JPS60184634A - Manufacture of high tension steel sheet having superior ductility and workability - Google Patents

Manufacture of high tension steel sheet having superior ductility and workability

Info

Publication number
JPS60184634A
JPS60184634A JP3737084A JP3737084A JPS60184634A JP S60184634 A JPS60184634 A JP S60184634A JP 3737084 A JP3737084 A JP 3737084A JP 3737084 A JP3737084 A JP 3737084A JP S60184634 A JPS60184634 A JP S60184634A
Authority
JP
Japan
Prior art keywords
steel
ductility
austenite
workability
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3737084A
Other languages
Japanese (ja)
Inventor
Hiroshi Yada
浩 矢田
Giichi Matsumura
義一 松村
Mitsuo Honda
本田 三津夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3737084A priority Critical patent/JPS60184634A/en
Publication of JPS60184634A publication Critical patent/JPS60184634A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To manufacture a high tension steel sheet having superior ductility and workability by selecting a specified composition and proper heat history after hot rolling. CONSTITUTION:A steel contg., by weight, 0.15-0.8% C, 1-3% Si and 0.5-3% Mn+Cr is hot rolled to manufacture a hot coil. At this time, the hot rolling is practically finished at the Ar3 transformation point of the steel or above, the resulting steel sheet is passed through the Ar1 transformation point at >=20 deg.C/ sec cooling rate, and coiling is carried out at 330-430 deg.C. When the steel sheet is coiled, it is slowly cooled or kept hot for >=5min after starting the coiling so that the temp. is maintained in the range of 330-430 deg.C.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、自動車等の鋼構造物の構造材料として用いら
れるような加工性にすぐれ、しかも高延性の高張力鋼板
を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing high-strength steel sheets with excellent workability and high ductility, which are used as structural materials for steel structures such as automobiles. .

従来技術 自動車等の鋼構造物の構造材料としての鋼は、種々のタ
イプのものが知られている。その代表的なものはフェラ
イトとマルテンサイトとの混合組織を有するいわゆる二
相ハイテンであって、例えば特開昭51−12817号
に示されているように熱延後急冷を行うことによ′って
得られる。このような鋼はフェライト組織の延性とマル
テンサイト組織の強度とを組合わせて利用したものであ
って、50〜80−−2の強度域において比較的良好な
延性を有している。しかし高強度化のためにマルテンサ
イト量を増加すると延性が著しく低下し、80kf/+
u”程度以上では高延i生の鋼の製造がむずかしく’7
!z7..寸か延性の開力1ら低C化(通常01係以下
)が必要であり、このため溶接部が軟化して十分な溶接
継手性能が得られにくいなどの欠点がある。
BACKGROUND OF THE INVENTION Various types of steel are known as structural materials for steel structures such as automobiles. A typical example is so-called two-phase high tensile strength steel having a mixed structure of ferrite and martensite. can be obtained. Such steel utilizes a combination of the ductility of a ferritic structure and the strength of a martensitic structure, and has relatively good ductility in the strength range of 50 to 80-2. However, when the amount of martensite is increased to increase the strength, the ductility decreases significantly, and the
It is difficult to manufacture Takanobu I-grade steel above the u''level.'7
! z7. .. It is necessary to reduce the opening force of 1 to 1 (normally 01 coefficient or less) in terms of dimension and ductility, which has disadvantages such as softening of the weld and making it difficult to obtain sufficient welded joint performance.

これに対して本発明者らの一人が特公昭57−1569
号で示したように、熱延後急冷し、しかるのちMs点以
上の温度域Vζおいて保熱を行え、ベイナイト組織とす
ることによって60〜1001s’mm2の強靭性にす
ぐれた鋼を得ることができる。この鋼は靭性の面ではす
ぐれているが、プレス成型等に必要な延性について見る
と一般のレベルと著しく異なるものではなく高強度化す
ると加工性延性の低−Fを招く。
In response to this, one of the inventors of the present invention
As shown in the above issue, it is possible to obtain a steel with excellent toughness of 60 to 1001 s'mm2 by rapidly cooling after hot rolling, and then retaining heat in the temperature range Vζ above the Ms point, and forming a bainite structure. I can do it. Although this steel is excellent in terms of toughness, the ductility required for press forming etc. is not significantly different from the general level, and increasing the strength leads to low -F in workability and ductility.

このようなベイナイト組織主体の鋼において、ベイナイ
ト変態を途中で中断して急冷することによりオーステナ
イトを残留させ、その準安定なオーステナイトによる加
工性向上効果を利用することが特公昭58−42246
号で提案されている。この技術はある程度の加工性が保
証されればよい精密機械部分などには適しているが、加
工によりオーステナイトがマルテンサイトに変態するた
め最終的には延性が低下し、まだ脆くなるので、本発明
の目的とする用途には適していない0発明の目的 本発明は、高強度と高加工性および高延性を兼ね備えた
画期的な特性を有する鋼の製造方法を提供するものであ
る。しかも必ずしも再熱を行わずに熱間圧延からその後
室温に至るまでの熱履歴によって製造することができる
ものである0従って比(的低コストで得られるという利
点がある。
Japanese Patent Publication No. 58-42246 proposed that in such steels mainly having a bainite structure, the bainite transformation is interrupted midway and the austenite remains, and the workability improvement effect of the metastable austenite is utilized.
proposed in No. This technique is suitable for precision machinery parts that only require a certain degree of workability, but as austenite transforms into martensite during processing, the ductility ultimately decreases and the product still becomes brittle. OBJECTS OF THE INVENTION The present invention provides a method for producing steel that has innovative properties that combine high strength, high workability, and high ductility. Moreover, it has the advantage that it can be manufactured by heat history from hot rolling to room temperature without necessarily performing reheating, and therefore can be obtained at a relatively low cost.

