JP5477037B2 - Method for producing graphene film - Google Patents

Method for producing graphene film Download PDF

Info

Publication number
JP5477037B2
JP5477037B2 JP2010034152A JP2010034152A JP5477037B2 JP 5477037 B2 JP5477037 B2 JP 5477037B2 JP 2010034152 A JP2010034152 A JP 2010034152A JP 2010034152 A JP2010034152 A JP 2010034152A JP 5477037 B2 JP5477037 B2 JP 5477037B2
Authority
JP
Japan
Prior art keywords
graphene
graphene oxide
film
substrate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010034152A
Other languages
Japanese (ja)
Other versions
JP2011168449A (en
Inventor
健志 藤井
了典 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2010034152A priority Critical patent/JP5477037B2/en
Publication of JP2011168449A publication Critical patent/JP2011168449A/en
Application granted granted Critical
Publication of JP5477037B2 publication Critical patent/JP5477037B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、グラフェン膜の製造方法に関する。   The present invention relates to a method for manufacturing a graphene film.

グラフェンは、炭素原子がsp結合で結合して同一平面内に並んだ炭素原子のシートである。このグラフェンを丸めればフラーレンとなり、筒状にすればカーボンナノチューブとなる。このように、グラフェンは、様々なカーボン材料の母材となるものである。 Graphene is a sheet of carbon atoms in which carbon atoms are bonded by sp 2 bonds and arranged in the same plane. If this graphene is rounded, it becomes a fullerene, and if it is made cylindrical, it becomes a carbon nanotube. Thus, graphene is a base material for various carbon materials.

従来よりグラフェンは機械的剥離法と呼ばれる方法で製造されていた。この方法は、下記非特許文献1,2に示されるように、グラファイト単結晶を粘着テープによって剥離して数十層のグラフェン積層体を粘着テープに転写し、粘着テープに転写されたグラフェン積層体を基板上に擦り付けて、ランダムにグラフェン単層体及びグラフェン積層体からなるグラフェン膜を基板上に形成する方法である。この方法によれば、簡便で高品質のグラフェン膜が得られるが、大面積のグラフェン膜の製造には適さないものであった。   Conventionally, graphene has been produced by a method called a mechanical exfoliation method. In this method, as shown in Non-Patent Documents 1 and 2 below, a graphite single crystal is peeled off with an adhesive tape, a tens of layers of graphene laminate is transferred to the adhesive tape, and the graphene laminate transferred onto the adhesive tape Is rubbed onto the substrate, and a graphene film composed of a graphene monolayer and a graphene stack is randomly formed on the substrate. According to this method, a simple and high-quality graphene film can be obtained, but it is not suitable for the production of a large area graphene film.

近年においては、高品質で、かつ、大面積のグラフェン膜を製造する試みがなされている。その方法の1つとして、下記非特許文献3には、酸化グラフェンを含む懸濁液を基板に流延塗付して流延物を形成し、該流延物を1100℃以上で加熱還元してグラフェン膜を製造することが開示されている。しかしながら、この方法では、酸化グラフェンからグラフェンに還元するために、1100℃以上に加熱しなければならないので、高温に耐えうる基板材料を選択せざるを得なく、基板選択の自由度が低かった。   In recent years, attempts have been made to produce a high-quality, large-area graphene film. As one of the methods, in Non-Patent Document 3 below, a suspension containing graphene oxide is cast-coated on a substrate to form a cast, and the cast is heated and reduced at 1100 ° C. or higher. Manufacturing graphene films. However, in this method, in order to reduce graphene oxide to graphene, it is necessary to heat to 1100 ° C. or higher. Therefore, a substrate material that can withstand high temperatures has to be selected, and the degree of freedom in substrate selection is low.

