JP5472538B2 - 距離計測装置及び環境地図生成装置 - Google Patents

距離計測装置及び環境地図生成装置 Download PDF

Info

Publication number
JP5472538B2
JP5472538B2 JP2013520459A JP2013520459A JP5472538B2 JP 5472538 B2 JP5472538 B2 JP 5472538B2 JP 2013520459 A JP2013520459 A JP 2013520459A JP 2013520459 A JP2013520459 A JP 2013520459A JP 5472538 B2 JP5472538 B2 JP 5472538B2
Authority
JP
Japan
Prior art keywords
feature point
distance
unit
environment map
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013520459A
Other languages
English (en)
Other versions
JPWO2012172870A1 (ja
Inventor
直樹 古城
省吾 渡辺
敏之 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013520459A priority Critical patent/JP5472538B2/ja
Application granted granted Critical
Publication of JP5472538B2 publication Critical patent/JP5472538B2/ja
Publication of JPWO2012172870A1 publication Critical patent/JPWO2012172870A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/521Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/579Depth or shape recovery from multiple images from motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Traffic Control Systems (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本発明は、車両に搭載したカメラにより車両走行路周辺の周辺物を撮像し、撮像した画像を用いて周辺物までの距離を計測する距離計測装置、及び距離計測装置を用いて周辺物の三次元画像を取得して環境地図を生成する環境地図生成装置に関する。
従来より、単眼カメラにより特徴点を三次元化し、特徴点距離を修正する技術として、例えば、特開2007−263657号公報(特許文献1)に開示された三次元座標取得装置が知られている。該特許文献1には、所定の距離で設置された2台のカメラを有し、2台のうちの1台のカメラを用いて周辺物標の三次元座標を取得する単眼ステレオ処理部と、2台のカメラの同時撮像画像を用いて周辺物標の三次元座標を取得する複眼ステレオ処理部を有し、それぞれの処理部で演算された三次元座標を、選択あるいは統合して周辺物標の三次元座標を算出する三次元座標取得装置が開示されている。
特開2007−263657号公報
しかしながら、特許文献1の方法では、単眼ステレオ処理、及び複眼ステレオ処理の双方により同時に算出された特徴点のみが修正されることになり、環境地図全体を修正することはできない。
本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、周辺物までの距離を高精度に計測する距離計測装置、及び全体的に高精度の環境地図のスケール精度を改善することが可能な環境地図生成装置を提供することにある。
上記目的を達成するため、本発明の実施形態に係わる距離計測装置或いは環境地図生成装置は、車両が移動している時に撮像された車両の周囲の画像から、車両の周囲に存在する複数の物体の特徴点を検出する特徴点検出部と、検出された特徴点の時間変化から、特徴点から撮像部までの第一距離を算出する第一距離算出部と、画像内に存在する複数の物体に含まれる特定物体の一部画素を用いて、特定物体から撮像部までの第二距離を算出する第二距離算出部と、複数の物体の特徴点の中で、特定物体の一部画素と略一致する特定特徴点を抽出して、特定特徴点における第一距離と第二距離との比率を算出し、特徴点検出部にて同時に検出される特定特徴点以外の複数の特徴点の第一距離を、比率に基づいて修正するスケール修正部とを備える。
図1は、検出対象となる周辺物標OB1、OB2に存在する特徴点FP、FPとエッジ部EDとの関係を示す模式図である。 図2は、本発明の第1実施形態に係る環境地図生成装置100が車両内に搭載された様子を示す模式図である。 図3は、本発明の第1実施形態に係る環境地図生成装置100の構成を示すブロック図である。 図4は、本発明の第1実施形態に係る環境地図生成装置100の、環境地図生成処理の手順を示すフローチャートである。 図5は、本発明の第1実施形態に係る環境地図生成装置100で、スケール修正を実行する際の説明図である。 図6は、本発明の第2実施形態に係る環境地図生成装置200の構成を示すブロック図である。 図7は、本発明の第2実施形態に係る環境地図生成装置200の、特徴点検出処理を概略的に示す説明図である。 図8は、本発明の第3実施形態に係る環境地図生成装置300の構成を示すブロック図である。 図9は、第4実施形態に係る環境地図生成装置400の構成を示すブロック図である。 図10は、第4実施形態に係る環境地図生成装置400の、環境地図生成処理の手順を示すフローチャートである。 図11は、第5実施形態に係る環境地図生成装置500の構成を示すブロック図である。 図12は、第6実施形態に係る環境地図生成装置600の構成を示すブロック図である。
以下、本発明の実施形態を図面に基づいて説明する。
[第1実施形態の説明]
図1は、検出対象となる周辺物標OB1、OB2に存在する特徴点FP、FPとエッジ部EDとの関係を示す模式図、図2は、車両内に環境地図生成装置100が搭載された様子を示す模式図、図3は、第1実施形態に係る環境地図生成装置の構成を示すブロック図である。
図1〜図3に示すように、本実施形態に係る環境地図生成装置100は、車両1に搭載されて周辺物標OB1、OB2の三次元情報を取得して環境地図を生成するものであり、撮像部2と、環境地図構成ECU3と、投光部4と、環境地図データベース5とを備える。
撮像部2は、例えばCCD等の固体撮像素子を用いたカメラであり、例えば車両1の車内ミラー部の裏側に、車両前方を撮像可能な方向に向けて設置される。撮像部2は、一般的な画像を取得すると共に、投光部4により照射された光の被測定物からの反射光もあわせて受光する。そして、撮像した画像を環境地図構成ECU3へ出力する。
環境地図構成ECU3は、投光制御部31と、検波部32と、エッジ検出部33と、距離算出部34と、特徴点検出部35と、自車位置推定部36と、環境地図生成部37、及びスケール修正部38を備え、撮像画像を用いた環境地図生成等、後述する様々な処理を行う電子制御ユニットである。なお、該環境地図構成ECU3は、他の制御に用いるECUと兼用しても良い。また、環境地図構成ECU3は、一般的なECUと同様に、CPU、ROM、RAM等で構成され、ROMには後述する各種処理手段を実現するプログラムが格納されている。
投光部4は、例えば、プロジェクタヘッドライトやリフレクタを備えたヘッドライトであり、水平方向に発光領域を形成する配光特性を有する。この水平方向に形成された発光光は被測定物に照射され、被測定物上に照射領域と非照射領域の輝度境界を鮮明に映し出す配光を実現する。即ち、投光部4は、水平方向に発光領域を有する時間変調のパルス光を投光する機能を備えている。
