JP5481165B2 - DC power supply device and air conditioner using the same - Google Patents

DC power supply device and air conditioner using the same Download PDF

Info

Publication number
JP5481165B2
JP5481165B2 JP2009254541A JP2009254541A JP5481165B2 JP 5481165 B2 JP5481165 B2 JP 5481165B2 JP 2009254541 A JP2009254541 A JP 2009254541A JP 2009254541 A JP2009254541 A JP 2009254541A JP 5481165 B2 JP5481165 B2 JP 5481165B2
Authority
JP
Japan
Prior art keywords
short
power supply
circuit
voltage
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009254541A
Other languages
Japanese (ja)
Other versions
JP2011101505A (en
Inventor
正博 田村
敦 奥山
聡明 岩城
建司 田村
知恵 右ノ子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009254541A priority Critical patent/JP5481165B2/en
Priority to KR1020100077235A priority patent/KR101194483B1/en
Priority to CN201010260619.8A priority patent/CN102055350B/en
Publication of JP2011101505A publication Critical patent/JP2011101505A/en
Application granted granted Critical
Publication of JP5481165B2 publication Critical patent/JP5481165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/175Indicating the instants of passage of current or voltage through a given value, e.g. passage through zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)

Description

この発明は交流電源から得られる交流電圧を直流電源に変換し、電源高調波電流を抑制しつつ高力率,高効率を実現する直流電源装置およびこれを用いた空気調和機に関する。   The present invention relates to a DC power supply device that converts an AC voltage obtained from an AC power supply into a DC power supply and suppresses a power supply harmonic current while realizing a high power factor and high efficiency, and an air conditioner using the same.

インバータ駆動されるモータ負荷をもつ空気調和機などの機器において、その高効率化の手法の一つとして、モータのコイル巻線を多く巻き込み、モータに流れる電流を小さくすることで、インバータにおける損失を低減する方法がよく知られている。   In devices such as air conditioners with motor loads driven by inverters, one way to increase efficiency is to reduce the current in the inverter by winding a large number of motor coil windings and reducing the current flowing through the motor. Methods for reducing are well known.

しかしながら、この方法を実際に行う場合には、モータの誘起電圧がコイル巻数に比例して増加するため、機器に搭載される直流電源装置は、誘起電圧の増加見合分だけインバータへ供給する直流電圧を高くする必要がある。   However, when this method is actually performed, the induced voltage of the motor increases in proportion to the number of coil turns, so that the DC power supply device mounted on the device supplies the DC voltage supplied to the inverter by an amount corresponding to the increase in the induced voltage. Need to be high.

同時に、電力送電設備の負担軽減のため、直流電源装置には高力率,低高調波電流が求められており、リアクタを接続し短絡することで、入力電流の波形と直流電圧を制御する種々の方法が提案されている。この種の従来技術として、特公昭63−13204号公報,特許2809463号公報,特開平10−201248号公報,特開2003−153543号公報,特開2006−174689号公報,特許03485047号公報,特開2009−100499号公報が知られている。   At the same time, in order to reduce the burden on power transmission facilities, DC power supply devices are required to have high power factor and low harmonic current. By connecting and short-circuiting reactors, various control of input current waveform and DC voltage is possible. A method has been proposed. As this type of prior art, Japanese Patent Publication No. 63-13204, Japanese Patent No. 2809463, Japanese Patent Application Laid-Open No. 10-201248, Japanese Patent Application Laid-Open No. 2003-153543, Japanese Patent Application Laid-Open No. 2006-174689, Japanese Patent No. 034885047 No. 2009-1000049 is known.

特許文献1は交流電源電流を検出する電源電流検出回路を備え、電流の上限値と下限値を定め、検出電流と比較することにより短絡タイミングを制御するものである。これにより電源半周期に数回の短絡で電源電流を改善できるため、高効率と高力率を両立させることができる電源回路について述べている。   Patent Document 1 includes a power source current detection circuit that detects an AC power source current, determines an upper limit value and a lower limit value of the current, and controls a short circuit timing by comparing with a detected current. Thus, since the power supply current can be improved by short-circuiting several times in the power supply half cycle, a power supply circuit that can achieve both high efficiency and high power factor is described.

特許文献2は瞬時電源電流検出回路を備え、負荷状態に合わせて係数を設定し、この係数と電流情報との積に基づいてスイッチング素子の動作を規定する通流比を作成し、スイッチング素子を動作させるものである。これは特許文献1におけるスイッチングタイミングを明確に規定したものであり、これにより電源高調波電流の抑制と高力率を実現し、直流電圧の制御も可能である。さらに負荷に応じて係数を変更し電源電流のピーク付近でのスイッチング動作を停止することでスイッチング回数と直流電圧を変化させ高効率動作が可能である。電源装置および力率改善方法について述べている。   Patent Document 2 includes an instantaneous power supply current detection circuit, sets a coefficient according to the load state, creates a current ratio that defines the operation of the switching element based on the product of this coefficient and current information, It is what makes it work. This clearly defines the switching timing in Patent Document 1, thereby realizing suppression of the power supply harmonic current and high power factor, and control of the DC voltage is also possible. Furthermore, by changing the coefficient in accordance with the load and stopping the switching operation near the peak of the power supply current, the switching frequency and the DC voltage can be changed to enable high-efficiency operation. The power supply and the power factor improvement method are described.

特許文献3は交流電源の半周期毎にゼロクロス点を検出し、ゼロクロス点から所定の時間だけ遅延してスイッチング手段をオンし、所定のオン期間後オフすることで、交流電源からの入力電流の通電幅を拡大し、力率を改善するとともにリアクタに蓄えられたエネルギーを平滑コンデンサへ供給することで高い直流電圧を得ることができる。1回しかオンしないことで、高い効率で力率改善できる電源装置について述べている。   Patent Document 3 detects a zero-cross point every half cycle of an AC power source, turns on a switching unit with a predetermined time delay from the zero-cross point, and turns off after a predetermined ON period. A high DC voltage can be obtained by expanding the energization width, improving the power factor, and supplying the energy stored in the reactor to the smoothing capacitor. It describes a power supply device that can be improved in power factor with high efficiency by being turned on only once.

特許文献4は交流電源にその一端が接続されたリアクトルと、リアクトルを介して交流電源を短絡/開放する双方向通電性の短絡素子とを設け、負荷量に応じて、短絡素子を、短絡動作無しの力率改善無しモード、或いは短絡動作を電源半周期に1回もしくは複数回行う部分スイッチングモード、或いは短絡動作を高周波で行う高周波スイッチングモードのいずれかのモードにて制御する。これにより、負荷の広い運転領域全体に渡り損失を低減して効率向上を可能にし、力率改善により電力供給を安定に行うこと。更に、負荷及び電源共に高周波問題を解消することができる電力供給装置,電動機駆動装置,電力供給装置の制御方法について述べている。   Patent Document 4 provides a reactor having one end connected to an AC power source and a bidirectionally conductive short-circuit element that short-circuits / opens the AC power source via the reactor, and short-circuits the short-circuit element according to the amount of load. Control is performed in one of a power factor improvement mode without power supply, a partial switching mode in which a short circuit operation is performed once or a plurality of times in a half cycle of a power supply, or a high frequency switching mode in which a short circuit operation is performed at a high frequency. As a result, it is possible to improve efficiency by reducing loss over the entire operation area with a wide load, and to stably supply power by improving the power factor. Furthermore, a power supply device, a motor drive device, and a control method for the power supply device that can solve the high-frequency problem for both the load and the power supply are described.

特許文献5〜特許文献7はスイッチング素子の短絡回数を負荷に応じて変更することにより高力率の直流電源装置を実現する直流電源装置,空気調和機について述べている。   Patent Documents 5 to 7 describe a DC power supply device and an air conditioner that realize a high power factor DC power supply device by changing the number of short circuits of the switching element according to the load.

特公昭63−13204号公報Japanese Examined Patent Publication No. 63-13204 特許2809463号公報Japanese Patent No. 2809463 特開平10−201248号公報Japanese Patent Laid-Open No. 10-201248 特開2003−153543号公報JP 2003-153543 A 特開2006−174689号公報Japanese Patent Laid-Open No. 2006-174689 特許03485047号公報Japanese Patent No. 03485047 特開2009−100499号公報JP 2009-1000049 A

現在、家庭用の空気調和機は、環境への配慮が求められ、省資源,省エネを強く要求されるようになった。加えて、電子制御機器の急増に伴い電源に悪影響を与える高調波電流の規制に適合する製品が求められている。   Currently, home air conditioners are required to be environmentally friendly, and resource and energy savings are strongly demanded. In addition, there is a need for products that meet the regulations on harmonic currents that adversely affect power supplies due to the rapid increase in electronic control devices.

しかしながら、上記で述べた先行技術ではこれらの要求を部分的に満たすだけであり、次のような問題がある。   However, the prior art described above only partially satisfies these requirements, and has the following problems.

特許文献1では瞬時の交流電流を検出する電流検出回路およびスイッチングタイミングを決定するスイッチング素子駆動回路が必要なため、回路が複雑になる。さらに直流電圧の制御法や最適な電流の上限値、下限値の決め方について述べられておらず、コイル巻き線を多く巻き込んだ直流電圧の昇圧が必要な電動機の高効率制御には適さない。また、直流出力電圧の維持方法についての言及が無い。   In Patent Document 1, since a current detection circuit that detects an instantaneous alternating current and a switching element drive circuit that determines switching timing are required, the circuit becomes complicated. Furthermore, it does not describe a DC voltage control method and how to determine the optimum upper limit value and lower limit value of the current, and is not suitable for high-efficiency control of an electric motor that requires boosting of a DC voltage with many coil windings. There is no mention of a method for maintaining the DC output voltage.

特許文献2では負荷が小さいときは直流電圧を低く、スイッチング回数を少なくし、高効率運転を行い、負荷が大きいときは直流電圧を高く、スイッチング回数を多くし、高力率運転を行うことが可能である。しかし瞬時の交流電源電流が必要であり、回路が複雑になる。また効率を優先して数回までスイッチング回数を落とした場合、交流電流のリップルが大きくなり、力率の低下や高調波電流の増加が見られる。また、直流出力電圧の維持は短絡回数と開閉デューティの増減で行っている。   In Patent Document 2, when the load is small, the DC voltage is lowered, the number of switching is reduced, and high efficiency operation is performed. When the load is large, the DC voltage is increased, the number of switching is increased, and high power factor operation is performed. Is possible. However, instantaneous AC power supply current is required, and the circuit becomes complicated. In addition, when the number of switching is reduced to several times in order to prioritize efficiency, the ripple of the alternating current increases, and the power factor decreases and the harmonic current increases. The DC output voltage is maintained by increasing or decreasing the number of short circuits and the switching duty.

特許文献3では直流電圧を高くしようとした場合、短絡した波形は歪んでしまうため、電源高調波電流が多くなり、高い力率を得ながらもJIS規格値を満足できない。また、この発明は電源の半周期に1回だけ短絡動作をするもので、パルス間隔についての言及が無い。   In Patent Document 3, when the DC voltage is increased, the short-circuited waveform is distorted, so that the power supply harmonic current increases and the JIS standard value cannot be satisfied while obtaining a high power factor. Further, the present invention performs a short-circuit operation only once in a half cycle of the power supply, and there is no mention of a pulse interval.

特許文献4では部分スイッチングモードではスイッチング素子の短絡開始時間,短絡時間、および短絡回数を制御することで直流出力電圧を制御できるが、高調波を抑制する具体的な手段は述べられていない。したがってモードの切り替えにより高効率と高調波抑制(高力率)のどちらかは選択できるが、高効率と高調波抑制の両立はできなかった。   In Patent Document 4, in the partial switching mode, the DC output voltage can be controlled by controlling the short circuit start time, the short circuit time, and the number of short circuits of the switching element, but no specific means for suppressing harmonics is described. Therefore, either high efficiency or harmonic suppression (high power factor) can be selected by switching the mode, but high efficiency and harmonic suppression cannot be achieved at the same time.

特許文献5〜特許文献7では最適なスイッチングタイミングについて明確な記載がなかった。   In Patent Documents 5 to 7, there is no clear description about the optimum switching timing.

本発明の目的は、電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することにある。   An object of the present invention is to provide a DC power supply device that achieves high efficiency and appropriate power factor at low loads while realizing high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current. is there.

本発明が解決しようとする課題は、交流電源より入力された交流電力を直流電力に変換する整流回路と、前記交流電源と前記整流回路との間に接続されたリアクタと、前記交流電源を前記リアクタを介して短絡するスイッチング手段と、前記直流電力の目標電圧設定手段と、前記交流電源の周波数を検出する周波数検出手段と、前記交流電源の電源電圧を検出する電源電圧検出手段と、前記交流電源のゼロクロス点を検出するゼロクロス検出手段と、前記整流回路の出力である直流電圧を検出する直流電圧検出手段と、前記ゼロクロス点に同期させて前記スイッチング手段を短絡,開放するスイッチング制御手段とを備える直流電源装置において、前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値未満の場合に前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、前記ゼロクロス点から1回目の短絡開始までの時間を予め設定した遅延時間とし、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替えることにより達成される。 The problems to be solved by the present invention include a rectifier circuit that converts AC power input from an AC power source into DC power, a reactor connected between the AC power source and the rectifier circuit, and the AC power source Switching means for short-circuiting via a reactor, target voltage setting means for the DC power, frequency detection means for detecting the frequency of the AC power supply, power supply voltage detection means for detecting the power supply voltage of the AC power supply, and the AC Zero cross detection means for detecting a zero cross point of a power supply, DC voltage detection means for detecting a DC voltage as an output of the rectifier circuit, and switching control means for short-circuiting and opening the switching means in synchronization with the zero cross point. In the direct current power supply apparatus, the switching control means includes the target direct current voltage set by the target voltage setting means and the power supply voltage. When the value of the ratio with the power supply voltage detected by the output means is less than a predetermined value, the switching means is short-circuited twice during a half cycle from the zero cross point of the AC power supply detected by the zero cross detection means. The time from the zero cross point to the first short-circuit start is set as a delay time, and the first and second short-circuit intervals of the second short-circuit are determined by the power supply frequency detected by the frequency detection means being 50 Hz. Sometimes it is 0.2 to 0.4 ms, and when the power supply frequency is 60 Hz, it is 0.16 to 0.33 ms, and then the number of short circuits of the switching means is set to the value of the ratio when the value of the ratio is a predetermined value or more. Accordingly, it is achieved by switching to a number of short-circuits that is greater than the above two times and that does not exceed the noise frequency of the DC power supply device with respect to the operating noise frequency of the motor of the apparatus to be incorporated.

請求項2に記載の直流電源装置は請求項1の直流電源装置において、前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値以上の場合に、前記2回短絡の場合と同様に、前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替えるものである。   According to a second aspect of the present invention, there is provided the direct current power supply device according to the first aspect, wherein the switching control means includes a target direct current voltage set by the target voltage setting means and a power supply voltage detected by the power supply voltage detection means. When the ratio value is equal to or greater than a predetermined value, the switching means is operated twice during a half cycle from the zero cross point of the AC power source detected by the zero cross detection means, as in the case of the two-time short circuit. When the power supply frequency detected by the frequency detecting means is 50 Hz, the first and second short-circuit intervals of the two short-circuits are 0.2 to 0.4 ms, and the power supply frequency is 60 Hz. When the value of the ratio is equal to or greater than a predetermined value after that, the number of short-circuits of the switching means is more than the two times according to the value of the ratio and the mode of the device to be incorporated is set. The number of short-circuits is switched so that the noise frequency of the DC power supply does not exceed the operating noise frequency of the inverter.

請求項3に記載の直流電源装置は請求項1乃至2の直流電源装置において、前記スイッチング制御手段は3回目以降の短絡時間を前記電源周波数が50Hzの時は0.25ms、60Hzの時は0.2ms以下の範囲とするものである。   According to a third aspect of the present invention, there is provided the direct current power supply device according to the first or second aspect, wherein the switching control means sets the short circuit time for the third and subsequent times to 0.25 ms when the power supply frequency is 50 Hz and zero when the power supply frequency is 60 Hz. The range is less than 0.2 ms.

請求項4に記載の直流電源装置は請求項1乃至2の直流電源装置において、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、短絡回数増加後のM回目までの短絡時間の合計値を、短絡回数増加前の短絡時間の合計値より、減少させるものである。   According to a fourth aspect of the present invention, there is provided the direct current power supply device according to the first or second aspect, wherein when the number of short circuits of the switching means is increased from M times to M + 1 times, The total value is decreased from the total value of the short circuit time before the increase in the number of short circuits.

請求項5に記載の直流電源装置は請求項1乃至2の直流電源装置において、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、M+1回目までの短絡時間の合計値を、短絡回数増加前のM回目までの短絡時間の合計値と等しくするものである。   The direct current power supply device according to claim 5 is the direct current power supply device according to claim 1 or 2, wherein when the number of short circuits of the switching means is increased from M times to M + 1 times, a total value of short circuit times up to M + 1 time is short-circuited. This is equal to the total value of the short-circuiting time up to the Mth time before the number of times increases.

請求項6に記載の直流電源装置は請求項1乃至2の直流電源装置において、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM−1回目までの短絡時間の合計値より、増加させるものである。   The direct current power supply device according to claim 6 is the direct current power supply device according to claim 1 or 2, wherein when the number of short circuits of the switching means is reduced from M times to M-1 times, the total value of short circuit times after the short circuit number is reduced. Is increased from the total value of the short-circuiting time up to the (M-1) th time before the number of short-circuits is decreased.

請求項7に記載の直流電源装置は請求項1乃至2の直流電源装置において、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM回目までの短絡時間の合計値と等しくするものである。   The direct current power supply device according to claim 7 is the direct current power supply device according to claim 1 or 2, wherein when the number of short circuits of the switching means is decreased from M times to M-1 times, the total value of short circuit times after the number of short circuits is reduced. Is made equal to the total value of the short-circuiting time up to the M-th before the number of short-circuits is reduced.

請求項8に記載の直流電源装置は請求項3の直流電源装置において、前記交流電源からの入力電流を検出する入力電流検出手段を更に備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記入力電流検出手段で検出した入力電流に応じて定めるものである。   The direct current power supply device according to claim 8 is the direct current power supply device according to claim 3, further comprising input current detection means for detecting an input current from the alternating current power supply, wherein the switching control means is 2 to 6 times the switching means. The number of short circuits up to is determined according to the value of the ratio and the input current detected by the input current detecting means.

請求項9に記載の直流電源装置は請求項3の直流電源装置において、前記直流電力に接続された負荷量を検出する負荷量検出手段を更に備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記負荷量検出手段で検出された負荷量に応じて定めるものである。   The DC power supply device according to claim 9 is the DC power supply device according to claim 3, further comprising load amount detection means for detecting a load amount connected to the DC power, wherein the switching control means is a second to second switching means. The number of short circuits up to 6 is determined according to the value of the ratio and the load detected by the load detection means.

請求項10に記載の直流電源装置は請求項9の直流電源装置において、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータへの印加電圧とし、前記負荷量検出手段としてモータへの印加電圧を検出するモータ印加電圧検出手段を備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ印加電圧検出手段で検出されたモータ印加電圧に応じて定めるものである。   The DC power supply device according to claim 10 is the DC power supply device according to claim 9, wherein the load connected to the DC power is a motor, the load amount is an applied voltage to the motor, and the motor is used as the load amount detecting means. And a motor application voltage detecting means for detecting a voltage applied to the switching means, wherein the switching control means detects the number of short circuits from 2 to 6 times of the switching means and the motor application detected by the motor applied voltage detection means. It is determined according to the voltage.

請求項11に記載の直流電源装置は請求項9の直流電源装置において、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータの回転数として、前記負荷量検出手段としてモータの回転数を検出するモータ回転数検出手段を備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ回転数検出手段で検出されたモータ回転数に応じて定めるものである。   The direct current power supply device according to claim 11 is the direct current power supply device according to claim 9, wherein the load connected to the direct current power is a motor, the load amount is the number of rotations of the motor, and the load amount detecting means is a motor. Motor rotation number detection means for detecting the rotation number is provided, and the switching control means converts the number of short circuits from 2 to 6 times of the switching means to the value of the ratio and the motor rotation number detected by the motor rotation number detection means. It is determined accordingly.

さらには、請求項12により、安価で、電源高調波電流規制を満足し、電源容量を最大限に活用した高能力で、効率の良い空気調和機を提供することができる。   Furthermore, according to the twelfth aspect, it is possible to provide an air conditioner that is inexpensive, satisfies the power supply harmonic current regulation, has a high capacity and uses the power supply capacity to the maximum, and is efficient.

請求項1に記載の発明によれば、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する。   According to the first aspect of the invention, while suppressing the power supply harmonic current with an inexpensive circuit configuration, a high efficiency and an appropriate power factor are realized at a low load, and a high power factor and an appropriate efficiency are achieved at a high load. Realize.

請求項2によれば、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する。   According to the second aspect, high efficiency and appropriate power factor are realized at low load while high power factor and appropriate efficiency are realized at high load while suppressing power supply harmonic current with an inexpensive circuit configuration.

請求項3によれば、短絡回数を多くして力率を改善しつつ、電源高調波電流規制を満足する。   According to the third aspect, the power harmonic current regulation is satisfied while the power factor is improved by increasing the number of short circuits.

請求項4によれば、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる。   According to the fourth aspect, in order to suppress the power harmonic current and improve the power factor, the DC voltage hardly changes even when the number of short-circuits is increased, and stable operation of the load device can be ensured.

請求項5によれば、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる。   According to the fifth aspect, in order to suppress the power harmonic current and improve the power factor, even if the number of short-circuits is increased, the DC voltage hardly changes and a stable operation of the load device can be ensured.

請求項6によれば、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる。   According to the sixth aspect, the DC voltage hardly changes even when the number of short-circuits is increased in order to suppress the power supply harmonic current and improve the power factor, and it is possible to ensure stable operation of the load device.

請求項7によれば、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる。   According to the seventh aspect, the DC voltage hardly changes even when the number of short circuits is increased in order to suppress the power supply harmonic current and improve the power factor, and a stable operation of the load device can be ensured.

請求項8によれば、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する。   According to the eighth aspect, while suppressing the power supply harmonic current with an inexpensive circuit configuration, a high efficiency and an appropriate power factor are realized at a low load, and a high power factor and an appropriate efficiency are realized at a high load.

請求項9によれば、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する。   According to the ninth aspect, high efficiency and an appropriate power factor are realized at a low load, and a high power factor and an appropriate efficiency are realized at a high load while suppressing a power supply harmonic current with an inexpensive circuit configuration.

請求項10によれば、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する。   According to the tenth aspect, high efficiency and an appropriate power factor are realized at a low load while a high power factor and an appropriate efficiency are realized at a high load while suppressing a power supply harmonic current with an inexpensive circuit configuration.

請求項11によれば、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する。   According to the eleventh aspect, while suppressing the power supply harmonic current with an inexpensive circuit configuration, a high efficiency and an appropriate power factor are realized at a low load, and a high power factor and an appropriate efficiency are realized at a high load.

請求項12によれば、安価で、電源高調波電流規制を満足し、電源容量を最大限に活用した高能力で、効率の良い空気調和機を実現する。   According to the twelfth aspect of the present invention, an air conditioner that is inexpensive, satisfies the power supply harmonic current regulation, and uses the power supply capacity to the maximum and has high efficiency is realized.

実施例1の電源装置の回路構成を示すブロック図。1 is a block diagram illustrating a circuit configuration of a power supply device according to a first embodiment. 同電源装置で1回短絡時の電源電圧・入力電流波形。Power supply voltage / input current waveform when the power supply is short-circuited once. 同電源装置で2回短絡時の電源電圧・入力電流波形。Power supply voltage and input current waveforms when the same power supply is short-circuited twice. 同電源装置で3回短絡時の電源電圧・入力電流波形。Power supply voltage and input current waveforms when the power supply is short-circuited three times. 同電源装置で5回短絡時の電源電圧・入力電流波形。Power supply voltage / input current waveform when the same power supply is short-circuited 5 times. 同電源装置の短絡回数制御部の記憶装置の記憶内容説明図。Storage contents explanatory drawing of the memory | storage device of the short circuit frequency control part of the power supply device. 同短絡回数制御部の短絡回数制御フロー要部。The short circuit count control flow main part of the same short circuit count control section. 同短絡回数制御部の前段処理フロー要部。The main part of the pre-processing flow of the short-circuit number control unit. 同短絡回数制御部の短絡回数増加処理フロー要部。The main part of the short circuit number increasing process flow of the short circuit number control unit. 同短絡回数制御部の短絡回数減少処理フロー要部。The main part of the short circuit frequency reduction processing flow of the short circuit controller. 同電源装置の回路構成を示すブロック図。The block diagram which shows the circuit structure of the power supply device. 入力電流と目標直流電圧の関係を示す図。The figure which shows the relationship between an input electric current and a target DC voltage. 負荷量と目標直流電圧の関係を示す図。The figure which shows the relationship between load amount and a target DC voltage. モータ印加電圧と目標直流電圧の関係を示す図。The figure which shows the relationship between a motor applied voltage and a target DC voltage. モータ回転数と目標直流電圧の関係を示す図。The figure which shows the relationship between a motor rotation speed and a target DC voltage. 実施例3の電源装置の回路構成を示すブロック図。FIG. 6 is a block diagram illustrating a circuit configuration of a power supply device according to a third embodiment. 実施例4の電源装置の回路構成を示すブロック図。FIG. 6 is a block diagram illustrating a circuit configuration of a power supply device according to a fourth embodiment. 実施例5の電源装置の回路構成を示すブロック図。FIG. 10 is a block diagram illustrating a circuit configuration of a power supply device according to a fifth embodiment. 実施例6の空気調和機の構成図。The block diagram of the air conditioner of Example 6. FIG. 同空気調和機の室外機の内部構造斜視図。The internal structure perspective view of the outdoor unit of the air conditioner. 同室外機の天板を外した平面図。The top view which removed the top plate of the outdoor unit. 同室外機の前面板を外した正面図。The front view which removed the front plate of the outdoor unit.

