ac3 temperature or higher, cooling is performed, and then an overaging treatment is performed in a range of Ms (martensitic transformation start temperature) to 450 ° C.

熱間圧延の仕上げ温度をAr3変態点以上に限定するのは、二相域圧延が行われることを防止するためである。Ar3変態点未満である場合には、二相域圧延が行われて不均一結晶粒組織が発生する恐れがある。よって、熱間圧延の仕上げ温度は、Ar3変態点以上に限定することが好ましい。  The reason why the finishing temperature of hot rolling is limited to the Ar3 transformation point or more is to prevent the two-phase region rolling from being performed. When the temperature is less than the Ar3 transformation point, two-phase rolling may be performed to generate a non-uniform grain structure. Therefore, it is preferable to limit the hot rolling finishing temperature to the Ar3 transformation point or higher.

巻取り温度が650℃を超える場合、表面脱炭が非常に激しく生じる恐れがある。但し、下限を制限しない理由は、冷間圧延の後に焼鈍によって新たな組織を具現するので冷間圧延の前の微細組織は最終組織に大きな影響を及ぼすことができないためである。  When the coiling temperature exceeds 650 ° C., surface decarburization may occur very vigorously. However, the reason why the lower limit is not limited is that since a new structure is realized by annealing after cold rolling, the fine structure before cold rolling cannot greatly affect the final structure.

過時効処理温度がMs未満である場合にはマルテンサイトに変態することによって、ベイナイトと残留オーステナイト組織を得ることが困難になる恐れがある。一方、450℃を超えて巻取りを行う場合、パーライト変態が生じる恐れがある。よって、時効処理温度は、Ms〜450℃に限定することが好ましい。  If the overaging temperature is less than Ms, transformation to martensite may make it difficult to obtain a bainite and residual austenite structure. On the other hand, when winding is performed at a temperature exceeding 450 ° C., pearlite transformation may occur. Therefore, the aging treatment temperature is preferably limited to Ms to 450 ° C.

そして、前記冷延鋼板をメッキ槽を通過させて亜鉛メッキ鋼板を製造して、前記亜鉛メッキ鋼板を合金化熱処理して亜鉛メッキ合金化鋼板を製造することができる。  Then, the cold-rolled steel sheet can be passed through a plating tank to produce a galvanized steel sheet, and the galvanized steel sheet can be alloyed and heat-treated to produce a galvanized alloyed steel sheet.

以下、実施例を介して本発明をより詳しく説明する。  Hereinafter, the present invention will be described in more detail through examples.

(実施例)
下記、表1に示す成分系を有する鋼塊を厚さ90mm、幅175mmに製造して1200℃にて1時間再加熱した後、熱延して厚さが3mmになるように熱間圧延を行った。一部は、熱延鋼板の試料として用いて、残りは冷延鋼板用の試料として、冷間圧延の後に焼鈍熱処理を行った。
(Example)
A steel ingot having the component system shown in Table 1 below is manufactured to a thickness of 90 mm and a width of 175 mm, reheated at 1200 ° C. for 1 hour, and then hot-rolled to a thickness of 3 mm. went. A part was used as a sample of a hot-rolled steel sheet, and the rest was used as a sample for a cold-rolled steel sheet, and an annealing heat treatment was performed after cold rolling.

熱延鋼板用の試料の熱間圧延仕上げ温度は、Ar3変態点以上とし、冷却の後に400℃に予め過熱された炉に装入して1時間維持した後、炉冷させて熱延巻取りを行った。  The hot rolling finish temperature of the sample for hot-rolled steel sheet is not less than the Ar3 transformation point, and after cooling, it is charged in a furnace preheated to 400 ° C. and maintained for 1 hour, and then cooled in the furnace and hot-rolled. Went.

一方、冷延鋼板用の試料は、下記表3に示すように、600℃に予め加熱された炉に装入して1時間維持した後、炉冷を行うことによって熱延巻取りを行って、熱間圧延された板材をさらに60%に冷間圧延して1.2mmに仕上げた後、840〜900℃にて焼鈍を行って、400℃にてベイナイト変態を行った。  On the other hand, as shown in Table 3 below, the sample for cold-rolled steel sheet was charged into a furnace preheated to 600 ° C. and maintained for 1 hour, and then subjected to hot-rolling by performing furnace cooling. The hot-rolled plate material was further cold-rolled to 60% and finished to 1.2 mm, and then annealed at 840 to 900 ° C., and bainite transformation was performed at 400 ° C.