また、非特許文献4には、ヒドラジンの存在下で酸化グラフェンを加熱還元することで、約550℃程度の温度でグラフェンに還元できることが記載されている。この方法であっても、低温下では酸化グラフェンを十分に還元することは困難であった。また、ヒドラジンは毒性が高く、取扱に慎重を要するものであった。   Non-Patent Document 4 describes that graphene oxide can be reduced to graphene at a temperature of about 550 ° C. by heating and reducing graphene oxide in the presence of hydrazine. Even with this method, it has been difficult to sufficiently reduce graphene oxide at low temperatures. Hydrazine is highly toxic and requires careful handling.

K.S.Novoselov,A.K.Geim,S.V.Morozov,D.Jiang,Y.Zhang,S.V.Dubonos,I.V.Grigorieva,A.A.Firsov,Science 306(2004)666.K. S. Novoselov, A.M. K. Geim, S .; V. Morozov, D.M. Jiang, Y. et al. Zhang, S.M. V. Dubonos, I.D. V. Grigorieva, A .; A. Firsov, Science 306 (2004) 666. K.S.Novoselov,D.Jiang,F.Schedin,T.J.Booth,V.V.Khotkevich,S.V.Morozov and A.K.Geim,Proc.Natl.Acad.Sci.U.S.A.102(2005)10451.K. S. Novoselov, D.M. Jiang, F.A. Schedin, T .; J. et al. Booth, V.M. V. Khotkevich, S .; V. Morozov and A.M. K. Geim, Proc. Natl. Acad. Sci. U. S. A. 102 (2005) 10451. Xuan Wang et al.,Nano Lett.8 323−327(2008).Xuan Wang et al. , Nano Lett. 8 323-327 (2008). Goki Eda et al.,Nature Nanotechnology.3 270(2008).Goki Eda et al. , Nature Nanotechnology. 3 270 (2008).

本発明の目的は、基板選択の自由度が高く、簡易な方法で大面積のグラフェン膜を基板上に形成することが可能なグラフェン膜の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a graphene film, which has a high degree of freedom in substrate selection and can form a large-area graphene film on a substrate by a simple method.

上記目的を達成するため、本発明のグラフェン膜の製造方法は、酸化グラフェンを含む懸濁液を基板に流延塗付して流延物を形成し、該流延物を金属ハイドライドの存在下で加熱して還元することを特徴とする。   In order to achieve the above object, a method for producing a graphene film of the present invention is a method of casting a suspension containing graphene oxide on a substrate to form a cast, which is formed in the presence of a metal hydride. It reduces by heating with.

金属ハイドライドは、加熱により還元力の高いヒドリドを生成し易いので、酸化グラフェンを含む懸濁液を基板に流延塗付して形成した流延物を金属ハイドライドの存在下で加熱することで、加熱温度が低くても酸化グラフェンを十分に還元することができる。このため、本発明によれば、基板選択の自由度が高く、大面積のグラフェン膜を基板上に形成することができる。   Since metal hydride easily generates hydride having high reducing power by heating, by heating a casting formed by applying a suspension containing graphene oxide to a substrate in the presence of metal hydride, Even if the heating temperature is low, graphene oxide can be sufficiently reduced. Therefore, according to the present invention, the degree of freedom of substrate selection is high, and a large-area graphene film can be formed on the substrate.

本発明のグラフェン膜の製造方法は、前記金属ハイドライドとしてCaHを用いることが好ましい。CaHは特に還元性が高いので、酸化グラフェンをより低温で還元できる。 In the method for producing a graphene film of the present invention, CaH 2 is preferably used as the metal hydride. Since CaH 2 is particularly highly reducible, graphene oxide can be reduced at a lower temperature.

本発明のグラフェン膜の製造方法は、前記流延物を300〜600℃の温度で、3時間以上加熱して前記還元を行うことが好ましい。このように加熱することで、酸化グラフェンを十分に還元できる。   In the method for producing a graphene film of the present invention, the reduction is preferably performed by heating the cast at a temperature of 300 to 600 ° C. for 3 hours or more. By heating in this way, graphene oxide can be sufficiently reduced.

本発明のグラフェン膜の製造方法は、前記酸化グラフェンが、酸化グラフェン単層体及び/又は酸化グラフェン積層体であることが好ましい。   In the method for producing a graphene film of the present invention, the graphene oxide is preferably a graphene oxide monolayer and / or a graphene oxide laminate.