発明の構成 本発明の主な構成は、 ■ C0,15チ超080%以下、Si1.0〜.3.
0%。
Composition of the Invention The main composition of the present invention is as follows: (1) C0.15+0.80% or less, Si1.0~. 3.
0%.

(Mn+Cr ) 0.5〜3.0%を含む鋼を熱間圧
延によりホットコイルを製造する過程において、ソの鋼
のAr3変態点以上で実質的に熱延を終了し、その後2
0°%以上の冷却速度でAr1変態点を通過せしめ83
0〜480℃の間で捲取りを行い、捲取開始時より5分
以上をこの温度域に滞留させるよう徐冷もしくは保熱を
行うこと、 ■ また熱間圧延後段でAr1 +50〜Ar3+10
0℃の温度域で合計50チ以上の圧下を1秒以内に加え
ることを特徴とする延性と加工性のすぐれた高張力鋼板
の製造方法にある。
(Mn+Cr) In the process of manufacturing a hot coil by hot rolling steel containing 0.5 to 3.0%, the hot rolling is substantially completed at the Ar3 transformation point or higher of the steel, and then 2
Pass through the Ar1 transformation point at a cooling rate of 0°% or more83
Rolling is performed at a temperature between 0 and 480°C, and slow cooling or heat retention is performed so as to stay in this temperature range for 5 minutes or more from the start of rolling.
The present invention provides a method for manufacturing a high-strength steel plate with excellent ductility and workability, which is characterized by applying a total reduction of 50 inches or more within 1 second in a temperature range of 0°C.

即ち上記のような特定の成分組成を選び、また熱間圧延
後の熱履歴を適切に選択することによって安定な残留オ
ーステナイトを5%以上残留せしめることができ、その
他の部分の金属組織の調節しくよって高強度が得られ、
しかも上記残留オーステナイトのために高加工性と高延
性が得られるというものである。以下この発明の構成要
件が定めらノLだ理由について説明する。
In other words, by selecting the specific component composition as described above and appropriately selecting the thermal history after hot rolling, it is possible to retain 5% or more of stable retained austenite, and it is possible to control the metal structure in other parts. Therefore, high strength can be obtained,
Moreover, high workability and high ductility can be obtained due to the retained austenite. The reason why the constituent elements of this invention are not defined will be explained below.

まず[安定な残留オーステナイト」ニついて説明(−よ
う。第1図に本発明の鋼板を極低温から高温に至る広範
囲の温度で熱処理を加えた場合の残留オーステナイト量
の変化を示したが、残留オーステナイト肘の減少は殆ど
見られない。また第2図には軽度の塑性加工による残留
オーステナイト1iiの変化を示したが、やはシ減少は
小さい。
First, we will explain about [stable retained austenite]. Almost no reduction in austenite elbows can be seen.Furthermore, although Fig. 2 shows changes in retained austenite 1ii due to slight plastic working, the reduction in austenite elbows is small.

このように変態温度以下の熱処理、または5%程うな場
合安定と言うことにする。なおオーステナイトの量の決
定法は、X線回析を用いているが、この方法は結晶集合
組織の影響を受け精度はそれほど高くないと言われ−で
いる0しかしその他の方法は一般的でないのでこの方法
によったものを以下使用する。
In this way, a heat treatment below the transformation temperature or a temperature difference of about 5% is said to be stable. The amount of austenite is determined using X-ray diffraction, but it is said that this method is affected by the crystal texture and the accuracy is not very high.However, other methods are not common. The product obtained by this method will be used below.

本発明は第1にこのような安定なオーステナイトがあれ
ば高強度でも延性と加工性の双方を備えた材料が得られ
るという発見に基づく0第3図は本発明の鋼板(共通成
分: 0.7 Mn −0,7Cr380℃×30分保
持)Kついてその延性と残留オーステナイト量との相関
を示した例で、引張シ強さにかかわらず均−伸びは、残
留オーステナイト量とともに増加している。
The present invention is first based on the discovery that if such stable austenite is present, a material with both high strength and ductility and workability can be obtained. This is an example showing the correlation between the ductility of 7Mn-0,7Cr (held at 380°C for 30 minutes) and the amount of retained austenite, and the uniform elongation increases with the amount of retained austenite regardless of the tensile strength.