Figure 0005487215
Figure 0005487215

前記表1に示した成分系の鋼種を400、600℃にて巻取りした後、熱延鋼板の降伏強度と引張強度及び延伸率を測定した結果を表2に示し、前記表1に示した成分系の鋼種を600℃にて巻取りした後に焼鈍し、時効処理した冷延鋼板の降伏強度、引張強度及び延伸率を測定した結果を、下記表3に示した。  Table 2 shows the results of measuring the yield strength, tensile strength, and draw ratio of the hot-rolled steel sheet after winding the component steel types shown in Table 1 at 400 ° C and 600 ° C. Table 3 below shows the results of measuring the yield strength, tensile strength, and stretch ratio of the cold-rolled steel sheet that was annealed after coiling the component steel types at 600 ° C. and then aged.

Figure 0005487215
Figure 0005487215

前記表2に示すように、発明例1〜8は、400℃にて巻取り、降伏強度は700MPa以上であって、引張強度は980MPa以上であり、延伸率は20%以上であることを確認することができる。一方、比較例1〜13は、600℃にて巻取りを行って、降伏強度は700MPa未満であるか、または引張強度は980MPa未満もしくは、延伸率が20%未満であるように要求される物性の一部もしくは全部を満たさないことを確認することができる。  As shown in Table 2, Invention Examples 1 to 8 were wound at 400 ° C., yield strength was 700 MPa or more, tensile strength was 980 MPa or more, and stretch rate was 20% or more. can do. On the other hand, Comparative Examples 1 to 13 are wound up at 600 ° C., and yield strength is less than 700 MPa, or tensile strength is less than 980 MPa, or stretch properties are required to be less than 20%. It can be confirmed that some or all of the above are not satisfied.

Figure 0005487215
Figure 0005487215

前記表3に示すように、発明例9〜17は、840〜900℃にてオーステナイト単相域熱処理を行って、降伏強度は700MPa以上であって、引張強度は980MPa以上であり、延伸率は20%以上であることを確認することができる。  As shown in Table 3, Invention Examples 9 to 17 were subjected to austenite single-phase region heat treatment at 840 to 900 ° C., yield strength was 700 MPa or more, tensile strength was 980 MPa or more, and stretch ratio was It can be confirmed that it is 20% or more.

一方、Alの含量が1.0重量%を超えてCの含量が0.5重量%未満である比較例15〜20は、降伏強度が700MPa未満であり、延伸率が20%未満であることを確認することができる。これは、Cの含量が低いことによって適当な強度を確保することができず、Cが低くてAlが高いことに起因してAc3温度が上昇することによる二相域熱処理が行われることによるフェライト生成が原因であることがわかる。  On the other hand, in Comparative Examples 15 to 20 in which the Al content exceeds 1.0% by weight and the C content is less than 0.5% by weight, the yield strength is less than 700 MPa and the stretch ratio is less than 20%. Can be confirmed. This is because ferrite cannot be secured due to the low content of C, and a two-phase heat treatment is performed by increasing the Ac3 temperature due to low C and high Al. It can be seen that the generation is the cause.

図1は、発明例13の微細組織の写真であって、図1Bは、図1Aを拡大した写真であり、相対的に暗い部分がベイナイト部分で明るい部分がオーステナイトである。各々の平均ラス幅が0.3μm以下に非常に微細な組織であることがわかる。  FIG. 1 is a photograph of the microstructure of Invention Example 13, and FIG. 1B is an enlarged view of FIG. 1A, in which a relatively dark portion is a bainite portion and a bright portion is austenite. It can be seen that each average lath width is a very fine structure of 0.3 μm or less.