本発明によれば、基板選択の自由度が高く、大面積のグラフェン膜を基板上に形成することができる。   According to the present invention, the degree of freedom of substrate selection is high, and a large-area graphene film can be formed on a substrate.

本発明のグラフェン膜の製造方法の概略図である。It is the schematic of the manufacturing method of the graphene film of this invention. 加熱温度と加熱後の膜の電気伝導率との関係を示す図表である。It is a graph which shows the relationship between heating temperature and the electrical conductivity of the film | membrane after a heating. 加熱温度と加熱後の膜の電気伝導率との関係を示す図表である。It is a graph which shows the relationship between heating temperature and the electrical conductivity of the film | membrane after a heating.

本発明のグラフェン膜の製造方法は、酸化グラフェンを含む懸濁液を基板に流延塗付して流延物を形成し、該流延物を金属ハイドライドの存在下で加熱して還元する。なお、本発明において、「グラフェン膜」とは、グラフェン単層体からなる膜に加えて、グラフェン単層体が複数積層したグラフェン積層体を含む膜を含むものとする。   In the method for producing a graphene film of the present invention, a suspension containing graphene oxide is cast-coated on a substrate to form a cast, and the cast is heated and reduced in the presence of a metal hydride. In the present invention, the “graphene film” includes a film including a graphene stacked body in which a plurality of graphene single layer bodies are stacked in addition to a film formed of a graphene single layer body.

まず、酸化グラフェンを含む懸濁液を基板に流延塗付して、該懸濁液からなる流延物を形成する。   First, a suspension containing graphene oxide is cast-coated on a substrate to form a casting made of the suspension.

酸化グラフェンを含む懸濁液は、従来公知の方法により製造できる。例えば、Hummers法により酸化グラフェンを合成し、これを溶媒に展開して超音波を照射することで、酸化グラフェンが層方向に剥離され、酸化グラフェンを含む懸濁液が得られる。   A suspension containing graphene oxide can be produced by a conventionally known method. For example, by synthesizing graphene oxide by the Hummers method, developing this in a solvent and irradiating ultrasonic waves, the graphene oxide is peeled in the layer direction, and a suspension containing graphene oxide is obtained.

具体的には、グラファイトを濃硫酸中に浸し、過マンガン酸カリウムを加えて反応させた後、反応物を硫酸中に浸し、過酸化水素を加えて反応させて、酸化グラファイトを得る。グラファイトを濃硫酸中で過マンガン酸カリウムを加えて反応させることで、グラファイトの炭素原子は、sp状態からsp状態に変化し、いわゆるベンゼン環を形成している炭素原子のような状態から飽和脂肪族の炭素原子の状態に変化する。そして、その後、硫酸中で過酸化水素を加えて反応させることにより、これらの変化した炭素原子に酸素原子や水素原子などが結合し、層間に酸素原子が導入されて酸化グラファイトが得られる。次いで、このようにして得られる酸化グラファイトを溶媒に分散することで、層間に溶媒分子が挿入され、層方向にのみ剥離させることができ、面方向のサイズが大きい酸化グラフェンを高い収率で回収できる。また、溶媒に分散後の溶液を遠心分離し、上澄み液を回収することで、酸化グラフェンを高濃度含む懸濁液が得られる。溶媒としては、特に限定はないが極性溶媒が好ましい。例えば、水、アセトン、メタノール、エタノール、イソプロパノールから選ばれる1種又は2種以上の混合液等が挙げられる。 Specifically, after immersing graphite in concentrated sulfuric acid and adding potassium permanganate to react, the reaction product is immersed in sulfuric acid and reacted by adding hydrogen peroxide to obtain graphite oxide. By reacting graphite by adding potassium permanganate in concentrated sulfuric acid, the carbon atoms of graphite change from the sp 2 state to the sp 3 state, and from a state like a carbon atom forming a so-called benzene ring. It changes to the state of saturated aliphatic carbon atom. Then, hydrogen peroxide is added in the sulfuric acid to cause a reaction, whereby oxygen atoms and hydrogen atoms are bonded to these changed carbon atoms, and oxygen atoms are introduced between the layers to obtain graphite oxide. Next, by dispersing the graphite oxide obtained in this way in a solvent, solvent molecules are inserted between the layers and can be peeled only in the layer direction, and the graphene oxide having a large size in the surface direction is recovered with a high yield. it can. In addition, a suspension containing a high concentration of graphene oxide is obtained by centrifuging the solution after dispersion in a solvent and collecting the supernatant. Although there is no limitation in particular as a solvent, A polar solvent is preferable. For example, 1 type, or 2 or more types of liquid mixture chosen from water, acetone, methanol, ethanol, isopropanol, etc. are mentioned.