以下、本発明を空気調和機の圧縮機駆動用の直流電源装置に適用した実施例について図を用いて説明する。図における同一符号は同一物または相当物を示す。   Embodiments in which the present invention is applied to a DC power supply for driving a compressor of an air conditioner will be described below with reference to the drawings. The same reference numerals in the drawings indicate the same or equivalent.

まず、本発明の直流電源装置の全体構成について図1を用いて説明する。図1は実施例1の電源装置の回路構成を示すブロック図である。   First, the overall configuration of the DC power supply device of the present invention will be described with reference to FIG. FIG. 1 is a block diagram illustrating a circuit configuration of the power supply device according to the first embodiment.

直流電源装置100は図1に示すように、交流電源101と負荷104に接続され、交流電圧を整流回路102で整流し、平滑コンデンサ103で平滑して直流電圧に変換し、負荷104に電力を供給する。   As shown in FIG. 1, the DC power supply device 100 is connected to an AC power supply 101 and a load 104, rectifies an AC voltage by a rectifier circuit 102, smoothes it by a smoothing capacitor 103, converts it to a DC voltage, and supplies power to the load 104. Supply.

通常平滑コンデンサ103に蓄えられた電荷による直流電圧のため、交流電圧がこの直流電圧を超えたときにしか電流は流れないので、通電区間は短く、電流波形は鋭くとがって力率が悪くなってしまう。これを改善するためリアクタ105を接続すると、電流波形の波高値は低くなり、通電区間が後ろに伸び力率が改善される。   Since the current flows only when the AC voltage exceeds this DC voltage because the DC voltage is usually a charge stored in the smoothing capacitor 103, the energization section is short, the current waveform is sharp and the power factor is poor. End up. When the reactor 105 is connected to improve this, the peak value of the current waveform becomes low, and the extension power factor is improved after the energization section.

さらに、交流電源101がリアクタ105を介して短絡されるようにスイッチング手段106が設けられ、また、交流電源101のゼロクロス点を検出するゼロクロス検出手段107が接続されており、ゼロクロス検出手段107で検出されたゼロクロス点に同期させて、スイッチング制御手段108でスイッチング手段106を駆動する駆動信号を生成し、スイッチング手段106を短絡する。   Further, a switching means 106 is provided so that the AC power supply 101 is short-circuited through the reactor 105, and a zero cross detection means 107 for detecting a zero cross point of the AC power supply 101 is connected. In synchronization with the generated zero cross point, the switching control means 108 generates a drive signal for driving the switching means 106 and short-circuits the switching means 106.

次に、スイッチング手段の1回短絡,2回短絡例について図2,図3を用いて説明する。図2は電源装置で1回短絡時の電源電圧・入力電流波形である。図3は電源装置で2回短絡時の電源電圧・入力電流波形である。   Next, examples of one-time short-circuit and two-time short-circuit of the switching means will be described with reference to FIGS. FIG. 2 shows power supply voltage / input current waveforms when the power supply is short-circuited once. FIG. 3 shows power supply voltage / input current waveforms when the power supply device is short-circuited twice.

これまで電源高調波電流を抑制するため、スイッチングの短絡,開放を複数回行えば、短絡電流のピークが下がるため有効であることがいわれてきたが、この間隔については言及されていなかった。度重なる検討の結果、発明者らは、力率の向上と電源高調波電流の抑制の両立させるためには第1の短絡と第2の短絡との間の開放時間が重要であること見出し、本発明を出願するに至った。以下、第1と第2の短絡との間の開放時間の重要性について説明する。   In the past, it has been said that if switching short-circuiting and opening are performed a plurality of times in order to suppress the power harmonic current, the peak of the short-circuit current is lowered, which is effective, but this interval has not been mentioned. As a result of repeated studies, the inventors have found that the open time between the first short circuit and the second short circuit is important in order to achieve both improvement in power factor and suppression of power supply harmonic current, The present invention has been filed. Hereinafter, the importance of the open time between the first and the second short circuit will be described.

説明に先立ち、高調波電流の指標とした高調波の余裕度について説明する。電源周波数のn次の高調波電流の限度値はJIS C61000−3−2「電磁両立性−第3−2部:限度値−高調波電流発生限度値」に規定されていて、この限度値Isnに対して高調波電流をInとしたときn次の余裕度を(1−In/Isn)と定義する。   Prior to the description, the harmonic margin as an index of the harmonic current will be described. The limit value of the n-th harmonic current of the power supply frequency is defined in JIS C61000-3-2, “Electromagnetic compatibility—Part 3-2: Limit value—Harmonic current generation limit value”. In contrast, when the harmonic current is In, the n-order margin is defined as (1-In / Isn).

定義から明らかなように、n次の余裕度が0より小さい時は限度値Isn以上のn次の高調波電流が流れていることになるので規定不適合でNGとなり、n次の余裕度が0より大きい時はn次の高調波電流が限度値以下で規定に適合している状態で、n次の余裕度が1に近い時はn次の高調波電流が0に近づき、電源に悪影響を与えるn次の高調波電流がほとんどなく、非常に良好な状態であると言える。   As is clear from the definition, when the n-th order margin is smaller than 0, an n-th order harmonic current greater than the limit value Isn flows, so it is NG due to non-conformity, and the n-th order margin is 0. When the value is larger, the n-th order harmonic current is below the limit value and conforms to the regulation. When the n-order margin is close to 1, the n-th order harmonic current approaches 0, and the power supply is adversely affected. It can be said that there is almost no nth-order harmonic current to be applied, and the state is very good.

上記のn次の余裕度を2次から40次まで求め最も小さいものを高調波の余裕度と定義する。   The n-th order margin is obtained from the second order to the 40th order, and the smallest one is defined as a harmonic margin.

一般に、空気調和機として家庭用の4〜5kWクラスの製品を考えた場合、電源として200Vが使用されることが多く、運転時間は、春,秋の肌寒い頃に弱い暖房で使用される時間が一番多く、負荷の一番大きい条件は、早朝の暖房の立上がり時で、圧縮機を高速で駆動し、大きな暖房能力で急速に室内を暖める時である。   In general, when considering a 4-5 kW class product for home use as an air conditioner, 200V is often used as a power source, and the operating time is the time used by weak heating when it is chilly in spring and autumn. The most frequent and largest load condition is when the heating starts in the early morning, when the compressor is driven at high speed, and the room is heated rapidly with a large heating capacity.

このように、暖房能力,冷房能力の大小は負荷量の大小と連動し、空気調和機には負荷量の大小と連動する圧縮機回転数,直流電圧,入力電流,機体各部の温度,冷凍サイクルの温度等に応じた運転が要求される。   In this way, the heating capacity and cooling capacity are linked to the magnitude of the load, and the air conditioner has a compressor speed, DC voltage, input current, temperature of each part of the machine, refrigeration cycle linked to the magnitude of the load. The operation according to the temperature etc. is required.

はじめに1回の短絡のみ行った場合を説明する。この場合、電源半周期の電源電圧,電源電流(入力電流)の波形は、例えば、図2のようになる。交流電源電圧200V,50Hzとして、負荷の条件としては運転時間の長い暖房の弱運転に相当する、直流電圧Vdを260V、出力電力を880Wを想定し、ゼロクロスからの第1の短絡までの遅延時間をTdとし、短絡時間をTonとして、所要の直流電圧260Vを得て、力率が最大となる遅延時間Tdと短絡時間Tonを求め、その時の高調波の余裕度と力率をシミュレーションで求めると表1のようになる。   First, the case where only one short circuit is performed will be described. In this case, the waveforms of the power supply voltage and power supply current (input current) in the half cycle of the power supply are, for example, as shown in FIG. Assuming that the AC power supply voltage is 200V, 50Hz, the load condition is equivalent to the weak operation of heating with a long operating time, the DC voltage Vd is 260V, the output power is 880W, and the delay time from the zero cross to the first short circuit Is Td, the short circuit time is Ton, the required DC voltage 260V is obtained, the delay time Td and the short circuit time Ton at which the power factor is maximized are obtained, and the margin of the harmonics and the power factor at that time are obtained by simulation. It becomes like Table 1.

Figure 0005481165
Figure 0005481165

この表から判るように、遅延時間と短絡時間を変化させることにより、高調波の余裕度は向上させることができる。表1では、高調波の余裕度が増すと力率が下がる傾向にあり、高調波の余裕度と力率はトレードオフの関係となっている。   As can be seen from this table, the margin of harmonics can be improved by changing the delay time and the short circuit time. In Table 1, the power factor tends to decrease as the harmonic margin increases, and the harmonic margin and the power factor have a trade-off relationship.

次に、具体的な2回短絡の種々の例について説明する。   Next, various specific examples of the two-time short circuit will be described.

これに対して2回短絡を行った場合、電源半周期の電源電圧,電源電流(入力電流)の波形は、例えば、図3のようになる。   On the other hand, when the short circuit is performed twice, the waveforms of the power supply voltage and power supply current (input current) in the half cycle of the power supply are as shown in FIG. 3, for example.

直流電圧Vdを260V、出力電力を880W、交流電源電圧200V、50Hzとして、ゼロクロスからの第1の短絡までの遅延時間Tdを1.7ms、第1と第2の短絡時間を合計した合計短絡時間Tonを0.62msに固定して、第2の短絡時間を0.1〜0.5msに変化させ、第1の短絡と第2の短絡との間の開放時間を0.1〜0.8msまで変化させた場合の高調波の余裕度を表2に、力率を表3に示す。   DC voltage Vd is 260V, output power is 880W, AC power supply voltage is 200V, 50Hz, delay time Td from the zero cross to the first short circuit is 1.7ms, and the total short circuit time is the sum of the first and second short circuit time Ton is fixed at 0.62 ms, the second short-circuit time is changed from 0.1 to 0.5 ms, and the open time between the first short-circuit and the second short-circuit is 0.1 to 0.8 ms. Table 2 shows the margin of harmonics and Table 3 shows the power factor.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

ここで直流電圧260Vとなるように2回短絡し、高い力率を得たとしても、第1と第2の短絡の間の開放時間を大きくとりすぎてしまうと高調波の余裕度がNGとなってしまう。高調波の余裕度と力率がよく、制御のばらつきに対して余裕があるのは、第1と第2の短絡の間の開放時間が0.2msのときで、第2の短絡時間を変化させても高調波の余裕度は0.08〜0.18あり、力率は93.2〜93.9%と高調波の規格値内でかつ高力率を実現できる。   Here, even if the DC voltage is 260V twice and a high power factor is obtained, if the open time between the first and second short circuits is too long, the margin of harmonics is NG. turn into. Harmonic margin and power factor are good, and there is a margin for control variations when the open time between the first and second short circuits is 0.2 ms and the second short circuit time is changed. Even if it is made, the margin of the harmonic is 0.08 to 0.18, the power factor is 93.2 to 93.9%, which is within the standard value of the harmonic and can realize a high power factor.

さらにゼロクロスから第1の短絡までの遅延時間Tdと第1と第2の短絡時間を合計した合計短絡時間Tonを(Td,Ton)=(2.2ms,0.45ms),(2.7ms,0.35ms)とした場合の高調波の余裕度,力率を表4〜表7に示す。なお、以下の表は、特に断らない限り、電源電圧200V,電源周波数50Hzの場合の値である。   Further, the total short-circuit time Ton obtained by adding the delay time Td from the zero cross to the first short-circuit and the first and second short-circuit times is (Td, Ton) = (2.2 ms, 0.45 ms), (2.7 ms, Table 4 to Table 7 show the margin of harmonics and the power factor when 0.35 ms). The following table shows values for a power supply voltage of 200 V and a power supply frequency of 50 Hz unless otherwise specified.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(2.2ms,0.45ms)のときは第1の短絡と第2の短絡との間の開放時間は0.2〜0.4msの値がよく、このときの高調波の余裕度は0.08〜0.31で力率は90.7〜92.5%となる。1回のみの短絡では高調波に余裕がなかったが、2回短絡を行い、第1の短絡と第2の短絡との間の開放時間は0.2〜0.4msの間から選ぶことで、同等力率で高調波の余裕度を改善することができる。   When (Td, Ton) = (2.2 ms, 0.45 ms), the open time between the first short circuit and the second short circuit has a good value of 0.2 to 0.4 ms. The wave margin is 0.08 to 0.31 and the power factor is 90.7 to 92.5%. Although there was no margin in harmonics with only one short circuit, short circuit was performed twice, and the open time between the first short circuit and the second short circuit was selected from 0.2 to 0.4 ms. The harmonic margin can be improved with the same power factor.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(2.7ms,0.35ms)のときも第1の短絡と第2の短絡との間の開放時間が0.2〜0.4msの場合に良好な結果が得られ、高調波の余裕度は0.16〜0.37、力率は86.8〜89.5%となる。1回のみの短絡よりも、2回短絡を行い、第1の短絡と第2の短絡との間の開放時間を0.2〜0.4msの間から選ぶことで、同等力率で高調波の余裕度を改善することができる。   Even when (Td, Ton) = (2.7 ms, 0.35 ms), good results are obtained when the open time between the first short circuit and the second short circuit is 0.2 to 0.4 ms. The margin of harmonics is 0.16 to 0.37, and the power factor is 86.8 to 89.5%. Rather than a single short-circuit, the short-circuit is performed twice, and the open time between the first short-circuit and the second short-circuit is selected from 0.2 to 0.4 ms, so that the harmonics are equal in power factor. Can be improved.

上記条件に対して、使用するモータの巻線回数を増やしたときには、出力直流電圧のアップが必要になるが、そのような状況でも本発明の技術が使用可能か否かを検討するため、直流電圧を270Vに変えて検討した。この場合、第1と第2の短絡時間を合計した合計短絡時間Tonは直流電圧が260Vの時に比べて、長くする必要があり、力率が最大となる遅延時間Tdと短絡時間Tonは(Td,Ton)=(1.7ms,0.74ms),(2.2ms,0.56ms),(2.7ms,0.44ms)となる。1回短絡のときの高調波の余裕度,力率を表8に、2回短絡のときの高調波の余裕度,力率を表9〜表14に示す。   When the number of windings of the motor to be used is increased with respect to the above conditions, it is necessary to increase the output DC voltage. In order to investigate whether or not the technology of the present invention can be used in such a situation, The voltage was changed to 270V and examined. In this case, the total short-circuit time Ton obtained by adding the first and second short-circuit times needs to be longer than when the DC voltage is 260 V, and the delay time Td and the short-circuit time Ton at which the power factor is maximized are (Td , Ton) = (1.7 ms, 0.74 ms), (2.2 ms, 0.56 ms), (2.7 ms, 0.44 ms). Table 8 shows the margin and power factor of the harmonic when the short circuit is performed once, and Tables 9 to 14 show the margin and power factor of the harmonic when the circuit is short-circuited twice.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(1.7ms,0.74ms)の場合、1回のみの短絡では力率が90.8%、高調波の余裕度が−0.08で高調波の余裕度がNGであるが、2回短絡の場合は、第1と第2の短絡の間の開放時間が0.2msのときに、高調波の余裕度と力率がよく、制御のばらつきに対して余裕があり、第2の短絡時間を変化させても高調波の余裕度は0.03〜0.16、力率は91.5〜92.3%と高調波の規格値内でかつ高力率を実現できる。   When (Td, Ton) = (1.7 ms, 0.74 ms), the power factor is 90.8%, the harmonic margin is -0.08, and the harmonic margin is NG with only one short circuit. However, in the case of two short-circuits, when the open time between the first and second short-circuits is 0.2 ms, the harmonic margin and power factor are good, and there is a margin for control variations. Yes, even if the second short-circuiting time is changed, the margin of harmonics is 0.03 to 0.16, the power factor is 91.5 to 92.3%, within the standard value of harmonics and high power factor. realizable.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(2.2ms,0.56ms)の場合、1回のみの短絡では力率91.0%、高調波の余裕度0.09で高調波の規格値に対して余裕が少ない、2回短絡の場合は、第1と第2の短絡の間の開放時間が0.2msのときに、高調波の余裕度と力率がよく、制御のばらつきに対して余裕があり、第2の短絡時間を変化させても高調波の余裕度は0.13〜0.28あり、力率は91.0〜91.5%と高調波の規格値内でかつ高力率を実現できる。   When (Td, Ton) = (2.2 ms, 0.56 ms), a power factor of 91.0% and a margin of harmonics of 0.09 are sufficient for the harmonics with a single short circuit. In the case of few short-circuits, when the open time between the first and second short-circuits is 0.2 ms, the margin and power factor of harmonics are good, and there is room for control variations. Even if the second short-circuiting time is changed, the margin of harmonics is 0.13 to 0.28, and the power factor is 91.0 to 91.5%, which is within the standard value of harmonics and achieves a high power factor. it can.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(2.7ms,0.44ms)の場合、1回のみの短絡では力率が89.6%、高調波の余裕度が−0.09で高調波の余裕度がNGであるが、2回短絡の場合は、第1と第2の短絡の間の開放時間が0.2〜0.4msのときに、高調波の余裕度と力率がよく、制御のばらつきに対して余裕があり、第2の短絡時間を変化させても高調波の余裕度は0.05〜0.26あり、力率は87.7〜89.3%と高調波の規格値内でかつ高力率を実現できる。   When (Td, Ton) = (2.7 ms, 0.44 ms), power factor is 89.6%, harmonic margin is -0.09 and harmonic margin is NG with only one short circuit. However, in the case of two short-circuits, when the open time between the first and second short-circuits is 0.2 to 0.4 ms, the harmonic margin and power factor are good, resulting in control variations. Even if the second short-circuit time is changed, the harmonic margin is 0.05 to 0.26, and the power factor is 87.7 to 89.3%, which is within the standard value of the harmonic. And a high power factor can be realized.

次に、空気調和機の暖房立上がりの時のように、圧縮機を高速回転させる必要が生じた場合は、モータの回転数を上げるために直流電圧を上げる必要があり、且つ、空気調和機から吹出す温風の温度を上げる際は高負荷となるため、出力を増加させなければならない。   Next, when it is necessary to rotate the compressor at a high speed, such as when the air conditioner is heated, it is necessary to increase the DC voltage in order to increase the rotation speed of the motor. When raising the temperature of the hot air that is blown out, the load must be increased and the output must be increased.

このため、交流電源電圧200V,50Hz、直流電圧Vdを280V、出力電力を1800Wで検討した。この場合、第1と第2の短絡時間を合計した合計短絡時間Tonは更に長くする必要があり、力率が最大となる遅延時間Tdと短絡時間Tonは(Td,Ton)=(1.5ms,1.24ms)となる。1回短絡のときの高調波の余裕度,力率を表15に、2回短絡で第2の短絡時間を0.1〜0.9msに変化させ、第1の短絡と第2の短絡との間の開放時間を0.1〜1.0msまで変化させた場合の高調波の余裕度,力率を表16,表17に示す。   For this reason, the AC power supply voltage was 200 V, 50 Hz, the DC voltage Vd was 280 V, and the output power was 1800 W. In this case, the total short circuit time Ton obtained by adding the first and second short circuit times needs to be further increased, and the delay time Td and the short circuit time Ton at which the power factor is maximized are (Td, Ton) = (1.5 ms). , 1.24 ms). Harmonic margin and power factor at the time of one short-circuit are changed to Table 15. The second short-circuit time is changed from 0.1 to 0.9 ms by two short-circuits, and the first short-circuit and the second short-circuit Tables 16 and 17 show the margin of harmonics and the power factor when the open time during the period is changed from 0.1 to 1.0 ms.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(1.5ms,1.24ms)で、1回のみの短絡では力率93.6%、高調波の余裕度0.16で高調波規の格値内で高力率であるが、2回短絡のときは、第1と第2の短絡の間の開放時間を0.2〜0.4msの場合に良好な結果が得られ、第2の短絡時間を変化させても高調波の余裕度は0.09〜0.33、力率は93.5〜94.7%となる。1回のみの短絡よりも、2回短絡を行い、第1の短絡と第2の短絡との間の開放時間を0.2〜0.4msの間から選ぶことで、高調波の余裕度を大きく、力率を高くすることができる。   (Td, Ton) = (1.5ms, 1.24ms), power factor is 93.6% with only one short circuit, harmonic margin is 0.16, and high power factor is within the harmonic standard. However, in the case of two short-circuits, good results are obtained when the open time between the first and second short-circuits is 0.2 to 0.4 ms, and the second short-circuit time is changed. The margin of harmonics is 0.09 to 0.33, and the power factor is 93.5 to 94.7%. Rather than a single short-circuit, the short-circuit is performed twice and the open time between the first short-circuit and the second short-circuit is selected from 0.2 to 0.4 ms, so that the harmonic margin can be increased. Large, can increase the power factor.

次に、上記条件から、使用するモータの巻線回数を増やした場合などの汎用性を検討するため、直流電圧を更に高くして、交流電源電圧200V,50Hz、直流電圧Vdを300V、出力電力を1800Wで検討した。この場合、第1と第2の短絡時間を合計した合計短絡時間Tonは更に長くする必要があり、力率が最大となる遅延時間Tdと短絡時間Tonは(1.5ms,1.44ms)となる。1回短絡のときの高調波の余裕度,力率を表15に、2回短絡で第2の短絡時間を0.1〜0.9msに変化させ、第1の短絡と第2の短絡との間の開放時間を0.1〜0.9msまで変化させた場合の高調波の余裕度,力率を表18,表19に示す。   Next, in order to examine versatility when the number of windings of the motor used is increased from the above conditions, the DC voltage is further increased, the AC power supply voltage 200 V, 50 Hz, the DC voltage Vd is 300 V, and the output power. Was examined at 1800W. In this case, the total short-circuit time Ton obtained by adding the first and second short-circuit times needs to be further increased, and the delay time Td and the short-circuit time Ton at which the power factor becomes maximum are (1.5 ms, 1.44 ms). Become. Harmonic margin and power factor at the time of one short-circuit are changed to Table 15. The second short-circuit time is changed from 0.1 to 0.9 ms by two short-circuits, and the first short-circuit and the second short-circuit Tables 18 and 19 show the margin of harmonics and the power factor when the open time during the period is changed from 0.1 to 0.9 ms.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

(Td,Ton)=(1.5ms,1.44ms)の場合、1回のみの短絡では力率89.3%、高調波の余裕度0.34で高調波の規格値内で高力率であるが、2回短絡の場合は、第1と第2の短絡の間の開放時間を0.2〜0.3msの場合に良好な結果が得られ、第2の短絡時間を変化させても高調波の余裕度は0.10〜0.42、力率は89.6〜91.1%となる。1回のみの短絡よりも、2回短絡を行い、第1の短絡と第2の短絡との間の開放時間を0.2〜0.3msの間から選ぶことで、高調波の余裕度を大きく、力率を高くすることができる。   When (Td, Ton) = (1.5 ms, 1.44 ms), the power factor is 89.3% for a single short-circuit, and the harmonic margin is 0.34 and the high power factor is within the harmonic specification. However, in the case of two short-circuits, good results are obtained when the open time between the first and second short-circuits is 0.2 to 0.3 ms, and the second short-circuit time is changed. The margin of harmonics is 0.10 to 0.42 and the power factor is 89.6 to 91.1%. Rather than a single short-circuit, the short-circuit is performed twice, and the opening time between the first short-circuit and the second short-circuit is selected from 0.2 to 0.3 ms, so that the harmonic margin can be increased. Large, can increase the power factor.

以上のように電源高調波電流の抑制と高力率を両立させるにはスイッチング手段106を1回短絡させるよりも2回短絡させたほうがよく、さらに上述のように50Hzの場合は、第1の短絡と第2の短絡との間のスイッチング手段106の開放時間を0.2〜0.4msの間から選ぶのがよい。また、60Hzの場合は、この解放時間を50Hzの時の約5/6の0.16〜0.33msの間から選ぶのがよい。   As described above, in order to achieve both suppression of power supply harmonic current and high power factor, it is better to short-circuit the switching means 106 twice than to short-circuit once, and in the case of 50 Hz as described above, the first The opening time of the switching means 106 between the short circuit and the second short circuit is preferably selected from 0.2 to 0.4 ms. In the case of 60 Hz, this release time is preferably selected from 0.16 to 0.33 ms, which is about 5/6 at 50 Hz.

本実施例における直流電源装置は図3に示すようにゼロクロス検出手段107で検出したゼロクロスから遅延時間の後、スイッチング制御手段108はスイッチング手段106をオンして第1の短絡を行い、交流電源101が50Hzのときは0.3ms、60Hzのときは0.25msの間隔だけスイッチング手段106を開放し、その後スイッチング手段106をオンして第2の短絡を行い、その後スイッチング手段106を開放する。   As shown in FIG. 3, the DC power supply device in the present embodiment, after a delay time from the zero cross detected by the zero cross detecting means 107, the switching control means 108 turns on the switching means 106 to perform the first short circuit, and the AC power supply 101. When the frequency is 50 Hz, the switching means 106 is opened for an interval of 0.3 ms and when it is 60 Hz, then the switching means 106 is turned on to perform a second short circuit, and then the switching means 106 is opened.