一方に、図2は比較例18の微細組織の写真であって、図2Bは、図2Aを拡大した写真であり、相対的に暗い部分がベイナイト部分で、明るい部分がオーステナイトである。また、多角形フェライトが存在し、組織が相対的に非常に粗大であることがわかる。  On the other hand, FIG. 2 is a photograph of the microstructure of Comparative Example 18, and FIG. 2B is an enlarged photograph of FIG. 2A. The relatively dark part is the bainite part and the bright part is the austenite. Moreover, it turns out that polygonal ferrite exists and a structure | tissue is comparatively very coarse.

Claims (15)

重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物からなる高強度高延伸鋼板であって、前記高強度高延伸鋼板の内部組織はベイナイト及び残留オーステナイトからなり、前記ベイナイトの平均ラス(lath)幅が0.3μm以下であり、かつ前記残留オーステナイトの平均ラス幅が0.3μm以下であり、降伏強度が700MPa以上であって、延伸率が20%以上である、高強度高延伸鋼板。 C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: 0.012% or less, and the balance Fe, and a high strength and high stretch steel sheet consisting of other inevitable impurities, wherein the high internal tissue of strength and high stretch steel comprises bainite and residual austenite, the average lath of the bainite (lATH ) width is not less 0.3 [mu] m or less, and the average lath width of the retained austenite Ri der less 0.3 [mu] m, the yield strength is not more than 700 MPa, Ru der stretching ratio of 20% or more, high strength and high stretch steel sheet. 前記鋼板は、Aグループ及びBグループのうちの少なくとも一つのグループをさらに含む請求項1に記載の高強度高延伸鋼板:
Aグループ:重量%で、0.5%以下のMo及び1.0%以下のCrから選択される1種または2種、
Bグループ:重量%で、0.005%以下のB及び0.06%以下のTiから選択される1種または2種。
The high-strength and high-stretched steel sheet according to claim 1, wherein the steel sheet further includes at least one of group A and group B:
Group A: One or two selected from 0.5% or less of Mo and 1.0% or less of Cr by weight%,
Group B: One or two selected from B by 0.005% or less and Ti by 0.06% or less by weight%.
前記鋼板は、引張強度が980MPa以上であることを特徴とする、請求項1または2に記載の高強度高延伸鋼板。 The steel sheet, tensile strength, characterized in der Rukoto least 980 MPa, a high strength and high stretch steel sheet according to claim 1 or 2. 前記鋼板は、熱延鋼板、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板のうちの1種である、請求項1または2に記載の高強度高延伸鋼板。   The high-strength and highly-stretched steel sheet according to claim 1 or 2, wherein the steel sheet is one of a hot-rolled steel sheet, a cold-rolled steel sheet, a galvanized steel sheet, and a galvanized alloyed steel sheet. 前記鋼板は、熱延鋼板、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板のうちの1種である、請求項3に記載の高強度高延伸鋼板。   The high-strength and high-stretched steel sheet according to claim 3, wherein the steel sheet is one of a hot-rolled steel sheet, a cold-rolled steel sheet, a galvanized steel sheet, and a galvanized alloyed steel sheet. 前記鋼板は、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板のうちの1種であって、前記鋼板のAlの含量は、0.01〜1.0重量%である、請求項1または2に記載の高強度高延伸鋼板。   The steel plate is one of a cold-rolled steel plate, a galvanized steel plate, and a galvanized alloyed steel plate, and the content of Al in the steel plate is 0.01 to 1.0% by weight. 2. A high-strength, highly-stretched steel sheet according to 2. 前記鋼板は、冷延鋼板、亜鉛メッキ鋼板及び亜鉛メッキ合金化鋼板のうちの1種であって、前記鋼板のAlの含量は、0.01〜1.0重量%である、請求項3に記載の高強度高延伸鋼板。   The steel sheet is one of a cold-rolled steel sheet, a galvanized steel sheet, and a galvanized alloyed steel sheet, and the Al content of the steel sheet is 0.01 to 1.0% by weight. The high-strength, high-stretched steel sheet described. 重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜2.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物からなるスラブを熱間圧延して、