懸濁液中の酸化グラフェンの濃度は、0.001〜0.1mg/mlが好ましく、0.003〜0.01mg/mlがより好ましい。0.001mg/ml未満であると、最終的に得られるグラフェン膜の厚みを大きくすることが困難になる傾向にある。0.1mg/mlを超えると、成膜の際に酸化グラフェン同士が凝集し、均一に成膜することが難しくなる傾向にある。   The concentration of graphene oxide in the suspension is preferably 0.001 to 0.1 mg / ml, and more preferably 0.003 to 0.01 mg / ml. If it is less than 0.001 mg / ml, it tends to be difficult to increase the thickness of the finally obtained graphene film. When it exceeds 0.1 mg / ml, graphene oxides aggregate during film formation, and it tends to be difficult to form a film uniformly.

懸濁液の塗布方法は、特に限定はない。例えば、スピンコート法、ディップ法、キャスト法、スプレー法、インクジェット法、静電吸着法等が挙げられる。   The method for applying the suspension is not particularly limited. For example, a spin coat method, a dip method, a cast method, a spray method, an ink jet method, an electrostatic adsorption method and the like can be mentioned.

懸濁液の塗布量は、所望とするグラフェン膜の膜厚に応じて適宜調整することが好ましい。例えば、グラフェン膜を太陽電池の電極用途で使用する場合、1〜10nmが好ましく、3〜5nmがより好ましい。このような膜厚のグラフェン膜を得るには、酸化グラフェン換算で、好ましくは10〜30mg/m、より好ましくは15〜20mg/mとなるように懸濁液を基板に塗布して流延物を形成する。 The amount of the suspension applied is preferably adjusted as appropriate according to the desired film thickness of the graphene film. For example, when using a graphene film for the electrode use of a solar cell, 1-10 nm is preferable and 3-5 nm is more preferable. In order to obtain a graphene film having such a film thickness, the suspension is applied to the substrate so that the graphene oxide conversion is preferably 10 to 30 mg / m 2 , more preferably 15 to 20 mg / m 2. Form a slab.

懸濁液が塗布される基板は、還元時の加熱に耐えうる材料からなるものであれば、いずれの材質からなる基板も使用できる。本発明では、300℃以上、600℃以下の温度でも酸化グラフェンをグラフェンまで還元することができるので、300℃以上の加熱に耐えうる材料で構成されたもので適用可能である。具体的には、Si基板、SiO/Si基板、石英ガラス基板、ガラス基板、ポリイミド基板、等が挙げられる。特に、ガラス基板、ポリイミド基板は安価であるが、耐熱温度が600℃以下であるため、本発明において特に効果的である。 The substrate to which the suspension is applied can be any substrate made of any material that can withstand the heating during the reduction. In the present invention, since graphene oxide can be reduced to graphene even at a temperature of 300 ° C. or higher and 600 ° C. or lower, the present invention can be applied to a material that can withstand heating at 300 ° C. or higher. Specific examples include Si substrates, SiO 2 / Si substrates, quartz glass substrates, glass substrates, polyimide substrates, and the like. In particular, glass substrates and polyimide substrates are inexpensive, but their heat-resistant temperature is 600 ° C. or lower, so that they are particularly effective in the present invention.