第1の短絡と第2の短絡との間放の時間は50Hzの時は0.2〜0.4ms,60Hzの時は0.16〜0.33msの間で選ぶ必要があるが、この間であれば状況に応じて変化させてもよい。   The time between the first short circuit and the second short circuit needs to be selected from 0.2 to 0.4 ms at 50 Hz, and from 0.16 to 0.33 ms at 60 Hz. If necessary, it may be changed according to the situation.

次に、第1の短絡時間と第2短絡時間の決定方法について説明する。
(a)例えば第2の短絡時間を0.1msに固定とし、第1の短絡時間は交流の複数周期間の直流電圧の平均を現在直流電圧として検出し目標直流電圧との差分でPI制御を行って決定する。
(b)別の方法としては第1と第2の短絡時間の比率を決めて第1と第2の短絡時間の合計について現在直流電圧を検出し目標直流電圧との差分でPI制御を行ってもよい。
(c)更に別の方法としては第1と第2の短絡時間の合計について現在直流電圧を検出し目標直流電圧との差分でPI制御を行い、第1の短絡時間にある制限値を持たせ、第1の短絡時間が制限値を越えたら第2の短絡時間を伸ばすようにしてもよい。また、この制限値を入力電流,負荷情報,目標直流電圧,現在直流電圧等により変化させてもよい。
Next, a method for determining the first short circuit time and the second short circuit time will be described.
(A) For example, the second short-circuiting time is fixed at 0.1 ms, and the first short-circuiting time is obtained by detecting the average of the DC voltage between a plurality of AC cycles as the current DC voltage and performing PI control based on the difference from the target DC voltage. Go and decide.
(B) Another method is to determine the ratio between the first and second short-circuit times, detect the current DC voltage for the sum of the first and second short-circuit times, and perform PI control based on the difference from the target DC voltage. Also good.
(C) As another method, the current DC voltage is detected for the sum of the first and second short-circuit times, PI control is performed based on the difference from the target DC voltage, and a limit value for the first short-circuit time is given. When the first short circuit time exceeds the limit value, the second short circuit time may be extended. Further, this limit value may be changed according to input current, load information, target DC voltage, current DC voltage, and the like.

交流電源101の周波数が50Hzか60Hzかの判定はゼロクロス信号の間隔を計測し、例えば9msより長ければ50Hz,9msより短ければ60Hzの如くに判定すればよい。   Whether the frequency of the AC power supply 101 is 50 Hz or 60 Hz may be determined by measuring the interval of the zero cross signal, for example, 50 Hz if longer than 9 ms and 60 Hz if shorter than 9 ms.

また、スイッチング手段を2回を超えて短絡する場合について図4,図5を用いて説明する。図4は電源装置で3回短絡時の電源電圧・入力電流波形である。図5は電源装置で5回短絡時の電源電圧・入力電流波形である。   The case where the switching means is short-circuited more than twice will be described with reference to FIGS. FIG. 4 shows power supply voltage / input current waveforms when the power supply device is short-circuited three times. FIG. 5 shows power supply voltage / input current waveforms when the power supply is short-circuited five times.

上述のように、スイッチング手段106を2回短絡することで高調波を抑制して力率を改善することができるが、更に、さらに高調波電流を抑制し、力率を高くする場合、短絡回数を多くすることが有効である。ただし短絡回数を増やすと損失は増える。   As described above, the power factor can be improved by suppressing the harmonics by short-circuiting the switching means 106 twice, but if the harmonic current is further suppressed and the power factor is increased, the number of short-circuits It is effective to increase However, increasing the number of short circuits increases the loss.

次に、3回短絡する場合について説明する。   Next, the case of short-circuiting three times will be described.

図4のようにゼロクロス検出手段107で検出したゼロクロスから1.5ms遅延時間の後、スイッチング制御手段108はスイッチング手段106をオンして第1の短絡を行い、0.2ms、だけスイッチング手段106をオフし、その後スイッチング手段106をオンして第2の短絡を行い、その後スイッチング手段106をオフし、その後ゼロクロスから4.0msの時点でスイッチング手段106をオンして第3の短絡を行い、その後スイッチング手段106を開放する。   As shown in FIG. 4, after a delay time of 1.5 ms from the zero cross detected by the zero cross detecting means 107, the switching control means 108 turns on the switching means 106 to perform the first short circuit, and the switching means 106 is turned on for 0.2 ms. Then, the switching means 106 is turned on to perform a second short circuit, and then the switching means 106 is turned off, and then the switching means 106 is turned on at a point of 4.0 ms from the zero cross to perform a third short circuit. The switching means 106 is opened.

第1の短絡と第2の短絡との間の開放の時間は50Hzの時は0.2〜0.4ms,60Hzの時は0.16〜0.33msの間で選ぶ必要があるが、この範囲であれば周囲の状況に応じて変化させてもよい。第2の短絡と第3の短絡との間の開放の時間は固定値でもよいし可変させてもよい。   The opening time between the first short circuit and the second short circuit must be selected from 0.2 to 0.4 ms at 50 Hz, and from 0.16 to 0.33 ms at 60 Hz. If it is within the range, it may be changed according to the surrounding situation. The opening time between the second short circuit and the third short circuit may be a fixed value or variable.

第1の短絡時間と第2の短絡時間と第3の短絡時間の決定方法について説明する。
(d)例えば第2の短絡時間と第3の短絡時間は0.1msと固定とし、第1の短絡時間は現在直流電圧を検出し目標直流電圧との差分でPI制御を行って決定する。
(e)別の方法としては第3の短絡時間は0.1msと固定とし、第1と第2の短絡時間は現在直流電圧を検出し目標直流電圧との差分でPI制御を行って決定し、前述の(a)〜(c)の短絡時間の決定方法で行ってもよい。
(f)別の方法としては第1と第2と第3の短絡時間の比率を決めて第1と第2と第3の短絡時間の合計について現在直流電圧を検出し目標直流電圧との差分でPI制御を行ってもよい。
(g)別の方法としては第1と第2の第3の短絡時間の合計について現在直流電圧を検出し目標直流電圧との差分でPI制御を行い、第1と第2の短絡時間にある制限値を持たせて第1の短絡時間が制限値を越えたら第2の短絡時間をのばし第2の短絡時間が制限値を越えたら第3の短絡を伸ばすようにしてもよい。また、この制限値を入力電流,負荷情報,目標電圧,現在電圧等により変化させてもよい。
A method for determining the first short circuit time, the second short circuit time, and the third short circuit time will be described.
(D) For example, the second short circuit time and the third short circuit time are fixed to 0.1 ms, and the first short circuit time is determined by detecting the current DC voltage and performing PI control based on the difference from the target DC voltage.
(E) As another method, the third short-circuit time is fixed at 0.1 ms, and the first and second short-circuit times are determined by detecting the current DC voltage and performing PI control based on the difference from the target DC voltage. The method for determining the short-circuit time of (a) to (c) described above may be used.
(F) As another method, the ratio of the first, second, and third short-circuit times is determined, the current DC voltage is detected for the sum of the first, second, and third short-circuit times, and the difference from the target DC voltage PI control may be performed with
(G) As another method, the current DC voltage is detected with respect to the sum of the first and second third short-circuit times, and PI control is performed based on the difference from the target DC voltage, and the first and second short-circuit times are present. If the first short circuit time exceeds the limit value with a limit value, the second short circuit time may be extended, and if the second short circuit time exceeds the limit value, the third short circuit may be extended. Further, this limit value may be changed according to input current, load information, target voltage, current voltage, and the like.

尚、以上の実施例では、短絡回数を5回の場合に、2回・3回・4回・5回ときめ細かく多段階に切り替えているが、例えば2回短絡から5回短絡に切り替える2段階でもよい。   In the above embodiment, when the number of short-circuits is 5, the number of times is finely switched to two, three, four, and five times. But you can.

更に短絡回数を増やし、5回短絡を行う場合について説明する。2回目の短絡までは前述の(a)〜(c)の短絡時間の決定方法行う。   Further, the case where the number of short circuits is increased and the short circuit is performed five times will be described. Until the second short circuit, the determination method of the short circuit time of (a) to (c) is performed.

50Hzの場合は3回目の短絡はゼロクロスから4ms後、0.1ms行い、4回目の短絡は6ms後、0.1ms、5回目の短絡は7ms後0.1ms行う。図5に交流電源101の電圧、電流波形を示す。60Hzの場合は3回目の短絡はゼロクロスから3.32ms後、0.1ms行い、4回目の短絡は5ms後、0.1ms、5回目の短絡は5.8ms後0.1ms行う。   In the case of 50 Hz, the third short circuit is performed 4 ms after the zero cross, 0.1 ms is performed, the fourth short circuit is performed 6 ms, 0.1 ms, and the fifth short circuit is performed 0.1 ms after 7 ms. FIG. 5 shows the voltage and current waveforms of the AC power supply 101. In the case of 60 Hz, the third short circuit is performed 3.3 ms after the zero cross, 0.1 ms is performed, the fourth short circuit is performed 5 ms, 0.1 ms, and the fifth short circuit is performed 0.1 ms after 5.8 ms.

ここで、3,4,5回目の短絡時間は0.1msとしたが、50Hzの場合は0.25ms、60Hzの場合は0.2msより短い時間であればもっと長くしてもよいし、3,4,5回目でそれぞれ短絡時間を変えてもよい。また入力電流,負荷情報,目標電圧,現在電圧等により変化させてもよい。   Here, the third, fourth, and fifth short-circuiting times are set to 0.1 ms, but may be longer as long as they are shorter than 0.25 ms for 50 Hz and 0.2 ms for 60 Hz. , 4 and 5 times, the short circuit time may be changed. Further, it may be changed according to input current, load information, target voltage, current voltage, and the like.

次に、電源電圧と目標直流電圧との比に応じて、短絡回数を変化させる方法について説明する。   Next, a method of changing the number of short circuits according to the ratio between the power supply voltage and the target DC voltage will be described.

空気調和機は周辺の状況に応じた能力で運転することが求められ、この能力の大小は空気調和機が受けている負荷の量の大小と連動し、負荷の量の大小は直流電源装置が電力を供給する圧縮機の回転数,直流電源装置の出力直流電圧,直流電源装置の交流入力電流,空気調和機の機体各部の温度,冷凍サイクルの温度等の周辺情報に応じて変化する。   The air conditioner is required to be operated with the capacity according to the surrounding conditions. The magnitude of this capacity is linked to the magnitude of the load received by the air conditioner, and the magnitude of the load is determined by the DC power supply. It varies according to peripheral information such as the number of rotations of the compressor that supplies power, the output DC voltage of the DC power supply, the AC input current of the DC power supply, the temperature of each part of the air conditioner body, the temperature of the refrigeration cycle, and the like.

図1において、目標電圧設定手段111hは、周辺情報検出手段118が検出したこれらの周辺情報に応じて目標直流電圧Vgを設定し、コンバータ制御手段111fに伝える。この場合、入力する電源電圧Vs(ピーク値)を検出し目標直流電圧Vg(平均値)との比の値を昇圧比Rとし、この昇圧比R=Vg/Vsを計算する。   In FIG. 1, a target voltage setting unit 111h sets a target DC voltage Vg according to the peripheral information detected by the peripheral information detection unit 118 and transmits it to the converter control unit 111f. In this case, the input power supply voltage Vs (peak value) is detected, the value of the ratio with the target DC voltage Vg (average value) is set as the boost ratio R, and this boost ratio R = Vg / Vs is calculated.

コンバータ制御手段111fはマイクロコンピュータ111に内蔵され、電源電圧・ゼロクロス検出手段107の信号を受けたA/D変換部111b、周波数検出手段111aやインバータ制御手段111gおよび目標電圧設定手段111hからの情報を基にPWM出力部111cを通じてスイッチング制御手段108に信号を送り、スイッチング制御手段108は信号に基づきスイッチング手段106を制御する。   The converter control means 111f is built in the microcomputer 111 and receives information from the A / D converter 111b, the frequency detection means 111a, the inverter control means 111g, and the target voltage setting means 111h that have received the signal from the power supply voltage / zero cross detection means 107. Based on this signal, a signal is sent to the switching control means 108 through the PWM output unit 111c, and the switching control means 108 controls the switching means 106 based on the signal.

昇圧比が1以上の場合は短絡回数を6回とし、昇圧比が1未満の場合は短絡回数を2〜5回とする。この場合、短絡回数を2⇔6回,3⇔6回,5⇔6回のように短絡回数を飛び飛びに切換えても順に切換えてもよい。前述の表2〜表7,表9〜表14,表16,表17で示した例は昇圧比が1未満で2回短絡の場合のデータであり、表18,表19の例は昇圧比が1以上で2回短絡の場合のデータである。   When the step-up ratio is 1 or more, the number of short-circuits is six, and when the step-up ratio is less than 1, the number of short-circuits is two to five. In this case, the number of short-circuits may be switched between two or six times, such as 2⇔6 times, 3⇔6 times, or 5 回 6 times, or sequentially. The examples shown in Tables 2 to 7, Tables 9 to 14, Table 16, and Table 17 are data when the step-up ratio is less than 1 and short-circuited twice. Tables 18 and 19 show examples of the step-up ratio. Is data in case of 1 or more and short circuit twice.

なお、昇圧比が運転開始時は1未満で有ったのが、運転中に変わり1以上になった場合や、最初から1以上の場合は短絡回数を3回以上の運転となるが、この場合にも、1回目と2回目の短絡間隔を前述と同じように電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msにすることで良好な結果を得ることができる。   In addition, when the step-up ratio was less than 1 at the start of operation, it changed to 1 or more during operation, or when it was 1 or more from the beginning, the number of short-circuits would be 3 or more. Even in this case, the first and second short-circuit intervals should be 0.2 to 0.4 ms when the power supply frequency is 50 Hz, and 0.16 to 0.33 ms when the power supply frequency is 60 Hz. Good results can be obtained.

以上のとおり、実施例は、目標電圧設定手段で設定された目標直流電圧と電源電圧検出手段で検出された電源電圧との比の値が所定値以上の場合に、スイッチング手段の短絡回数を前記比の値に応じて2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替えるものである。   As described above, in the embodiment, when the value of the ratio between the target DC voltage set by the target voltage setting means and the power supply voltage detected by the power supply voltage detection means is a predetermined value or more, the number of short circuits of the switching means is Depending on the value of the ratio, the number of short-circuits is switched to a number that is more than two times and that the noise frequency of the DC power supply device does not exceed the operating noise frequency of the motor of the apparatus to be incorporated.

このように、実施例の直流電源装置は、交流電源より入力された交流電力を直流電力に変換する整流回路と、前記交流電源と前記整流回路との間に接続されたリアクタと、前記交流電源を前記リアクタを介して短絡するスイッチング手段と、前記直流電力の目標電圧設定手段と、前記交流電源の周波数を検出する周波数検出手段と、前記交流電源の電源電圧を検出する電源電圧検出手段と、前記交流電源のゼロクロス点を検出するゼロクロス検出手段と、前記整流回路の出力である直流電圧を検出する直流電圧検出手段と、前記ゼロクロス点に同期させて前記スイッチング手段を短絡,開放するスイッチング制御手段とを備え、前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値未満の場合に前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替える。   Thus, the DC power supply device of the embodiment includes a rectifier circuit that converts AC power input from an AC power source into DC power, a reactor connected between the AC power source and the rectifier circuit, and the AC power source. Switching means for short-circuiting via the reactor, target voltage setting means for the DC power, frequency detection means for detecting the frequency of the AC power supply, power supply voltage detection means for detecting the power supply voltage of the AC power supply, Zero cross detection means for detecting a zero cross point of the AC power supply, DC voltage detection means for detecting a DC voltage as an output of the rectifier circuit, and switching control means for short-circuiting and opening the switching means in synchronization with the zero cross point The switching control means is detected by the target DC voltage set by the target voltage setting means and the power supply voltage detection means. When the value of the ratio to the power supply voltage is less than a predetermined value, the switching means is short-circuited twice during a half cycle from the zero-cross point of the AC power source detected by the zero-cross detection means, and this two-time short circuit The first and second short-circuit intervals are 0.2 to 0.4 ms when the power frequency detected by the frequency detection means is 50 Hz, and 0.16 to 0.33 ms when the power frequency is 60 Hz. Thereafter, when the value of the ratio is equal to or greater than a predetermined value, the number of short-circuits of the switching means is greater than the number of times according to the value of the ratio and more than the two times, and the direct current with respect to the operating noise frequency of the motor of the incorporated device Switch to the number of shorts that does not exceed the noise frequency of the power supply.

一般に、交流電源を整流回路で直流電源に変換し負荷を駆動する時、交流電源と整流回路の間にリアクタを設け、リアクタを介して交流電源を短絡する短絡素子を整流回路と並列に設けて、交流電源のゼロクロス点を基準とした適宜な時期に適宜な時間だけ短絡素子を作動させ、力率を改善することが行われている。   Generally, when driving a load by converting AC power into DC power by a rectifier circuit, a reactor is provided between the AC power supply and the rectifier circuit, and a short-circuit element that short-circuits the AC power supply via the reactor is provided in parallel with the rectifier circuit. In order to improve the power factor, the short-circuit element is operated for an appropriate time at an appropriate time based on the zero cross point of the AC power supply.

これは、力率を改善することで、交流電源の供給者の設備負担を軽減することに加えて、機器を接続するブレーカー、またはコンセントの容量を目いっぱいに活用して機器の能力を最大限に発揮させ、実質的に使用者のコストパフォーマンスを良くすることができるためである。しかし、闇雲に短絡すれば良いわけではなく、短絡の仕方や負荷の状況により、電源高調波電流が増加する場合がある。   In addition to reducing the facility burden on AC power supply suppliers by improving the power factor, the capacity of the circuit breaker or outlet is fully utilized to maximize the capacity of the equipment. This is because the cost performance of the user can be substantially improved. However, it is not necessary to short-circuit to the dark clouds, and the power supply harmonic current may increase depending on the short-circuiting method and load conditions.

前述の力率を改善し、電源高調波電流を抑制するために行う短絡素子の短絡回数は1回の短絡よりも2回の短絡のほうが上記の効果が大きく、更に短絡回数を多くすることで、電源高調波電流の規制を満足しつつ、更に力率を高くすることが可能である。   The number of short-circuits of the short-circuit element performed to improve the power factor and suppress the power supply harmonic current is greater than the above-mentioned effect by two short-circuits rather than one short-circuit, and further by increasing the number of short-circuits. The power factor can be further increased while satisfying the regulation of the power supply harmonic current.

理想的には、電源高調波電流を減少させるため、短絡素子のスイッチングを高周波で行わせ、電源電流をほぼ、電源電圧の瞬時値に同期させ、且つ、比例させて変化させれば良いが、こうするためには、短絡素子として高速の応答が可能な素子を選定しなければならず、通常高価な素子を使う必要が生じる。また、短絡素子のスイッチング損失が大きくなり、短絡素子の温度上昇が増える。   Ideally, in order to reduce the power supply harmonic current, the short-circuit element is switched at a high frequency, and the power supply current may be substantially synchronized with the instantaneous value of the power supply voltage and changed in proportion. In order to do this, an element capable of high-speed response must be selected as the short-circuit element, and it is usually necessary to use an expensive element. Further, the switching loss of the short-circuit element increases, and the temperature rise of the short-circuit element increases.

これを乗切るため、必然的に周辺の部品を含めて割高な高耐熱性の部品を使用することになり、このため、コストの上昇は避けられず、また、損失が大きいため、機器を接続しているブレーカー、またはコンセントの容量を目いっぱいに活用しても、負荷に供給できる電力が必ずしも最大にはならない。   In order to survive this, inevitably, expensive and heat-resistant parts including peripheral parts are used, and as a result, an increase in cost is inevitable and the loss is large. Even if the capacity of the breaker or outlet is fully utilized, the power that can be supplied to the load is not necessarily maximized.

また、負荷として、空気調和機を想定した場合、空気調和機は運転当初には大能力で室内を空調して使用者の快適性への要求に素早く対応し、設定温度付近では、空調運転が断続して使用者に不快感を与えないように、小能力で連続運転する必要がある。このため、圧縮機の回転数を可変にして、大能力から小能力までの広範な負荷変動に対処できることが要求される。   When an air conditioner is assumed as a load, the air conditioner has a large capacity at the beginning of the operation to quickly air-condition the room and quickly respond to the user's demands for comfort. It is necessary to continuously operate with a small capacity so as not to cause discomfort to the user intermittently. For this reason, it is required to be able to cope with a wide range of load fluctuations from a large capacity to a small capacity by making the rotation speed of the compressor variable.

なお、上述の整流回路を採用する場合、電源電圧の変動により、直流電圧が変動するのを極力避ける工夫も必要となる。   In addition, when employ | adopting the above-mentioned rectifier circuit, the device which avoids fluctuation | variation of DC voltage as much as possible by the fluctuation | variation of a power supply voltage is also needed.

実施例の直流電源装置では、負荷の駆動に最適な直流電圧を目標電圧設定手段で設定し、電源電圧の実効値との比の値が所定値未満の場合、つまり、負荷が軽く小能力での運転の場合には、電源周波数に応じた適切な短絡間隔で2回短絡を行うことで、電源高調波電流を抑制しつつ、力率を上げることができる。この時、スイッチング回数は2回のみなので、スイッチング損失は小さく、効率の良い運転ができる。   In the DC power supply device of the embodiment, when the DC voltage optimum for driving the load is set by the target voltage setting means and the value of the ratio with the effective value of the power supply voltage is less than a predetermined value, that is, the load is light and has a small capacity. In the case of this operation, the power factor can be increased while suppressing the power supply harmonic current by short-circuiting twice at an appropriate short-circuit interval corresponding to the power supply frequency. At this time, since the number of times of switching is only two, the switching loss is small and an efficient operation can be performed.

また、目標電圧と、電源電圧の実効値との比の値が所定値以上の場合、つまり、負荷が重く大能力での運転の場合には、6回までの短絡回数を単調に増加させることで、電源高調波電流を規制値以下に抑制しつつ、電源電圧の変動をカバーし、且つ、直流電圧の昇圧と力率のアップを両立できる。この時、スイッチングの回数は高々6回なので、スイッチング損失も僅かな増加で済み、高効率を維持できる。   In addition, when the ratio of the target voltage to the effective value of the power supply voltage is greater than or equal to a predetermined value, that is, when the load is heavy and the operation is performed at a large capacity, the number of short circuits up to 6 times should be increased monotonously. Thus, it is possible to cover the fluctuation of the power supply voltage while suppressing the power supply harmonic current below the regulation value, and to simultaneously increase the DC voltage and increase the power factor. At this time, since the number of times of switching is 6 at most, the switching loss can be increased only slightly, and high efficiency can be maintained.

この場合、2回目までの短絡は力率の増加と電源高調波電流の抑制を主眼とし、3回目の短絡は直流電圧の昇圧を主眼とし、4回目の短絡で直流電圧の昇圧と力率の増加を図り、5回目と6回目の短絡は力率の増加を主眼として短絡動作を実行する。   In this case, the second short circuit focuses on the increase of the power factor and the suppression of the power supply harmonic current, the third short circuit focuses on the DC voltage boost, and the fourth short circuit increases the DC voltage and power factor. In order to increase, the fifth and sixth short-circuit operations are performed with a focus on increasing the power factor.

特に、駆動する負荷が空気調和機の圧縮機である場合、空気調和機は室内の温度が設定温度に近い条件での運転(圧縮機の回転数が低い、小能力での連続運転)が非常に長いことから、スイッチング損失が小さい、効率の良い運転が長く続き消費電力量を抑制することができる。   In particular, when the load to be driven is a compressor of an air conditioner, the air conditioner is very likely to operate under conditions where the indoor temperature is close to the set temperature (continuous operation with low capacity, low compressor speed). Therefore, efficient operation can be continued for a long time with low switching loss, and power consumption can be suppressed.

また、空気調和運転の開始当初のような高負荷時はスイッチングの回数を増やして、圧縮用モータが誘起電圧に打勝って高速回転し、大能力を発揮できるよう直流電圧を昇圧し、圧縮機を駆動すると共に、高力率を確保し、空気調和機を接続したブレーカー、またはコンセントの容量を目いっぱいに活用して空気調和機の能力を最大限に発揮させ、室内を素早く快適温度にすることができる。   In addition, when the load is high, such as at the beginning of air-conditioning operation, the number of switchings is increased, and the DC voltage is boosted so that the compression motor can overcome the induced voltage and rotate at a high speed to exhibit its high capacity. As well as ensuring a high power factor, the capacity of the breaker or outlet connected to the air conditioner can be fully utilized to maximize the performance of the air conditioner and quickly bring the room to a comfortable temperature. be able to.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することができる。   For this reason, a DC power supply device that realizes high efficiency and appropriate power factor at low load while realizing high power factor and appropriate efficiency at high load while suppressing power supply harmonic current with an inexpensive circuit configuration is provided. be able to.