Ar3変態点以上にて熱間圧延を仕上げて、
Ms(マルテンサイト変態開始温度)〜450℃の範囲で巻取りして、
ベイナイト及び残留オーステナイトからなり、前記ベイナイトの平均ラス(lath)幅が0.3μm以下であり、かつ前記残留オーステナイトの平均ラス幅が0.3μm以下である内部組織を有し、降伏強度が700MPa以上であって、延伸率が20%以上である鋼板を得る
高強度高延伸熱延鋼板の製造方法。
C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: 0.01-2.0%, S: Hot rolling a slab composed of 0.012% or less, the remainder Fe, and other inevitable impurities,
Finish hot rolling above the Ar3 transformation point,
Winding in the range of Ms (Martensite transformation start temperature) to 450 ° C ,
It comprises bainite and retained austenite, and has an internal structure in which the average lath width of the bainite is 0.3 μm or less and the average lath width of the retained austenite is 0.3 μm or less, and the yield strength is 700 MPa or more. And obtaining a steel sheet having a draw ratio of 20% or more ,
A method for producing a high-strength, high-stretch hot-rolled steel sheet.
前記熱延鋼板は、Aグループ及びBグループのうちの少なくとも一つのグループをさらに含む、請求項8に記載の高強度高延伸熱延鋼板の製造方法:
Aグループ:重量%で、0.5%以下のMo及び1.0%以下のCrから選択される1種または2種、
Bグループ:重量%で、0.005%以下のB及び0.06%以下のTiから選択される1種または2種。
The method for producing a high-strength, high-stretched hot-rolled steel sheet according to claim 8, wherein the hot-rolled steel sheet further includes at least one group of A group and B group:
Group A: One or two selected from 0.5% or less of Mo and 1.0% or less of Cr by weight%,
Group B: One or two selected from B by 0.005% or less and Ti by 0.06% or less by weight%.
重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜1.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物からなるスラブを熱間圧延して、Ar3変態点以上にて熱間圧延を仕上げる熱間圧延ステップと、
前記の熱間圧延された熱延鋼板を650℃以下にて巻取りする巻取りステップと、
前記熱延鋼板を冷間圧延した後、Ac3温度以上にて焼鈍した後に冷却するステップと、
前記冷延鋼板をMs(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理する時効処理ステップと、
を含んでベイナイト及び残留オーステナイトからなり、前記ベイナイトの平均ラス(lath)幅が0.3μm以下であり、かつ前記残留オーステナイトの平均ラス幅が0.3μm以下である内部組織を有し、降伏強度が700MPa以上であって、延伸率が20%以上である鋼板を得る、
高強度高延伸冷延鋼板の製造方法。
C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: 0.01-1.0%, S: 0.012% or less, and the balance Fe, and slabs made of other unavoidable impurities and hot rolling, and hot rolling step of finishing the hot rolling at least Ar3 transformation point,
A winding step for winding the hot-rolled hot-rolled steel sheet at 650 ° C. or lower;
After cold rolling the hot-rolled steel sheet, cooling after annealing at an Ac3 temperature or higher; and
An aging treatment step of over-aging the cold-rolled steel sheet in a range of Ms (martensitic transformation start temperature) to 450 ° C;