環境地図データベース5は、環境地図生成部37が構成した環境地図情報を、撮像部2で撮像された撮像画像、自車位置推定部36で取得された自車位置等の付加情報と共に記憶する記憶手段であり、例えば、ハードディスク、メモリーカード等の記憶媒体を用いることができる。
環境地図構成ECU3に設けられる投光制御部31は、PWM制御等により投光部4がパルス点灯する際の点灯、及び消灯時間の長さを制御する。投光部4による投光パターンとしては、例えば、水平方向に発光領域を有し、下方領域にも投光光を照射する投光パターンを用いれば良い。また、投光制御部31は、撮像部2による撮像タイミング信号を出力する。更に、検波部32に対して、投光部4から照射されたパルス光に同期して撮像された画像からパルス光を抽出するための検波処理に用いる搬送波(キャリア周波数)を与える。
検波部32は、撮像部2より時系列で得られる画像を用い、画像中の全画素、或いは、画像中に処理領域を制限した場合は、画像処理領域中の全画素において、投光部4より照射されるパルス光に同期した光のみを抽出する。照射した光のみを頑健に検出する処理としては、一般的に用いられる周知の同期検波手法を用いればよい。本実施形態では、撮像部2により撮像された画像の全画素、または処理領域として設定された画像領域中の全画素についてこの同期検波処理を施し、各画素で照射光の抽出を行う。また、移送偏移変調方式としては 、例えば、BPSK(Binary Phase Shift Keying:二位相偏移変調)を用いることができる。
エッジ検出部33は、検波部32により抽出された照射光画像より、照射光の上端エッジ部EDを検出する。即ち、図1に示すように、周辺物標OB1、OB2に向けてパルス光が照射され、撮像部2にて撮像された画像から照射光の上端となるエッジ部EDを検出する。
距離算出部34は、第一距離算出部34aと、第二距離算出部34bを備えている。第二距離算出部34bは、三角測量の原理に基づいて照射光上端エッジ部EDの照射方向と、撮像部2の視軸がなす角度、及びレイアウトから、エッジ検出部33により検出・特定されたエッジ部ED上の各画素について距離(これを、第二距離という)を算出する。算出手法は、一般に光切断法と称する手法を用いればよい。また、第一距離算出部34aは、自車位置推定部36にて推定される自車位置の、撮像部2の設置位置から複数の特徴点までの距離(これを、第一距離という)を算出する。
なお、ここまで説明した投光部4、投光制御部31、検波部32、エッジ検出部33、距離算出部34の具体的な制御手法は、上記した手法以外の周知の技術を用いることが可能である。
特徴点検出部35は、撮像部2の撮像画像、或いは、環境地図データベース5に蓄積された過去の撮像画像に対し、画面内の特徴点を検出する。ここで、特徴点とは、画面が移動した際に追従可能な点のことであり、一般的には縦方向、横方向共に輝度差が存在する点を指す。検出方法としては、頑健な特徴点検出方法としてさまざまな手法が提案されており(例えば、SIFT、SURF、fast等)、種々の手法を用いることが可能である。
自車位置推定部36は、撮像部2の撮像画像と、環境地図データベース5に蓄積された撮像画像及び特徴点と、車両上の撮像部2(カメラ)の設置位置の各情報に基づいて自車位置・姿勢を推定する。具体的には、まず事前知識(以前のタイムステップにおける自車位置推定結果、オドメトリ信号、車速、加速度情報等)を用いて自車位置の事前推定を実施する。事前推定により位置と姿勢が得られた場合には、これを用いて、環境地図データベース5に蓄積されている特徴点の中で、撮像部2の撮像画像に写り得る特徴点を選別し、撮像画像内での位置を推定して、その画像内位置推定値を中心として特徴点を画像内で検索を行う。
これにより、事前推定値から想定される画像内位置と実際に検出された画像内位置とのずれを検出する。その後、画像内特徴点位置と、自車位置の事前推定値から算出した特徴点位置のずれから、自車位置を算出する。以下では、これを「事後推定」と称する。ここでは、事前位置推定の結果を、特徴点の位置が実際の計測位置に適合するように調整することで事後推定を実施し、最終的な自車位置推定結果を取得する。
環境地図生成部37は、撮像部2の撮像画像上の特徴点と、環境地図データベース5に蓄積され、撮像領域に重なりのある過去の撮像画像上の特徴点と、を用いて照合を行い、特徴点の三次元座標を公知の手法(例えば、R. Hartley and A. Zisserman "Multiple View Geometry", Cambridge University pressに開示された手法)で算出する。算出された特徴点の三次元座標は、スケール修正部38に出力される。また、スケール修正部38より、該スケール修正部38でスケール修正された後の修正三次元座標を取得する。
スケール修正後の特徴点の修正三次元座標は、自車位置推定部36で得られた自車位置・姿勢に基づき、世界座標系に変換した上で、環境地図データベース5にデータ転送し保存される。この際、自車位置・姿勢、撮像画像も、互いに関連付けて、同時に保存される。
上記のように、撮像部2の座標系で三次元化された特徴点を世界座標系に変換するためには、世界座標系における撮像部2の位置と、特徴点の三次元構成とを同時に求めておく必要がある。このように、マップの生成と自車位置の推定を同時に行う手法としては、SLAMが提案されており、これに関しては様々なアルゴリズムが発表されている。カメラを使用したSLAMとしては、Mono−SLAM、PTAM等が挙げられる。
スケール修正部38は、距離算出部34で算出された画素の距離情報を用いて、環境地図生成部37で三次元化された特徴点の三次元座標をスケール変換する。詳細な処理手順については、後述する。
次に、第1実施形態に係る環境地図生成装置100による環境地図生成手順を、図4に示すフローチャートを参照して説明する。なお、図4中のステップS3〜ステップS5と、ステップS6〜ステップS10は、スレッド処理を用いて同時に実行しても良いし、ステップS5の後に、ステップS6を実施しても良い。また、ステップS1〜ステップS5までを速い周期で実施して、ステップS6〜ステップS13を遅い周期で非同期に実施させる手法をとっても良い。
初めに、図4に示すステップS1では、投光制御部31の指令に基づき、投光部4をパルス点灯させると同時に、撮像タイミング信号を撮像部2に送信する。その後、ステップS2に処理を進める。
ステップS2では、ステップS1で送信された撮像タイミング信号に基づき、撮像部2で撮像した画像を取り込む。その後、ステップS3、及びステップS6に処理を進める。
ステップS3では、ステップS2での撮像画像と、投光部4から送付される搬送波(キャリア周波数)に基づき、検波部32により、投光部4から照射されるパルス光に同期した光のみを抽出する。その後、ステップS4に処理を進める。
ステップS4では、検波部32により抽出された照射光画像から、エッジ検出部33により、照射光上端エッジ部EDを検出する。その後、ステップS5に処理を進める。
ステップS5では、距離算出部34の第二距離算出部34bにより、エッジ検出部33にて検出・特定されたエッジ部ED上の各画素について距離を算出し、算出した距離を第二距離とする。その後、ステップS11に処理を進める。なお、ステップS1〜S5までの、同期検波により距離検出処理をステップS6以降とは非同期に、高い更新頻度で実施する場合には、ステップS5の終了後に、算出データをメモリに保存した上で、ステップS6に進んでも良い。
ステップS6では、撮像部2で撮像された撮像画像中から、ステップS5にて第二距離を算出する際に用いた画像を選択し、特徴点検出部35を用いて特徴点を検出する。その後、ステップS7に処理を進める。
ステップS7では、環境地図データベース5で既に初期化処理が実施済みか否かを確認する。初期化が未実施の場合には(ステップS7でYES)、ステップS8に処理を進め、初期化済みの場合には(ステップS7でNO)、ステップS9に処理を進める。