(図中0内の数字は引張シ強さく k?//f12)を
表わす)第4図は残留オーステナイト量と加工前後の降
伏比の変化および延性の変化を示したもので(a)(0
,28C−2,OSt −0,7Mn−0,5’Cr鋼
)は本発明の範囲外のオーステナイトがまだ不安定な段
階で熱処理を中断if場合であり、前述の先行技術(%
公昭58−42246号)K類する場合である。(成分
は異なる)この場合、引張歪の添加と時効処理により、
残留オーステナイト量が減少し、延性力(低下している
。−古本発明の鋼板(第3図と同−条件鋼)の(b)で
はこのような変化は殆ど認められない。
(The numbers inside 0 in the figure represent the tensile strength k?//f12)) Figure 4 shows the amount of retained austenite, changes in yield ratio before and after processing, and changes in ductility. (a) (0
, 28C-2, OSt-0,7Mn-0,5'Cr steel) is a case where the heat treatment is interrupted at a stage where austenite is still unstable, which is outside the scope of the present invention, and the above-mentioned prior art (%
Publication No. 58-42246) This is a case of Class K. (components are different) In this case, by adding tensile strain and aging treatment,
The amount of retained austenite is reduced, and the ductility is decreased. - In (b) of the steel plate of the old invention (same condition steel as in Fig. 3), such changes are hardly recognized.

本発明はこのよう表安定な残留オーステナイトを存在せ
しめ、工業的に低コストで実施可能な製造方法を提供す
るものである。
The present invention provides a manufacturing method that allows such surface-stable retained austenite to exist and is industrially practicable at low cost.

以下に本発明の限定理由について述べる0このような安
定な残留オーステナイトを得るためKは、特定な成分範
囲に限定する必要がおることが明らかになった。
The reasons for the limitations of the present invention will be described below. It has become clear that in order to obtain such stable retained austenite, it is necessary to limit K to a specific component range.

即ち、第5図(a) 、 (b) (ベース成分:0.
55C−1,4Si −0,7Mn −0,7Cr鋼で
夫々C,Si量を変化させた)K示すようKC二〇15
%以下では十分な残留オーステナイトを得ることは困難
で、望ましくはC’0.2%以上、またSi 1%以上
が必要である0この理由は、Cがオーステナイトを安定
ならしめること、およびSiがCとの強い相互作用によ
り炭化物の析出を妨げるためその残留オーステナイトで
明らかなように靭性が低下し脆性破壊力玉起こりやすく
なり本発明の目的とする高延性の趣旨に反するようにな
る。従って、Cの上限e0.80%とした。
That is, FIGS. 5(a) and 5(b) (base component: 0.
55C-1,4Si -0,7Mn -0,7Cr steel with C and Si contents changed respectively)KKC2015 as shown
% or less, it is difficult to obtain sufficient retained austenite, and desirably C'0.2% or more and Si 1% or more are required.The reason for this is that C makes austenite stable, and Si The strong interaction with C prevents the precipitation of carbides, and as is evident from the retained austenite, the toughness decreases and brittle fracture forces are more likely to occur, which is contrary to the purpose of the present invention, which is high ductility. Therefore, the upper limit e of C was set at 0.80%.

また、s18%を超えるとFe−8t系の状態図755
らも明らかなようにフェライトが高温で安定となり本発
明に必要な全面オーステナイト化が困難になるので3チ
以下とした。
In addition, when s exceeds 18%, phase diagram 755 of Fe-8t system
As is clear from the above, ferrite becomes stable at high temperatures, making it difficult to fully austenite, which is necessary for the present invention, so the thickness was set to 3 or less.

MnおよびCrは焼入性を向上させ急冷中でのノ々−ラ
イト変態等を防止することによジオ−ステナイトを安定
化する。その量が合計0.5 %以下では効果が小さく
、また8係以上では焼入性が向上し過ぎ、鋼板の強度が
高くなり過ぎて製造上の支障を生ずる場合がある。特に
第5図(a)、(b)はCrを少量含有する場合につい
て示しているが、Crの効果は同図(c) K示す。高
Cの場合はMnのみでも5係の残留オーステナイトを得
ることができる。
Mn and Cr stabilize dio-stenite by improving hardenability and preventing nororite transformation during rapid cooling. If the amount is less than 0.5% in total, the effect will be small, and if it is more than 8%, the hardenability will be improved too much, and the strength of the steel plate will become too high, which may cause problems in manufacturing. In particular, FIGS. 5(a) and 5(b) show the case where a small amount of Cr is contained, and the effect of Cr is shown in FIG. 5(c). In the case of high C, retained austenite of modulus 5 can be obtained with only Mn.

その他の合金元素についても種々検討したが、必ずしも
必須な元素は見出すなかった。なかでもNi 、 Cu
、 Mn、 Nなどはオーステナイトを安定化するので
肩利に作用する場合がある。
Various other alloying elements were investigated, but no essential elements were found. Among them, Ni and Cu
, Mn, N, etc. stabilize austenite, so they may have an effect on shoulder strength.