なお、上記では具体的に説明するため、負荷としてインバータ制御の空気調和機を例にとったが、本発明はインバータ制御の空気調和機用の直流電源装置に限定されるものではなく、同様な構成の直流電源装置であれば同様の効果を得ることができるのは言うまでも無い。   In the above description, an inverter-controlled air conditioner is taken as an example as a load for specific description. However, the present invention is not limited to a DC power supply for an inverter-controlled air conditioner. It goes without saying that the same effect can be obtained if the DC power supply device has the configuration.

また、実施例の直流電源装置は、前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値以上の場合に、前記2回短絡の場合と同様に、前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替える。   Further, in the DC power supply device according to the embodiment, when the switching control means has a ratio value between the target DC voltage set by the target voltage setting means and the power supply voltage detected by the power supply voltage detection means is a predetermined value or more. In the same manner as in the case of the two-time short circuit, the switching unit is short-circuited twice during a half cycle from the zero-cross point of the AC power source detected by the zero-cross detection unit. The short-circuit interval between the second time and the second time is set to 0.2 to 0.4 ms when the power frequency detected by the frequency detecting means is 50 Hz, and is set to 0.16 to 0.33 ms when the power frequency is 60 Hz. When the value of the ratio is equal to or greater than a predetermined value, the number of short circuits of the switching means is greater than the number of times according to the value of the ratio and is greater than the number of times, and the DC power Switch to the number of shorts that does not exceed the noise frequency of the source device.

これにより、2を超える回数短絡した場合でも前述と同様に適切な間隔を第1の短絡と第2の短絡の間に設けることで、電源高調波電流の抑制と力率の改善を達成できる。   As a result, even when the number of short circuits exceeds two, an appropriate interval is provided between the first short circuit and the second short circuit in the same manner as described above, thereby suppressing the power supply harmonic current and improving the power factor.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することができる。   For this reason, a DC power supply device that realizes high efficiency and appropriate power factor at low load while realizing high power factor and appropriate efficiency at high load while suppressing power supply harmonic current with an inexpensive circuit configuration is provided. be able to.

また、実施例の直流電源装置は、前記スイッチング制御手段は3回目以降の短絡時間を前記電源周波数が50Hzの時は0.25ms、60Hzの時は0.2ms以下の範囲とする。   In the DC power supply of the embodiment, the switching control means sets the third and subsequent short-circuit times in the range of 0.25 ms when the power frequency is 50 Hz and 0.2 ms or less when the power frequency is 60 Hz.

これにより、3回目以降の短絡によって生じる電源高調波電流の周波数が、電源周波数が50Hzの時は2,000Hz、60Hzの時は2,500Hz以上となり、電源周波数の40次以上となって、電源高調波電流規制の対象から除外されるので、電源高調波電流規制を満足することができ、主として力率の向上を考慮した検討をすれば良いことになる。   As a result, the frequency of the power harmonic current generated by the third and subsequent short circuits is 2,000 Hz when the power frequency is 50 Hz, 2,500 Hz or higher when the power frequency is 60 Hz, and the power frequency is 40th or higher. Since it is excluded from the target of the harmonic current regulation, the power supply harmonic current regulation can be satisfied, and it is only necessary to consider mainly the improvement of the power factor.

これは、高調波電流を抑制し、力率を高くするためには、短絡回数を多くすることが有効であることを前述したが、シミュレーションによれば、力率に関係してくる3次〜15次の高調波の抑制には短絡回数を多くすることが有効であるが、15次〜40次の高調波電流は逆に増えやすい傾向となる。   As described above, in order to suppress the harmonic current and increase the power factor, it is effective to increase the number of short-circuits. Increasing the number of short circuits is effective for suppressing the 15th harmonic, but the 15th to 40th harmonic currents tend to increase conversely.

そこで第2の短絡より後の短絡は40次よりも高次の波形とすることが電源高調波電流の抑制に重要となることが判った。電源周波数が50Hzである時、その周期20msの正弦波であり、電源周波数の40次高調波の周期は0.5msとなる。   Thus, it has been found that it is important for the suppression of the power supply harmonic current that the short circuit after the second short circuit has a higher-order waveform than the 40th order. When the power supply frequency is 50 Hz, the sine wave has a period of 20 ms, and the period of the 40th harmonic of the power supply frequency is 0.5 ms.

短絡により発生する三角波がこの40次の周期の1/2以下となれば電源高調波電流規制の対象外になり、短絡時間を0.25msより短くすることで電源高調波電流規制を満足することができる。電源周波数が60Hzのときも同様の理由で短絡時間を0.2msより短くすることで電源高調波電流規制を満足することができる。   If the triangular wave generated by the short circuit becomes 1/2 or less of this 40th order period, it will be excluded from the power harmonic current regulation, and the power harmonic current regulation will be satisfied by making the short circuit time shorter than 0.25 ms. Can do. Even when the power supply frequency is 60 Hz, the power supply harmonic current regulation can be satisfied by shortening the short circuit time to less than 0.2 ms for the same reason.

このため、短絡回数を多くして力率を改善しつつ、電源高調波電流規制を満足する直流電源装置を提供することができる。   For this reason, it is possible to provide a DC power supply device that satisfies the power harmonic current regulation while increasing the number of short circuits and improving the power factor.

次に、短絡回数を切換える時の制御について図6〜図9を用いて交流電源の半周期を例にとって説明する。図6は電源装置の短絡回数制御部の記憶装置の記憶内容説明図である。図7は短絡回数制御部の短絡回数制御フロー要部である。   Next, control when switching the number of short circuits will be described with reference to FIGS. 6 to 9 by taking the half cycle of the AC power supply as an example. FIG. 6 is an explanatory diagram of the storage contents of the storage device of the short circuit number control unit of the power supply device. FIG. 7 shows a main part of the short circuit number control flow of the short circuit number control part.

コンバータ制御手段111fの内部には記憶装置が内蔵され、この記憶装置には前記の昇圧比Rに応じた設定短絡回数Nを選択できるように昇圧比の閾値が記憶されている。昇圧比の閾値は短絡回数が増加する時と減少する時で違えて、適度なヒシテリシスを持たせ、制御が安定するようにしている。   A converter is built in converter control means 111f, and a threshold value of the boost ratio is stored in this storage device so that the set number of short circuits N corresponding to the boost ratio R can be selected. The threshold of the step-up ratio is different depending on whether the number of short-circuits increases or decreases, and an appropriate hysteresis is provided so that the control is stabilized.

記憶装置には図6のように、この昇圧比Rに応じた設定短絡回数Nが記憶され、また設定短絡回数N及び実短絡回数Mに応じた、n回目の短絡時の短絡時間の上限値TuNn、及び下限値TlNnが記憶装置に記憶されており、更に短絡回数に応じた、目標直流電圧Vgの制御許容幅ΔVMが記憶されている。   As shown in FIG. 6, the memory device stores the set short-circuit count N corresponding to the step-up ratio R, and the upper limit value of the short-circuit time at the n-th short-circuit according to the set short-circuit count N and the actual short-circuit count M. TuNn and the lower limit value TlNn are stored in the storage device, and further, a control allowable width ΔVM of the target DC voltage Vg corresponding to the number of short circuits is stored.

図7のステップS1で直流電源装置100の動作を開始すると、先ず、ステップS3で各種の判断や演算に必要なデータを入手する前段の処理が行われ、ステップS20に進み、直流出力電圧Vdと目標直流電圧の上限値Vguとを比較し、直流出力電圧Vdが目標直流電圧の上限値Vgu以下であればステップS21に進み、直流出力電圧Vdが目標直流電圧の上限値Vguを超えていればステップS26に進む。   When the operation of the DC power supply device 100 is started in step S1 in FIG. 7, first, in step S3, the previous process of obtaining data necessary for various judgments and calculations is performed, and the process proceeds to step S20, where the DC output voltage Vd The upper limit value Vgu of the target DC voltage is compared. If the DC output voltage Vd is equal to or lower than the upper limit value Vgu of the target DC voltage, the process proceeds to step S21, and if the DC output voltage Vd exceeds the upper limit value Vgu of the target DC voltage. Proceed to step S26.

ステップS21で更に直流出力電圧Vdと目標直流電圧Vgとを比較し、直流出力電圧Vdが目標直流電圧Vg未満の場合はステップS25に進み、直流出力電圧Vdが目標直流電圧Vg以上の場合は、直流出力電圧Vdが適正な値の範囲に納まっているので、現状の制御を続行すればよいのでステップS65に進み、現行の短絡時間で短絡を実行しステップS80に進んで交流電源の半周期での短絡動作を終了する。   In step S21, the DC output voltage Vd is further compared with the target DC voltage Vg. If the DC output voltage Vd is less than the target DC voltage Vg, the process proceeds to step S25. If the DC output voltage Vd is greater than or equal to the target DC voltage Vg, Since the DC output voltage Vd is within an appropriate value range, it is sufficient to continue the current control. Therefore, the process proceeds to step S65, the short-circuit is executed in the current short-circuit time, and the process proceeds to step S80, where the AC power supply is half cycle. This completes the short-circuit operation.

ステップS25で前回の半周期での実短絡回数Mと設定短絡回数Nとを比較し、実短絡回数Mが設定短絡回数Nより少ない場合はステップS40に進み短絡回数を1回増やして各回の短絡時間を設定しなおす短絡回数増加処理を行い、ステップS60に進み、設定しなおした1回目の短絡時間T′a1〜M+1回目の短絡時間T′aMpで短絡動作を実行し、ステップS80に進んで短絡動作を終了する。   In step S25, the actual number of short circuits M in the previous half cycle is compared with the set number of short circuits N. If the actual number of short circuits M is less than the set number of short circuits N, the process proceeds to step S40, and the number of short circuits is increased by one. The short-circuiting number increasing process for resetting the time is performed, and the process proceeds to step S60. The short-circuiting operation is executed with the first short-circuiting time T'a1 to M + 1 and the first short-circuiting time T'aMp, and the process proceeds to step S80. End short circuit operation.

ステップS25で実短絡回数Mが設定短絡回数N以上である場合はステップS30に進み、実短絡回数Mに対する1回目の短絡時間の上限値TuM1〜M回目(最終回)の短絡時間の上限値TuMMを記憶装置から読込んでその短絡時間上限値合計ΣTuMnを演算し、また、前回の半周期での1回目の短絡時間Ta1〜M回目(最終回)の短絡時間TaMの合計である短絡時間合計ΣTanを演算して比較する。   If the actual short circuit count M is equal to or greater than the set short circuit count N in step S25, the process proceeds to step S30, where the first short circuit time upper limit value TuM1 to the Mth (final) short circuit time upper limit value TuMM with respect to the actual short circuit count M. Is calculated from the storage device and the short-circuit time upper limit total ΣTuMn is calculated, and the short-circuit time total ΣTan that is the sum of the first short-circuit time Ta1 to M-th (final) short-circuit time TaM in the previous half cycle And compare.

ステップS30で短絡時間上限値合計ΣTuMnが短絡時間合計ΣTan以下である場合は、M回の短絡回数ではこれ以上短絡時間を長くすることができないので短絡回数を1回増加させるべくステップ40に進み、前述と同様に、短絡回数増加処理を行い、ステップS60を介してステップS80に至り、短絡動作を終了する。   If the total short circuit time upper limit value ΣTuMn is equal to or less than the total short circuit time ΣTan in step S30, the short circuit time cannot be increased any further by the number of M short circuits, so the process proceeds to step 40 in order to increase the number of short circuits by one. In the same manner as described above, the short-circuit number increasing process is performed, the process reaches step S80 via step S60, and the short-circuit operation is terminated.

ステップS30で短絡時間上限値合計ΣTuMnが短絡時間合計ΣTanより大きい場合は、現行のM回の短絡回数で短絡時間を長くする余地があるので、短絡時間が上限値に達していない回の短絡時間を長くするようステップS45に進み、目標直流電圧Vgと直流出力電圧Vdとの差分でPI制御を行い、今回の短絡時間を決定する。   If the total short circuit time upper limit ΣTuMn is larger than the total short circuit time ΣTan in step S30, there is room for increasing the short circuit time with the current M number of short circuits, so the short circuit time when the short circuit time has not reached the upper limit value. In step S45, PI control is performed using the difference between the target DC voltage Vg and the DC output voltage Vd to determine the current short circuit time.

ステップS45では短絡時間の決定を前回の半周期での短絡時間に修正を加えて行い、1回目の修正短絡時間T′a1〜M回目(最終回)の修正短絡時間T′aMを決定する。次に、ステップS70に進んで、修正した短絡時間T′a1〜T′aMで短絡動作を実行し、ステップS80に進んで短絡動作を終了する。   In step S45, the short circuit time is determined by correcting the short circuit time in the previous half cycle, and the first corrected short circuit time T'a1 to the Mth (final) corrected short circuit time T'aM is determined. Next, it progresses to step S70, a short circuit operation is performed by corrected short circuit time T'a1-T'aM, and it progresses to step S80 and complete | finishes a short circuit operation.

ステップS26で前回の半周期での実短絡回数Mと設定短絡回数Nとを比較し、実短絡回数Mが設定短絡回数Nより多い場合はステップS50に進み短絡回数を1回減らして各回の短絡時間を設定しなおす短絡回数減少処理を行い、ステップS75に進み、設定しなおした1回目の短絡時間T′a1〜M−1回目の短絡時間T′aMmで短絡動作を実行し、ステップS80に進んで短絡動作を終了する。   In step S26, the actual number of short circuits M in the previous half cycle is compared with the set number of short circuits N. If the actual number of short circuits M is greater than the set number of short circuits N, the process proceeds to step S50, and the number of short circuits is reduced by one. Short circuit number reduction processing for resetting the time is performed, the process proceeds to step S75, and the short circuit operation is executed with the reset first short circuit time T'a1 to M-1 first short circuit time T'aMm, and then to step S80. Proceed to complete the short-circuit operation.

ステップS26で実短絡回数Mが設定短絡回数N以下である場合はステップS35に進み、実短絡回数Mに対する1回目の短絡時間の下限値TlM1〜M回目(最終回)の短絡時間の下限値TlMMを記憶装置から読込んでその短絡時間下限値合計ΣTlMnを演算し、また、前回の半周期での1回目の短絡時間Ta1〜M回目(最終回)の短絡時間TaMの短絡時間合計ΣTanを演算して比較する。   If the actual short circuit count M is less than or equal to the set short circuit count N in step S26, the process proceeds to step S35, where the first short circuit time lower limit value TlM1 to the Mth (final) short circuit time lower limit value TlMM with respect to the actual short circuit number M. Is calculated from the storage device and the short-circuit time lower limit total ΣTlMn is calculated, and the first short-circuit time Ta1 to M-th (final) short-circuit time TaM in the previous half cycle is calculated ΣTan. Compare.

ステップS35で短絡時間下限値合計ΣTlMnが短絡時間合計ΣTan以上である場合は、M回の短絡回数ではこれ以下に短絡時間を短くすることができないので短絡回数を1回減少させるべくステップ50に進み、前述と同様に、短絡回数減少処理を行い、ステップS75を介してステップS80に至り、短絡動作を終了する。   If the short-circuit time lower limit total ΣTlMn is equal to or greater than the short-circuit time total ΣTan in step S35, the short-circuit time cannot be shortened below this number of M short-circuits. In the same manner as described above, the short-circuit number reduction process is performed, and the process reaches step S80 via step S75 to end the short-circuit operation.

ステップS35で短絡時間下限値合計ΣTlMnが短絡時間合計ΣTanより小さい場合は、現行のM回の短絡回数で短絡時間を短くする余地があるので、短絡時間が下限値に達していない回の短絡時間を短くするようステップS45に進み、前述と同様にPI制御を行い、今回の短絡時間を決定し、ステップS70を介してステップS80に至り、短絡動作を終了する。   If the total short circuit time lower limit value ΣTlMn is smaller than the total short circuit time Σ Tan in step S35, there is room for shortening the short circuit time with the current M number of short circuits, so the short circuit time when the short circuit time has not reached the lower limit value. In step S45, PI control is performed in the same manner as described above, the current short-circuiting time is determined, step S70 is reached via step S70, and the short-circuiting operation is terminated.

次に、ステップS3の前段処理について図8を用いて説明する。図8は短絡回数制御部の前段処理フロー要部である。   Next, the pre-processing in step S3 will be described with reference to FIG. FIG. 8 is a main part of the pre-processing flow of the short circuit number control unit.

ステップS101で前段処理を開始し、ステップS105で交流電源電圧Vs、目標直流電圧Vgを読込み、ステップS110に進み、昇圧比Rを演算し、ステップS111に進み、昇圧比Rに応じた設定短絡回数Nを記憶装置から読込む。更に、ステップS112に進んで、この短絡回数に応じて目標直流電圧の許容幅ΔVMを記憶装置から読込み、ステップS115に進み、目標直流電圧Vgの上限値Vguを演算する。   The pre-processing is started in step S101, the AC power supply voltage Vs and the target DC voltage Vg are read in step S105, the process proceeds to step S110, the boost ratio R is calculated, the process proceeds to step S111, and the set number of short circuits according to the boost ratio R N is read from the storage device. Further, the process proceeds to step S112, the allowable width ΔVM of the target DC voltage is read from the storage device in accordance with the number of short circuits, the process proceeds to step S115, and the upper limit value Vgu of the target DC voltage Vg is calculated.

次に、ステップS116に進み、直流出力電圧Vdを読込んで、ステップS120に進み、前回の半周期での実短絡回数Mを調べて、実短絡回数Mが2より小さい場合は、短絡動作の初期状態であるとして、後刻の制御に支障のないように、Mの値を設定短絡回数Nと仮定し、ステップS130に進んで、前段処理を終了する。ステップS120でMが2以上の場合はそのままステップS130に進んで、前段処理を終了する。   Next, the process proceeds to step S116, the direct-current output voltage Vd is read, the process proceeds to step S120, and the actual number of short circuits M in the previous half cycle is checked. Assuming that the state is in a state, the value of M is assumed to be the set number N of short-circuits so as not to hinder the later control, the process proceeds to step S130, and the pre-stage process is terminated. When M is 2 or more in step S120, the process proceeds to step S130 as it is, and the pre-process is terminated.

次に、ステップS40の短絡回数増加処理について図9を用いて説明する。図9は短絡回数制御部の短絡回数増加処理フロー要部である。   Next, the short circuit number increasing process in step S40 will be described with reference to FIG. FIG. 9 shows the main part of the short circuit number increasing process flow of the short circuit number control unit.

短絡回数増加処理をステップS201で開始し、ステップS202で前の半周期の実短絡回数Mを調べ、M=6つまり、前回の半周期の短絡回数が6回である場合は、ステップS210に進み、図7のステップS30と同様に短絡時間合計ΣTanと短絡時間上限値合計ΣTuMnを比較する。この場合、M=6であるので、ΣTanとΣTu6nとを比較する。   The short circuit number increasing process is started in step S201, and the actual short circuit number M in the previous half cycle is checked in step S202. If M = 6, that is, if the short circuit number in the previous half cycle is 6, the process proceeds to step S210. The short circuit time total ΣTan and the short circuit time upper limit total ΣTuMn are compared as in step S30 of FIG. In this case, since M = 6, ΣTan and ΣTu6n are compared.

ステップS210で短絡時間合計ΣTanが短絡時間上限値合計ΣTu6n以上の場合は、6M回の短絡回数でこれ以上短絡時間を長くすることができない上に、これより多い短絡回数は設定されていないので、ステップS212に進み、現行の短絡時間を維持し、ステップS265に進んで短絡回数増加処理を終了する。   If the total short circuit time ΣTan is greater than or equal to the total short circuit time upper limit value ΣTu6n in step S210, the short circuit time cannot be further increased by the number of short circuits of 6M, and the number of short circuits more than this is not set. Proceeding to step S212, the current short circuit time is maintained, and the process proceeds to step S265 to end the short circuit number increasing process.

この場合、直流出力電圧Vdが目標直流電圧Vgに達しないことも有りうるが、短絡時間上限値Tu6nは目標直流電圧Vgだけではなく、電源高調波電流の大きさや、駆動素子などの温度上昇によって制限される場合もあるので、短絡時間上限値Tu6nの設定に当たっては、接続される負荷の種類、駆動素子などの冷却方法、周囲温度条件に応じて慎重に検討する必要がある。   In this case, the DC output voltage Vd may not reach the target DC voltage Vg. However, the short-circuit time upper limit Tu6n is not limited to the target DC voltage Vg, but depends on the magnitude of the power supply harmonic current and the temperature rise of the drive element. Since it may be limited, it is necessary to carefully consider the setting of the short-circuit time upper limit Tu6n according to the type of load to be connected, the cooling method of the drive element, and the ambient temperature conditions.

ステップS210で短絡時間合計ΣTanが短絡時間上限値合計ΣTu6nより小さい場合は、現行の6回の短絡回数で短絡時間を長くする余地があるので、短絡時間が上限値に達していない回の短絡時間を長くするようステップS215に進み、目標直流電圧Vgと直流出力電圧Vdとの差分でPI制御を行い、今回の短絡時間を決定し、ステップS265で短絡回数増加処理を終了する。   If the short-circuit time total ΣTan is smaller than the short-circuit time upper limit total ΣTu6n in step S210, there is room for increasing the short-circuit time by the current six short-circuit times, so the short-circuit time when the short-circuit time has not reached the upper limit value. In step S215, PI control is performed based on the difference between the target DC voltage Vg and the DC output voltage Vd, the current short circuit time is determined, and the short circuit number increasing process is terminated in step S265.

ステップS202でM=5である場合は、短絡回数を1回増やして6回にするべく、ステップS220に進み、6回短絡の場合の6回目の短絡時間の下限値Tl66を記憶装置から呼出し、6回目の短絡時間T′a6に設定する。この場合、前の半周期での5回の短絡に、単純に6回目の短絡を追加すると直流出力電圧Vdが上昇し過ぎ、駆動している負荷に悪影響を及ぼす恐れがある。   If M = 5 in step S202, the process proceeds to step S220 to increase the number of short circuits by 1 to 6 times, and the lower limit value Tl66 of the sixth short circuit time in the case of the 6th short circuit is called from the storage device. The sixth short-circuit time T′a6 is set. In this case, if the sixth short-circuit is simply added to the five short-circuits in the previous half cycle, the DC output voltage Vd increases excessively, which may adversely affect the driving load.

このように、直流出力が急変する場合は、このような急変に対応するため、接続されている負荷の電源への耐性をアップしたり、接続されている負荷の制御に、短絡回数の切換時を特異点として短絡回数の切換時のみ作動する特殊な制御を導入するなどのコストアップにつながる恐れの大きい対応を余儀なく行わなければならない。   In this way, when the DC output changes suddenly, in order to cope with such a sudden change, the resistance of the connected load to the power source is increased, or the number of short-circuits is switched to control the connected load. As a singular point, special measures that are activated only when the number of short circuits is switched must be taken.

この現象を回避するためには、短絡回数を増しても、直流出力電圧が急変しないように、追加した短絡回以外の短絡回の短絡時間を減少させることが効果的である。実施例では、追加した短絡回以外の短絡回の短絡時間を減らし、全体として、短絡を追加する前と後で合計の短絡時間がほぼ等しくなるようにした。これにより、短絡の追加の前後で直流出力電圧の変化は小さくなり、負荷に与える影響も軽微なものとすることができた。   In order to avoid this phenomenon, it is effective to reduce the short-circuit time of the short-circuit times other than the added short-circuit times so that the DC output voltage does not change suddenly even if the number of short-circuits is increased. In the example, the short-circuit time of the short-circuit times other than the added short-circuit time was reduced, and as a whole, the total short-circuit time was substantially equal before and after the addition of the short-circuit. As a result, the change in the DC output voltage before and after the addition of the short circuit was reduced, and the influence on the load could be minimized.

更に実施例では、追加した短絡回以外の短絡回の短絡時間を前の半周期での各回の短絡時間に比例させて減少させることで、短絡の追加の前後で直流出力電圧は勿論のこと、力率,電源高調波電流も急変しなくなって、連続的な変化に近くなるので、接続されている負荷の制御に短絡回数の変化に伴う特殊な制御の必要性が乏しくなり必要な短絡の追加を心置きなく行え、製品の開発スピードをアップさせることができる。   Further, in the embodiment, by reducing the short-circuit time of the short-circuit times other than the added short-circuit times in proportion to the short-circuit time of each time in the previous half cycle, the DC output voltage is of course before and after the addition of the short-circuit, Since the power factor and power supply harmonic current also do not change suddenly and become close to a continuous change, the need for special control accompanying the change in the number of shorts is reduced in controlling the connected load, and the addition of necessary shorts Can increase the speed of product development.

ステップS220からステップS221に進み、6回目の短絡時間T′a6を前の半周期の1〜5回目の短絡時間から各々の短絡時間に案分比例して減算する時間の合計値として案分残時間Tr6に設定し、ステップS222に進み、次式により今度の半周期の5回目の短絡時間T′a5を演算し、設定する。   Proceeding from step S220 to step S221, the remaining part of the sixth short circuit time T'a6 is subtracted proportionally to each of the short circuit times from the first to fifth short circuit times of the previous half cycle. The time Tr6 is set and the process proceeds to step S222, and the fifth short-circuit time T'a5 of the next half cycle is calculated and set by the following equation.