ステップS8では、環境地図の初期化処理を行う。この処理では、まずステップS6で算出した特徴点情報をメモリに保持した上で、ステップS2の処理に戻り、再び撮像部2から撮像画像を取り込み、同様に特徴点を算出し、既に取得している特徴点と比較することで、特徴点の追跡を行う。なお、特徴点追跡手法は、KLT Tracker等、一般に知られる画像処理手法を適用すれば良い。継続的に特徴点追跡を行い、車両が一定距離、例えば0.5m進行した時点で最初の撮像画像と、現在の撮像画像の特徴点を比較し、一般に知られた8点法などの手法を用いて、特徴点の三次元化を行うと共に、特徴点との相対関係として、車両の初期自車位置・姿勢を規定し、環境地図の初期化処理を終了する。
なお、この処理は連続的に撮像された複数の撮像画像を用いるため、この処理の間はステップS9以降の処理は実施されない。
ステップS9では、自車位置推定部36を用いて、ステップS6で算出した特徴点と、環境地図データベース5に蓄積された三次元特徴点群との相対関係で、自車位置・姿勢を推定する。その後、ステップS10に処理を進める。
ステップS10では、ステップS9で得られた自車位置・姿勢情報に基づき、環境地図データベース5から、撮像領域に重なりのある過去の撮像画像を取得する。過去の撮像画像中の特徴点と、ステップS6の処理で取得された特徴点を比較し、一致する複数の特徴点群を用いて、環境地図生成部37により三次元特徴点群を得る。また、撮像部2の設置位置から各特徴点までの距離を算出し、これを第一距離とする。この第一距離の算出は、図1に示す距離算出部34の第一距離算出部34aにより行われる。その後、ステップS11に処理を進める。
ステップS11では、ステップS10の処理で求められた三次元特徴点群の現在画像での画素位置と、ステップS5の処理で、エッジ部ED上に存在し第二距離が算出された画素位置と、を比較することで、第二距離が算出された特徴点(特定特徴点)が存在するか否かを確認する。第二距離が算出された特徴点(特定特徴点)が存在する場合には(ステップS11でYES)、ステップS12に処理を進め、存在しない場合には(ステップS11でNO)、ステップS13に処理を進める。
ステップS12では、特徴点の距離情報から、自車位置と同時に算出された特徴点全てのスケール修正を行う。その後、ステップS13に処理を進める。
ステップS13では、ステップS11の処理で求められた、或いはステップS12の処理で修正された、特徴点群及び自車位置・姿勢を世界座標系に変換した上で、撮像画像と共に環境地図データベース5に保存する。その後、処理をステップS1に戻す。
次に、具体的な手法を図5を用いて説明する。なお、図5では距離検出された特徴点が一つの場合(即ち、特徴点の画像位置と、距離算出部34にて算出される距離算出画像位置との一致点が一つの場合)を想定する。図5及び図1において、符号Ctは、ステップS9の処理で推定された現在の撮像位置・姿勢を示し、符号Ct-1は、ステップS10の処理で特徴点の三次元化のために選択した撮像画像の撮像時の撮像位置・姿勢を示す。符号Pは、距離検出された特徴点(特定特徴点)を示す。即ち、特徴点Pは、その画像位置と、距離算出部34で算出された距離算出画像位置とが一致している。
まず、ステップS10の処理で三次元化した特徴点群の座標位置を用いて、カメラ位置Ctから特徴点Pまでの距離D1(第一距離)を算出する。次に、ステップS5の処理で算出される特徴点画素位置での距離をD2(第二距離)として、スケール比Rを、R=D2/D1で算出する。
次に、カメラ位置Ct-1を中心として、カメラ位置Ct、特徴点P、及び他の特徴点の全てを、スケール比Rに基づき拡大、或いは縮小させる。図5に示す例では、カメラ位置C’t、及び特徴点P’がそれぞれカメラ位置Ct、及び特徴点Pのスケール変換後の位置となっており、「Ct-1、Ct、P」を頂点とする三角形と、「Ct-1、C’t、P’」を頂点とする三角形は相似であり、相似比は1:R(=D1:D2)となり、スケール変換後のカメラ位置C’tと特徴点P’との間の距離はD2と一致することになる。
そして、他の特徴点についても上記のスケール比Rに基づいて、カメラ位置Ct-1を中心として、拡大、縮小させる。例えば、特徴点Pは、特徴点P’の位置にスケールが修正されることになる。図5中の白い丸は修正前の特徴点を示し、黒い丸は修正後の特徴点を示す。
また、上記の説明では、第二距離が検出された特徴点(特定特徴点)が一つの場合について説明したが、実際には、複数の特徴点について第二距離が算出されることが多い。以下では、第二距離が算出された特徴点がP1,P2,…,PnのN個算出された場合の、スケール比の算出手順について説明する。まず、N個の特徴点P1〜Pnそれぞれについて、上記と同様にスケール比R1,R2,…,Rnを算出する。次に、特徴点検出時の特徴点強度f1,f2,… ,fnを、特徴が強い点ほど数字が大きくなるよう定義して算出する。例えば、輝度値の差を利用する特徴点検出手法であるFASTでは、中心ピクセルと周辺の比較ピクセルの輝度差の平均値を用いてスコアリングすれば良い。ここで、f1からfnまでの総和をfsとする。算出した特徴点強度を用いてスケール比の代表値Rを、R=(R1×f1+R2×f2+…+Rn×fn)/fsで算出し、このスケール比の代表値R(重み付け平均値)を用いてスケール修正を行えば良い。
なお、スケール比の代表値Rの算出方法としては、上記の重み付け平均値以外に、単純な平均値を利用しても良いし、最も強度の高い特徴点でのスケール比Rを利用しても良い。また、カメラ(撮像部2)からの距離が既知である特徴点に関しては、それぞれのスケール比でスケールを修正し、自車位置、及び他の特徴点群は、スケール比の代表値Rを用いて修正しても良い。
このようにして、本発明の第1実施形態に係る環境地図生成装置100では、単眼カメラでステレオ処理する場合において、同期検波技術を用いた絶対距離情報を組み込むことができるので、周辺物標の三次元位置を示すマップを実寸に合わせることができる。また、演算処理の経過で、自車位置の修正も同時に行われるので、自車位置推定精度を向上させることができる。
また、第二距離が算出される特徴点(特定特徴点)が複数存在する場合には、各特徴点の強度に応じた重み付けでスケール修正処理を行うので、信頼性の低い特徴点の影響を減らし、マッチングミスを回避し、且つ誤差の累積を防止したスケール修正を行うことができる。
また、ステレオ処理に用いる単眼カメラと、同期検波を行うカメラを同一としており、また、パルス光を投光する投光部4として、車両1に設置されるヘッドランプを用いるようにすれば、ステレオカメラで距離検出を行う場合と対比して、コストダウンを図ることが可能となる。
[第2実施形態の説明]
次に、本発明の第2実施形態について説明する。図6は、第2実施形態に係る環境地図生成装置200の構成を示すブロック図である。図6は、前述した第1実施形態で説明した図3と対比して、エッジ検出部33による検出信号を、特徴点検出部35に出力している点のみが相違し、その他の構成は同一である。よって、同一構成については同一符号を付して構成説明を省略する。
図6に示す特徴点検出部35は、撮像部2の撮像画像、或いは、環境地図データベース5に蓄積された過去の撮像画像に対し、画面内特徴点を検出する。更に、該特徴点検出部35は、エッジ検出部33により求められたエッジ部EDの画素情報を用いて、領域毎に特徴点検出基準(特徴点検出しきい値)を変更する。一般的に特徴点検出手法にはしきい値が存在し、そのしきい値を高く設定すると検出される特徴点が減少し、低く設定すると検出される特徴点が増大する。
特徴点検出基準の変更エリアを図7に示す説明図を参照して説明する。車両に搭載されたヘッドランプで水平方向にエッジラインを持つパルス光を投光し撮像する場合には、一般的にエッジ部EDの検出エリアは、車両のピッチ角変動に応じて、撮像画素上で上下方向に振れる。そこで、図7に示す如くの、エッジ検出部33により算出された検出エッジ部EDの画素の上下一定エリアGAを、特徴点検出基準の変更エリアとして設定し、このエリアでは特徴点の検出しきい値を低く設定して、特徴点を検出し易くする。
なお、検出しきい値の変更エリア幅は、車両の実際ピッチ角変動値や処理速度要求値等を勘案して任意に定めればよい。また、検出エッジ部ED上の画素では、更に検出しきい値を低く設定しても良い。