一方P、 kl、 Cr、 Vなどの元素は多量に添加
すると上記Siと同様フェライトを安定化するので、P
O2係、 A12%、Cr10%、V2%以上の添加は
避けるべきである。またMo、 W、 Ti、 Nb、
 Ta など同様の効果はあるがそれよりも強い炭化物
形成元素であって炭素の前記効果を減殺し、また多量の
炭化物を生成して延性、加工性の低下を招くこともある
ので、合計で2係以上の添加は避けるべきである。
On the other hand, when elements such as P, kl, Cr, and V are added in large amounts, they stabilize the ferrite like the above-mentioned Si, so P
Addition of O2, A12%, Cr10%, V2% or more should be avoided. Also Mo, W, Ti, Nb,
Ta is a carbide-forming element that has a similar effect but is stronger than it, and it can reduce the effect of carbon, and it can also generate a large amount of carbide, leading to a decrease in ductility and workability. Addition of more than 100% should be avoided.

また、Bは焼入性向上効果があるので前述のMnとCr
の効果を助けるが、その量は01%を超えると炭化物析
出による有害効果がある。
In addition, since B has the effect of improving hardenability, the above-mentioned Mn and Cr
However, if the amount exceeds 0.1%, there is a detrimental effect due to carbide precipitation.

以上の条件範囲内であれば不純物も含め使用目的に応じ
特性改善等の目的で合金元素を適量添加することは本発
明の特性を損うものではない。
As long as the above conditions are within the range, the characteristics of the present invention will not be impaired by adding an appropriate amount of alloying elements, including impurities, for the purpose of improving characteristics depending on the purpose of use.

本発明における安定な残留オーステナイトを得るには上
記成分範囲とともにそれを生じせしめる熱サイクルが必
要である。そのうち工業的に広〈実施できる形態として
、できるだけ少量の合金元素で効率よく製造する方法が
本発明の骨子でありその要件を決定した理由を以下に記
述する0本発明で安定な残留オーステナイトを最も効率
的に得るには高温から冷却する際のCの拡散変態を利用
することである。周知のように初析フェライトおよび上
部ベイナイトの析出はオーステナイト中のCの拡散で進
行するが、この際生成したフェライト部(ベイナイトも
含む)KはCは殆ど含まれないのでオーステナイ)Kは
Cが濃縮して行く、とのCが前述のStの効果で炭化物
とならないため安定に存在することになるのである0た
だし本発明の一つの目標特性である高強度を得るためK
は、(オーステナイトは強度が比較的低いので)変態生
成組織の強度を高くしなければならないので、初析フェ
ライトであれば著しい細粒化を行うか、あるいはベイナ
イト比率を高めなければならない。とくに第6図および
第7図(ベース成分: 0.55C−1,4Si −0
,7R4n−0,7Cr鋼で保〃(温l岐で30分保持
) VC/J\したように、特に上部ベイナイト変態域
である′330〜4301::で保熱恒温変態させた場
合にはその効果が顕著である。
In order to obtain stable retained austenite in the present invention, the above-mentioned range of components and a thermal cycle to produce it are necessary. The gist of the present invention is to efficiently produce it with as little alloying elements as possible in a form that can be implemented industrially, and the reasons for determining this requirement are described below. In order to obtain it efficiently, it is possible to utilize the diffusion transformation of C during cooling from a high temperature. As is well known, the precipitation of pro-eutectoid ferrite and upper bainite progresses due to the diffusion of C in austenite, but the ferrite part (including bainite) that is generated at this time contains almost no C, so K is austenite. As C becomes concentrated, it does not turn into carbide due to the effect of St, so it exists stably.However, in order to obtain high strength, which is one of the target characteristics of the present invention, K
(Since austenite has a relatively low strength), the strength of the transformed structure must be increased, so if it is pro-eutectoid ferrite, the grains must be significantly refined or the bainite ratio must be increased. In particular, FIGS. 6 and 7 (base component: 0.55C-1,4Si-0
, 7R4n-0,7Cr steel (held at temperature for 30 minutes) As in VC/J\, especially when the isothermal transformation is carried out in the upper bainitic transformation region '330~4301:: The effect is remarkable.

従って代表的な製造工程は次のようになる。Therefore, a typical manufacturing process is as follows.

まず本発明の鋼成分を有する鋼を底吹き転炉などの製鋼
炉で製造し、凝固させ鋼塊、またはスラグとしたものか
ら出発し、熱間圧延を行って鋼板とするが、この際の熱
間圧延工程で製造することができる。即ち最終的な熱間
圧延工程に入る前の段階で実質的に銅板全体がオーステ
ナイト状態であり、通常は加工後もオーステナイト状態
にあるような鋼板を、最終段階の熱延後室温に向って冷
却される過程において、初析フェライトまたはベイナイ
トに変態させる。とくにこの際その変態生成物の大部分
を上述のように、330〜430℃の温度域にできるだ
け長時間保つことによシ未変態のオーステナイトを極め
て安定なものに転化せしめることができる。
First, steel having the steel composition of the present invention is produced in a steel making furnace such as a bottom blowing converter, solidified into a steel ingot or slag, and hot rolled to produce a steel plate. It can be manufactured using a hot rolling process. In other words, substantially the entire copper plate is in an austenitic state before entering the final hot rolling process, and a steel plate that normally remains in an austenitic state even after processing is cooled to room temperature after the final hot rolling process. In the process, it is transformed into pro-eutectoid ferrite or bainite. In particular, at this time, untransformed austenite can be converted into extremely stable austenite by keeping most of the transformation product in the temperature range of 330 to 430 DEG C. for as long as possible as described above.