次に、流延物を金属ハイドライドの存在下で加熱して還元する。具体的には、図1に示すように、耐熱性の密閉容器1内に、流延物2が形成された基板3と、金属ハイドライド4とを封入し、密閉容器1の外部に設けられた加熱器5より、流延物2と金属ハイドライド4とを加熱して、酸化グラフェンの還元を行う。より好ましくは、密閉容器1内で、流延物2と金属ハイドライド4とを接触させた状態で加熱する。流延物2と金属ハイドライド4とを接触させる方法としては、例えば、流延物上にほぼ均一に金属ハイドライドを散布する方法等が挙げられる。   The cast is then reduced by heating in the presence of metal hydride. Specifically, as shown in FIG. 1, a substrate 3 on which a casting 2 is formed and a metal hydride 4 are enclosed in a heat-resistant airtight container 1 and provided outside the airtight container 1. The cast 2 and the metal hydride 4 are heated from the heater 5 to reduce the graphene oxide. More preferably, in the airtight container 1, it heats in the state which the casting 2 and the metal hydride 4 contacted. Examples of the method of bringing the casting 2 and the metal hydride 4 into contact include a method of spreading the metal hydride almost uniformly on the casting.

金属ハイドライドを加熱すると、還元力の高いヒドリドが生成する。流延物を金属ハイドライドの存在下で加熱することで、酸化グラフェンの還元をヒドリド雰囲気下で行うことができるので、加熱温度が低くても酸化グラフェンを十分にグラフェンまで還元できる。   When a metal hydride is heated, a hydride having a high reducing power is generated. By heating the cast in the presence of metal hydride, graphene oxide can be reduced in a hydride atmosphere, so that graphene oxide can be sufficiently reduced to graphene even at a low heating temperature.

金属ハイドライドとしては、CaH、LiH、NaH、KH等が挙げられる。なかでも、還元力が強く、加熱温度をより低温化にでき、更には、還元時に発生したダングリングボンドを水素でターミネイションする効果があり、得られるグラフェン膜の特性の安定性を向上できるという理由からCaHが好ましい。 Examples of the metal hydride include CaH 2 , LiH, NaH, KH and the like. Among them, the reducing power is strong, the heating temperature can be lowered further, and dangling bonds generated at the time of reduction are terminated with hydrogen, and the stability of the characteristics of the obtained graphene film can be improved. CaH 2 is preferred for reasons.

加熱条件は、好ましくは300〜600℃、より好ましくは500〜600℃の温度で、好ましくは3時間以上、より好ましくは5〜6時間行う。このようにして流延物を加熱することで、流延物を構成する酸化グラフェンを十分に還元できる。なお、加熱温度は600℃以上であってもよいが、ガラス基板やポリイミド基板などの使用に適さず、基板選択の自由度が損なわれる傾向にある。更には、得られるグラフェン膜が熱的損傷を受けて、特性が低下する恐れがある。   The heating conditions are preferably 300 to 600 ° C., more preferably 500 to 600 ° C., preferably 3 hours or more, more preferably 5 to 6 hours. By heating the casting in this manner, the graphene oxide constituting the casting can be sufficiently reduced. In addition, although heating temperature may be 600 degreeC or more, it is not suitable for use of a glass substrate, a polyimide substrate, etc., and there exists a tendency for the freedom degree of board | substrate selection to be impaired. Furthermore, the graphene film obtained may be thermally damaged and the characteristics may deteriorate.