第2実施形態に係る環境地図生成装置200の処理手順は、前述した第1実施形態で説明した図4に示したステップS3〜S5の処理を、ステップS6の前に実行する。それ以外は、図4と同一であるので、詳細な動作説明を省略する。
このようにして、第2実施形態に係る環境地図生成装置200では、エッジ検出部33が算出したエッジ部ED周辺での特徴点密度を恣意的に高めることができる。即ち、図7に示すエッジ部ED近傍の領域において、特徴点の検出しきい値を低くすることにより、特徴点密度が多くなるように設定できる。従って、三次元化された特徴点の第二距離が検出されている確率を高めることができ、結果として周辺物標の三次元位置を示すマップの作成精度を向上させることができる。
また、図7に示したように、同期検波技術で距離情報が算出される領域の、エッジ部EDに垂直な方向の一定幅GAにおいて重点的に特徴点を取得するため、特徴点検出時には第二距離が検出されない場合でも、車両の移動と共に第二距離が検出される可能性の高い特徴点を増やすことが可能となる。そして、後に、第二距離が検出された特徴点が見つかった場合に、対応する過去画像からも同じ特徴点を算出する必要があるが、事前に特徴点候補として算出済みなので、追加処理をせずに容易に対応特徴点を見つけることができる。
なお、パルス光はエッジラインが不連続な場合、その左右方向ではなく、エッジ部EDに垂直な方向で第二距離が検出される可能性が高いため、エッジ部ED周辺ではなく、エッジ部ED垂直方向のみとすることで、メモリ容量・計算コストをいたずらに増加させず、合理的に特徴点(特定特徴点)を増やすことができる。
[第3実施形態の説明]
次に、本発明の第3実施形態について説明する。図8は、第3実施形態に係る環境地図生成装置300の構成を示すブロック図である。
図8は、前述した第1実施形態で説明した図3と対比して、距離算出部34、スケール修正部38の処理が異なり、更に、環境地図更新部39が追加されている点で相違する。その他の構成は同一である。よって、同一構成については同一符号を付して構成説明を省略する。
図8に示す距離算出部34の第一距離算出部34a及び第二距離算出部34bは、三角測量の原理に基づき、照射光上端エッジ部EDの照射方向と、撮像部2の視軸がなす角度、及びレイアウトに基づいて、エッジ検出部33により検出・特定されたエッジ部上の各画素について第一距離、及び第二距離を算出する。算出手法は、一般に光切断法と呼ばれる手法を用いれば良い。
そして、第3実施形態に係る環境地図生成装置300では、距離算出部34にて算出された画素の第二距離の情報は、この画素の位置が、環境地図生成部37で検出された特徴点の位置と一致した場合に、この特徴点に付随する情報として、環境地図データベース5に保存する。即ち、第二距離の情報が付加された特徴点が環境地図データベース5に保存される。
スケール修正部38は、環境地図データベース5に蓄積された一定フレーム数前(例えば、1フレーム前)の特徴点群と自車位置情報を取得し、該特徴点群の中に、距離情報が付加された特徴点が存在するか否かを判断し、存在する場合には、該特徴点群のスケール修正処理を行う。このスケール修正処理は、前述の第1実施形態で説明した図4のステップS12の処理で説明した手法を用いることができる。
更に、スケール修正が行われた場合には、一定フレーム数前の自車位置も修正されるので、該当フレームよりも後に算出された自車位置と特徴点群に対して、補正を行う必要がある。具体的には、前記スケール修正で自車位置に対して行われたのと同じ座標変換、すなわち、図5に示したカメラ位置CtからC’tへの座標変換と同じ座標変換を行い、位置を修正する。
環境地図更新部39は、環境地図データベース5に、互いに関連付けられて保存されている撮像画像、特徴点群、及び撮像時の自車位置情報を用いて、メインの処理ステップとは非同期に、環境地図データベース5の更新を行う。更新手法としては、公知の技術であるBundle Adjustment(例えば、G. Klein and D.Murray "Parallel Tracking and Mapping for Small AR Workspaces", ISMAR 2007に開示された手法)を用いれば良い。これにより、特徴点群の位置の補正と同時に、複数の撮像画像から整合性のとれない特徴点に関しては削除される。
次に、環境地図生成装置300の処理手順を説明する。第3の実施の形態における処理手順は、前述した第1実施形態で説明した図4のフローチャートに示したステップS12のスケール修正処理が他の処理ステップとは非同期に別スレッドで実施されること以外は、図4のフローチャートと同一であるので、詳細な動作説明を省略する。
このようにして、第3実施形態に係る環境地図生成装置300では、環境地図更新部39によって、環境地図内の特徴点群は、新たな画像の取得と共に更新されるだけでなく、非同期で、位置の補正や整合性の取れない場合には削除が行われるため、信頼性の高い特徴点のみを残すことができる。そして、距離算出特徴点を、特徴点検出時ではなく、複数回の更新の後に残った場合にのみ、スケール修正を適用することで、信頼性の高い特徴点のみをスケール修正に利用することができ、環境地図の精度信頼性を向上させることが可能となる。
[第4実施形態の説明]
次に、本発明の第4実施形態について説明する。図9は、第4実施形態に係る環境地図生成装置400の構成を示すブロック図である。
図9に示す環境地図生成装置400は、第1実施形態で説明した図3と対比して、撮像部2が異なり、投光制御部31、検波部32、エッジ検出部33、投光部4が省略されている点で相違する。その他の構成は同一である。よって、同一構成については同一符号を付して構成説明を省略する。
撮像部2は、位置関係が既知に固定された2つのカメラ(カメラA及びカメラB)で構成される、所謂ステレオカメラであり、例えば、車両1の車内ミラー部の裏側に、車両前方を撮像可能な方向に向けて設置される。撮像部2は、2つのカメラを同期させて撮像し、撮像した画像を環境地図構成ECU3へ出力する。なお、距離算出部34では、カメラAとカメラBの2つの画像を用いて距離を算出するが、特徴点検出部35、自車位置推定部36、環境地図生成部37では、カメラA或いはカメラBで撮像された画像のいずれか一方の画像のみを用いる。
距離算出部34は、第一距離算出部34aと、第二距離算出部34bとを備える。第二距離算出部34bは、カメラA及びカメラBの画像を比較し、画像間で対応する画素を見つける。そして、対応画素間で三角測量の原理に基づいて、カメラ間の位置関係から、対応が取れた各画素について距離(これを、第二距離という)を算出する。算出手法は、一般的なステレオ視の手法を用いればよい。
ただし、一般的なステレオ視の手法では、画面全体で距離算出を行うため、画像間での画素対応を誤ったことにより距離を誤って算出される画素が生じる場合がある。第4実施形態では、画面全体で距離を算出することよりも、誤りを排除した正確な距離算出を優先する。そこで、画像間で画素の誤対応による距離の誤算出を抑制するため、一般的なステレオ視の手法よりも、画像の対応付けを行う際の閾値を厳しく設定することが望ましい。
また、第一距離算出部34aは、自車位置推定部36にて推定される自車位置の撮像部2の設置位置から複数の特徴点までの距離(これを第一距離という)を、カメラAの画像を基に算出する。
次に、第4実施形態に係る環境地図生成装置400による環境地図生成手順を、図10に示すフローチャートを参照して説明する。環境地図生成装置400による環境地図生成手順では、図4のフローチャートからステップS1、ステップS3、ステップS4が省略され、ステップS5の処理内容が異なる。その他は、図4のフローチャートと同一である。ステップS5の処理内容について説明する。
ステップS5では、距離算出部34の第二距離算出部34bにより算出した距離を第二距離とする。その後、ステップS11に処理を進める。