この際パーライト変態が起こると安定なオーステナイト
が生成しないため、Ar1点附近をできるだけ早く冷却
する必要がある0上記成分では20′c/S以上の冷却
を行えばよい。
At this time, if pearlite transformation occurs, stable austenite will not be produced, so it is necessary to cool the vicinity of the Ar1 point as quickly as possible.For the above components, cooling may be performed at 20'c/S or more.

また330〜430℃ の温度域に滞留させる時間は、
第8図(ベース成分: 0.55C−1,4Si−0,
7Mn −0、−7Cr鋼で、360℃で保熱)に示す
ように3公租度では残留オーステナイトが不安定な場合
があるので望ましくは5分以上が適当である。これを行
うためには一般に保熱炉などに冷却途中の鋼材を装入す
る必要がある。しかし、ホットストリップ圧延の場合に
は、冷却床を走行中に温度を調節することができ、その
後コイラーで捲き取られて主要部は長時間保熱を行った
と同様の徐冷となるので、特別の設備を用いなくとも望
ましい熱履歴を与えることができる。
Also, the residence time in the temperature range of 330 to 430℃ is
Figure 8 (Base component: 0.55C-1,4Si-0,
As shown in 7Mn -0, -7Cr steel and heat retention at 360°C, residual austenite may be unstable if the grain size is 3, so the heating time is desirably 5 minutes or more. In order to do this, it is generally necessary to charge the steel material in the middle of cooling into a heat retention furnace or the like. However, in the case of hot strip rolling, the temperature can be adjusted while running on a cooling bed, and then it is rolled up by a coiler and the main part is gradually cooled, similar to long-term heat retention. A desirable thermal history can be provided without using other equipment.

また最近本発明者らKより、特開昭58−128828
号で示したように熱間圧延時に粒度5μ以下の超細粒の
フェライトを生成せしめることが発見された。したがっ
てこのようにして高温でフェライトを生成させても超細
粒のため強度が高いので、同様の効果を生じせしめるこ
とができる場合もある。
Also, recently, the present inventors K. published JP-A-58-128828.
As shown in this issue, it was discovered that ultrafine ferrite with a grain size of 5 microns or less can be produced during hot rolling. Therefore, even if ferrite is generated at a high temperature in this manner, it has high strength due to its ultra-fine grains, so it may be possible to produce the same effect in some cases.

すなわち変態点前後で1パス、または累積大圧下を行う
と加工時にオニ・テナイトのかなシの部分が微細なフェ
ライトに変態する。このような細粒のフェライト間に残
留するオーステナイトが安定になるものと考えられる。
That is, if one pass or a large cumulative reduction is performed before and after the transformation point, the kana part of oni-tenite transforms into fine ferrite during processing. It is thought that the austenite remaining between such fine ferrite particles becomes stable.

このようなフェライトがその特徴を発揮するためには1
0%以上必要であるが、そのためには熱延終段において
、1パスまたは多パスの累積圧下で50%以上をArl
+50℃〜Ar3+100℃の範囲内で加える必要があ
ることが明らかになった。
In order for this kind of ferrite to exhibit its characteristics, 1.
0% or more is required, but for this purpose, in the final stage of hot rolling, 50% or more of the Arl
It became clear that it was necessary to add within the range of +50°C to Ar3+100°C.

また熱間圧延のときに上記の熱履歴を与えなくとも熱延
工程のあとで熱処理設備によシ再熱七オーステナイト状
態とし、それから出発しても前述のように冷却中に望ま
しい温度域に温度を保つことにより同様の効果が得られ
ることは言うまでもない。
In addition, even if the above heat history is not given during hot rolling, the heat treatment equipment is used after the hot rolling process to reheat the hepta-austenite state, and even if starting from that, the temperature is kept within the desired temperature range during cooling as described above. It goes without saying that the same effect can be obtained by maintaining .

ここで附言したいことは、従来の不安定な残留オーステ
ナイトを有する鋼とのオーステナイトの一機能の相違で
ある。このような鋼の一種については冒頭に述べたが、
このような鋼はTPIP鋼(変態誘起塑性鋼)として以
前から知られているものである。(例えば田村今男著「
鉄鋼材料強度学」日刊工業新聞社昭和44年刊行239
−244P)この鋼は引張シ等の変形を与えるとオース
テナイトがマルテンサイトに変態を起こし、強度が上昇
゛する結果、局部的な絞シが防止され破断が起こシニ<
くなシ延性が高上すると言うものである。これに比し本
発明の鋼板は引張シ変形によジオ−ステナイトが殆ど変
態しないので全(TRIP鋼と異なる原因で高延性を示
すことは第2図などから明らかである。
What I would like to add here is the difference in the function of austenite from conventional steels having unstable retained austenite. I mentioned this kind of steel at the beginning,
Such steels have long been known as TPIP steels (transformation-induced plasticity steels). (For example, "Imao Tamura"
Strength of Steel Materials” Nikkan Kogyo Shimbun Publishing 1962 239
-244P) When this steel is subjected to deformation such as tensile stress, austenite transforms into martensite, increasing its strength. As a result, local shrinkage is prevented and fracture occurs.
This is said to increase the ductility of the steel. In contrast, it is clear from FIG. 2 that the steel sheet of the present invention exhibits high ductility for a reason different from that of the TRIP steel, since the diostenite hardly transforms due to tensile deformation.