(試験例1)
グラファイト粉末(平均粒径400μm)1g、NaNO0.76g、HSO33.8mlをフラスコに加え、均一になるまで攪拌した。次に、KMnO4.50gを攪拌しながらフラスコに少量ずつ添加した。その際、フラスコの温度を5〜7℃以下に冷却した。2時間攪拌した後、冷却をはずし、30℃に保った状態で5日間攪拌してスラリーを得た。
このスラリーを撹拌しながらHSO(5wt%)水溶液500ml中に添加し溶解させ、2時間撹拌した。攪拌後、H(30wt%)溶液を茶色から明るい黄色になるまで添加し、2時間撹拌した。
この溶液を1日以上放置し、溶液中の浮遊物を沈殿させた。沈殿させた上澄液を捨て、HSO(3wt%)水溶液500ml、H(0.5wt%)水溶液を500ml添加した。この工程を10回繰り返し、沈殿物を回収して酸化グラファイトを得た。
得られた酸化グラファイトにメタノールを0.03mg/mlになるように添加し、よく攪拌した。この時に酸化グラファイトの層間が剥離され、酸化グラフェンが得られた。得られた酸化グラフェン溶液500gを、5分間遠心分離を行い、未剥離の酸化グラファイトを取り除いて酸化グラフェン溶液を得た。
得られた酸化グラフェン溶液を、石英基板上に流延塗付して厚さ10nmの流延物を形成した。
次に、流延物を形成した石英基板と、CaH5gとをパイレックスガラス容器内に同封し、パイレックスガラス容器内を10−2Paに減圧した後、50℃/hの速度で300℃まで昇温し、1〜6時間その状態で保持した後、50℃/hの速度で室温まで冷却した。
図2に、加熱時間と加熱後の膜の電気伝導率との関係を示す。なお、膜の電気伝導率は、4端子法を用いて測定した。
図2に示すように、300℃での加熱時間が3時間を経過した時点で、膜の電気伝導率はほぼ一定(2500S/cm)となった。酸化グラフェンは絶縁体であり、還元されてグラフェンになることで電気伝導率が向上するので、図2の結果より、300℃で3時間以上加熱することで、酸化グラフェンをグラフェンまでほぼ完全に還元できることが分かった。
(Test Example 1)
1 g of graphite powder (average particle size 400 μm), 0.76 g of NaNO 3 and 33.8 ml of H 2 SO 4 were added to the flask and stirred until uniform. Next, 4.50 g of KMnO 4 was added to the flask in small portions while stirring. At that time, the temperature of the flask was cooled to 5 to 7 ° C. or lower. After stirring for 2 hours, the cooling was removed, and the mixture was stirred for 5 days while being kept at 30 ° C. to obtain a slurry.
This slurry was added to 500 ml of an aqueous solution of H 2 SO 4 (5 wt%) with stirring, dissolved, and stirred for 2 hours. After stirring, a H 2 O 2 (30 wt%) solution was added from brown to light yellow and stirred for 2 hours.
This solution was allowed to stand for 1 day or longer to precipitate the suspended matter in the solution. The precipitated supernatant was discarded, and 500 ml of H 2 SO 4 (3 wt%) aqueous solution and 500 ml of H 2 O 2 (0.5 wt%) aqueous solution were added. This process was repeated 10 times, and the precipitate was collected to obtain graphite oxide.
Methanol was added to the obtained graphite oxide so that it might become 0.03 mg / ml, and it stirred well. At this time, the graphite oxide layer was peeled off, and graphene oxide was obtained. 500 g of the obtained graphene oxide solution was centrifuged for 5 minutes to remove unexfoliated graphite oxide to obtain a graphene oxide solution.
The obtained graphene oxide solution was cast on a quartz substrate to form a cast product having a thickness of 10 nm.
Next, the quartz substrate on which the casting is formed and 5 g of CaH 2 are enclosed in a Pyrex glass container, and the pressure in the Pyrex glass container is reduced to 10 −2 Pa, and then up to 300 ° C. at a rate of 50 ° C./h. The temperature was raised and held in that state for 1 to 6 hours, and then cooled to room temperature at a rate of 50 ° C./h.
FIG. 2 shows the relationship between the heating time and the electrical conductivity of the heated film. In addition, the electrical conductivity of the film was measured using a four-terminal method.
As shown in FIG. 2, when the heating time at 300 ° C. passed 3 hours, the electric conductivity of the film became almost constant (2500 S / cm). Graphene oxide is an insulator, and since it is reduced to graphene, the electrical conductivity is improved. From the results shown in FIG. 2, the graphene oxide is almost completely reduced to graphene by heating at 300 ° C. for 3 hours or more. I understood that I could do it.