Nde-containing consists bainite and residual austenite, the average lath (LATH) width of the bainite is at 0.3μm or less, and an average lath width of the residual austenite has an internal tissue is 0.3μm or less, the yield Obtaining a steel plate having a strength of 700 MPa or more and a draw ratio of 20% or more;
A method for producing a high-strength, high-stretched cold-rolled steel sheet.
前記冷延鋼板は、Aグループ及びBグループのうちの少なくとも一つのグループをさらに含む、請求項10に記載の高強度高延伸冷延鋼板の製造方法:
Aグループ:重量%で、0.5%以下のMo及び1.0%以下のCrから選択される1種または2種、
Bグループ:重量%で、0.005%以下のB及び0.06%以下のTiから選択される1種または2種。
The method for producing a high-strength, high-stretched cold-rolled steel sheet according to claim 10, wherein the cold-rolled steel sheet further includes at least one group of Group A and Group B:
Group A: One or two selected from 0.5% or less of Mo and 1.0% or less of Cr by weight%,
Group B: One or two selected from B by 0.005% or less and Ti by 0.06% or less by weight%.
重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜1.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物からなるスラブを熱間圧延して、Ar3変態点以上にて熱間圧延を仕上げる熱間圧延ステップと、
前記の熱間圧延された熱延鋼板を650℃以下にて巻取りする巻取りステップと、
前記熱延鋼板を冷間圧延した後、Ac3温度以上にて焼鈍した後に冷却するステップと、
前記冷延鋼板をMs(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理する時効処理ステップと、
前記時効処理した冷延鋼板をメッキ槽を通過させて鋼板表面にメッキ層を形成させるステップと、
を含んでベイナイト及び残留オーステナイトからなり、前記ベイナイトの平均ラス(lath)幅が0.3μm以下であり、かつ前記残留オーステナイトの平均ラス幅が0.3μm以下である内部組織を有し、降伏強度が700MPa以上であって、延伸率が20%以上である鋼板を得る、
高強度高延伸亜鉛メッキ鋼板の製造方法。
C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: 0.01-1.0%, S: 0.012% or less, and the balance Fe, and slabs made of other unavoidable impurities and hot rolling, and hot rolling step of finishing the hot rolling at least Ar3 transformation point,
A winding step for winding the hot-rolled hot-rolled steel sheet at 650 ° C. or lower;
After cold rolling the hot-rolled steel sheet, cooling after annealing at an Ac3 temperature or higher; and
An aging treatment step of over-aging the cold-rolled steel sheet in a range of Ms (martensitic transformation start temperature) to 450 ° C;
Passing the aged cold-rolled steel sheet through a plating tank to form a plating layer on the steel sheet surface; and
Nde-containing consists bainite and residual austenite, the average lath (LATH) width of the bainite is at 0.3μm or less, and an average lath width of the residual austenite has an internal tissue is 0.3μm or less, the yield Obtaining a steel plate having a strength of 700 MPa or more and a draw ratio of 20% or more;
A method for producing a high-strength, highly-stretched galvanized steel sheet.
前記亜鉛メッキ鋼板は、Aグループ及びBグループのうちの少なくとも一つのグループをさらに含む、請求項12に記載の高強度高延伸亜鉛メッキ鋼板の製造方法:
Aグループ:重量%で、0.5%以下のMo及び1.0%以下のCrから選択される1種または2種、
Bグループ:重量%で、0.005%以下のB及び0.06%以下のTiから選択される1種または2種。
The method for producing a high-strength, high-stretched galvanized steel sheet according to claim 12, wherein the galvanized steel sheet further includes at least one group of Group A and Group B:
Group A: One or two selected from 0.5% or less of Mo and 1.0% or less of Cr by weight%,
Group B: One or two selected from B by 0.005% or less and Ti by 0.06% or less by weight%.