本発明の鋼板がすぐれた延性を示す理由は、今後の学問
的研究に待たなければならないが、本発明者らはベイナ
イトや微細フェライトの境界面に薄片状に存在するオー
ステナイトが辷り変形を受け持つことによシ高い均−伸
びを生ずるものと考えている。そして強度は地のベイナ
イト、もしくは微細フェライト部が受け持つので、高強
度で高延性が可能となっているのである。
The reason why the steel sheet of the present invention exhibits excellent ductility will have to wait for future academic research, but the inventors believe that austenite, which exists in flakes at the interface between bainite and fine ferrite, is responsible for sliding deformation. We believe that this will result in a much higher average elongation. The strength is provided by the underlying bainite or fine ferrite, making it possible to achieve high strength and high ductility.

第1表に示す化学成分組成の鋼を電炉溶製し、粗圧延で
40m厚の″鋼片とし、加熱炉に装入し1050℃で抽
出し熱間圧延を行った。いずれも仕上温度は850〜8
80℃であった。
Steel having the chemical composition shown in Table 1 was melted in an electric furnace, rough rolled into a 40m thick slab, charged into a heating furnace, extracted at 1050°C, and hot rolled. 850-8
The temperature was 80°C.

熱延はタンデムストリップミルで次の■、■の2つのパ
ススケジー−ルで行った。(数字は期)■ 40→23
→13.8→83→54→35→28■ 40→22→
13→78→46→28熱延後鋼板は冷却テーブル上で
搬送中に水冷された2秒以内に水冷が開始され、捲取温
度直上まで冷却条件で冷却されたのち第2表中に示す温
度で捲取られ熱延コイルとされた。捲取られたコイルは
最低2時間以上コイル状で放冷された。コイル中央部が
コイルに捲取られてから1時間以内の温度低下は20〜
30℃程度であった。
Hot rolling was carried out in a tandem strip mill using the following two pass schedules (1) and (2). (Numbers are periods) ■ 40 → 23
→13.8→83→54→35→28■ 40→22→
13→78→46→28 The hot-rolled steel sheet was water-cooled within 2 seconds while being transported on the cooling table, and after being cooled under cooling conditions to just above the winding temperature, it reached the temperature shown in Table 2. It was wound into a hot-rolled coil. The wound coil was left to cool in a coiled state for at least 2 hours. The temperature drop within 1 hour after the central part of the coil is wound up is 20~
The temperature was about 30°C.

第2表にプロセス条件と鋼板の機械的性質およびX線回
析(ディフラクトメーター)でめた残留オーステナイト
量を示した。
Table 2 shows the process conditions, the mechanical properties of the steel sheet, and the amount of retained austenite determined by X-ray diffraction (diffractometer).

また一部の鋼板については冷間加工(2%引張歪)を加
えた後200℃5分時効を行った場合の機械的性質につ
いても示した。第1表および第2表KVi本発明以外の
比較例も同時に記載している。
In addition, the mechanical properties of some steel plates when subjected to cold working (2% tensile strain) and then aging at 200°C for 5 minutes are also shown. Table 1 and Table 2 KVi Comparative examples other than the present invention are also listed at the same time.

木づ1=明の賦香イ〜へは熱間圧延のままで残留オース
テナイトが7〜18%含まれ、引張強さで96”/’I
nm” 以上の高強度で17〜33係と高い延性を有し
、とくに均−伸ひが10%以上ある。しかもこrLK歪
時効を行っても残留オーステナイトは殆ど減少せず、降
伏強さは著しく上昇するが延性の低1τは小さい、lと
くに圧延スケジュールBの賦香口では延性は一層すぐれ
ている。これらの組織には超細粒のフェライトがそれぞ
れ20係及び12チ含まれていた。
Kizu 1 = Ming's flavored I~ contains 7-18% residual austenite as hot-rolled, and has a tensile strength of 96''/'I
It has a high strength of 17 to 33 nm, and a high ductility of 17 to 33 modulus, with an especially uniform elongation of 10% or more.Furthermore, even after LK strain aging, retained austenite hardly decreases, and the yield strength is Although the decrease in ductility is markedly increased, the ductility 1τ is small, and the ductility is even better in the rolling schedule B in particular.These structures contained ultrafine ferrite particles of 20 and 12, respectively.