Figure 0005481165
Figure 0005481165

次に、ステップS223に進み、設定したT′a5を記憶装置から呼出した6回短絡の5回目の短絡時間下限値Tl65と比較し、設定した短絡時間T′a5が記憶装置から呼び出した短絡時間下限値Tl65以上である場合は、設定を有効としてステップS228に進み、設定した短絡時間T′a5が記憶装置から呼び出した短絡時間下限値Tl65より小さい場合は、ステップS225に進んで、設定した短絡時間T′a5を破棄し、記憶装置から呼び出した短絡時間下限値Tl65を今度の半周期の5回目の短絡時間T′a5として再設定し、ステップS228に進む。   In step S223, the set T'a5 is compared with the fifth short-circuit time lower limit value Tl65 of the sixth short-circuit called from the storage device, and the set short-circuit time T'a5 is called from the storage device. If it is not less than the lower limit value Tl65, the setting is validated and the process proceeds to step S228. If the set short circuit time T'a5 is smaller than the short circuit time lower limit value Tl65 called from the storage device, the process proceeds to step S225 and the set short circuit is set. The time T′a5 is discarded, and the short-circuiting time lower limit value Tl65 called from the storage device is reset as the fifth short-circuiting time T′a5 of the next half cycle, and the process proceeds to step S228.

ステップS228では案分残時間Tr6から5回目の短絡時間の設定での修正量Ta5−T′a5を差引いた案分残時間Tr5を次の式により演算する。   In step S228, the promising remaining time Tr5 obtained by subtracting the correction amount Ta5-T'a5 in the setting of the fifth short-circuiting time from the promising remaining time Tr6 is calculated by the following equation.

Figure 0005481165
Figure 0005481165

次に、ステップS232に進み、上記の案分残時間Tr5を1〜4回目の短絡時間から各々の短絡時間に案分比例して減算すべく、次式により今度の半周期の4回目の短絡時間T′a4を演算し、設定する。   Next, the process proceeds to step S232, and in order to subtract the probable remaining time Tr5 from the first to fourth short-circuiting times proportionally to the respective short-circuiting times, the following short-cycle fourth short-circuiting is performed according to the following equation. Time T'a4 is calculated and set.

Figure 0005481165
Figure 0005481165

次に、ステップS233に進み、設定したT′a4を記憶装置から呼出したMp回短絡の4回目の短絡時間下限値TlMp4と比較する。ここで、Mpは今度の半周期での短絡回数で有り、前の半周期での短絡回数が5であるので、これに短絡回数を1回加えてMpは6となる。従って、具体的にステップS233を読み直すと次のようになる。   In step S233, the set T′a4 is compared with the fourth short-circuit time lower limit value TlMp4 of the Mp short-circuit called from the storage device. Here, Mp is the number of short circuits in the next half cycle, and the number of short circuits in the previous half cycle is 5. Therefore, the number of short circuits is added to this, and Mp is 6. Therefore, when step S233 is specifically reread, the following is obtained.

設定したT′a4を記憶装置から呼出した6回短絡の4回目の短絡時間下限値Tl64と比較し、設定した短絡時間T′a4が記憶装置から呼び出した短絡時間下限値Tl64以上である場合は、設定を有効としてステップS238に進む。   When the set T′a4 is compared with the fourth short circuit time lower limit value Tl64 of the sixth short circuit called from the storage device, and the set short circuit time T′a4 is equal to or greater than the short circuit time lower limit value Tl64 called from the storage device The setting is validated and the process proceeds to step S238.

設定した短絡時間T′a4が記憶装置から呼び出した短絡時間下限値Tl64より小さい場合は、ステップS235に進んで、設定した短絡時間T′a4を破棄し、記憶装置から呼び出した短絡時間下限値Tl64を今度の半周期の4回目の短絡時間T′a4として再設定し、ステップS238に進む。   If the set short circuit time T′a4 is smaller than the short circuit time lower limit value Tl64 called from the storage device, the process proceeds to step S235, the set short circuit time T′a4 is discarded, and the short circuit time lower limit value Tl64 called from the memory device is discarded. Is reset as the fourth short-circuit time T′a4 of the current half cycle, and the process proceeds to step S238.

ステップS238では5回目の短絡時間設定時に残っている1〜4回目の短絡時間から案分比例して減ずべき案分残時間Tr5から4回目の短絡時間の設定での修正量Ta4−T′a4を差引いた案分残時間Tr4を次の式により演算する。   In step S238, the correction amount Ta4-T ′ in the setting of the fourth short-circuit time from the probable remaining time Tr5 to be reduced proportionally from the first to fourth short-circuit times remaining at the fifth short-circuit time setting. The probable remaining time Tr4 obtained by subtracting a4 is calculated by the following equation.

Figure 0005481165
Figure 0005481165

以下、同様に(5),(6)式を使用し、ステップS242〜S248で3回目の短絡時間T′a3、案分残時間Tr3を演算,設定し、(7),(8)式を使用し、ステップS252〜S258で2回目の短絡時間T′a2、案分残時間Tr2を演算,設定し、ステップS262で(9)式を使用して今度の半周期の1回目の短絡時間T′a1を演算,設定して、ステップS265に進んで短絡回数増加処理を終了する。   Similarly, using the equations (5) and (6), the third short circuit time T′a3 and the probable remaining time Tr3 are calculated and set in steps S242 to S248, and the equations (7) and (8) are calculated. In step S252 to S258, the second short-circuit time T'a2 and the probable remaining time Tr2 are calculated and set, and in step S262, the first short-circuit time T of the next half cycle is calculated using equation (9). 'A1 is calculated and set, the process proceeds to step S265, and the short circuit number increasing process is terminated.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

ステップS202に戻り、前の半周期での短絡回数Mが5回より小さい場合は、ステップS205に進み、更に、短絡回数Mが3より大きい場合、つまりM=4の場合には、短絡回数を1回増やして5回にするべく、ステップS230に進み、5回短絡の場合の5回目の短絡時間の下限値Tl55を記憶装置から呼出し、5回目の短絡時間T′a5に設定し、ステップS231に進む。   Returning to step S202, if the number M of short circuits in the previous half cycle is smaller than 5, the process proceeds to step S205, and if the number M of short circuits is larger than 3, that is, if M = 4, the number of short circuits is set. In order to increase it by 1 to 5 times, the process proceeds to step S230, and the lower limit value Tl55 of the fifth short-circuit time in the case of the fifth short-circuit is retrieved from the storage device and set to the fifth short-circuit time T'a5. Proceed to

ステップS231では、5回目の短絡時間T′a5を以降のステップで設定される1回目〜4回目までの短絡時間の演算の中で、前の半周期での1回目〜4回目の短絡時間から案分比例で減ずべき時間の合計値である案分残時間Tr5として演算し、ステップS232に進む。この場合、案分残時間Tr5は上記で設定した5回目の短絡時間T′a5に等しい。   In step S231, the fifth short-circuit time T'a5 is calculated from the first to fourth short-circuit times in the previous half cycle in the calculation of the first to fourth short-circuit times set in the subsequent steps. A prorated portion remaining time Tr5, which is a total value of the time that should be reduced in proportion to the prorated portion, is calculated, and the process proceeds to step S232. In this case, the probable remaining time Tr5 is equal to the fifth short-circuit time T′a5 set above.

ステップS232以降は前述した通りに制御が進行し、ステップS265で短絡回数増加処理が終了する。   After step S232, the control proceeds as described above, and the short circuit number increasing process ends in step S265.

次に、ステップS205に戻り、前の半周期での短絡回数Mが3である場合、短絡回数を1回増やして4回にするべく、ステップS240に進み、4回短絡の場合の4回目の短絡時間の下限値Tl44を記憶装置から呼出し、4回目の短絡時間T′a4に設定し、ステップS241に進む。   Next, returning to step S205, if the number of short circuits M in the previous half cycle is 3, the process proceeds to step S240 to increase the number of short circuits by 1 to 4 times, and the fourth time in the case of 4 short circuits. The lower limit value Tl44 of the short circuit time is called from the storage device, set to the fourth short circuit time T'a4, and the process proceeds to step S241.

ステップS241では、4回目の短絡時間T′a4を以降のステップで設定される1回目〜3回目までの短絡時間の演算の中で、前の半周期での1回目〜3回目の短絡時間から案分比例で減ずべき時間の合計値である案分残時間Tr4として演算し、ステップS242に進む。この場合、案分残時間Tr4は上記で設定した4回目の短絡時間T′a4に等しい。   In step S241, the fourth short-circuit time T′a4 is calculated from the first to third short-circuit times in the previous half cycle in the calculation of the first to third short-circuit times set in the subsequent steps. A prorated portion remaining time Tr4, which is a total value of the time that should be reduced in proportion to the prorated portion, is calculated, and the process proceeds to step S242. In this case, the probable remaining time Tr4 is equal to the fourth short-circuit time T′a4 set above.

ステップS242以降は前述した通りに制御が進行し、ステップS265で短絡回数増加処理が終了する。   After step S242, the control proceeds as described above, and the short circuit number increasing process ends in step S265.

また、ステップS205に戻り、前の半周期での短絡回数Mが3より小さい場合は、ステップS208に進み、更に、短絡回数Mが1より大きい場合、つまりM=2の場合には、短絡回数を1回増やして3回にするべく、ステップS250に進み、3回短絡の場合の3回目の短絡時間の下限値Tl33を記憶装置から呼出し、3回目の短絡時間T′a3に設定し、ステップS251に進む。   Returning to step S205, if the number M of short circuits in the previous half cycle is smaller than 3, the process proceeds to step S208. Further, if the number M of short circuits is greater than 1, that is, if M = 2, the number of short circuits. The process proceeds to step S250 in order to increase the value by 1 to 3 times, and the lower limit value Tl33 of the third short-circuit time in the case of the third short-circuit is called from the storage device and set to the third short-circuit time T'a3. The process proceeds to S251.

ステップS251では、3回目の短絡時間T′a3を以降のステップで設定される1回目〜2回目までの短絡時間の演算の中で、前の半周期での1回目〜2回目の短絡時間から案分比例で減ずべき時間の合計値である案分残時間Tr3として演算し、ステップS252に進む。この場合、案分残時間Tr3は上記で設定した4回目の短絡時間T′a3に等しい。   In step S251, the third short-circuit time T′a3 is calculated from the first and second short-circuit times in the previous half cycle in the calculation of the first to second short-circuit times set in the subsequent steps. Calculation is made as a promising remaining time Tr3 which is the total value of the time to be reduced in proportion to prorated, and the process proceeds to step S252. In this case, the promising remaining time Tr3 is equal to the fourth short-circuiting time T′a3 set above.

ステップS252以降は前述した通りに制御が進行し、ステップS265で短絡回数増加処理が終了する。   After step S252, the control proceeds as described above, and the short circuit number increasing process ends in step S265.

次に、ステップS208に戻り、前の半周期での短絡回数Mが1以下の場合は、ステップS260に進み、2回短絡の場合の2回目の短絡時間の下限値Tl22を記憶装置から呼出し、2回目の短絡時間T′a2に設定し、ステップS261に進む。   Next, returning to step S208, if the number of short circuits M in the previous half cycle is 1 or less, the process proceeds to step S260, and the lower limit value Tl22 of the second short circuit time in the case of the second short circuit is called from the storage device. The second short-circuit time T′a2 is set, and the process proceeds to step S261.

ステップS261で、2回短絡の場合の1回目の短絡時間の下限値Tl21を記憶装置から呼出し、1回目の短絡時間T′a1に設定し、ステップS265に進み短絡回数増加処理が終了する。   In step S261, the lower limit value Tl21 of the first short-circuit time in the case of two short-circuits is retrieved from the storage device, set to the first short-circuit time T'a1, and the process proceeds to step S265, where the short-circuit number increasing process ends.

このように、実施例の直流電源装置は、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、短絡回数増加後のM回目までの短絡時間の合計値を、短絡回数増加前の短絡時間の合計値より、減少させる。   Thus, when the DC power supply device of the embodiment increases the number of short circuits of the switching means from M times to M + 1 times, the total value of the short circuit time up to the Mth time after the increase in the number of short circuits is calculated. Decrease from the total value of short circuit time.

一般に、短絡時間を長くすると得られる直流電圧が上昇し、短絡時間を短くすると得られる直流電圧が下降する。また、短絡時間を数回に分けて短絡する場合も、単純に短絡を追加すると得られる直流電圧が上昇し、単純に短絡を削減すると得られる直流電圧が下降することが知られている。   In general, when the short circuit time is lengthened, the DC voltage obtained increases, and when the short circuit time is shortened, the DC voltage obtained decreases. Also, when short-circuiting is performed by dividing the short-circuit time into several times, it is known that the DC voltage obtained by simply adding a short circuit increases, and the DC voltage obtained by simply reducing the short-circuit decreases.

負荷を駆動する場合、その電源となる直流電圧が変動することは、負荷の駆動状態も変動し、負荷となっている機器の運転が安定状態から外れることになり、負荷となっている機器を安定運転するために、何らかの修正を加えて、負荷の駆動状態を元に戻さなければならず、好ましいことではない。   When driving a load, the fluctuation of the DC voltage that is the power source also changes the driving state of the load, which means that the operation of the load device is out of the stable state. In order to perform stable operation, some correction must be made to restore the driving state of the load, which is not preferable.

実施例の直流電源装置では、短絡回数をnからn+1に増やす場合に、単純に短絡回数を増やすのではなく、直流電圧がほぼ同じになるように、短絡回数を増やした後のn回までの短絡時間の合計を、短絡回数を増やす前のn回までの短絡時間の合計より短くする。これにより、短絡回数を増やした後のn回までの短絡により得られる直流電圧は下降し、n+1回目の短絡でこの下降した分の直流電圧分を取戻し、全体として、短絡回数を増やす前の直流電圧とほぼ等しい直流電圧を得ることができる。   In the direct current power supply device of the embodiment, when the number of short circuits is increased from n to n + 1, the number of short circuits is not simply increased, but the number of short circuits is increased to n times so that the DC voltage is substantially the same. The total short circuit time is made shorter than the total short circuit time up to n times before increasing the number of short circuits. As a result, the DC voltage obtained by the short-circuiting up to n times after increasing the number of short-circuits decreases, and the DC voltage corresponding to the decreased DC voltage is recovered at the (n + 1) th short-circuit, and as a whole, the DC voltage before increasing the number of short-circuits A DC voltage substantially equal to the voltage can be obtained.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を提供することができる。   For this reason, in order to suppress the power harmonic current and improve the power factor, there is provided a DC power supply device that can ensure stable operation of a load device, with the DC voltage hardly changing even if the number of short circuits is increased. be able to.

また、実施例の直流電源装置は、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、M+1回目までの短絡時間の合計値を、短絡回数増加前のM回目までの短絡時間の合計値と等しくする。   In addition, when the DC power supply device of the embodiment increases the number of short-circuits of the switching means from M times to M + 1 times, the total value of the short-circuit times up to the M + 1-th time is calculated as the short-circuit time up to the M-th before the increase in the number of short-circuits. Equal to the total value.

一般に、短絡時間を数回に分けて、短絡する場合、短絡時間の合計が同じであれば得られる直流電圧はほぼ一定であることが知られている。   In general, when short-circuiting is performed by dividing the short-circuit time into several times, it is known that the DC voltage obtained is substantially constant if the total short-circuit time is the same.

実施例の直流電源装置では、短絡回数を増やした場合、短絡時間の合計が同じになるようにする。これにより、短絡回数を増やす前後の短絡時間の合計が等しくなり、得られる直流電圧をほぼ一定に維持することができる。   In the DC power supply device of the embodiment, when the number of short circuits is increased, the total short circuit time is made the same. Thereby, the sum total of the short circuit time before and behind increasing the frequency | count of a short circuit becomes equal, and the obtained DC voltage can be maintained substantially constant.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を提供することができる。   For this reason, in order to suppress the power harmonic current and improve the power factor, there is provided a DC power supply device that can ensure stable operation of a load device, with the DC voltage hardly changing even if the number of short circuits is increased. be able to.

次に、ステップS50の短絡回数減少処理について図10を用いて説明する。図10は短絡回数制御部の短絡回数減少処理フロー要部である。   Next, the short circuit frequency reduction process in step S50 will be described with reference to FIG. FIG. 10 shows a main part of the short circuit number reduction processing flow of the short circuit number control unit.

短絡回数減少処理をステップS301で開始し、ステップS302で前の半周期の実短絡回数Mを調べ、M=6つまり、前の半周期の短絡回数が6回である場合は、短絡回数を1回減らして5回にするべく、ステップS321に進む。この場合、前の半周期での6回の短絡から、単純に6回目の短絡を除去すると直流出力電圧Vdが下降し過ぎ、駆動している負荷に悪影響を及ぼす恐れがあり、予期せぬコストアップにつながる。   The short circuit number reduction process is started in step S301. In step S302, the actual short circuit number M in the previous half cycle is checked. If M = 6, that is, if the short circuit number in the previous half cycle is 6, the short circuit number is set to 1. In order to reduce the number of times to 5 times, the process proceeds to step S321. In this case, if the sixth short-circuit is simply removed from the six short-circuits in the previous half cycle, the DC output voltage Vd will drop too much, which may adversely affect the driving load. Leading up.

この現象を回避するためには、短絡回数を減らしても、直流出力電圧が急変しないように、削減した短絡回以外の短絡回の短絡時間を減少させることが効果的である。実施例では、削減した短絡回以外の短絡回の短絡時間を増し、全体として、短絡を削減する前と後で合計の短絡時間がほぼ等しくなるようにした。これにより、短絡の削減の前後で直流出力電圧の変化は小さくなり、負荷に与える影響も軽微なものとすることができた。   In order to avoid this phenomenon, it is effective to reduce the short-circuit time of the short-circuit times other than the reduced short-circuit times so that the DC output voltage does not change suddenly even if the number of short-circuits is reduced. In the example, the short-circuit time of the short-circuit times other than the reduced short-circuit times was increased so that the total short-circuit time was substantially equal before and after the short-circuit reduction as a whole. As a result, the change in the DC output voltage before and after the reduction of the short circuit was reduced, and the influence on the load could be minimized.

更に実施例では、削減した短絡回以外の短絡回の短絡時間を前の半周期での各回の短絡時間に比例させて増加させることで、短絡の削減の前後で直流出力電圧は勿論のこと、力率、電源高調波電流も急変しなくなって、連続的な変化に近くなるので、接続されている負荷の制御に短絡回数の変化に伴う特殊な制御の必要性が乏しくなり必要な短絡の削減を心置きなく行え、製品の開発スピードをアップさせることができる。   Further, in the embodiment, by increasing the short-circuit time of the short-circuit times other than the reduced short-circuit times in proportion to the short-circuit time of each time in the previous half cycle, the DC output voltage is of course before and after the reduction of the short-circuit, Since the power factor and power supply harmonic current do not change suddenly and become close to a continuous change, the need for special control associated with the change in the number of shorts in the control of the connected load is reduced, reducing the number of necessary shorts. Can increase the speed of product development.

ステップS321では、前の半周期の6回目の短絡時間Ta6を前の半周期の1〜5回目の短絡時間に各々の短絡時間に案分比例して加算する時間の合計値として案分残時間Tr6に設定し、ステップS322に進み、次式により今度の半周期の5回目の短絡時間T′a5を演算し、設定する。   In step S321, the probable remaining time as a total value of adding the sixth short-circuit time Ta6 in the previous half cycle proportionally to each short-circuit time to the first to fifth short-circuit times in the previous half cycle. In step S322, the fifth short-circuit time T'a5 of the next half cycle is calculated and set by the following equation.

Figure 0005481165
Figure 0005481165

次に、ステップS323に進み、設定したT′a5を記憶装置から呼出した5回短絡の5回目の短絡時間上限値Tu55と比較し、設定した短絡時間T′a5が記憶装置から呼び出した短絡時間上限値Tu55以下の場合は、設定を有効としてステップS328に進み、設定した短絡時間T′a5が記憶装置から呼び出した短絡時間上限値Tu55より大きい場合は、ステップS325に進む。   Next, proceeding to step S323, the set T'a5 is compared with the fifth short-circuit time upper limit value Tu55 of the fifth short-circuit called from the storage device, and the set short-circuit time T'a5 is called the short-circuit time called from the storage device. If it is less than or equal to the upper limit value Tu55, the setting is validated and the process proceeds to step S328. If the set short circuit time T'a5 is greater than the short circuit time upper limit value Tu55 called from the storage device, the process proceeds to step S325.

ステップS325では、設定した短絡時間T′a5を破棄し、記憶装置から呼び出した短絡時間上限値Tu55を今度の半周期の5回目の短絡時間T′a5として再設定し、ステップS328に進む。ステップS328では案分残時間Tr6から5回目の短絡時間の設定での修正量T′a5−Ta5を差引いた案分残時間Tr5を次の式により演算する。   In step S325, the set short circuit time T'a5 is discarded, and the short circuit time upper limit value Tu55 called from the storage device is reset as the fifth short circuit time T'a5 of the next half cycle, and the process proceeds to step S328. In step S328, the promising remaining time Tr5 obtained by subtracting the correction amount T′a5-Ta5 in the setting of the fifth short-circuiting time from the promising remaining time Tr6 is calculated by the following equation.

Figure 0005481165
Figure 0005481165

次に、ステップS332に進み、上記の案分残時間Tr5を1〜4回目の短絡時間に各々の短絡時間に案分比例して加算すべく、次式により今度の半周期の4回目の短絡時間T′a4を演算し、設定する。   Next, the process proceeds to step S332, and in order to add the probable remaining time Tr5 to the first short circuit time to the fourth short circuit time in proportion to each short circuit time, the following short circuit is performed for the fourth short circuit in the next half cycle. Time T'a4 is calculated and set.

Figure 0005481165
Figure 0005481165

次に、ステップS333に進み、設定したT′a4を記憶装置から呼出したMm回短絡の4回目の短絡時間上限値TuMm4と比較する。ここで、Mmは今度の半周期での短絡回数で有り、前の半周期での短絡回数が6であるので、これから短絡回数を1回減らしてMmは5となる。従って、具体的にステップS333を読み直すと次のようになる。   In step S333, the set T'a4 is compared with the fourth short-circuiting time upper limit TuMm4 of the Mm short-circuit called from the storage device. Here, Mm is the number of short circuits in the next half cycle, and the number of short circuits in the previous half cycle is 6. Therefore, the number of short circuits is reduced by 1 and Mm becomes 5. Therefore, when step S333 is specifically re-read, the result is as follows.

設定したT′a4を記憶装置から呼出した5回短絡の4回目の短絡時間上限値Tu54と比較し、設定した短絡時間T′a4が記憶装置から呼び出した短絡時間上限値Tu54以下の場合は、設定を有効としてステップS338に進む。設定した短絡時間T′a4が記憶装置から呼び出した短絡時間上限値Tu54より大きい場合は、ステップS335に進む。   The set T′a4 is compared with the fourth short-circuit time upper limit value Tu54 of the fifth short-circuit called from the storage device, and when the set short-circuit time T′a4 is equal to or shorter than the short-circuit time upper limit value Tu54 called from the storage device, The setting is validated and the process proceeds to step S338. If the set short-circuit time T′a4 is greater than the short-circuit time upper limit Tu54 called from the storage device, the process proceeds to step S335.

ステップS335では、設定した短絡時間T′a4を破棄し、記憶装置から呼び出した短絡時間上限値Tu54を今度の半周期の4回目の短絡時間T′a4として再設定し、ステップS338に進む。ステップS338では、案分残時間Tr5から4回目の短絡時間の設定での修正量T′a4−Ta4を差引いた案分残時間Tr4を次の式により演算する。   In step S335, the set short-circuit time T'a4 is discarded, and the short-circuit time upper limit value Tu54 called from the storage device is reset as the fourth short-circuit time T'a4 in the next half cycle, and the process proceeds to step S338. In step S338, the probable remaining time Tr4 obtained by subtracting the correction amount T′a4-Ta4 in the setting of the fourth short circuit time from the probable remaining time Tr5 is calculated by the following equation.

Figure 0005481165
Figure 0005481165

以下、同様に(14),(15)式を使用し、ステップS342〜S348で3回目の短絡時間T′a3、案分残時間Tr3を演算,設定し、(16),(17)式を使用し、ステップS352〜S358で2回目の短絡時間T′a2、案分残時間Tr2を演算,設定し、ステップS362で(18)式を使用して今度の半周期の1回目の短絡時間T′a1を演算,設定して、ステップS365に進んで短絡回数減少処理を終了する。   Similarly, using the equations (14) and (15), the third short circuit time T′a3 and the probable remaining time Tr3 are calculated and set in steps S342 to S348, and the equations (16) and (17) are calculated. In step S352 to S358, the second short-circuit time T'a2 and the probable remaining time Tr2 are calculated and set. In step S362, the first short-circuit time T of the next half cycle is calculated using the equation (18). 'A1 is calculated and set, and the process proceeds to step S365 to end the short circuit number reduction process.

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

Figure 0005481165
Figure 0005481165

ステップS302に戻り、前の半周期での短絡回数Mが5回の場合は、短絡回数を1回減らして4回にするべく、ステップS331に進み、前の半周期での5回目の短絡時間T′a5を以降のステップで設定される1回目〜4回目までの短絡時間の演算の中で、前の半周期での1回目〜4回目の短絡時間に案分比例で加えるべき時間の合計値である案分残時間Tr5として演算し、ステップS332に進む。   Returning to step S302, if the number of short circuits M in the previous half cycle is 5, the process proceeds to step S331 to reduce the number of short circuits by 1 to 4 times, and the fifth short circuit time in the previous half cycle Total of time that should be added proportionally to the first to fourth short-circuit time in the previous half cycle in the calculation of T'a5 from the first to fourth short-circuit time set in the subsequent steps The value is calculated as the pro-rata remaining time Tr5, and the process proceeds to step S332.