このように、第4実施形態に係わる環境地図生成装置400では、単眼カメラを使ったモーションステレオによる特徴点群の位置を、ステレオカメラによって、算出範囲は狭くなるが、精度の高い距離算出が可能となる特徴点を用いて、修正する。これにより、特にステレオカメラでカバーできない遠方での環境地図精度を向上させることが可能となる。
[第5実施形態の説明]
次に、本発明の第5実施形態について説明する。図11は、第5実施形態に係る環境地図生成装置500の構成を示すブロック図である。
図11に示す環境地図生成装置500は、第1実施形態で説明した図3と対比して、測域センサ6が追加され、投光制御部31、検波部32、エッジ検出部33、投光部4が省略されている点で相違する。その他の構成は同一である。よって、同一構成については同一符号を付して構成説明を省略する。
測域センサ6は、光源と受光部を有し、光源から射出された光が物体に反射して受光部に届くまでの時間を計測して、タイムオブフライト方式により測域センサ6から物体までの距離を計測する機器であり、レーザレンジファインダとも呼ばれる。一般に、測域センサ6は、ライン状に距離を計測することができる。車両1上において、撮像部2と測域センサ6の位置関係は既知である。
距離算出部34は、第一距離算出部34aと、第二距離算出部34bとを備えている。第二距離算出部34bは、測域センサ6で算出された距離データを、撮像部2との幾何学的な位置関係を用いて座標変換することで、撮像画像に重ね合わせ、距離データが重畳された各画素について距離(これを、第二距離という)を算出する。
また、第一距離算出部34aは、自車位置推定部36にて推定される自車位置の、撮像部2の設置位置から複数の特徴点までの距離(これを、第一距離という)を算出する。
次に、第5実施形態に係る環境地図生成装置500による環境地図生成手順を説明する。環境地図生成装置500による環境地図生成手順では、図4のフローチャートと対比して、ステップS2の処理内容が異なる。その他は、図4のフローチャートと同一である。ステップS2において、画像取得と同時に測域センサ6で距離計測を行う。
このように、第5実施形態に係る環境地図生成装置500では、測域センサ6で取得した距離情報を、撮像部2で撮像した画像に画像変換することで、単眼カメラを使ったモーションステレオによる特徴点群に対し、正確な距離情報を付加することができる。
[第6実施形態の説明]
次に、本発明の第6実施形態について説明する。図12は、第6実施形態に係る環境地図生成装置600の構成を示すブロック図である。
図12に示す環境地図生成装置600は、第1実施形態で説明した図3と対比して、投光部4、投光制御部31、検波部32の処理内容が異なり、エッジ検出部33が省略されている点で相違する。その他の構成は同一である。よって、同一構成については同一符号を付して構成説明を省略する。
投光部4は、例えば、レーザー光源や赤外光源であり、パターン光を投光可能な手段である。投光部4から射出された光は、被測定物に照射され、撮像部2により自然光と分離されて検出可能な波長を持つ光である。パターン光としては、例えばレーザーをライン状に投光してもよいし、キネクト(Kinect)で採用されているように、ドットパターンの赤外光を投光してもよい。
投光制御部31は、投光部4の点灯時間、及び消灯時間の長さを制御する。また、投光制御部31は、撮像部2による撮像タイミング信号を出力する。
検波部32は、撮像部2で撮像された画像を用い、画像中の全画素において、投光部4より照射されるパターン光の波長の光のみを抽出する。照射した光のみを頑健に検出する処理としては、一般的に用いられている周知のパターン光検出手法を用いればよい。
距離算出部34は、第一距離算出部34aと、第二距離算出部34bとを備える。第二距離算出部34bは、三角測量の原理に基づいて照射パターン光の照射方向と、撮像部2の視軸がなす角度、及びレイアウトから、検波部32により検出・特定されたパターン光上の各画素について距離(これを、第二距離という)を算出する。算出手法は、パターン光がライン状の場合には、一般に用いられる光切断法と称する手法を用いればよい。パターン光がドットパターンであれば、キネクトに使われる処理手法(米国特許公開2010/0118123A1公報)を用いればよい。
また、第一距離算出部34aは、自車位置推定部36にて推定される自車位置の、撮像部2の設置位置から複数の特徴点までの距離(これを、第一距離という)を算出する。
次に、第6実施形態に係る環境地図生成装置600による環境地図生成手順を説明する。環境地図生成装置600による環境地図生成手順では、図4のフローチャートから、ステップS4のエッジ部検出処理が省略されている。その他の処理は、図4のフローチャートと同一である。
このように、第6実施形態に係わる環境地図生成装置600では、投光光として、赤外光やレーザー光など、自然光と分離可能な波長の光を用いるため、第1実施形態で必要であった、連続画像からの同期検波が不要となる。
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
第1〜第6の実施形態では、車両に搭載された、複数の特徴点を前記第一距離算出部で算出した第一距離に基づいて、三次元化して走行路周囲の環境地図とする環境地図生成装置について説明したが、本発明の実施形態は、環境地図生成装置に限らない。例えば、車両1の周囲に存在する複数の物体OB1、OB2上の特徴点FPまでの距離を、第一距離と第二距離との比率に基づいて修正することにより、距離測定の精度を向上させた距離計測装置として実施することもできる。
他の実施形態に係わる距離計測装置は、撮像部2と、特徴点検出部35と、第一距離算出部34aと、第二距離算出部34bと、スケール修正部38とを備える。撮像部2は、車両1が移動している時に、車両1の周囲画像を撮像する。特徴点検出部35は、撮像部2にて撮像された画像から、車両1の周囲に存在する複数の物体OB1、OB2の特徴点FPを検出する。第一距離算出部34aは、特徴点検出部35にて検出された特徴点の時間変化から、特徴点FPから撮像部2までの第一距離を算出する。第二距離算出部34bは、画像内に存在する複数の物体OB1、OB2に含まれる特定物体の一部画素を用いて、特定物体から撮像部2までの第二距離を算出する。スケール修正部38は、複数の物体の特徴点の中で、特定物体の一部画素と略一致する特定特徴点を抽出して、特定特徴点における第一距離と第二距離との比率を算出し、特徴点検出部35にて同時に検出される特定特徴点以外の複数の特徴点の第一距離を、第一距離と第二距離との比率に基づいて修正する。
他の実施形態に係わる距離計測装置は、水平方向に延びるエッジ部EDを有する光を投光する投光部4と、光のエッジ部EDを検出するエッジ検出部33とを更に備えていてもよい。この場合、第二距離算出部34bは、特定物体におけるエッジ部EDと撮像部2との第二距離を算出する。
第1〜第6の実施形態で説明した環境地図生成装置は、上記した距離計測装置を用いて実現することも可能である。
日本国特許願第2011−131888号(出願日:2011年6月14日)の全内容は、ここに援用される。
本発明の実施形態に係る距離計測装置及び環境地図生成装置では、特徴点検出部35により検出される画像中の特徴点と撮像部2との距離である第一距離を算出する。距離算出部34にて第二距離が算出できた特徴点が存在する場合に、第一距離と第二距離の比率であるスケール比に基づいて、三次元化されている複数の特徴点の三次元位置のスケールを修正する。これにより、全体的に高精度なスケール精度の環境地図を生成することが可能となる。従来手法で補正を掛けることができなかった遠方特徴点において、特に精度向上の効果が高い。よって、本発明の実施形態に係る距離計測装置及び環境地図生成装置は、産業上利用可能である。
1 車両
2 撮像部
3 環境地図構成ECU
4 投光部
5 環境地図データベース
6 測域センサ
31 投光制御部
32 検波部
33 エッジ検出部
34 距離算出部
34a 第一距離算出部
34b 第二距離算出部
35 特徴点検出部
36 自車位置推定部
37 環境地図生成部
38 スケール修正部
39 環境地図更新部
100、200、300、400、500 環境地図生成装置