一方比較例の賦香トは調香lを著しく低いMs点以下で
捲き取った場合でマルテンサイト組−織をかなり含むの
で強度は高いが残留オーステナイトが比較的少なく、伸
び、とくに均−伸びが小さい。
On the other hand, the perfumed material of the comparative example contains a considerable amount of martensitic structure when the perfumed material is rolled up below the very low Ms point, and has high strength, but has relatively little residual austenite and has poor elongation, especially uniform elongation. small.

これを歪時効すると残留オーステナイトが減少し延性2
〈に均−伸びはさらに著しく低くなる。
When this is strain-aged, the retained austenite decreases and the ductility increases to 2.
The average elongation becomes even more markedly lower.

賦香チは調香4を高温で捲き取った場合で、はぼパーラ
イト変態をする結果強度も比較的少なく延性も悪い、。
The incense stick is when the incense preparation 4 is rolled up at high temperature, and as a result of the pearlite transformation, the strength is relatively low and the ductility is poor.

賦香り、ヌはいわゆる二相ハイテンに近い成分のCが過
少である調香5であるが、この場合400℃前後で捲取
っても安定な残留オーステナイトが殆ど生成しないため
、均−伸びは強度のそれほど高くないわシには低い。
The fragrance imparting, Nu, is fragrance 5, which has too little C, which is a component close to so-called two-phase high tensile strength, but in this case, stable residual austenite is hardly generated even when rolled at around 400℃, so the uniform elongation is not strong enough. It's not that high, but it's low.

賦香ルはSiが過少の場合で、残留オーステナイトは全
く生成せず延性は不良である。
In the case where the amount of Si is too low, no residual austenite is formed and the ductility is poor.

以上によシ本発明の効果が著しいことがわかる。From the above, it can be seen that the effects of the present invention are remarkable.

発明の効果 本発明を適用した鋼板は、前述のようにきわめて安定な
残留オーステナイトの存在により、第4゜7.8図に示
すように延性・加工性がすぐれ、とくに均−伸びが大き
く、しかも冷間加工前では降伏比85%以下と耐力が低
く加工が容易で、プレスのような塑性変形およびこれに
つづく焼付塗装に相当するような低温の時効処理を加え
ると、耐力が90係以上も上昇し外力に対し大きい抵抗
力を有ししかも延性の低下が少ないという画期的な特徴
を有するものである。従って工業的には自動車用の薄鋼
板、とくに最近話題となっている衝突に安全な自動車の
外板などに極めて好適である。その他航空機用の100
 kg/un2以上の超高張力鋼、あるいはプレストレ
ストコンクリート用の高張力棒鋼またはワイヤなど時代
の要請に応えた多くの高品質銅相への応用が期待される
Effects of the Invention The steel plate to which the present invention is applied has excellent ductility and workability as shown in Fig. 4゜7.8 due to the presence of extremely stable retained austenite as described above, and has particularly high uniform elongation. Before cold working, it has a low yield strength of less than 85% and is easy to work with, and when subjected to plastic deformation such as pressing and subsequent low temperature aging treatment equivalent to baking painting, the yield strength increases to over 90 modulus. It has the revolutionary characteristics of having a high resistance to external forces and little loss of ductility. Therefore, industrially, it is extremely suitable for thin steel sheets for automobiles, especially for the exterior panels of automobiles that are safe in collisions, which have recently become a hot topic. 100 for other aircraft
It is expected that it will be applied to many high-quality copper phases that meet the demands of the times, such as ultra-high tensile strength steel of kg/un2 or more, or high-tensile steel bars or wires for prestressed concrete.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は広範囲の温度で熱処理した場合の残留オーステ
ナイト量の変化を示した図、第2図は塑性加工量と残留
オーステナイト量との関係を示した図、第3図は延性と
残留オーステナイト量との関係を示した図、第4図(a
) (b)は残留オーステナイト喰と機械特性および延
性の変化を歪付与の有無によって表示した図、第5図(
a) (b) (c)は残留オーステナイト址と機械特
性および延性の変化を成分量の変化によって表示した図
、第6図は残留オーステナイト量と保熱温度との関係を
示した図、第7図は機械特性および延性と保熱温度との
関係を示した図、第8図は残留オーステナ・イト量と機
械特性および延性の変化を保熱時間の変化によって表示
した図である。 第1図 、ワ17セニ0メe−工■°tゼカ4しオ辷A1〜φB
こ(りXヌQ卵S・づダ【4今年2図 )l りI、Lt70
Figure 1 shows the change in the amount of retained austenite when heat treated at a wide range of temperatures, Figure 2 shows the relationship between the amount of plastic working and the amount of retained austenite, and Figure 3 shows the relationship between ductility and the amount of retained austenite. Figure 4 (a) shows the relationship between
) (b) is a diagram showing the changes in retained austenite, mechanical properties, and ductility depending on the presence or absence of strain, and Figure 5 (
a) (b) (c) are diagrams showing the retained austenite mass and changes in mechanical properties and ductility according to changes in the amount of components; Figure 6 is a diagram showing the relationship between the amount of retained austenite and heat retention temperature; Figure 7 The figure shows the relationship between mechanical properties and ductility and heat retention temperature, and FIG. 8 shows the amount of residual austenite and changes in mechanical properties and ductility as a function of heat retention time. Fig. 1, 17 cm 0 m e-work ■ ° t 4 sw A1 ~ φB
Ko(ri