ステップS332以降は前述した通りに制御が進行し、ステップS365で短絡回数減少処理が終了する。   After step S332, the control proceeds as described above, and the short circuit number reduction process ends in step S365.

再度、ステップS302に戻り、前の半周期での短絡回数Mが5回より小さい場合は、ステップS305に進み、更に、短絡回数Mが3より大きい場合、つまりM=4の場合には、短絡回数を1回減らして3回にするべく、ステップS341に進み、前の半周期での4回目の短絡時間T′a4を以降のステップで設定される1回目〜3回目までの短絡時間の演算の中で、前の半周期での1回目〜3回目の短絡時間に案分比例で加えるべき時間の合計値である案分残時間Tr4として演算し、ステップS342に進む。   Returning to step S302 again, if the number of short circuits M in the previous half cycle is less than 5, the process proceeds to step S305. If the number of short circuits M is greater than 3, that is, if M = 4, the short circuit is performed. In order to reduce the number of times by 1 to 3 times, the process proceeds to step S341, and the fourth short-circuit time T′a4 in the previous half cycle is calculated as the first to third short-circuit times set in the subsequent steps. , The prorated remaining time Tr4 that is the total value of the time that should be added proportionally to the first to third short-circuiting times in the previous half cycle is calculated, and the process proceeds to step S342.

ステップS342以降は前述した通りに制御が進行し、ステップS365で短絡回数減少処理が終了する。   After step S342, the control proceeds as described above, and the short circuit number reduction process ends in step S365.

次に、ステップS305に戻り、前の半周期での短絡回数Mが3である場合、短絡回数を1回減らして2回にするべく、ステップS351に進み、前の半周期での3回目の短絡時間T′a3を以降のステップで設定される1回目〜2回目までの短絡時間の演算の中で、前の半周期での1回目〜2回目の短絡時間に案分比例で加えるべき時間の合計値である案分残時間Tr3として演算し、ステップS352に進む。   Next, returning to step S305, if the number of short circuits M in the previous half cycle is 3, the process proceeds to step S351 to reduce the number of short circuits by 1 to 2 times, and the third time in the previous half cycle. The time that should be added proportionally to the first and second short circuit times in the previous half cycle in the calculation of the short circuit time T'a3 in the first and second short circuit times set in the following steps Is calculated as the promising remaining time Tr3, which is the total value, and the process proceeds to step S352.

ステップS352以降は前述した通りに制御が進行し、ステップS365で短絡回数減少処理が終了する。   After step S352, the control proceeds as described above, and the short circuit number reduction process ends in step S365.

また、ステップS305に戻り、前の半周期での短絡回数Mが3より小さい場合は、ステップS308に進み、更に、短絡回数Mが1より大きい場合、つまりM=2の場合には、ステップS310に進み、図7のステップS35と同様に前の半周期でのM回の短絡時間合計ΣTanを短絡回数Mの短絡時間下限値合計ΣTlMnと比較する。   Returning to step S305, if the number of short circuits M in the previous half cycle is less than 3, the process proceeds to step S308. If the number of short circuits M is greater than 1, that is, if M = 2, step S310 is performed. Then, as in step S35 of FIG. 7, the M short-circuit time total ΣTan in the previous half cycle is compared with the short-circuit time lower limit total ΣTlMn of the number of short-circuits M.

ステップS310で短絡時間合計ΣTanが短絡時間下限値合計ΣTlMn以下である場合は、2回の短絡回数ではこれ以下に短絡時間を短くすることができない上、これより少ない短絡回数は設定されていないので、ステップS361に進み、短絡制御の設定を解除し、短絡を行わないようにして、ステップS365で短絡回数減少処理を終了する。   If the total short circuit time ΣTan is less than or equal to the total short circuit time lower limit value ΣTlMn in step S310, the short circuit time cannot be shortened to less than two short circuit times, and the number of short circuits less than this is not set. Then, the process proceeds to step S361, the setting of the short circuit control is canceled, the short circuit is not performed, and the short circuit number reduction process is terminated in step S365.

ステップS310で短絡時間合計ΣTanが短絡時間下限値合計ΣTlMnより大きい場合は、現行の2回の短絡回数で短絡時間を短くする余地があるので、短絡時間が下限値に達していない回の短絡時間を短くするようステップS315に進み、前述と同様にPI制御を行い、今回の短絡時間を決定し、ステップS365で短絡回数減少処理を終了する。   If the short-circuit time total ΣTan is larger than the short-circuit time lower limit total ΣTlMn in step S310, there is room for shortening the short-circuit time with the current two short-circuit times. In step S315, PI control is performed in the same manner as described above, the current short-circuit time is determined, and the short-circuit number reduction process is terminated in step S365.

次に、ステップS308に戻り、前の半周期での短絡回数Mが1以下の場合は、ステップS361に進み、前述と同様に短絡の設定を解除し、ステップS365で短絡回数減少処理を終了する。   Next, returning to step S308, if the number of short circuits M in the previous half cycle is 1 or less, the process proceeds to step S361, the setting of the short circuit is canceled in the same manner as described above, and the short circuit number reduction process is terminated in step S365. .

このように、実施例の直流電源装置は、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM−1回目までの短絡時間の合計値より、増加させる。   Thus, when the DC power supply device of the embodiment decreases the number of short circuits of the switching means from M times to M−1 times, the total value of the short circuit time after the decrease of the number of short circuits is calculated as M− before the decrease of the number of short circuits. Increase from the total value of short-circuiting time until the first time.

これにより、短絡回数をnからn−1に減らす場合に、単純に短絡回数を減らすのではなく、直流電圧がほぼ同じになるように、短絡回数を減らした後の短絡時間の合計(n−1回までの短絡時間の合計)を、短絡回数を減らす前のn−1回までの短絡時間の合計より長くする。   As a result, when the number of short circuits is reduced from n to n−1, the total number of short circuits after the number of short circuits is reduced (n−) so that the DC voltage is substantially the same, instead of simply reducing the number of short circuits. The sum of the short-circuit times up to once) is made longer than the sum of the short-circuit times up to n-1 times before the number of short-circuits is reduced.

これにより、短絡回数を減らした後の短絡(n−1回までの短絡)により得られる直流電圧は、短絡回数を減らす前のn−1回目までの短絡で得られた直流電圧より上昇し、短絡回数を減らす前のn回目の短絡が無くなったことによる直流電圧の下降分を補い、全体として、短絡回数を減らす前の直流電圧とほぼ等しい直流電圧を得ることができる。   Thereby, the DC voltage obtained by the short circuit (short circuit up to n-1 times) after reducing the number of short circuits is higher than the DC voltage obtained by the short circuit up to n-1 time before reducing the number of short circuits, As a whole, it is possible to obtain a DC voltage substantially equal to the DC voltage before reducing the number of short circuits by compensating for the decrease in DC voltage due to the absence of the n-th short circuit before reducing the number of short circuits.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を提供することができる。   For this reason, in order to suppress the power harmonic current and improve the power factor, there is provided a DC power supply device that can ensure stable operation of a load device, with the DC voltage hardly changing even if the number of short circuits is increased. be able to.

また、実施例の直流電源装置は、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM回目までの短絡時間の合計値と等しくする。   In addition, when the DC power supply device of the embodiment decreases the number of short circuits of the switching means from M times to M−1 times, the total value of the short circuit time after the number of short circuits is reduced to the Mth before the number of short circuits is decreased. Make it equal to the total value of the short circuit time.

これにより、短絡回数を減らした場合、短絡時間の合計が同じになるようにする。これにより、短絡回数を減らす前後の短絡時間の合計が等しくなり、得られる直流電圧をほぼ一定に維持することができる。   Thus, when the number of short circuits is reduced, the total short circuit time is made the same. Thereby, the sum total of the short circuit time before and after reducing the frequency | count of a short circuit becomes equal, and the direct-current voltage obtained can be maintained substantially constant.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を提供することができる。   For this reason, in order to suppress the power harmonic current and improve the power factor, there is provided a DC power supply device that can ensure stable operation of a load device, with the DC voltage hardly changing even if the number of short circuits is increased. be able to.

図11,図12を用いて説明する。図11は電源装置の回路構成を示すブロック図である。図12は入力電流と目標直流電圧の関係を示す図である。   This will be described with reference to FIGS. FIG. 11 is a block diagram showing a circuit configuration of the power supply apparatus. FIG. 12 is a diagram showing the relationship between the input current and the target DC voltage.

図11は図1の周辺情報検出手段118を入力電流検出手段112にしたものである。入力電流により目標電圧を図12のように変更することで、好適な直流電源装置とすることができる。   FIG. 11 shows the peripheral information detection means 118 of FIG. By changing the target voltage according to the input current as shown in FIG. 12, a suitable DC power supply device can be obtained.

このように、実施例の直流電源装置は、前記交流電源からの入力電流を検出する入力電流検出手段を更に備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記入力電流検出手段で検出した入力電流に応じて定める。   Thus, the direct-current power supply device of the embodiment further includes input current detection means for detecting an input current from the alternating-current power supply, and the switching control means determines the number of short-circuits of the switching means up to 2 to 6 times. And the input current detected by the input current detecting means.

これにより、前記比の値と入力電流の大小に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、入力電流を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short-circuits can be appropriately determined according to the ratio value and the input current, so that the power factor can be improved and high-efficiency operation can be achieved while satisfying the regulation of the power supply harmonic current. It becomes. In this case, as the simplest method of determining the number of short circuits, there is a method of converting the input current to a target DC voltage, obtaining a value of the ratio with the power supply voltage, and determining the number of short circuits by the above-described method according to the value of the ratio. .

入力電流を目標直流電圧に換算する方法としては、例えば図23に示すように、入力電流を機器が持つ特性に従って、適切な数値で区分し、各区分点での目標直流電圧を実験などで確認し、その中間では直線補間,階段状の変化,曲線補間などの方法で目標直流電圧を定める方法などを採用すれば良い。このようにすることで、入力電流の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method for converting the input current to the target DC voltage, for example, as shown in FIG. 23, the input current is classified by an appropriate numerical value in accordance with the characteristics of the device, and the target DC voltage at each division point is confirmed by an experiment or the like. In the middle, a method of determining the target DC voltage by a method such as linear interpolation, step-like change, or curve interpolation may be adopted. In this way, the target DC voltage can be easily set over the entire input current, and the power factor can be improved and highly efficient operation can be achieved while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することができる。   For this reason, a DC power supply device that realizes high efficiency and appropriate power factor at low load while realizing high power factor and appropriate efficiency at high load while suppressing power supply harmonic current with an inexpensive circuit configuration is provided. be able to.

図13は図1の周辺情報検出手段118を負荷量検出手段113にしたものである。負荷量に応じて目標電圧を図14のように変更することで、好適な直流電源装置とすることができる。   FIG. 13 is a diagram in which the peripheral information detection means 118 of FIG. By changing the target voltage as shown in FIG. 14 according to the load amount, a suitable DC power supply device can be obtained.

このように、実施例の直流電源装置は、前記直流電力に接続された負荷量を検出する負荷量検出手段を更に備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記負荷量検出手段で検出された負荷量に応じて定める。   As described above, the DC power supply device according to the embodiment further includes load amount detection means for detecting the load amount connected to the DC power, and the switching control means determines the number of short-circuits of the switching means up to 2 to 6 times. It is determined according to the ratio value and the load amount detected by the load amount detecting means.

これにより、前記比の値と負荷量の大小に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、負荷量を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short-circuits can be determined appropriately according to the ratio value and the amount of load, so that power factor can be improved and high-efficiency operation can be achieved while satisfying the regulation of power supply harmonic current. It becomes. In this case, as the simplest method of determining the number of short circuits, there is a method of converting the load amount to a target DC voltage, obtaining a value of the ratio with the power supply voltage, and determining the number of short circuits by the method described above according to the ratio value. .

負荷量を目標直流電圧に換算する方法としては、例えば図23に示すようなグラフに従って、前述のような方法で目標直流電圧を定めれば良い。このようにすることで、負荷量の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method of converting the load amount into the target DC voltage, the target DC voltage may be determined by the method as described above, for example, according to a graph as shown in FIG. In this way, the target DC voltage can be easily set over the entire load amount, and the power factor can be improved and highly efficient operation can be performed while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することができる。   For this reason, a DC power supply device that realizes high efficiency and appropriate power factor at low load while realizing high power factor and appropriate efficiency at high load while suppressing power supply harmonic current with an inexpensive circuit configuration is provided. be able to.

なお、負荷量としては、制御の目的に応じて例えば、得られる直流電圧,直流電流,負荷となる機器の各部の温度(例えば、冷凍サイクルの温度),負荷となる機器が置かれる環境の温度(例えば、室内外の温度)などの種々の量を使用することができる。   Note that the load amount includes, for example, the obtained DC voltage, DC current, the temperature of each part of the equipment that becomes the load (for example, the temperature of the refrigeration cycle), and the temperature of the environment in which the equipment that becomes the load is placed. Various amounts can be used such as (eg indoor and outdoor temperature).

図15,図16を用いて説明する。図15はモータ回転数と目標直流電圧の関係を示す図である。図16は実施例3の電源装置の回路構成を示すブロック図である。   This will be described with reference to FIGS. 15 and 16. FIG. 15 is a diagram showing the relationship between the motor speed and the target DC voltage. FIG. 16 is a block diagram illustrating a circuit configuration of the power supply device according to the third embodiment.

図15は図1の負荷104bをモータ114とし、周辺情報検出手段118をモータ印加電圧検出手段115としたものである。モータ印加電圧に応じて目標電圧を図16のように変更することで、好適な直流電源装置とすることができる。   FIG. 15 shows the load 104b of FIG. 1 as the motor 114 and the peripheral information detection means 118 as the motor applied voltage detection means 115. By changing the target voltage as shown in FIG. 16 according to the motor applied voltage, a suitable DC power supply device can be obtained.

このように、実施例の直流電源装置は、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータへの印加電圧とし、前記負荷量検出手段としてモータへの印加電圧を検出するモータ印加電圧検出手段を備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ印加電圧検出手段で検出されたモータ印加電圧に応じて定める。   As described above, in the DC power supply device of the embodiment, the load connected to the DC power is a motor, the load amount is an applied voltage to the motor, and the applied voltage to the motor is detected as the load amount detecting means. Motor application voltage detection means is provided, and the switching control means determines the number of short circuits from 2 to 6 times of the switching means according to the value of the ratio and the motor application voltage detected by the motor application voltage detection means.

これにより、前記比の値とモータ印加電圧の高低に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、モータ印加電圧を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short circuits can be appropriately determined according to the value of the ratio and the level of the motor applied voltage, so that the power factor is improved and high-efficiency operation is achieved while satisfying the regulation of the power supply harmonic current. It becomes possible. In this case, the simplest method of determining the number of short circuits is to convert the motor applied voltage to a target DC voltage, determine the value of the ratio with the power supply voltage, and determine the number of short circuits by the above method according to the value of the ratio. is there.

モータ印加電圧を目標直流電圧に換算する方法としては、例えば図23に示すようなグラフに従って、前述のような方法で目標直流電圧を定めれば良い。このようにすることで、モータ印加電圧の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method of converting the motor applied voltage into the target DC voltage, the target DC voltage may be determined by the method as described above, for example, according to a graph as shown in FIG. In this way, the target DC voltage can be easily set over the entire range of the motor applied voltage, and the power factor can be improved and highly efficient operation can be achieved while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することができる。   For this reason, a DC power supply device that realizes high efficiency and appropriate power factor at low load while realizing high power factor and appropriate efficiency at high load while suppressing power supply harmonic current with an inexpensive circuit configuration is provided. be able to.

なお、モータ印加電圧に換えて、インバータ制御手段がPWM出力部に発する電圧指示値、またはPWMデューティ指示値を用いても同様の効果を得ることができる。   Note that the same effect can be obtained by using a voltage instruction value or a PWM duty instruction value generated by the inverter control means to the PWM output unit instead of the motor applied voltage.

図17,図18を用いて説明する。図17は実施例4の電源装置の回路構成を示すブロック図である。図18は実施例5の電源装置の回路構成を示すブロック図である。   This will be described with reference to FIGS. FIG. 17 is a block diagram illustrating a circuit configuration of the power supply device according to the fourth embodiment. FIG. 18 is a block diagram illustrating a circuit configuration of the power supply device according to the fifth embodiment.

図17は図1の負荷104bをモータ114とし、周辺情報検出手段118をモータ回転数検出手段116としたものである。モータ回転数に応じて目標電圧を図18のように変更することで、好適な直流電源装置とすることができる。   FIG. 17 shows the load 104b of FIG. 1 as the motor 114 and the peripheral information detection means 118 as the motor rotation speed detection means 116. By changing the target voltage as shown in FIG. 18 according to the motor rotation speed, a suitable DC power supply device can be obtained.

このように、実施例の直流電源装置は、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータの回転数として、前記負荷量検出手段としてモータの回転数を検出するモータ回転数検出手段を備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ回転数検出手段で検出されたモータ回転数に応じて定める。   Thus, in the DC power supply device of the embodiment, the load connected to the DC power is a motor, the load amount is the rotation number of the motor, and the rotation amount of the motor is detected as the load amount detection means. The switching control means determines the number of short circuits of the switching means from 2 to 6 times according to the value of the ratio and the motor rotation speed detected by the motor rotation speed detection means.

これにより、前記比の値とモータ回転数の高低に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、モータ回転数を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short circuits can be appropriately determined according to the value of the ratio and the motor rotation speed, so that the power factor is improved and the highly efficient operation is achieved while satisfying the regulation of the power supply harmonic current. It becomes possible. In this case, the simplest method of determining the number of short circuits is to convert the motor rotation number to the target DC voltage, determine the ratio with the power supply voltage, and determine the number of short circuits by the above method according to the ratio value. is there.

モータ回転数を目標直流電圧に換算する方法としては、例えば図23に示すようなグラフに従って、前述のような方法で目標直流電圧を定めれば良い。このようにすることで、モータ回転数の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method for converting the motor rotational speed into the target DC voltage, the target DC voltage may be determined by the method as described above, for example, according to a graph as shown in FIG. In this way, the target DC voltage can be easily set over the entire range of the motor rotation speed, and the power factor can be improved and highly efficient operation can be achieved while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を提供することができる。   For this reason, a DC power supply device that realizes high efficiency and appropriate power factor at low load while realizing high power factor and appropriate efficiency at high load while suppressing power supply harmonic current with an inexpensive circuit configuration is provided. be able to.

なお、モータ回転数を換えて、インバータ制御手段がPWM出力部に発するモータ回転数指示値を用いても同様の効果を得ることができる。   It is to be noted that the same effect can be obtained by changing the motor rotation speed and using the motor rotation speed instruction value that the inverter control means issues to the PWM output section.

以下、実施例6の上述の直流電源装置を用いた空気調和機について図19を用いて説明する。図19は実施例6の空気調和機の構成図である。   Hereinafter, an air conditioner using the above-described DC power supply device of Example 6 will be described with reference to FIG. FIG. 19 is a configuration diagram of the air conditioner of the sixth embodiment.

図27において、符号1で総括的に示すのは空気調和機であり、室内機2と室外機6を接続配管8でつなぎ、室内を空気調和する。室内機2は筐体21に室内熱交換器,室内送風機,露受皿等を取付け、化粧枠23で覆い、化粧枠23の前面に前面パネル25を取付けた構成になっている。化粧枠23には室内空気を吸い込む空気吸込み口27と、温湿度が調和された空気を吹き出す空気吹出し口29とが上下に設けられている。   In FIG. 27, an air conditioner generally indicated by reference numeral 1 connects the indoor unit 2 and the outdoor unit 6 with a connection pipe 8 to air-condition the room. The indoor unit 2 has a configuration in which an indoor heat exchanger, an indoor blower, a dew tray, and the like are attached to a casing 21, covered with a decorative frame 23, and a front panel 25 is attached to the front surface of the decorative frame 23. The decorative frame 23 is provided with an air inlet 27 for sucking indoor air and an air outlet 29 for blowing air in which temperature and humidity are harmonized.

室内機2は、内部に図示しない電装品ボックスに制御基板を備え、該制御基板にマイコンが設けられる。該マイコンは図示しない室内温度センサー,室内湿度センサー等の各種のセンサーからの信号を受け、リモコン5からの操作信号を受光部396で受けると共に、室内送風機等を制御し、且つ、室外機6との通信を司るなど、室内機2を統括して制御する。   The indoor unit 2 includes a control board in an electrical component box (not shown) inside, and a microcomputer is provided on the control board. The microcomputer receives signals from various sensors such as an indoor temperature sensor and an indoor humidity sensor (not shown), receives an operation signal from the remote controller 5 at the light receiving unit 396, controls the indoor fan, and the outdoor unit 6 The overall control of the indoor unit 2 is performed, for example, controlling the communication.

室外機6は、ベース61に圧縮機,室外熱交換器,室外送風機を搭載し、外筐62で覆い、配管接続バルブ78に室内機2からの接続配管8を接続している。   In the outdoor unit 6, a compressor, an outdoor heat exchanger, and an outdoor blower are mounted on a base 61, covered with an outer casing 62, and a connection pipe 8 from the indoor unit 2 is connected to a pipe connection valve 78.

この空気調和機1を運転する時には、電源(図示せず)に接続してリモコン5を操作し、所望の冷房,除湿,暖房等の運転を行う。   When the air conditioner 1 is operated, it is connected to a power source (not shown) and the remote controller 5 is operated to perform desired operations such as cooling, dehumidification, and heating.

冷房等の運転の場合、リモコン5から運転操作の信号がなされると、図示しないマイコンは、リモコン5からの操作信号または自動運転が設定されていれば各種センサからの情報に基づいて冷房等の運転モードを決定する。   In the case of driving such as cooling, when a driving operation signal is made from the remote controller 5, the microcomputer (not shown) performs an operation such as cooling based on the operation signal from the remote controller 5 or information from various sensors if automatic driving is set. Determine the operation mode.

次に、室外機6の制御部(図示せず)に決定した運転モードに応じた運転を指示すると共に、決定した運転モードに従って室内送風機を駆動し、空気吸込部27から室内熱交換器に室内空気を流通させる。室外機6の制御部は室内機2からの指示に従い、圧縮機,送風モータ,制御弁等を制御し、圧縮機からの冷媒を冷凍サイクルに循環させると共に、室外空気吸込み部から室外熱交換器に室外空気を流通させる。斯くして、周知の冷房等の運転が行われる。   Next, the control unit (not shown) of the outdoor unit 6 is instructed to operate according to the determined operation mode, and the indoor blower is driven according to the determined operation mode, and the indoor heat exchanger is moved from the air suction unit 27 to the indoor heat exchanger. Allow air to circulate. The control unit of the outdoor unit 6 controls a compressor, a blower motor, a control valve, and the like according to an instruction from the indoor unit 2 to circulate refrigerant from the compressor to the refrigeration cycle, and from the outdoor air suction unit to the outdoor heat exchanger Allow outdoor air to flow through. Thus, a known operation such as cooling is performed.

室外機6について図20〜図22を用いて更に詳しく説明する。図20は空気調和機の室外機の内部構造斜視図である。図21は室外機の天板を外した平面図である。図22は室外機の前面板を外した正面図である。   The outdoor unit 6 will be described in more detail with reference to FIGS. FIG. 20 is a perspective view of the internal structure of the outdoor unit of the air conditioner. FIG. 21 is a plan view of the outdoor unit with the top plate removed. FIG. 22 is a front view of the outdoor unit with the front plate removed.

外筐62は前面板621,側面板623,天板622等からなり、室外熱交換器73に対向する外面に室外空気の吸込み部が設けられ、室外ファン631に対向する前面板621に自在に空気の流通ができるファングリル635が設けられている。室外ファン631は室外熱交換器73が上流側に、ファングリル635が下流側になるように回転駆動され、上述のように室外空気を室外熱交換器73に流通させる。   The outer casing 62 includes a front plate 621, a side plate 623, a top plate 622, and the like. An outdoor air suction portion is provided on the outer surface facing the outdoor heat exchanger 73, and the front plate 621 facing the outdoor fan 631 is freely movable. A fan grill 635 capable of air circulation is provided. The outdoor fan 631 is rotationally driven so that the outdoor heat exchanger 73 is on the upstream side and the fan grill 635 is on the downstream side, and the outdoor air is circulated to the outdoor heat exchanger 73 as described above.

室外熱交換器73は、室外機6の側面から背面にかけて略L字状に配設され、できるだけ大きい面積を確保し熱交換能力を高めている。室外ファン631も、できるだけ大口径のものが使用されている。室外ファン631と圧縮機75の間には仕切板611があって、送風機室64と機械室68とを仕切っている。   The outdoor heat exchanger 73 is disposed in a substantially L shape from the side surface to the back surface of the outdoor unit 6, and secures as large an area as possible to enhance the heat exchange capability. The outdoor fan 631 also has a large diameter as much as possible. A partition plate 611 is provided between the outdoor fan 631 and the compressor 75 to partition the blower chamber 64 and the machine chamber 68.