Claims (8)

  1. 車両が移動している時に、前記車両の周囲画像を撮像する撮像部と、
    前記撮像部にて撮像された画像から、前記車両の周囲に存在する複数の物体の特徴点を検出する特徴点検出部と、
    前記特徴点検出部にて検出された前記特徴点の時間変化から、前記特徴点から前記撮像部までの第一距離を算出する第一距離算出部と、
    水平方向に延びるエッジ部を有する光を投光する投光部と、
    前記撮像部にて撮像された画像から、前記光のエッジ部を検出するエッジ検出部と、
    前記エッジ部検出部により検出された前記エッジ部から前記撮像部までの第二距離を算出する第二距離算出部と、
    前記複数の物体の特徴点の中で、前記エッジ部と略一致する特定特徴点を抽出して、前記特定特徴点における前記第一距離と前記第二距離との比率を算出し、前記特徴点検出部にて同時に検出される前記特定特徴点以外の複数の特徴点の前記第一距離を、前記比率に基づいて修正するスケール修正部と、
    を備えたことを特徴とする距離計測装置。
  2. 車両に搭載され、走行路周囲の環境地図を生成する環境地図生成装置において、
    車両の周囲画像を撮像する撮像部と、
    前記撮像部にて撮像された画像から複数の特徴点を検出する特徴点検出部と、
    前記特徴点検出部にて検出された複数の連続的な配置の特徴点から前記撮像部の設置位置を含む自車位置を推定する自車位置推定部と、
    前記自車位置推定部にて推定された自車位置の前記撮像部の設置位置から前記複数の特徴点までの第一距離を算出する第一距離算出部と、
    前記特徴点検出部で検出された複数の特徴点を前記第一距離算出部で算出した第一距離に基づいて、三次元化して環境地図とする環境地図生成部と、
    水平方向に発光領域を有するパルス光を投光する投光部と、
    前記撮像部により撮像された画像から、同期検波により前記パルス光を抽出する検波部と、
    前記検波部により検出されるパルス光上端のエッジ部を検出するエッジ検出部と、
    前記エッジ検出部により検出されるエッジ部と、前記撮像部との第二距離を算出する第二距離算出部と、を有し、
    前記環境地図生成部は、前記複数の特徴点の画像位置と、前記エッジ部の画像位置との一致、不一致を判断し、
    判断が一致した特徴点を特定特徴点とし、前記特定特徴点の第一距離と前記第二距離の比率であるスケール比を算出し、前記特徴点検出部にて同時に検出される前記特定特徴点以外の複数の特徴点の前記第一距離を、前記スケール比に基づいて修正するスケール修正部と、
    を備えたことを特徴とする環境地図生成装置。
  3. 前記特徴点検出部は、前記特定特徴点であるか否かを判断する特徴点検出しきい値に基づいて、特定特徴点であるか否かを判断し、
    該特徴点検出部は、前記第二距離算出部が距離を算出する前記エッジ部の近傍領域を、他の領域よりも前記特徴点検出しきい値を低くすることにより、前記エッジ部の近傍領域にて特徴点が検出され易くすることを特徴とする請求項2に記載の環境地図生成装置。
  4. 前記特徴点検出部は、前記エッジ部の近傍領域を、前記エッジ部上下の所定幅の領域に設定することを特徴とする請求項3に記載の環境地図生成装置。
  5. 前記スケール修正部は、前記複数の特徴点毎にそれぞれ特徴点強度を求め、前記各特徴点強度に応じて前記スケール比の重み付け平均値を求め、この重み付け平均値に基づいて、前記特定特徴点以外の複数の特徴点の三次元位置を修正することを特徴とする請求項2〜請求項4のいずれか1項に記載の環境地図生成装置。
  6. 前記撮像部は、複数の画像を時系列的に撮像し、
    前記時系列的に撮像された画像を用いて、前記環境地図を更新する地図更新部を更に有し、
    前記スケール修正部は、前記特定特徴点が、所定期間を超えて前記地図更新部により削除されなかった場合に、この特徴点と同時に検出されたそれ以外の複数の特徴点の三次元位置を、前記スケール比に基づいて修正することを特徴とする請求項2〜請求項5のいずれか1項に記載の環境地図生成装置。
  7. 車両が移動している時に、前記車両の周囲画像を撮像する撮像手段と、
    前記撮像手段にて撮像された画像から、前記車両の周囲に存在する複数の物体の特徴点を検出する特徴点検出手段と、
    前記特徴点検出手段にて検出された前記特徴点の時間変化から、前記特徴点から前記撮像手段までの第一距離を算出する第一距離算出手段と、
    水平方向に延びるエッジ部を有する光を投光する投光手段と、
    前記撮像手段にて撮像された画像から、前記光のエッジ部を検出するエッジ検出手段と、
    前記エッジ部検出手段により検出された前記エッジ部から前記撮像手段までの第二距離を算出する第二距離算出手段と、
    前記複数の物体の特徴点の中で、前記エッジ部と略一致する特定特徴点を抽出して、前記特定特徴点における前記第一距離と前記第二距離との比率を算出し、前記特徴点検出手段にて同時に検出される前記特定特徴点以外の複数の特徴点の前記第一距離を、前記比率に基づいて修正するスケール修正手段と、
    を備えたことを特徴とする距離計測装置。
  8. 車両に搭載され、走行路周囲の環境地図を生成する環境地図生成装置において、
    車両の周囲画像を撮像する撮像手段と、
    前記撮像手段にて撮像された画像から複数の特徴点を検出する特徴点検出手段と、
    前記特徴点検出手段にて検出された複数の連続的な配置の特徴点から前記撮像手段の設置位置を含む自車位置を推定する自車位置推定手段と、
    前記自車位置推定手段にて推定された自車位置の前記撮像手段の設置位置から前記複数の特徴点までの第一距離を算出する第一距離算出手段と、
    前記特徴点検出手段で検出された複数の特徴点を前記第一距離算出手段で算出した第一距離に基づいて、三次元化して環境地図とする環境地図生成手段と、
    水平方向に発光領域を有するパルス光を投光する投光手段と、
    前記撮像手段により撮像された画像から、同期検波により前記パルス光を抽出する検波手段と、
    前記検波手段により検出されるパルス光上端のエッジ部を検出するエッジ検出手段と、
    前記エッジ検出手段により検出されるエッジ部と、前記撮像手段との第二距離を算出する第二距離算出手段と、を有し、
    前記環境地図生成手段は、前記複数の特徴点の画像位置と、前記エッジ部の画像位置との一致、不一致を判断し、
    判断が一致した特徴点を特定特徴点とし、前記特定特徴点の第一距離と前記第二距離の比率であるスケール比を算出し、前記特徴点検出手段にて同時に検出される前記特定特徴点以外の複数の特徴点の前記第一距離を、前記スケール比に基づいて修正するスケール修正手段と、
    を備えたことを特徴とする環境地図生成装置。
JP2013520459A 2011-06-14 2012-04-24 距離計測装置及び環境地図生成装置 Active JP5472538B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013520459A JP5472538B2 (ja) 2011-06-14 2012-04-24 距離計測装置及び環境地図生成装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011131888 2011-06-14
JP2011131888 2011-06-14
PCT/JP2012/060984 WO2012172870A1 (ja) 2011-06-14 2012-04-24 距離計測装置及び環境地図生成装置
JP2013520459A JP5472538B2 (ja) 2011-06-14 2012-04-24 距離計測装置及び環境地図生成装置