Claims (1)

【特許請求の範囲】 +11 C1’i15%超 080%以下Si1.0〜
30% Mn −1−Cr O,5〜3.0 %を含む鋼を熱間
圧延によりホットコイルを製造する過程において、その
鋼のAr3変態点以上で実質的に熱延を終了し、その後
20°c/s以上の冷却速度でArl変態点を通過せし
め380〜430℃の間で捲取りを行い、捲取開始時よ
95分以上をこの温度域に滞留させるよう徐冷、もしく
は保熱を行うことを特徴とする延性と加工性のすぐれた
高張力鋼板の製造方法。 (2) 熱間圧延後段でAr1’ + 50〜Ar3 
+ 1 ’−00℃の温度域で合計50%以上の圧下を
1秒以内に加えることを特徴とする特許請求の範囲第1
項記載の延性と加工性のすぐれた高張力鋼板の製造方法
[Claims] +11 C1'i more than 15% 080% or less Si1.0~
In the process of manufacturing a hot coil by hot rolling a steel containing 30% Mn-1-CrO, 5 to 3.0%, the hot rolling is substantially completed at the Ar3 transformation point or higher of the steel, and then 20% The Arl transformation point is passed through at a cooling rate of °c/s or more, and winding is performed at a temperature between 380 and 430°C, followed by slow cooling or heat retention to stay in this temperature range for at least 95 minutes from the start of winding. A method for manufacturing high-strength steel sheets with excellent ductility and workability. (2) Ar1' + 50 to Ar3 in the latter stage of hot rolling
Claim 1, characterized in that a pressure of 50% or more in total is applied within 1 second in a temperature range of +1'-00°C.
Method for manufacturing high-strength steel sheets with excellent ductility and workability as described in Section 1.
JP3737084A 1984-03-01 1984-03-01 Manufacture of high tension steel sheet having superior ductility and workability Pending JPS60184634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3737084A JPS60184634A (en) 1984-03-01 1984-03-01 Manufacture of high tension steel sheet having superior ductility and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3737084A JPS60184634A (en) 1984-03-01 1984-03-01 Manufacture of high tension steel sheet having superior ductility and workability

Publications (1)

Publication Number Publication Date
JPS60184634A true JPS60184634A (en) 1985-09-20

Family

ID=12495630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3737084A Pending JPS60184634A (en) 1984-03-01 1984-03-01 Manufacture of high tension steel sheet having superior ductility and workability

Country Status (1)

Country Link
JP (1) JPS60184634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514130A (en) * 2008-12-24 2012-06-21 ポスコ Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514130A (en) * 2008-12-24 2012-06-21 ポスコ Manufacturing method of high-strength, high-stretched steel sheet, hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet and galvanized alloyed steel sheet

Similar Documents

Publication Publication Date Title
JP5350253B2 (en) Method for producing flat steel products from boron microalloyed multiphase steels
US5458699A (en) Steel wire for making high strength steel wire product and method for manufacturing thereof
JP5350252B2 (en) Process for producing flat steel products from steel forming a martensitic microstructure
JPS6014097B2 (en) Hot rolled steel strip consisting of two phases
EP0190312A1 (en) Controlled rolling process for dual phase steels and application to rod, wire, sheet and other shapes
JP3317303B2 (en) High tensile strength thin steel sheet with excellent local ductility and its manufacturing method
WO1994025635A1 (en) Sheet steel excellent in flanging capability and process for producing the same
JPH0247524B2 (en) KAKOYONETSUENKOHANNOSEIZOHOHO
KR890003975B1 (en) Dual phase-structured hot rolled high tensile strenght steel sheet and a method of producing the same
JPS5827329B2 (en) Manufacturing method of low yield ratio high tensile strength hot rolled steel sheet with excellent ductility
JP2001220647A (en) High strength cold rolled steel plate excellent in workability and producing method therefor
US4720307A (en) Method for producing high strength steel excellent in properties after warm working
JPH0676616B2 (en) Method for producing hot rolling strip having two-phase structure
JP3541726B2 (en) High ductility hot rolled steel sheet and method for producing the same
JPH01272720A (en) Production of high ductility and high strength steel sheet with composite structure
JPH0432512A (en) Production of hot rolled high strength dual-phase steel plate for working
JP3864663B2 (en) Manufacturing method of high strength steel sheet
EP3484639B1 (en) Method for the in-line manufacturing of steel tube
JP3168665B2 (en) Hot-rolled high-strength steel sheet with excellent workability and its manufacturing method
JPS60184664A (en) High ductile and high tensile steel containing stable retained austenite
JPS60184634A (en) Manufacture of high tension steel sheet having superior ductility and workability
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPH03180426A (en) Production of high-strength hot rolled steel plate excellent in spreadability
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JPS6239231B2 (en)