重量%で、C:0.5〜1.0%、Mn:0.01〜2.0%、Si:1.0〜2.0%、Al:0.01〜1.0%、S:0.012%以下、残部Fe、及びその他の不可避な不純物からなるスラブを熱間圧延して、Ar3変態点以上にて熱間圧延を仕上げる熱間圧延ステップと、
前記の熱間圧延された熱延鋼板を650℃以下にて巻取りする巻取りステップと、
前記熱延鋼板を冷間圧延した後、Ac3温度以上にて焼鈍した後に冷却するステップと、
前記冷延鋼板をMs(マルテンサイト変態開始温度)〜450℃の範囲で過時効処理する時効処理ステップと、
前記時効処理した冷延鋼板をメッキ槽を通過させて鋼板表面にメッキ層を形成させるステップと、
前記メッキ層を形成した亜鉛メッキ鋼板を合金化熱処理して亜鉛メッキ合金化鋼板を製造するステップと、
を含んでベイナイト及び残留オーステナイトからなり、前記ベイナイトの平均ラス(lath)幅が0.3μm以下であり、かつ前記残留オーステナイトの平均ラス幅が0.3μm以下である内部組織を有し、降伏強度が700MPa以上であって、延伸率が20%以上である鋼板を得る、
高強度高延伸亜鉛メッキ合金化鋼板の製造方法。
C: 0.5-1.0%, Mn: 0.01-2.0%, Si: 1.0-2.0%, Al: 0.01-1.0%, S: 0.012% or less, and the balance Fe, and slabs made of other unavoidable impurities and hot rolling, and hot rolling step of finishing the hot rolling at least Ar3 transformation point,
A winding step for winding the hot-rolled hot-rolled steel sheet at 650 ° C. or lower;
After cold rolling the hot-rolled steel sheet, cooling after annealing at an Ac3 temperature or higher; and
An aging treatment step of over-aging the cold-rolled steel sheet in a range of Ms (martensitic transformation start temperature) to 450 ° C;
Passing the aged cold-rolled steel sheet through a plating tank to form a plating layer on the steel sheet surface; and
A step of producing a galvanized alloyed steel sheet by alloying heat treatment of the galvanized steel sheet on which the plated layer is formed;
Nde-containing consists bainite and residual austenite, the average lath (LATH) width of the bainite is at 0.3μm or less, and an average lath width of the residual austenite has an internal tissue is 0.3μm or less, the yield Obtaining a steel plate having a strength of 700 MPa or more and a draw ratio of 20% or more;
A method for producing high-strength, highly-stretched galvanized alloyed steel sheets.
前記亜鉛メッキ合金化鋼板は、Aグループ及びBグループのうち少なくとも一つのグループをさらに含む、請求項14に記載の高強度高延伸亜鉛メッキ合金化鋼板の製造方法:
Aグループ:重量%で、0.5%以下のMo及び1.0%以下のCrから選択される1種または2種、
Bグループ:重量%で、0.005%以下のB及び0.06%以下のTiから選択される1種または2種。
The method for producing a high-strength, high-stretched galvanized steel sheet according to claim 14, wherein the galvanized alloyed steel sheet further includes at least one of group A and group B:
Group A: One or two selected from 0.5% or less of Mo and 1.0% or less of Cr by weight%,
Group B: One or two selected from B by 0.005% or less and Ti by 0.06% or less by weight%.
JP2011543380A 2008-12-24 2009-04-22 Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet Active JP5487215B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2008-0133563 2008-12-24
KR20080133563A KR101091294B1 (en) 2008-12-24 2008-12-24 Steel Sheet With High Strength And Elongation And Method For Manufacturing Hot-Rolled Steel Sheet, Cold-Rolled Steel Sheet, Galvanized Steel Sheet And Galvannealed Steel Sheet With High Strength And Elongation
PCT/KR2009/002098 WO2010074370A1 (en) 2008-12-24 2009-04-22 High-strength elongation steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, zinc-coated steel sheet, and method for manufacturing alloyed zinc-coated steel sheet