Publications (2)

Publication Number Publication Date
JP5472538B2 true JP5472538B2 (ja) 2014-04-16
JPWO2012172870A1 JPWO2012172870A1 (ja) 2015-02-23

Family

ID=47356867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013520459A Active JP5472538B2 (ja) 2011-06-14 2012-04-24 距離計測装置及び環境地図生成装置

Country Status (5)

Country Link
US (1) US9046364B2 (ja)
EP (1) EP2722646B1 (ja)
JP (1) JP5472538B2 (ja)
CN (1) CN103154666B (ja)
WO (1) WO2012172870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200103984A (ko) * 2019-02-26 2020-09-03 현대모비스 주식회사 차량의 객체 검출 장치 및 방법

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025365B2 (ja) * 2012-04-04 2016-11-16 京セラ株式会社 較正処理装置、カメラ較正装置、カメラシステム、およびカメラ較正方法
DE102013009288B4 (de) * 2013-06-04 2016-02-04 Testo Ag 3D-Aufnahmevorrichtung, Verfahren zur Erstellung eines 3D-Bildes und Verfahren zur Einrichtung einer 3D-Aufnahmevorrichtung
JP6420530B2 (ja) 2013-06-26 2018-11-07 キヤノン株式会社 情報処理装置、計測システム、制御システム、光量決定方法、プログラム及び記憶媒体
JP6144976B2 (ja) * 2013-06-26 2017-06-07 キヤノン株式会社 情報処理装置、組み付け装置、情報処理方法、及びプログラム
CN105393083B (zh) * 2013-07-09 2018-07-13 齐诺马蒂赛股份有限公司 周围环境感测***
CN103512579B (zh) * 2013-10-22 2016-02-10 武汉科技大学 一种基于热红外摄像机和激光测距仪的地图构建方法
WO2015072217A1 (ja) * 2013-11-13 2015-05-21 日産自動車株式会社 移動***置推定装置および移動***置推定方法
JP6489320B2 (ja) * 2013-11-20 2019-03-27 パナソニックIpマネジメント株式会社 測距撮像システム
US9684837B2 (en) 2014-02-24 2017-06-20 Nissan Motor Co., Ltd. Self-location calculating device and self-location calculating method
WO2015125301A1 (ja) * 2014-02-24 2015-08-27 日産自動車株式会社 自己位置算出装置及び自己位置算出方法
JP6237876B2 (ja) * 2014-02-24 2017-11-29 日産自動車株式会社 自己位置算出装置及び自己位置算出方法
US10026196B2 (en) 2014-02-24 2018-07-17 Nissan Motor Co., Ltd. Apparatuses and methods for self-position calculation of a vehicle using a light projector and a camera
US9772627B2 (en) 2014-02-24 2017-09-26 Nissan Motor Co., Ltd. Self-position calculating apparatus and self-position calculating method
JP6237875B2 (ja) * 2014-02-24 2017-11-29 日産自動車株式会社 自己位置算出装置及び自己位置算出方法
WO2015143615A1 (zh) 2014-03-24 2015-10-01 深圳市大疆创新科技有限公司 飞行器状态实时修正的方法和装置
CN103943026B (zh) * 2014-04-24 2016-02-24 深圳市赛速科技有限公司 一种基于像素距离的目标点自动排布方法
BR112017002129B1 (pt) * 2014-08-04 2022-01-04 Nissan Motor Co., Ltd Aparelho de cálculo de autoposição e método de cálculo de autoposição
CN106030431B (zh) * 2014-08-15 2017-11-03 深圳市大疆创新科技有限公司 传感器的自动标定***及方法
US10247551B2 (en) 2014-09-11 2019-04-02 Hitachi Automotive Systems, Ltd. Vehicle image processing device for environment recognition
US10205670B2 (en) * 2014-09-12 2019-02-12 Qualcomm Incorporated Selective storage and deletion in mobile content delivery networks
US10713506B2 (en) 2014-12-18 2020-07-14 Magna Electronics Inc. Vehicle vision system with 3D registration for distance estimation
JP6603993B2 (ja) * 2015-01-30 2019-11-13 株式会社リコー 画像処理装置、画像処理方法、画像処理システム、及びプログラム
WO2016135856A1 (ja) * 2015-02-24 2016-09-01 株式会社日立製作所 3次元形状計測システムおよびその計測方法
JPWO2016157349A1 (ja) * 2015-03-30 2017-07-13 株式会社日立製作所 形状計測方法およびその装置
CN106170676B (zh) * 2015-07-14 2018-10-09 深圳市大疆创新科技有限公司 用于确定移动平台的移动的方法、设备以及***
KR101847833B1 (ko) * 2015-10-27 2018-04-11 현대자동차주식회사 교통량 예측 시스템, 차량용 표시 장치, 차량 및 교통량 예측 방법
WO2017077906A1 (ja) * 2015-11-06 2017-05-11 富士フイルム株式会社 情報処理装置、情報処理方法、及びプログラム
WO2017134882A1 (ja) * 2016-02-04 2017-08-10 富士フイルム株式会社 情報処理装置、情報処理方法、及びプログラム
US10211660B2 (en) * 2016-02-08 2019-02-19 Cree, Inc. LED lighting device with adaptive profiles for controlling power consumption
US10671826B2 (en) * 2016-02-08 2020-06-02 Ideal Industries Lighting Llc Indoor location services using a distributed lighting network
JP6291519B2 (ja) * 2016-04-14 2018-03-14 有限会社ネットライズ 三次元点群データに実寸法を付与する方法とそれを用いた管路等の位置測定
EP3470779A4 (en) 2016-06-08 2019-07-03 Sony Corporation DEVICE AND METHOD FOR IMAGING CONTROL, AND VEHICLE
JP6644985B2 (ja) * 2016-07-14 2020-02-12 三井金属アクト株式会社 開閉システム
US10451229B2 (en) 2017-01-30 2019-10-22 Ideal Industries Lighting Llc Skylight fixture
US10465869B2 (en) 2017-01-30 2019-11-05 Ideal Industries Lighting Llc Skylight fixture
WO2018142493A1 (ja) * 2017-01-31 2018-08-09 富士通株式会社 画像処理装置、画像処理方法、画像処理プログラム、画像撮影方法、及び移動体
JP6882664B2 (ja) 2017-02-07 2021-06-02 富士通株式会社 移動***置推定システム、移動***置推定端末装置、情報格納装置、及び移動***置推定方法
US10249203B2 (en) * 2017-04-17 2019-04-02 Rosemount Aerospace Inc. Method and system for providing docking guidance to a pilot of a taxiing aircraft
US9894740B1 (en) 2017-06-13 2018-02-13 Cree, Inc. Intelligent lighting module for a lighting fixture
JP2019011971A (ja) 2017-06-29 2019-01-24 株式会社東芝 推定システムおよび自動車
JP6878219B2 (ja) * 2017-09-08 2021-05-26 株式会社東芝 画像処理装置および測距装置
JP6984256B2 (ja) 2017-09-11 2021-12-17 ソニーグループ株式会社 信号処理装置、および信号処理方法、プログラム、並びに移動体
DE112018005039T5 (de) 2017-09-11 2020-07-23 Sony Corporation Signalverarbeitungsvorrichtung, signalverarbeitungsverfahren, programm und mobiler körper
CN109507995B (zh) * 2017-09-14 2022-01-04 深圳乐动机器人有限公司 机器人地图的管理***及机器人
CN107610177B (zh) * 2017-09-29 2019-10-29 联想(北京)有限公司 一种同步定位与地图构建中确定特征点的方法和设备
JP2019074532A (ja) * 2017-10-17 2019-05-16 有限会社ネットライズ Slamデータに実寸法を付与する方法とそれを用いた位置測定
JP6791108B2 (ja) * 2017-12-11 2020-11-25 オムロン株式会社 顔位置検出装置
DE102017222810A1 (de) 2017-12-14 2019-06-19 Robert Bosch Gmbh Verfahren zum Erstellen einer merkmalbasierten Lokalisierungskarte für ein Fahrzeug unter Berücksichtigung charakteristischer Strukturen von Objekten
US10830400B2 (en) 2018-02-08 2020-11-10 Ideal Industries Lighting Llc Environmental simulation for indoor spaces
CN111742191B (zh) * 2018-02-26 2022-01-14 三菱电机株式会社 三维位置推定装置及三维位置推定方法
CN110197104B (zh) * 2018-02-27 2022-03-29 杭州海康威视数字技术股份有限公司 基于车辆的测距方法及装置
US10991215B2 (en) 2018-03-20 2021-04-27 Ideal Industries Lighting Llc Intelligent signage
JP2020027031A (ja) * 2018-08-10 2020-02-20 株式会社小糸製作所 車載測距システム、測距方法および車両用灯具、自動車
JP6893200B2 (ja) * 2018-10-16 2021-06-23 株式会社きんでん 自走制御プログラム、および、自走式作業装置
US10650548B1 (en) * 2019-01-30 2020-05-12 StradVision, Inc. Method and device for localization of autonomous vehicle for route planning by using attention-driven landmark detection
US10796434B1 (en) * 2019-01-31 2020-10-06 Stradvision, Inc Method and device for detecting parking area using semantic segmentation in automatic parking system
CN109887032B (zh) * 2019-02-22 2021-04-13 广州小鹏汽车科技有限公司 一种基于单目视觉slam的车辆定位方法及***
CN110531351B (zh) * 2019-08-16 2023-09-26 山东工商学院 一种基于Fast算法的GPR图像双曲波顶点检测方法
CN110616652A (zh) * 2019-09-24 2019-12-27 西安易朴通讯技术有限公司 停车方法及车位地锁
JP7311004B2 (ja) * 2019-10-11 2023-07-19 トヨタ自動車株式会社 駐車支援装置
EP4052543A1 (en) 2019-10-28 2022-09-07 Ideal Industries Lighting Llc Systems and methods for providing dynamic lighting
CN112902911B (zh) * 2019-12-03 2023-06-20 上海高德威智能交通***有限公司 基于单目相机的测距方法、装置、设备及存储介质
JP7283378B2 (ja) * 2019-12-26 2023-05-30 株式会社豊田自動織機 自己位置推定装置、移動体、自己位置推定方法、及び自己位置推定プログラム
US11741728B2 (en) * 2020-04-15 2023-08-29 Toyota Research Institute, Inc. Keypoint matching using graph convolutions
US11117570B1 (en) * 2020-06-04 2021-09-14 Ambarella International Lp Parking assistance using a stereo camera and an added light source
CN111829535B (zh) * 2020-06-05 2022-05-03 阿波罗智能技术(北京)有限公司 生成离线地图的方法、装置、电子设备和存储介质
CN111695489B (zh) * 2020-06-09 2023-08-11 阿波罗智能技术(北京)有限公司 建模路线的验证方法、装置、无人车及存储介质
CN111814634B (zh) * 2020-06-29 2023-09-08 北京百度网讯科技有限公司 一种实时距离确定方法、装置、设备及介质
CN112668460A (zh) * 2020-12-25 2021-04-16 北京百度网讯科技有限公司 目标检测方法、电子设备、路侧设备和云控平台
JP2022158591A (ja) * 2021-04-02 2022-10-17 株式会社デンソー 地図情報出力装置、自動運転制御システム、地図情報出力システムおよび地図情報出力方法
JP7328378B2 (ja) * 2022-01-14 2023-08-16 ヤマハ発動機株式会社 水域物体検出システム、船舶および周辺物体検出システム
JPWO2023242903A1 (ja) * 2022-06-13 2023-12-21