(試験例2)
試験例1において、流延物を形成した石英基板と、CaH5gとを耐熱ガラス容器内に同封し、耐熱ガラス容器内を10−2Paに減圧した後、50℃/hの速度で100〜600℃まで昇温し、6時間その状態で保持した後、50℃/hの速度で室温まで冷却した。
図3に、加熱温度と加熱後の膜の電気伝導率との関係を示す。
図3に示すように、加熱温度が300℃を超えると、加熱後の膜の電気伝導率が著しく向上し、600℃でほぼ飽和状態に達した。よって、図3の結果より、300〜600℃の温度で加熱することで、酸化グラフェンをグラフェンまでほぼ完全に還元できることが分かった。
(Test Example 2)
In Test Example 1, a quartz substrate on which a cast was formed and 5 g of CaH 2 were enclosed in a heat-resistant glass container, and the pressure inside the heat-resistant glass container was reduced to 10 −2 Pa, and then 100 ° C. at a rate of 50 ° C./h. The temperature was raised to ˜600 ° C., held in that state for 6 hours, and then cooled to room temperature at a rate of 50 ° C./h.
FIG. 3 shows the relationship between the heating temperature and the electrical conductivity of the heated film.
As shown in FIG. 3, when the heating temperature exceeded 300 ° C., the electrical conductivity of the heated film was remarkably improved and reached a nearly saturated state at 600 ° C. Therefore, from the result of FIG. 3, it was found that the graphene oxide can be almost completely reduced to graphene by heating at a temperature of 300 to 600 ° C.

1:密閉容器
2:流延物
3:基板
4:金属ハイドライド
5:加熱器
1: Sealed container 2: Casting material 3: Substrate 4: Metal hydride 5: Heater

Claims (3)

酸化グラフェンを含む懸濁液を基板に流延塗付して流延物を形成し、該流延物をCaH の存在下で加熱して還元することを特徴とするグラフェン膜の製造方法。 A method for producing a graphene film, comprising: applying a suspension containing graphene oxide to a substrate to form a cast, and heating and reducing the cast in the presence of CaH 2 . 前記流延物を300〜600℃の温度で、3時間以上加熱して前記還元を行う、請求項に記載のグラフェン膜の製造方法。 It said casting material at a temperature of 300 to 600 ° C., was heated over 3 hours perform the reduction method of manufacturing a graphene film according to claim 1. 前記酸化グラフェンが、酸化グラフェン単層体及び/又は酸化グラフェン積層体である、請求項1又は2に記載のグラフェン膜の製造方法。 The graphene oxide is an oxide graphene monolayer body and / or the graphene oxide laminate, method for producing a graphene film according to claim 1 or 2.
JP2010034152A 2010-02-19 2010-02-19 Method for producing graphene film Expired - Fee Related JP5477037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010034152A JP5477037B2 (en) 2010-02-19 2010-02-19 Method for producing graphene film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010034152A JP5477037B2 (en) 2010-02-19 2010-02-19 Method for producing graphene film

Publications (2)

Publication Number Publication Date
JP2011168449A JP2011168449A (en) 2011-09-01
JP5477037B2 true JP5477037B2 (en) 2014-04-23

Family

ID=44682968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010034152A Expired - Fee Related JP5477037B2 (en) 2010-02-19 2010-02-19 Method for producing graphene film

Country Status (1)