送風機室64には前述のように室外ファン631,室外熱交換器73が配設されている。機械室68には、圧縮機75,アキュムレータ76,冷媒送り管等が配設されている。圧縮機75のモータ114を駆動する前述のインバータ104aや直流電源装置100,送風モータ633等を駆動する電装部品は製作時やメンテナンス時の取扱を容易にするため電装箱65に収納されている。   As described above, the fan 631 and the outdoor heat exchanger 73 are disposed in the blower chamber 64. In the machine room 68, a compressor 75, an accumulator 76, a refrigerant feed pipe, and the like are disposed. The electric parts for driving the inverter 104a, the DC power supply device 100, the blower motor 633, and the like for driving the motor 114 of the compressor 75 are housed in the electric box 65 for easy handling during production and maintenance.

しかし、直流電源装置100のリアクタ105は鉄製のコアと銅製の巻線から構成され、その質量が大きいため、電装箱65に収納せずに送風機室64に独立して取付けられることが多い。しかし、リアクタ105を除外しても電装箱65に収納される、上記のような電装品は、圧縮機75,送風モータ633等を駆動するので容量が大きく、電装部からの発熱も大きくなり、その冷却を効果的に行う必要がある。   However, the reactor 105 of the DC power supply device 100 is composed of an iron core and a copper winding, and its mass is large, so that it is often attached independently to the blower chamber 64 without being housed in the electrical box 65. However, even if the reactor 105 is excluded, the electrical components as described above, which are stored in the electrical box 65, drive the compressor 75, the blower motor 633, and the like, so that the capacity is large and the heat generated from the electrical components also increases. It is necessary to effectively perform the cooling.

このため、これらの電装品を密集して配置することができず、必然的に電装箱65の大きさも大きくなって、機械室68の上部に納まりきらず送風機室64にはみ出てくる。実施例では、電装箱65は送風機室64と機械室68とに跨って、仕切板611の上部に設置した。このように、送風機室64には電装箱65の仕切板611からはみ出した部分や、リアクタ105が置かれる。   For this reason, these electrical components cannot be densely arranged, and the size of the electrical box 65 inevitably increases, so that the electrical components do not fit in the upper part of the machine room 68 and protrude into the blower room 64. In the example, the electrical box 65 was installed on the upper part of the partition plate 611 across the blower chamber 64 and the machine chamber 68. As described above, the portion that protrudes from the partition plate 611 of the electrical box 65 and the reactor 105 are placed in the blower chamber 64.

送風機室64は比較的広く見えるが、室外ファン631の通風を妨げる位置にリアクタ105を置くと、送風量の低下や騒音の増大などの負の影響が増し、望ましくない結果になる。このため、電装箱65の仕切板611からはみ出した部分や、リアクタ105は室外ファン631からなるべく離れた位置、つまり送風機室64の隅の部分に置かなければならない。   Although the blower chamber 64 appears to be relatively wide, placing the reactor 105 at a position that prevents ventilation of the outdoor fan 631 increases negative effects such as a decrease in the amount of air blown and an increase in noise, resulting in an undesirable result. Therefore, the portion of the electrical box 65 that protrudes from the partition plate 611 and the reactor 105 must be placed at a position as far as possible from the outdoor fan 631, that is, at a corner portion of the blower chamber 64.

このような事情から、リアクタ105は質量が大きいので、取付固定を確実にするため、ベース61に近い、低い位置の仕切板611寄りに配置され、電装箱65は、上述のように、送風機室64と機械室68とに跨って、仕切板611の上部に設置される。また、送風機室65に置かれる部分は、室外ファン631に対する影響を小さくするために、できるだけ小さくする必要がある。   Because of such circumstances, the reactor 105 has a large mass. Therefore, in order to ensure mounting and fixing, the reactor 105 is disposed near the partition plate 611 at a low position close to the base 61, and the electrical box 65 is disposed in the blower chamber as described above. 64 and the machine room 68 are installed on the upper part of the partition plate 611. Further, the portion placed in the blower chamber 65 needs to be as small as possible in order to reduce the influence on the outdoor fan 631.

このため、容量の大きい電装部品の小型化を図ると共に、これらの電装部品を効率よく冷却するため、室外熱交換器73に熱交換用の外気を通風させる室外ファン631の負圧を利用して電装部に冷却用の空気を導入する。このよう状況から、リアクタ105の容量を小さくすることは空気調和機の小型化,性能向上に対して大きな効果がある。   For this reason, in order to reduce the size of electrical components having large capacities and efficiently cool these electrical components, the negative pressure of the outdoor fan 631 that allows the outdoor heat exchanger 73 to ventilate the outside air for heat exchange is used. Air for cooling is introduced into the electrical equipment section. In this situation, reducing the capacity of the reactor 105 has a great effect on downsizing and improving the performance of the air conditioner.

このように、実施例の空気調和機は、回転数制御型圧縮機を搭載し、請求項1乃至請求項11の直流電源装置を用いる。   As described above, the air conditioner of the embodiment is equipped with the rotation speed control type compressor and uses the DC power supply device of claims 1 to 11.

これにより、室内の温度が設定温度に近い条件での運転(圧縮機の回転数が低い、小能力での連続運転)が非常に長いことから、スイッチング損失が小さい、効率の良い運転が長く続き消費電力量を抑制することができる。   As a result, the operation under conditions where the room temperature is close to the set temperature (continuous operation with a low compressor speed and small capacity) is very long. Power consumption can be suppressed.

また、空気調和運転の開始当初のような高負荷時はスイッチングの回数を増やして、圧縮用モータが誘起電圧に打勝って高速回転し、大能力を発揮できるよう直流電圧を昇圧し、圧縮機を駆動すると共に、高力率を確保し、空気調和機を接続したブレーカー、またはコンセントの容量を目いっぱいに活用して空気調和機の能力を最大限に発揮させ、室内を素早く快適温度にすることができる。   In addition, when the load is high, such as at the beginning of air-conditioning operation, the number of switchings is increased, and the DC voltage is boosted so that the compression motor can overcome the induced voltage and rotate at a high speed to exhibit its high capacity. As well as ensuring a high power factor, the capacity of the breaker or outlet connected to the air conditioner can be fully utilized to maximize the performance of the air conditioner and quickly bring the room to a comfortable temperature. be able to.

このため、安価で、電源高調波電流規制を満足し、電源容量を最大限に活用した高能力で、効率の良い空気調和機を提供することができる。   Therefore, it is possible to provide an air conditioner that is inexpensive, satisfies the power supply harmonic current regulation, has a high capacity and uses the power supply capacity to the maximum, and is efficient.

なお、本発明は空気調和機だけでなく、直流電源装置を用いた電子機器に広く応用できる。   Note that the present invention can be widely applied not only to air conditioners but also to electronic devices using a DC power supply.

以上説明したように、請求項1記載の直流電源装置によれば、交流電源より入力された交流電力を直流電力に変換する整流回路と、前記交流電源と前記整流回路との間に接続されたリアクタと、前記交流電源を前記リアクタを介して短絡するスイッチング手段と、前記直流電力の目標電圧設定手段と、前記交流電源の周波数を検出する周波数検出手段と、前記交流電源の電源電圧を検出する電源電圧検出手段と、前記交流電源のゼロクロス点を検出するゼロクロス検出手段と、前記整流回路の出力である直流電圧を検出する直流電圧検出手段と、前記ゼロクロス点に同期させて前記スイッチング手段を短絡,開放するスイッチング制御手段とを備え、前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値未満の場合に前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替える。   As described above, according to the DC power supply device of claim 1, the rectifier circuit that converts AC power input from the AC power source into DC power, and the AC power source and the rectifier circuit are connected. A reactor, a switching means for short-circuiting the AC power supply through the reactor, a target voltage setting means for the DC power, a frequency detection means for detecting the frequency of the AC power supply, and a power supply voltage of the AC power supply. A power supply voltage detection means, a zero cross detection means for detecting a zero cross point of the AC power supply, a DC voltage detection means for detecting a DC voltage as an output of the rectifier circuit, and the switching means are short-circuited in synchronization with the zero cross point. Switching control means for opening, and the switching control means comprises a target DC voltage set by the target voltage setting means and the power supply voltage. When the value of the ratio with the power supply voltage detected by the detection means is less than a predetermined value, the switching means is short-circuited twice during a half cycle from the zero cross point of the AC power supply detected by the zero cross detection means. The first and second short-circuit intervals of the two-time short circuit are 0.2 to 0.4 ms when the power frequency detected by the frequency detecting means is 50 Hz, and 0.16 when the power frequency is 60 Hz. ˜0.33 ms, and when the ratio value is equal to or greater than a predetermined value, the number of short-circuits of the switching means is greater than the two times according to the ratio value, and the motor of the device to be incorporated is operated. Switch to the number of short circuits where the noise frequency of the DC power supply does not exceed the noise frequency.

これにより、負荷の駆動に最適な直流電圧を目標電圧設定手段で設定し、電源電圧の実効値との比の値が所定値未満の場合、つまり、負荷が軽く小能力での運転の場合には、電源周波数に応じた適切な短絡間隔で2回短絡を行うことで、電源高調波電流を抑制しつつ、力率を上げることができる。この時、スイッチング回数は2回のみなので、スイッチング損失は小さく、効率の良い運転ができる。   As a result, the optimum DC voltage for driving the load is set by the target voltage setting means, and when the value of the ratio to the effective value of the power supply voltage is less than the predetermined value, that is, when the load is light and the operation is performed with a small capacity The power factor can be increased while suppressing the power supply harmonic current by short-circuiting twice at an appropriate short-circuit interval corresponding to the power supply frequency. At this time, since the number of times of switching is only two, the switching loss is small and an efficient operation can be performed.

また、目標電圧と、電源電圧の実効値との比の値が所定値以上の場合、つまり、負荷が重く大能力での運転の場合には、6回までの短絡回数を単調に増加させることで、電源高調波電流を規制値以下に抑制しつつ、電源電圧の変動をカバーし、且つ、直流電圧の昇圧と力率のアップを両立できる。この時、スイッチングの回数は高々6回なので、スイッチング損失も僅かな増加で済み、高効率を維持できる。   In addition, when the ratio of the target voltage to the effective value of the power supply voltage is greater than or equal to a predetermined value, that is, when the load is heavy and the operation is performed at a large capacity, the number of short circuits up to 6 times should be increased monotonously. Thus, it is possible to cover the fluctuation of the power supply voltage while suppressing the power supply harmonic current below the regulation value, and to simultaneously increase the DC voltage and increase the power factor. At this time, since the number of times of switching is 6 at most, the switching loss can be increased only slightly, and high efficiency can be maintained.

この場合、2回目までの短絡は力率の増加と電源高調波電流の抑制を主眼とし、3回目の短絡は直流電圧の昇圧を主眼とし、4回目の短絡で直流電圧の昇圧と力率の増加を図り、5回目と6回目の短絡は力率の増加を主眼として短絡動作を実行する。   In this case, the second short circuit focuses on the increase of the power factor and the suppression of the power supply harmonic current, the third short circuit focuses on the DC voltage boost, and the fourth short circuit increases the DC voltage and power factor. In order to increase, the fifth and sixth short-circuit operations are performed with a focus on increasing the power factor.

特に、駆動する負荷が空気調和機の圧縮機である場合、空気調和機は室内の温度が設定温度に近い条件での運転(圧縮機の回転数が低い、小能力での連続運転)が非常に長いことから、スイッチング損失が小さい、効率の良い運転が長く続き消費電力量を抑制することができる。   In particular, when the load to be driven is a compressor of an air conditioner, the air conditioner is very likely to operate under conditions where the indoor temperature is close to the set temperature (continuous operation with low capacity, low compressor speed). Therefore, efficient operation can be continued for a long time with low switching loss, and power consumption can be suppressed.

また、空気調和運転の開始当初のような高負荷時はスイッチングの回数を増やして、圧縮用モータが誘起電圧に打勝って高速回転し、大能力を発揮できるよう直流電圧を昇圧し、圧縮機を駆動すると共に、高力率を確保し、空気調和機を接続したブレーカー、またはコンセントの容量を目いっぱいに活用して空気調和機の能力を最大限に発揮させ、室内を素早く快適温度にすることができる。   In addition, when the load is high, such as at the beginning of air-conditioning operation, the number of switchings is increased, and the DC voltage is boosted so that the compression motor can overcome the induced voltage and rotate at a high speed to exhibit its high capacity. As well as ensuring a high power factor, the capacity of the breaker or outlet connected to the air conditioner can be fully utilized to maximize the performance of the air conditioner and quickly bring the room to a comfortable temperature. be able to.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を得ることができる。   For this reason, a DC power supply device that achieves high efficiency and appropriate power factor at low loads and high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current with an inexpensive circuit configuration Can do.

また、請求項2記載の直流電源装置によれば、前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値以上の場合に、前記2回短絡の場合と同様に、前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替える。   According to the DC power supply device of claim 2, the switching control means has a predetermined value of a ratio between the target DC voltage set by the target voltage setting means and the power supply voltage detected by the power supply voltage detection means. When the value is equal to or greater than the value, as in the case of the two-time short circuit, the switching means is short-circuited twice during a half cycle from the zero cross point of the AC power source detected by the zero-cross detection means. The short-circuit interval between the first and second short-circuits is 0.2 to 0.4 ms when the power supply frequency detected by the frequency detection means is 50 Hz, and 0.16 to 0.33 ms when the power supply frequency is 60 Hz. Then, when the value of the ratio is equal to or greater than a predetermined value, the number of short-circuits of the switching means is more than the two times according to the value of the ratio, and the operating noise frequency of the motor of the apparatus to be incorporated. On the other hand, the number of short circuits is switched so that the noise frequency of the DC power supply does not exceed.

これにより、2を超える回数短絡した場合でも前述と同様に適切な間隔を第1の短絡と第2の短絡の間に設けることで、電源高調波電流の抑制と力率の改善を達成できる。   As a result, even when the number of short circuits exceeds two, an appropriate interval is provided between the first short circuit and the second short circuit in the same manner as described above, thereby suppressing the power supply harmonic current and improving the power factor.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を得ることができる。   For this reason, a DC power supply device that achieves high efficiency and appropriate power factor at low loads and high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current with an inexpensive circuit configuration Can do.

また、請求項3記載の直流電源装置によれば、前記スイッチング制御手段は3回目以降の短絡時間を前記電源周波数が50Hzの時は0.25ms、60Hzの時は0.2ms以下の範囲とする。   According to a third aspect of the present invention, the switching control means sets the third and subsequent short-circuit times in the range of 0.25 ms when the power frequency is 50 Hz and 0.2 ms or less when the power frequency is 60 Hz. .

これにより、3回目以降の短絡によって生じる電源高調波電流の周波数が、電源周波数が50Hzの時は2,000Hz、60Hzの時は2,500Hz以上となり、電源周波数の40次以上となって、電源高調波電流規制の対象から除外されるので、電源高調波電流規制を満足することができ、主として力率の向上を考慮した検討をすれば良いことになる。   As a result, the frequency of the power harmonic current generated by the third and subsequent short circuits is 2,000 Hz when the power frequency is 50 Hz, 2,500 Hz or higher when the power frequency is 60 Hz, and the power frequency is 40th or higher. Since it is excluded from the target of the harmonic current regulation, the power supply harmonic current regulation can be satisfied, and it is only necessary to consider mainly the improvement of the power factor.

これは、高調波電流を抑制し、力率を高くするためには、短絡回数を多くすることが有効であることを前述したが、シミュレーションによれば、力率に関係してくる3次〜15次の高調波の抑制には短絡回数を多くすることが有効であるが、15次〜40次の高調波電流は逆に増えやすい傾向となる。   As described above, in order to suppress the harmonic current and increase the power factor, it is effective to increase the number of short-circuits. Increasing the number of short circuits is effective for suppressing the 15th harmonic, but the 15th to 40th harmonic currents tend to increase conversely.

そこで第2の短絡より後の短絡は40次よりも高次の波形とすることが電源高調波電流の抑制に重要となることが判った。電源周波数が50Hzである時、その周期20msの正弦波であり、電源周波数の40次高調波の周期は0.5msとなる。   Thus, it has been found that it is important for the suppression of the power supply harmonic current that the short circuit after the second short circuit has a higher-order waveform than the 40th order. When the power supply frequency is 50 Hz, the sine wave has a period of 20 ms, and the period of the 40th harmonic of the power supply frequency is 0.5 ms.

短絡により発生する三角波がこの40次の周期の1/2以下となれば電源高調波電流規制の対象外になり、短絡時間を0.25msより短くすることで電源高調波電流規制を満足することができる。電源周波数が60Hzのときも同様の理由で短絡時間を0.2msより短くすることで電源高調波電流規制を満足することができる。   If the triangular wave generated by the short circuit becomes 1/2 or less of this 40th order period, it will be excluded from the power harmonic current regulation, and the power harmonic current regulation will be satisfied by making the short circuit time shorter than 0.25 ms. Can do. Even when the power supply frequency is 60 Hz, the power supply harmonic current regulation can be satisfied by shortening the short circuit time to less than 0.2 ms for the same reason.

このため、短絡回数を多くして力率を改善しつつ、電源高調波電流規制を満足する直流電源装置を得ることができる。   For this reason, it is possible to obtain a DC power supply device that satisfies the power harmonic current regulation while increasing the number of short circuits to improve the power factor.

また、請求項4記載の直流電源装置によれば、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、短絡回数増加後のM回目までの短絡時間の合計値を、短絡回数増加前の短絡時間の合計値より、減少させる。   According to the DC power supply device of claim 4, when the number of short circuits of the switching means is increased from M times to M + 1 times, the total value of the short circuit time up to M times after the increase of the number of short circuits is increased. Decrease from the total value of the previous short circuit time.

これにより、短絡回数をnからn+1に増やす場合に、単純に短絡回数を増やすのではなく、直流電圧がほぼ同じになるように、短絡回数を増やした後のn回までの短絡時間の合計を、短絡回数を増やす前のn回までの短絡時間の合計より短くする。これにより、短絡回数を増やした後のn回までの短絡により得られる直流電圧は下降し、n+1回目の短絡でこの下降した分の直流電圧分を取戻し、全体として、短絡回数を増やす前の直流電圧とほぼ等しい直流電圧を得ることができる。   As a result, when the number of short circuits is increased from n to n + 1, the total number of short circuits up to n times after the number of short circuits is increased so that the DC voltage is substantially the same, instead of simply increasing the number of short circuits. The short circuit time is made shorter than the total short circuit time up to n times before increasing the number of short circuits. As a result, the DC voltage obtained by the short-circuiting up to n times after increasing the number of short-circuits decreases, and the DC voltage corresponding to the decreased DC voltage is recovered at the (n + 1) th short-circuit, and as a whole, the DC voltage before increasing the number of short-circuits A DC voltage substantially equal to the voltage can be obtained.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を得ることができる。   Therefore, to suppress the power supply harmonic current and improve the power factor, a DC power supply device is obtained in which the DC voltage hardly changes even when the number of short-circuits is increased, and stable operation of the load equipment can be secured. Can do.

また、請求項5記載の直流電源装置によれば、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、M+1回目までの短絡時間の合計値を、短絡回数増加前のM回目までの短絡時間の合計値と等しくする。   According to the DC power supply device according to claim 5, when the number of short circuits of the switching means is increased from M times to M + 1 times, the total value of the short circuit time up to the M + 1 time is increased to the Mth time before the number of short circuits is increased. It is made equal to the total value of the short circuit time.

これにより、短絡回数を増やした場合、短絡時間の合計が同じになるようにする。これにより、短絡回数を増やす前後の短絡時間の合計が等しくなり、得られる直流電圧をほぼ一定に維持することができる。   Thereby, when the frequency | count of a short circuit is increased, it is made for the sum total of a short circuit time to become the same. Thereby, the sum total of the short circuit time before and behind increasing the frequency | count of a short circuit becomes equal, and the obtained DC voltage can be maintained substantially constant.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を得ることができる。   Therefore, to suppress the power supply harmonic current and improve the power factor, a DC power supply device is obtained in which the DC voltage hardly changes even when the number of short-circuits is increased, and stable operation of the load equipment can be secured. Can do.

また、請求項6記載の直流電源装置によれば、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM−1回目までの短絡時間の合計値より、増加させる。   According to the DC power supply device of claim 6, when the number of short circuits of the switching means is decreased from M times to M−1 times, the total value of the short circuit time after the short circuit number is reduced is the value before the short circuit number is reduced. It is increased from the total value of the short-circuiting time up to the M-1th time.

これにより、短絡回数をnからn−1に減らす場合に、単純に短絡回数を減らすのではなく、直流電圧がほぼ同じになるように、短絡回数を減らした後の短絡時間の合計(n−1回までの短絡時間の合計)を、短絡回数を減らす前のn−1回までの短絡時間の合計より長くする。   As a result, when the number of short circuits is reduced from n to n−1, the total number of short circuits after the number of short circuits is reduced (n−) so that the DC voltage is substantially the same, instead of simply reducing the number of short circuits. The sum of the short-circuit times up to once) is made longer than the sum of the short-circuit times up to n-1 times before the number of short-circuits is reduced.

これにより、短絡回数を減らした後の短絡(n−1回までの短絡)により得られる直流電圧は、短絡回数を減らす前のn−1回目までの短絡で得られた直流電圧より上昇し、短絡回数を減らす前のn回目の短絡が無くなったことによる直流電圧の下降分を補い、全体として、短絡回数を減らす前の直流電圧とほぼ等しい直流電圧を得ることができる。   Thereby, the DC voltage obtained by the short circuit (short circuit up to n-1 times) after reducing the number of short circuits is higher than the DC voltage obtained by the short circuit up to n-1 time before reducing the number of short circuits, As a whole, it is possible to obtain a DC voltage substantially equal to the DC voltage before reducing the number of short circuits by compensating for the decrease in DC voltage due to the absence of the n-th short circuit before reducing the number of short circuits.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を得ることができる。   Therefore, to suppress the power supply harmonic current and improve the power factor, a DC power supply device is obtained in which the DC voltage hardly changes even when the number of short-circuits is increased, and stable operation of the load equipment can be secured. Can do.

また、請求項7記載の直流電源装置によれば、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM回目までの短絡時間の合計値と等しくする。   According to the DC power supply device of claim 7, when the number of short circuits of the switching means is decreased from M times to M−1 times, the total value of the short circuit time after the short circuit number is reduced is the value before the short circuit number is reduced. It is set equal to the total value of the short-circuit time up to the Mth time.

これにより、短絡回数を減らした場合、短絡時間の合計が同じになるようにする。これにより、短絡回数を減らす前後の短絡時間の合計が等しくなり、得られる直流電圧をほぼ一定に維持することができる。   Thus, when the number of short circuits is reduced, the total short circuit time is made the same. Thereby, the sum total of the short circuit time before and after reducing the frequency | count of a short circuit becomes equal, and the direct-current voltage obtained can be maintained substantially constant.

このため、電源高調波電流の抑制や力率の改善のために、短絡回数を増しても、直流電圧がほとんど変化せず、負荷となる機器の安定した運転を確保できる直流電源装置を得ることができる。   Therefore, to suppress the power supply harmonic current and improve the power factor, a DC power supply device is obtained in which the DC voltage hardly changes even when the number of short-circuits is increased, and stable operation of the load equipment can be secured. Can do.

また、請求項8記載の直流電源装置によれば、前記交流電源からの入力電流を検出する入力電流検出手段を更に備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記入力電流検出手段で検出した入力電流に応じて定める。   Further, according to the DC power supply device of claim 8, further comprising input current detection means for detecting an input current from the AC power supply, wherein the switching control means sets the number of short-circuits of the switching means up to 2 to 6 times. It is determined according to the value of the ratio and the input current detected by the input current detecting means.

これにより、前記比の値と入力電流の大小に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、入力電流を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short-circuits can be appropriately determined according to the ratio value and the input current, so that the power factor can be improved and high-efficiency operation can be achieved while satisfying the regulation of the power supply harmonic current. It becomes. In this case, as the simplest method of determining the number of short circuits, there is a method of converting the input current to a target DC voltage, obtaining a value of the ratio with the power supply voltage, and determining the number of short circuits by the above-described method according to the value of the ratio. .

入力電流を目標直流電圧に換算する方法としては、例えば図23に示すように、入力電流を機器が持つ特性に従って、適切な数値で区分し、各区分点での目標直流電圧を実験などで確認し、その中間では直線補間,階段状の変化,曲線補間などの方法で目標直流電圧を定める方法などを採用すれば良い。このようにすることで、入力電流の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method for converting the input current to the target DC voltage, for example, as shown in FIG. 23, the input current is classified by an appropriate numerical value in accordance with the characteristics of the device, and the target DC voltage at each division point is confirmed by an experiment or the like. In the middle, a method of determining the target DC voltage by a method such as linear interpolation, step-like change, or curve interpolation may be adopted. In this way, the target DC voltage can be easily set over the entire input current, and the power factor can be improved and highly efficient operation can be achieved while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を得ることができる。   For this reason, a DC power supply device that achieves high efficiency and appropriate power factor at low loads and high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current with an inexpensive circuit configuration Can do.

また、請求項9記載の直流電源装置によれば、前記直流電力に接続された負荷量を検出する負荷量検出手段を更に備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記負荷量検出手段で検出された負荷量に応じて定める。   The DC power supply device according to claim 9 further includes load amount detection means for detecting a load amount connected to the DC power, wherein the switching control means is short-circuited up to 2 to 6 times of the switching means. The number of times is determined according to the value of the ratio and the load amount detected by the load amount detection means.

これにより、前記比の値と負荷量の大小に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、負荷量を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short-circuits can be determined appropriately according to the ratio value and the amount of load, so that power factor can be improved and high-efficiency operation can be achieved while satisfying the regulation of power supply harmonic current. It becomes. In this case, as the simplest method of determining the number of short circuits, there is a method of converting the load amount to a target DC voltage, obtaining a value of the ratio with the power supply voltage, and determining the number of short circuits by the method described above according to the ratio value. .

負荷量を目標直流電圧に換算する方法としては、例えば図23に示すようなグラフに従って、前述のような方法で目標直流電圧を定めれば良い。このようにすることで、負荷量の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method of converting the load amount into the target DC voltage, the target DC voltage may be determined by the method as described above, for example, according to a graph as shown in FIG. In this way, the target DC voltage can be easily set over the entire load amount, and the power factor can be improved and highly efficient operation can be performed while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を得ることができる。   For this reason, a DC power supply device that achieves high efficiency and appropriate power factor at low loads and high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current with an inexpensive circuit configuration Can do.

また、請求項10記載の直流電源装置によれば、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータへの印加電圧とし、前記負荷量検出手段としてモータへの印加電圧を検出するモータ印加電圧検出手段を備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ印加電圧検出手段で検出されたモータ印加電圧に応じて定める。   According to the DC power supply device of claim 10, the load connected to the DC power is a motor, the load amount is an applied voltage to the motor, and the applied voltage to the motor is used as the load amount detecting means. Motor switching voltage detection means for detecting, the switching control means determines the number of short-circuiting of the switching means up to 2 to 6 times according to the value of the ratio and the motor application voltage detected by the motor application voltage detection means. .

これにより、前記比の値とモータ印加電圧の高低に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、モータ印加電圧を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short circuits can be appropriately determined according to the value of the ratio and the level of the motor applied voltage, so that the power factor is improved and high-efficiency operation is achieved while satisfying the regulation of the power supply harmonic current. It becomes possible. In this case, the simplest method of determining the number of short circuits is to convert the motor applied voltage to a target DC voltage, determine the value of the ratio with the power supply voltage, and determine the number of short circuits by the above method according to the value of the ratio. is there.

モータ印加電圧を目標直流電圧に換算する方法としては、例えば図23に示すようなグラフに従って、前述のような方法で目標直流電圧を定めれば良い。このようにすることで、モータ印加電圧の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method of converting the motor applied voltage into the target DC voltage, the target DC voltage may be determined by the method as described above, for example, according to a graph as shown in FIG. In this way, the target DC voltage can be easily set over the entire range of the motor applied voltage, and the power factor can be improved and highly efficient operation can be achieved while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を得ることができる。   For this reason, a DC power supply device that achieves high efficiency and appropriate power factor at low loads and high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current with an inexpensive circuit configuration Can do.

また、請求項11記載の直流電源装置によれば、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータの回転数として、前記負荷量検出手段としてモータの回転数を検出するモータ回転数検出手段を備え、前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ回転数検出手段で検出されたモータ回転数に応じて定める。   According to the DC power supply device of claim 11, the load connected to the DC power is a motor, the load amount is the rotation number of the motor, and the rotation amount of the motor is detected as the load amount detection means. Motor rotation speed detection means is provided, and the switching control means determines the number of short circuits of the switching means from 2 to 6 according to the value of the ratio and the motor rotation speed detected by the motor rotation speed detection means.

これにより、前記比の値とモータ回転数の高低に応じて、短絡回数を適切の定めることができるので、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。この場合、最も簡単な短絡回数の定め方としては、モータ回転数を目標直流電圧に換算し、電源電圧との比の値を求め比の値に応じて前述の方法により短絡回数を定める方法がある。   As a result, the number of short circuits can be appropriately determined according to the value of the ratio and the motor rotation speed, so that the power factor is improved and the highly efficient operation is achieved while satisfying the regulation of the power supply harmonic current. It becomes possible. In this case, the simplest method of determining the number of short circuits is to convert the motor rotation number to the target DC voltage, determine the ratio with the power supply voltage, and determine the number of short circuits by the above method according to the ratio value. is there.

モータ回転数を目標直流電圧に換算する方法としては、例えば図23に示すようなグラフに従って、前述のような方法で目標直流電圧を定めれば良い。このようにすることで、モータ回転数の全域で目標直流電圧を簡単に設定でき、電源高調波電流の規制を満足しつつ、力率を改善し、高効率な運転が可能となる。   As a method for converting the motor rotational speed into the target DC voltage, the target DC voltage may be determined by the method as described above, for example, according to a graph as shown in FIG. In this way, the target DC voltage can be easily set over the entire range of the motor rotation speed, and the power factor can be improved and highly efficient operation can be achieved while satisfying the regulation of the power supply harmonic current.

このため、安価な回路構成で電源高調波電流を抑制しつつ、低負荷では高効率と適宜な力率を実現し、高負荷では高力率と適宜な効率を実現する直流電源装置を得ることができる。   For this reason, a DC power supply device that achieves high efficiency and appropriate power factor at low loads and high power factor and appropriate efficiency at high loads while suppressing power supply harmonic current with an inexpensive circuit configuration Can do.

また、請求項12記載の空気調和機によれば、回転数制御型圧縮機を搭載し、請求項1乃至請求項11の直流電源装置を用いる。   According to the air conditioner of the twelfth aspect, the rotational speed control type compressor is mounted, and the DC power supply device of the first to eleventh aspects is used.

これにより、室内の温度が設定温度に近い条件での運転(圧縮機の回転数が低い、小能力での連続運転)が非常に長いことから、スイッチング損失が小さい、効率の良い運転が長く続き消費電力量を抑制することができる。   As a result, the operation under conditions where the room temperature is close to the set temperature (continuous operation with a low compressor speed and small capacity) is very long. Power consumption can be suppressed.

また、空気調和運転の開始当初のような高負荷時はスイッチングの回数を増やして、圧縮用モータが誘起電圧に打勝って高速回転し、大能力を発揮できるよう直流電圧を昇圧し、圧縮機を駆動すると共に、高力率を確保し、空気調和機を接続したブレーカー、またはコンセントの容量を目いっぱいに活用して空気調和機の能力を最大限に発揮させ、室内を素早く快適温度にすることができる。   In addition, when the load is high, such as at the beginning of air-conditioning operation, the number of switchings is increased, and the DC voltage is boosted so that the compression motor can overcome the induced voltage and rotate at a high speed to exhibit its high capacity. As well as ensuring a high power factor, the capacity of the breaker or outlet connected to the air conditioner can be fully utilized to maximize the performance of the air conditioner and quickly bring the room to a comfortable temperature. be able to.

このため、安価で、電源高調波電流規制を満足し、電源容量を最大限に活用した高能力で、効率の良い空気調和機を得ることができる。   For this reason, it is possible to obtain an air conditioner that is inexpensive, satisfies the power supply harmonic current regulation, has a high capacity and uses the power supply capacity to the maximum, and is efficient.

1 空気調和機
2 室内機
5 リモコン
6 室外機
8 接続配管
10 制御装置
20 筐体
21 筐体ベース
23 化粧枠
25 前面パネル
27 空気吸込み口
29 空気吹出し口
33 室内熱交換器
35 露受皿
37 ドレン配管
61 ベース
62 外筐
64 送風機室
65 電装箱
66 電装箱蓋
67 電装品
68 機械室
73 室外熱交換器
75 圧縮機
76 アキュムレータ
78 配管接続バルブ
82 接続部開口
100 直流電源装置
101 交流電源
102 整流回路
103 平滑コンデンサ
104 負荷
104a インバータ
104b 外部負荷
105 リアクタ
106 スイッチング手段
107 電源電圧・ゼロクロス検出手段
108 スイッチング制御手段
109 直流電圧検出手段
110 インバータドライバ
111 マイクロコンピュータ
111a 周波数検出手段
111b,111d A/D変換部
111c,111e PWM出力部
111f コンバータ制御手段
111g インバータ制御手段
111h 目標電圧設定手段
112 入力電流検出手段
113 負荷量検出手段
114 モータ
115 モータ印加電圧検出手段
116 モータ回転数検出手段
118 周辺情報検出手段
230,230′ 空気吸込み部
231,231′ フィルター
251 可動パネル
290 吹出し風路
290a 吹出し風路上壁
290b 吹出し風路下壁
291 上側上下風向板
292 下側上下風向板
295 左右風向板
311 送風ファン
396 送受信部
397 表示装置
611 仕切板
612 リアクタカバー
621 前面板
621a モータベース
621e ファンリング
621g 開口基部
622 天板
623 側面板
631 室外ファン
633 送風モータ
635 ファングリル
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Indoor unit 5 Remote control 6 Outdoor unit 8 Connection piping 10 Control apparatus 20 Case 21 Case base 23 Decorative frame 25 Front panel 27 Air inlet 29 Air outlet 33 Indoor heat exchanger 35 Dew tray 37 Drain pipe 61 Base 62 Outer casing 64 Blower chamber 65 Electrical box 66 Electrical box lid 67 Electrical component 68 Machine room 73 Outdoor heat exchanger 75 Compressor 76 Accumulator 78 Pipe connection valve 82 Connection opening 100 DC power supply 101 AC power supply 102 Rectifier circuit 103 Smoothing capacitor 104 Load 104a Inverter 104b External load 105 Reactor 106 Switching means 107 Power supply voltage / zero cross detection means 108 Switching control means 109 DC voltage detection means 110 Inverter driver 111 Microcomputer 111a Frequency detection means 111b, 1 1d A / D converters 111c, 111e PWM output unit 111f Converter control unit 111g Inverter control unit 111h Target voltage setting unit 112 Input current detection unit 113 Load amount detection unit 114 Motor 115 Motor applied voltage detection unit 116 Motor rotation number detection unit 118 Peripheral information detection means 230, 230 ′ Air suction part 231, 231 ′ Filter 251 Movable panel 290 Blowing air passage 290 a Blowing air passage upper wall 290 b Blowing air passage lower wall 291 Upper vertical wind direction plate 292 Lower vertical wind direction plate 295 Left and right wind direction plate 311 Blower fan 396 Transmitter / receiver 397 Display device 611 Partition plate 612 Reactor cover 621 Front plate 621a Motor base 621e Fan ring 621g Opening base 622 Top plate 623 Side plate 631 Outdoor fan 633 Blower motor 635 Anguriru

Claims (11)

交流電源より入力された交流電力を直流電力に変換する整流回路と、
前記交流電源と前記整流回路との間に接続されたリアクタと、
前記交流電源を前記リアクタを介して短絡するスイッチング手段と、
前記直流電力の目標電圧設定手段と、
前記交流電源の周波数を検出する周波数検出手段と、
前記交流電源の電源電圧を検出する電源電圧検出手段と、
前記交流電源のゼロクロス点を検出するゼロクロス検出手段と、
前記整流回路の出力である直流電圧を検出する直流電圧検出手段と、
前記ゼロクロス点に同期させて前記スイッチング手段を短絡,開放するスイッチング制御手段とを備える直流電源装置において、
前記スイッチング制御手段は前記目標電圧設定手段で設定された目標直流電圧と前記電源電圧検出手段で検出された電源電圧との比の値が所定値未満の場合に前記ゼロクロス検出手段で検出された前記交流電源のゼロクロス点からの1/2周期中に、前記スイッチング手段を2回短絡し、前記ゼロクロス点から1回目の短絡開始までの時間を予め設定した遅延時間とし、この2回短絡の1回目と2回目の短絡間隔を、前記周波数検出手段で検出された電源周波数が50Hzの時には0.2〜0.4msで、前記電源周波数が60Hzの時には0.16〜0.33msとし、その後に前記比の値が所定値以上の場合に前記スイッチング手段の短絡回数を前記比の値に応じて前記2回よりも多い回数で且つ、組み込まれる機器のモータの運転騒音周波数に対して直流電源装置の騒音周波数が超えない短絡回数に切り替えることを特徴とする直流電源装置。
A rectifier circuit that converts AC power input from an AC power source into DC power;
A reactor connected between the AC power source and the rectifier circuit;
Switching means for short-circuiting the AC power supply via the reactor;
DC power target voltage setting means;
Frequency detection means for detecting the frequency of the AC power supply;
Power supply voltage detecting means for detecting a power supply voltage of the AC power supply;
Zero-cross detection means for detecting a zero-cross point of the AC power supply;
DC voltage detecting means for detecting a DC voltage that is an output of the rectifier circuit;
In a DC power supply device comprising switching control means for short-circuiting and opening the switching means in synchronization with the zero-cross point,
The switching control means detects the zero-crossing detection means when the value of the ratio between the target DC voltage set by the target voltage setting means and the power supply voltage detected by the power supply voltage detection means is less than a predetermined value. During the ½ cycle from the zero cross point of the AC power supply, the switching means is short-circuited twice, and the time from the zero-cross point to the first short-circuit start is set as a preset delay time. The second short-circuit interval is set to 0.2 to 0.4 ms when the power supply frequency detected by the frequency detection means is 50 Hz, and is set to 0.16 to 0.33 ms when the power supply frequency is 60 Hz. When the ratio value is equal to or greater than a predetermined value, the number of short-circuits of the switching means is greater than the two times according to the ratio value and the operating noise frequency of the motor of the apparatus to be incorporated In contrast, the DC power supply apparatus is switched to the number of short circuits that does not exceed the noise frequency of the DC power supply apparatus.
請求項1に記載の直流電源装置において、前記スイッチング制御手段は3回目以降の短絡時間を前記電源周波数が50Hzの時は0.25ms、60Hzの時は0.2ms以下の範囲とすることを特徴とする直流電源装置。 2. The direct current power supply device according to claim 1 , wherein the switching control means sets the third and subsequent short-circuit times in a range of 0.25 ms when the power frequency is 50 Hz and 0.2 ms or less when the power frequency is 60 Hz. DC power supply. 請求項1に記載の直流電源装置において、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、短絡回数増加後のM回目までの短絡時間の合計値を、短絡回数増加前の短絡時間の合計値より、減少させることを特徴とする直流電源装置。 2. The DC power supply device according to claim 1 , wherein when the number of short circuits of the switching means is increased from M times to M + 1 times, the total value of short circuit times up to M times after the number of short circuits is increased is calculated as a short circuit before the number of short circuits is increased. A direct current power supply device, characterized by being reduced from a total value of time. 請求項1に記載の直流電源装置において、前記スイッチング手段の短絡回数をM回からM+1回に増加させる時に、M+1回目までの短絡時間の合計値を、短絡回数増加前のM回目までの短絡時間の合計値と等しくすることを特徴とする直流電源装置。 2. The DC power supply device according to claim 1 , wherein when the number of short circuits of the switching means is increased from M times to M + 1 times, a total value of short circuit times up to M + 1 times is calculated as a short circuit time up to M times before the number of short circuits is increased. DC power supply device characterized by being equal to the total value of 請求項1に記載の直流電源装置において、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM−1回目までの短絡時間の合計値より、増加させることを特徴とする直流電源装置。 2. The DC power supply device according to claim 1 , wherein when the number of short circuits of the switching unit is decreased from M times to M−1 times, the total value of the short circuit times after the number of short circuits is decreased is set to M−1 before the number of short circuits is decreased. A DC power supply device characterized in that the DC power supply device is increased from the total value of short-circuiting time until the first time. 請求項1に記載の直流電源装置において、前記スイッチング手段の短絡回数をM回からM−1回に減少させる時に、短絡回数減少後の短絡時間の合計値を、短絡回数減少前のM回目までの短絡時間の合計値と等しくすることを特徴とする直流電源装置。 2. The DC power supply device according to claim 1 , wherein when the number of short circuits of the switching means is decreased from M times to M−1 times, the total value of the short circuit time after the number of short circuits is decreased to the Mth before the number of short circuits is decreased. A direct current power supply device characterized in that it is equal to the total value of the short-circuiting times. 請求項2に記載の直流電源装置において、前記交流電源からの入力電流を検出する入力電流検出手段を更に備え、
前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記入力電流検出手段で検出した入力電流に応じて定めることを特徴とする直流電源装置。
The direct current power supply device according to claim 2 , further comprising an input current detection means for detecting an input current from the alternating current power supply,
The DC power supply device according to claim 1, wherein the switching control means determines the number of short-circuits of the switching means from 2 to 6 times according to the value of the ratio and the input current detected by the input current detecting means.
請求項2に記載の直流電源装置において、前記直流電力に接続された負荷量を検出する負荷量検出手段を更に備え、
前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記負荷量検出手段で検出された負荷量に応じて定めることを特徴とする直流電源装置。
The DC power supply device according to claim 2, further comprising load amount detection means for detecting a load amount connected to the DC power,
The DC power supply device according to claim 1, wherein the switching control means determines the number of short-circuits of the switching means from 2 to 6 times according to the value of the ratio and the load amount detected by the load amount detection means.
請求項8に記載の直流電源装置において、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータへの印加電圧とし、前記負荷量検出手段としてモータへの印加電圧を検出するモータ印加電圧検出手段を備え、
前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ印加電圧検出手段で検出されたモータ印加電圧に応じて定めることを特徴とする直流電源装置。
9. The DC power supply apparatus according to claim 8 , wherein the load connected to the DC power is a motor, the load amount is an applied voltage to the motor, and the load amount detecting means detects a voltage applied to the motor. An applied voltage detecting means;
The DC power supply apparatus according to claim 1, wherein the switching control means determines the number of short-circuits of the switching means from 2 to 6 times according to the value of the ratio and the motor applied voltage detected by the motor applied voltage detecting means.
請求項8に記載の直流電源装置において、前記直流電力に接続される負荷をモータとし、前記負荷量を前記モータの回転数として、前記負荷量検出手段としてモータの回転数を検出するモータ回転数検出手段を備え、
前記スイッチング制御手段は前記スイッチング手段の2〜6回までの短絡回数を前記比の値と前記モータ回転数検出手段で検出されたモータ回転数に応じて定めることを特徴とする直流電源装置。
9. The DC power supply apparatus according to claim 8 , wherein the load connected to the DC power is a motor, the load amount is the rotation number of the motor, and the rotation amount of the motor is detected as the load amount detection means. A detection means,
The DC power supply apparatus according to claim 1, wherein the switching control means determines the number of short-circuits from 2 to 6 times of the switching means according to the value of the ratio and the motor rotation speed detected by the motor rotation speed detection means.
回転数制御型圧縮機を搭載した空気調和機において、請求項1乃至請求項10の何れかに記載の直流電源装置を用いることを特徴とする空気調和機。 In mounted air conditioner controls the rotational speed compressor, air conditioner, which comprises using a DC power supply device according to any one of claims 1 to 10.
JP2009254541A 2009-11-06 2009-11-06 DC power supply device and air conditioner using the same Active JP5481165B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009254541A JP5481165B2 (en) 2009-11-06 2009-11-06 DC power supply device and air conditioner using the same
KR1020100077235A KR101194483B1 (en) 2009-11-06 2010-08-11 Direct current power supply apparatus and air conditioner using the same
CN201010260619.8A CN102055350B (en) 2009-11-06 2010-08-20 DC power supply device and air-conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254541A JP5481165B2 (en) 2009-11-06 2009-11-06 DC power supply device and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2011101505A JP2011101505A (en) 2011-05-19
JP5481165B2 true JP5481165B2 (en) 2014-04-23

Family

ID=43959384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254541A Active JP5481165B2 (en) 2009-11-06 2009-11-06 DC power supply device and air conditioner using the same

Country Status (3)

Country Link
JP (1) JP5481165B2 (en)
KR (1) KR101194483B1 (en)
CN (1) CN102055350B (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973134B (en) * 2013-01-30 2016-09-07 广东美的制冷设备有限公司 Continuous-current plant and improve the pwm pulse control method of its power factor
JP6279080B2 (en) 2014-07-08 2018-02-14 三菱電機株式会社 Power converter
MY176338A (en) * 2014-07-18 2020-07-29 Daikin Ind Ltd Direct ac power converter
JP6400103B2 (en) 2014-08-05 2018-10-03 三菱電機株式会社 Power converter
EP3200336B1 (en) 2014-09-26 2023-10-04 Mitsubishi Electric Corporation Power conversion device
US9866140B2 (en) 2014-09-30 2018-01-09 Mitsubishi Electric Corporation AC/DC power converting apparatus with AC source shortcircuiting for power factor correction and harmonic suppression
JP6410834B2 (en) * 2014-09-30 2018-10-24 三菱電機株式会社 Power converter
JP6478881B2 (en) * 2015-09-07 2019-03-06 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner
JP6482994B2 (en) * 2015-09-08 2019-03-13 日立ジョンソンコントロールズ空調株式会社 Power converter and air conditioner
JP6712104B2 (en) * 2015-09-10 2020-06-17 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner
JP6959400B2 (en) * 2015-09-10 2021-11-02 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner
JP6403909B2 (en) * 2016-01-28 2018-10-10 三菱電機株式会社 Power converter
CN108418414A (en) * 2018-03-26 2018-08-17 广汽丰田汽车有限公司 Circuit of power factor correction, device and method
JP6506447B2 (en) * 2018-05-14 2019-04-24 東芝キヤリア株式会社 Motor drive
KR102087205B1 (en) * 2018-07-02 2020-03-11 (주)에이엠케이 The brushless dc motor with the controller of power factor correction
WO2020261496A1 (en) * 2019-06-27 2020-12-30 オムロン株式会社 Power conversion device
CN110618308B (en) * 2019-10-18 2021-11-09 Tcl空调器(中山)有限公司 Single-phase alternating-current voltage zero point detection method and device
EP4111581A4 (en) 2020-02-28 2023-10-11 Astec International Limited Power measurements in switched mode power supplies
JP7304471B2 (en) * 2020-05-28 2023-07-06 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner
JP7152578B2 (en) * 2020-05-28 2022-10-12 日立ジョンソンコントロールズ空調株式会社 DC power supply and air conditioner
CN113266931B (en) * 2021-05-21 2023-05-02 Tcl空调器(中山)有限公司 Variable frequency control method and system of air conditioner and air conditioner

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809463B2 (en) 1990-02-02 1998-10-08 株式会社日立製作所 Power supply and power factor improvement method
JP3578874B2 (en) * 1996-08-30 2004-10-20 東芝キヤリア株式会社 Power supply and power supply for air conditioner
JP3550485B2 (en) 1997-06-27 2004-08-04 東芝キヤリア株式会社 DC power supply and air conditioner
JPH1198842A (en) 1997-07-24 1999-04-09 Toshiba Corp Dc power source apparatus, drive apparatus for motor, air-conditioner and refrigeration cycle apparatus
KR100323931B1 (en) * 1997-08-07 2002-08-08 가부시끼가이샤 도시바 Motor control unit and air conditioner using this control unit
JP3774298B2 (en) * 1997-08-07 2006-05-10 東芝キヤリア株式会社 Electric motor control device and refrigeration cycle device
JP2000217363A (en) * 1999-01-22 2000-08-04 Toshiba Corp Power supply device
JP3485047B2 (en) * 1999-11-24 2004-01-13 三菱電機株式会社 Air conditioner
JP4337316B2 (en) * 2001-09-28 2009-09-30 ダイキン工業株式会社 Power converter
JP2005245167A (en) * 2004-02-27 2005-09-08 Matsushita Electric Ind Co Ltd Dc power supply unit
JP4784207B2 (en) * 2004-11-18 2011-10-05 パナソニック株式会社 DC power supply
JP4841303B2 (en) * 2006-05-02 2011-12-21 東芝キヤリア株式会社 DC power supply
JP5073439B2 (en) 2007-10-15 2012-11-14 シャープ株式会社 DC power supply
JP2009261143A (en) * 2008-04-17 2009-11-05 Panasonic Corp Power supply apparatus and air conditioner equipped with the same

Also Published As

Publication number Publication date
CN102055350B (en) 2014-04-02
JP2011101505A (en) 2011-05-19
CN102055350A (en) 2011-05-11
KR20110050349A (en) 2011-05-13
KR101194483B1 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5481165B2 (en) DC power supply device and air conditioner using the same
AU2014203525B2 (en) Converter circuit and motor drive control apparatus, air-conditioner, refrigerator, and induction heating cooker provided with the circuit
JP5520119B2 (en) DC power supply device, inverter drive device, and air conditioner using the same
USRE39060E1 (en) Power supply device and air conditioner using the same
RU2175462C2 (en) Energy conversion device and conditioner using this device
JP3955285B2 (en) Inverter control device for motor drive and air conditioner
WO2016047019A1 (en) Power conversion device
JP2013106455A (en) Dc power-supply device and air conditioner using the same
JP4033628B2 (en) Power supply device and air conditioner using the power supply device
AU2013204591A1 (en) Methods and systems for controlling an electric motor
JPS60249895A (en) Frequency converter
JP2004320981A (en) Inverter control device for driving motor and air conditioner
JP2011069538A (en) Air conditioner
JP4157619B2 (en) Air conditioner
JP2001342989A (en) Method of driving and controlling dc pump
JPH10155297A (en) Inverter controlling device for air conditioner
JP2005337519A5 (en)
JP3966635B2 (en) Power supply
JPH11356051A (en) Power supply equipment and air conditioner using the same
CN111082468B (en) Power control method for standby power mode of electric equipment and electric equipment
JP5593214B2 (en) Air conditioner
JP4722541B2 (en) Power supply device and air conditioner using the same
JP6482994B2 (en) Power converter and air conditioner
JP2016144323A (en) Dc power supply device and air-conditioner using the same
JPH07190464A (en) Control method of air conditioner driven by solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250