Publications (2)

Publication Number Publication Date
JP2012514130A JP2012514130A (en) 2012-06-21
JP5487215B2 true JP5487215B2 (en) 2014-05-07

Family

ID=42287944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011543380A Active JP5487215B2 (en) 2008-12-24 2009-04-22 Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet

Country Status (4)

Country Link
JP (1) JP5487215B2 (en)
KR (1) KR101091294B1 (en)
CN (1) CN102325916B (en)
WO (1) WO2010074370A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756774B2 (en) * 2012-03-09 2015-07-29 株式会社神戸製鋼所 Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP5756773B2 (en) * 2012-03-09 2015-07-29 株式会社神戸製鋼所 Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP5764549B2 (en) * 2012-03-29 2015-08-19 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability and shape freezing property, and methods for producing them
CN104662181B (en) * 2012-09-21 2016-10-19 日立金属株式会社 The manufacture method of Maraging steel coiled material
PL2987884T3 (en) * 2013-04-15 2019-07-31 Nippon Steel & Sumitomo Metal Corporation Hot-rolled steel sheet
KR101560940B1 (en) * 2013-12-24 2015-10-15 주식회사 포스코 Light weight steel sheet having excellent strength and ductility
WO2016108443A1 (en) * 2014-12-30 2016-07-07 한국기계연구원 High-strength steel plate having excellent combination of strength and ductility, and manufacturing method therefor
CN108396260B (en) * 2017-02-05 2020-01-07 鞍钢股份有限公司 High-strength high-hole-expansion-performance galvanized steel sheet and manufacturing method thereof
CN108396237B (en) * 2017-02-05 2020-01-07 鞍钢股份有限公司 High-plasticity cold-rolled sheet and production method thereof
KR101940919B1 (en) 2017-08-08 2019-01-22 주식회사 포스코 Hot rolled steel sheet having excellent strength and elongation and method of manufacturing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842246B2 (en) * 1979-04-28 1983-09-19 日新製鋼株式会社 Method for manufacturing high-strength steel strip with composite structure
JPS60184634A (en) * 1984-03-01 1985-09-20 Nippon Steel Corp Manufacture of high tension steel sheet having superior ductility and workability
JPS61217529A (en) * 1985-03-22 1986-09-27 Nippon Steel Corp Manufacture of high strength steel sheet superior in ductility
JPS624832A (en) * 1985-06-28 1987-01-10 Nippon Steel Corp Production of high-carbon steel strip having excellent ductility
US6159312A (en) * 1997-12-19 2000-12-12 Exxonmobil Upstream Research Company Ultra-high strength triple phase steels with excellent cryogenic temperature toughness
JP2000144311A (en) * 1998-11-13 2000-05-26 Sumitomo Metal Ind Ltd High carbon thin steel sheet
CN1295353C (en) * 2000-04-07 2007-01-17 川崎制铁株式会社 Production method of cold-rolled plate and hot-dip galvanized sheet steel with good strain-aged hardening characteristics
JP4188582B2 (en) * 2001-02-09 2008-11-26 株式会社神戸製鋼所 High-strength steel sheet with excellent workability and method for producing the same
CN1276987C (en) * 2001-10-19 2006-09-27 住友金属工业株式会社 Thin steel plate with excellent workability and forming precision and producing process thereof
JP4068950B2 (en) * 2002-12-06 2008-03-26 株式会社神戸製鋼所 High-strength steel sheet, warm-working method, and warm-worked high-strength member or parts
JP4412727B2 (en) * 2004-01-09 2010-02-10 株式会社神戸製鋼所 Super high strength steel sheet with excellent hydrogen embrittlement resistance and method for producing the same
JP5011846B2 (en) * 2005-06-29 2012-08-29 Jfeスチール株式会社 High carbon hot rolled steel sheet and manufacturing method thereof
CN101346482B (en) * 2005-12-26 2011-11-16 Posco公司 Carbon steel sheet superior in formability and manufacturing method thereof
CN101008066B (en) * 2006-01-27 2010-05-12 宝山钢铁股份有限公司 Hot rolling martensite steel plate with tensile strength higher than 1000Mpa and its production method

Also Published As

Publication number Publication date
CN102325916A (en) 2012-01-18
CN102325916B (en) 2013-07-17
WO2010074370A1 (en) 2010-07-01
JP2012514130A (en) 2012-06-21
KR20100074988A (en) 2010-07-02
KR101091294B1 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP5487215B2 (en) Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet
JP6779320B2 (en) Clad steel sheet with excellent strength and formability and its manufacturing method
JP6766190B2 (en) Ultra-high-strength, high-ductility steel sheet with excellent yield strength and its manufacturing method
JP4644076B2 (en) High strength thin steel sheet with excellent elongation and hole expansibility and manufacturing method thereof
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
KR101225246B1 (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
JP2020509208A (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and method for producing the same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
CN111406124B (en) High-strength cold-rolled steel sheet and method for producing same
JP2019512608A (en) High strength cold rolled steel sheet excellent in yield strength and ductility, plated steel sheet, and manufacturing method thereof
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
EP3561121B1 (en) Cold-rolled steel sheet having excellent bendability and hole expandability and method for manufacturing same
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP2019521251A (en) High strength cold rolled steel sheet excellent in workability and method of manufacturing the same
KR20130069699A (en) Method for manufacturing tensile strength 1.5gpa class steel sheet
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
JP2010100896A (en) High strength cold rolled steel sheet having excellent stability in mechanical property and method of producing the same
KR101403262B1 (en) Ultra high strength hot-dip plated steel sheet and method for manufacturing the same
KR20230056822A (en) Ultra-high strength steel sheet having excellent ductility and mathod of manufacturing the same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
KR20150001469A (en) High strength cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet
KR20130046966A (en) High strength cold-rolled steel sheet and method for manufacturing the same
CN114763594A (en) Cold-rolled steel sheet and method for manufacturing cold-rolled steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140224

R150 Certificate of patent or registration of utility model

Ref document number: 5487215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250