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607318A (ja) * 1983-06-03 1985-01-16 アギプ・エス・ペ−・ア− 実体写真測量法
JPH10339615A (ja) * 1997-06-09 1998-12-22 Hoya Corp パターン形状計測方法及びパターン形状計測装置
JP2004028727A (ja) * 2002-06-25 2004-01-29 Fuji Heavy Ind Ltd 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法
JP2006072873A (ja) * 2004-09-06 2006-03-16 Canon Inc 三次元画像処理装置および三次元形状データ生成装置
JP2006285946A (ja) * 2005-03-07 2006-10-19 Nippon Telegr & Teleph Corp <Ntt> 画像の奥行分布推定方法及び装置及びプログラム
JP2007263657A (ja) * 2006-03-28 2007-10-11 Denso It Laboratory Inc 3次元座標取得装置
JP2010008352A (ja) * 2008-06-30 2010-01-14 3D Media Co Ltd 寸法測定方法及び寸法測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311138A (ja) * 2001-04-06 2002-10-23 Mitsubishi Electric Corp 車両用測距装置
US6816629B2 (en) * 2001-09-07 2004-11-09 Realty Mapping Llc Method and system for 3-D content creation
US7015831B2 (en) * 2002-12-17 2006-03-21 Evolution Robotics, Inc. Systems and methods for incrementally updating a pose of a mobile device calculated by visual simultaneous localization and mapping techniques
JP4177826B2 (ja) * 2005-03-23 2008-11-05 株式会社東芝 画像処理装置および画像処理方法
US8139109B2 (en) * 2006-06-19 2012-03-20 Oshkosh Corporation Vision system for an autonomous vehicle
JP4367475B2 (ja) * 2006-10-06 2009-11-18 アイシン精機株式会社 移動物体認識装置、移動物体認識方法及びコンピュータプログラム
US8493496B2 (en) 2007-04-02 2013-07-23 Primesense Ltd. Depth mapping using projected patterns
US8260036B2 (en) * 2007-05-09 2012-09-04 Honeywell International Inc. Object detection using cooperative sensors and video triangulation
JP5092613B2 (ja) * 2007-08-06 2012-12-05 日産自動車株式会社 距離計測方法および装置、ならびに距離計測装置を備えた車両
US7920247B2 (en) * 2007-11-30 2011-04-05 Nissan Motor Co., Ltd. Distance measurement system and distance measurement method
TWI391874B (zh) * 2009-11-24 2013-04-01 Ind Tech Res Inst 地圖建置方法與裝置以及利用該地圖的定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607318A (ja) * 1983-06-03 1985-01-16 アギプ・エス・ペ−・ア− 実体写真測量法
JPH10339615A (ja) * 1997-06-09 1998-12-22 Hoya Corp パターン形状計測方法及びパターン形状計測装置
JP2004028727A (ja) * 2002-06-25 2004-01-29 Fuji Heavy Ind Ltd 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法
JP2006072873A (ja) * 2004-09-06 2006-03-16 Canon Inc 三次元画像処理装置および三次元形状データ生成装置
JP2006285946A (ja) * 2005-03-07 2006-10-19 Nippon Telegr & Teleph Corp <Ntt> 画像の奥行分布推定方法及び装置及びプログラム
JP2007263657A (ja) * 2006-03-28 2007-10-11 Denso It Laboratory Inc 3次元座標取得装置
JP2010008352A (ja) * 2008-06-30 2010-01-14 3D Media Co Ltd 寸法測定方法及び寸法測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200103984A (ko) * 2019-02-26 2020-09-03 현대모비스 주식회사 차량의 객체 검출 장치 및 방법
KR102177879B1 (ko) * 2019-02-26 2020-11-12 현대모비스 주식회사 차량의 객체 검출 장치 및 방법
US11314972B2 (en) 2019-02-26 2022-04-26 Hyundai Mobis Co., Ltd. Object detection apparatus and method for vehicle
US11721033B2 (en) 2019-02-26 2023-08-08 Hyundai Mobis Co., Ltd. Object detection apparatus and method for vehicle

Also Published As

Publication number Publication date
CN103154666A (zh) 2013-06-12
US9046364B2 (en) 2015-06-02
EP2722646A4 (en) 2015-02-25
EP2722646B1 (en) 2021-06-09
JPWO2012172870A1 (ja) 2015-02-23
WO2012172870A1 (ja) 2012-12-20
US20130182906A1 (en) 2013-07-18
CN103154666B (zh) 2015-03-18
EP2722646A1 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5472538B2 (ja) 距離計測装置及び環境地図生成装置
JP5503578B2 (ja) 物体検出装置及び物体検出方法
JP6825569B2 (ja) 信号処理装置、信号処理方法、およびプログラム
US10659762B2 (en) Stereo camera
WO2014073322A1 (ja) 物体検出装置及び物体検出方法
WO2015125298A1 (ja) 自己位置算出装置及び自己位置算出方法
US9117115B2 (en) Exterior environment recognition device and exterior environment recognition method
EP3070641B1 (en) Vehicle body with imaging system and object detection method
JP2006252473A (ja) 障害物検出装置、キャリブレーション装置、キャリブレーション方法およびキャリブレーションプログラム
US10422871B2 (en) Object recognition apparatus using a plurality of object detecting means
JP6237875B2 (ja) 自己位置算出装置及び自己位置算出方法
US10055655B2 (en) Traffic light detection device and traffic light detection method
US10235579B2 (en) Vanishing point correction apparatus and method
JP4032843B2 (ja) 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法
JP2008059260A (ja) 移動検出画像生成装置
US20220292703A1 (en) Image processing device, three-dimensional measurement system, and image processing method
JP2013257244A (ja) 距離測定装置、距離測定方法、及び距離測定プログラム
JP2014130086A (ja) 距離画像センサ、処理装置、プログラム
JP2007233440A (ja) 車載用画像処理装置
JP7347398B2 (ja) 物体検出装置
JP2022087978A (ja) 位置姿勢算出装置、位置姿勢算出方法及び測量装置
EP3879810A1 (en) Imaging device
JP2003099784A (ja) 移動物体の認識方法
JP2009192415A (ja) 対象物測距装置及びプログラム
JP2004069437A (ja) テストチャート、ステレオカメラの位置ずれ検査装置および位置ずれ検査方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5472538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151