Country Link
JP (1) JP5477037B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471351B2 (en) * 2009-11-20 2014-04-16 富士電機株式会社 Film formation method of graphene thin film
JP5407921B2 (en) * 2010-02-19 2014-02-05 富士電機株式会社 Method for producing graphene film
WO2012028964A2 (en) * 2010-09-03 2012-03-08 Indian Institute Of Technology Reduced graphene oxide-based-composites for the purification of water
KR101335683B1 (en) * 2011-10-06 2013-12-03 한국전기연구원 One-dimensional conductive nanomaterial-based conductive films with enhanced conductivities by coating with two-dimensional nanomaterials
KR101354861B1 (en) 2011-10-24 2014-01-27 삼성전기주식회사 Graphene transparent electrode glass and method for manufacturing the same
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
KR101984693B1 (en) * 2012-03-16 2019-05-31 삼성전자주식회사 Method for preparing reduced graphene oxide
US9899120B2 (en) 2012-11-02 2018-02-20 Nanotek Instruments, Inc. Graphene oxide-coated graphitic foil and processes for producing same
US9533889B2 (en) * 2012-11-26 2017-01-03 Nanotek Instruments, Inc. Unitary graphene layer or graphene single crystal
US10566482B2 (en) 2013-01-31 2020-02-18 Global Graphene Group, Inc. Inorganic coating-protected unitary graphene material for concentrated photovoltaic applications
US10087073B2 (en) 2013-02-14 2018-10-02 Nanotek Instruments, Inc. Nano graphene platelet-reinforced composite heat sinks and process for producing same
CN105271209A (en) * 2015-11-05 2016-01-27 北京旭碳新材料科技有限公司 Graphene film and method and device for continuously producing graphene film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176116A (en) * 2001-12-07 2003-06-24 Mitsubishi Gas Chem Co Inc Large, thin film particle consisting of carbon
JP2003231097A (en) * 2002-02-08 2003-08-19 Mitsubishi Gas Chem Co Inc Structure mounting thin-film type particle having skeleton composed of carbon on substrate and its manufacturing method
WO2009049375A1 (en) * 2007-10-19 2009-04-23 University Of Wollongong Process for the preparation of graphene
JP5326336B2 (en) * 2008-04-18 2013-10-30 三菱瓦斯化学株式会社 Conductor and manufacturing method thereof
JP5482110B2 (en) * 2009-11-04 2014-04-23 富士電機株式会社 Solid acid and process for producing the same
JP5471351B2 (en) * 2009-11-20 2014-04-16 富士電機株式会社 Film formation method of graphene thin film
JP5407921B2 (en) * 2010-02-19 2014-02-05 富士電機株式会社 Method for producing graphene film

Also Published As

Publication number Publication date
JP2011168449A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
JP5477037B2 (en) Method for producing graphene film
JP5499980B2 (en) Method for producing graphene thin film
JP5407921B2 (en) Method for producing graphene film
Kang et al. Graphene transfer: key for applications
Low et al. Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed
Paredes et al. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide
Wang et al. Fabrication of boron nitride nanosheets by exfoliation
Toh et al. Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation
Dang et al. Superior dispersion of highly reduced graphene oxide in N, N-dimethylformamide
Huang et al. Large-scale self-assembly of dispersed nanodiamonds
US20150151973A1 (en) Covalently-bonded graphene coating and its applications thereof
Malig et al. Wet chemistry of graphene
KR101294223B1 (en) Fabricating method of large-area two dimensional graphene film
Ruiz-García et al. Toward a green way for the chemical production of supported graphenes using porous solids
JP2011063492A (en) Method for producing graphene thin film, and graphene thin film
CN108557813B (en) Method for preparing oversized single-layer graphene oxide by one-step method
Raji et al. Chemical preparation and functionalization techniques of graphene and graphene oxide
JP2012020915A (en) Method for forming transparent conductive film, and transparent conductive film
Sin et al. Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface
Sa et al. Conducting reduced graphene oxide film as transparent electrode
WO2012166001A1 (en) Process for producing graphene
WO2014033274A1 (en) Nanostructured carbon-based material
JP5447049B2 (en) Method for producing graphene film
Hossain et al. Synthesis of highly dispersed and conductive graphene sheets by exfoliation of preheated graphite in a sealed bath and its applications to polyimide nanocomposites
Rusakov et al. Chemical vapor deposition of graphene on copper foils

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140127

R150 Certificate of patent or registration of utility model

Ref document number: 5477037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees