JP5471245B2 - 圧電アクチュエータの駆動装置、及び、液体吐出装置 - Google Patents

圧電アクチュエータの駆動装置、及び、液体吐出装置 Download PDF

Info

Publication number
JP5471245B2
JP5471245B2 JP2009226068A JP2009226068A JP5471245B2 JP 5471245 B2 JP5471245 B2 JP 5471245B2 JP 2009226068 A JP2009226068 A JP 2009226068A JP 2009226068 A JP2009226068 A JP 2009226068A JP 5471245 B2 JP5471245 B2 JP 5471245B2
Authority
JP
Japan
Prior art keywords
charge
active
discharge
charging
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009226068A
Other languages
English (en)
Other versions
JP2011078190A (ja
Inventor
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2009226068A priority Critical patent/JP5471245B2/ja
Publication of JP2011078190A publication Critical patent/JP2011078190A/ja
Application granted granted Critical
Publication of JP5471245B2 publication Critical patent/JP5471245B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電アクチュエータを駆動する駆動装置、及び、液体吐出装置に関する。
従来から、圧電層の圧電変形(圧電歪ともいう)を利用して対象を駆動する圧電アクチュエータが、様々な技術分野で広く用いられている。その中でも、本願と出願人が同一の出願である特許文献1には、インクジェットヘッド用の圧電アクチュエータが開示されている。
この特許文献1の圧電アクチュエータは、複数のノズルにそれぞれ連通する複数の圧力室を備えた流路ユニットに設けられ、各圧力室内のインクにそれぞれ圧力を付与して、ノズルからインクの液滴を噴射させるものである。より具体的には、特許文献1の圧電アクチュエータは、流路ユニットの複数の圧力室を覆うように配置された圧電層と、この圧電層の両面にそれぞれ設けられた2種類の電極(複数の個別電極と共通電極)とを有する。複数の個別電極は複数の圧力室とそれぞれ対向して設けられ、また、共通電極は圧電層を挟んで複数の個別電極と共通に対向している。そして、駆動装置(ドライバIC)から個別電極と共通電極間に電圧が印加されたときに、複数の個別電極と共通電極とに挟まれた複数の圧電層部分(以下、活性部という)に圧電変形が生じることで、圧力室内のインクに圧力が付与される。
ところで、特許文献1には詳細には記載されていないが、この従来の圧電アクチュエータを駆動する駆動装置(ドライバIC)は、各活性部を挟む2種類の電極を一定電圧の電源に接続することで、電極間に電位差を発生させるように構成されていた。しかし、本願発明者らの検討により、前述した従来構成においては、以下のような問題が生じることが分かった。
圧電層の複数の活性部の各々は、2種類の電極間に電圧が印加されたときには電荷を蓄え(充電)、2種類の電極間の電圧印加が解除されたときには蓄えていた電荷を放出(放電)する、ある静電容量を有するコンデンサとして作用する。そして、複数の活性部が一定電圧の電源に接続されると、これら複数の活性部の各々は電源から供給される充電電流によって瞬時にフル充電される。また、このときの複数の活性部の電圧は全て一定になる。
ところで、複数の活性部の間で静電容量の値がばらつくことがよくある。その要因としては、電極面積のばらつき、活性部の厚みばらつき、製造工程で生じた応力のばらつき、及び、圧電材料の面内不均一に起因する圧電定数のばらつき等が考えられる。このように、複数の活性部で静電容量がばらつく場合に、複数の活性部にそれぞれ同じ電圧が印加されると、活性部の変形量が、静電容量に応じてばらついてしまう。例えば、厚みが小さい(静電容量が大きい)活性部においては変形量が大きくなり、厚みが大きい(静電容量が小さい)活性部においては変形量が小さくなってしまう。そして、上記インクジェットヘッド用の圧電アクチュエータであれば、複数の活性部間で変形量がばらつくと、複数の圧力室間でインクに付与される圧力がばらつき、その結果、複数のノズルから噴射される液滴の速度が異なってしまうことになる。
そこで、本願発明者らは、複数の活性部間で静電容量がばらついても活性部の変形量が等しくなるような、圧電アクチュエータの駆動方式を検討している。複数の活性部の変形量を等しくするためには、静電容量が大きい活性部に対しては印加電圧を小さくし、静電容量が小さい活性部に対しては印加電圧を大きくすればよい。ここで、コンデンサの静電容量(C)、印加電圧(V)、蓄えられる電荷量(Q)の間にQ=CVの関係が成立することがよく知られている。従って、C(大)のときにV(小)、C(小)のときにV(大)にするためには、複数の活性部で電荷量(Q)が一定になるようにすればよい。具体的には、定電流源を用いて活性部への充電電流を一定に保ち、さらに、複数の活性部にそれぞれ蓄えられる電荷量が同じになるように充電時間を等しく制御する。
これに関連して、特許文献2には、圧電素子への充電電流を一定に維持する充電側定電流回路と、圧電素子からの放電電流を一定に維持する放電側定電流回路とを備えた、インクジェットヘッド用圧電アクチュエータの駆動回路が開示されている。
特開2006−256317号公報 特開2001−150666号公報
前述したように、複数の活性部で電荷量を一定に制御する場合には、定電流源から一定の充電電流が活性部に供給されることが前提となる。ここで、定電流源から一定の充電電流を送り続けるには、定電流源を構成するトランジスタの特性から、定電流源の上流側(電源側)と下流側(活性部側)との間に、ある一定以上の電位差を確保することが必要となる。
しかし、定電流源から充電電流が供給されて活性部への充電が進み、電荷量の増加に伴って活性部の電圧が大きくなっていくと、定電流源の電位差が小さくなる。特に、活性部へ、その最大電荷量(蓄えることが可能な電荷量の最大値)まで充電されるとき(以下、フル充電ともいう)には、充電終盤における定電流源の電位差は非常に小さいものとなり、充電電流がほぼ0に近い状態となる。
ここで、フル充電されたときに各活性部に蓄えられる最大電荷量Qmaxは、各活性部の静電容量Cn、最大印加電圧Vmax(=定電流源に接続される電源電圧)とすると、Qmax=Cn×Vmaxとなり、複数の活性部で静電容量Cnがばらついていると最大電荷量Qmaxも異なることになる。従って、全ての活性部について、蓄えられる電荷量を所定の電荷量に等しくなるように制御したときに、静電容量の大きな活性部においては、前記所定の電荷量が、その活性部の最大電荷量未満であったとしても、別の、静電容量の小さな活性部においては前記所定の電荷量が最大電荷量となってしまうことがあり得る。このとき、最大電荷量まで充電される一部の活性部においては、他の活性部と比べて充電終盤の充電電流が小さくなり、充電時間がかなり長くなってしまうという問題が発生する。あるいは、一定の充電電流が維持されるという想定の上で設定された所定の充電時間が経過しても、実際の充電電荷量が所望の電荷量に達していないという問題が生じる。特許文献2には一定の充電電流で圧電素子(活性部)を充電する駆動回路が開示されているものの、上述した充電時の課題、及び、その解決手段については何ら記載されていない。
本発明の目的は、充電終盤における充電電流の低下を抑制することが可能な圧電アクチュエータの駆動装置、及び、液体吐出装置を提供することである。
第1の発明の圧電アクチュエータの駆動装置は、圧電層とこの圧電層に設けられた複数の第1電極及び複数の第2電極を有し、前記複数の第1電極と前記複数の第2電極とに挟まれた圧電層部分からなりコンデンサとして作用する複数の活性部を備えた、圧電アクチュエータを駆動する駆動装置であって、
前記複数の活性部と接続された充電側定電流源と、同じく前記複数の活性部と接続された放電側定電流源と、前記充電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の充電スイッチと、前記放電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の放電スイッチと、前記複数の活性部の充放電される電荷量が全て等しくなるように、前記充電スイッチと前記放電スイッチの切り換えタイミングを決定し、各活性部の充電時間及び放電時間を制御する充放電制御回路とを備え、
前記充放電制御回路は、各活性部に充電される電荷量が、その活性部が蓄えることのできる最大電荷量未満となるように、且つ、前記充電側定電流源の電位差が所定値以上である間に各活性部の充電を終了するように、前記充電時間を制御することを特徴とするものである。
本発明によれば、充放電制御回路は、各活性部に充電される電荷量が、各活性部が蓄えることのできる最大電荷量未満となるように、充電スイッチと放電スイッチの切り換えタイミングを決定し、各活性部への充電時間を制御する。これによれば、全ての活性部において最大電荷量まで充電されないため、充電の終盤になっても活性部の電圧は低い状態であることから、充電側定電流源の電位差が一定以上に確保され、充電電流の低下が抑えられる。
第2の発明の圧電アクチュエータの駆動装置は、前記第1の発明において、前記充放電制御回路は、前記複数の活性部の静電容量に基づいて、全ての活性部において、充電される電荷量が前記最大電荷量未満となるように、前記充電時間を制御することを特徴とするものである。
の発明の圧電アクチュエータの駆動装置は、前記第1又は第2の発明において、前記放電側定電流源が、デプレッション型のFETで構成されていることを特徴とするものである。
各活性部において充電された電荷が完全に放電されないまま、次の充電が行われてしまうと、各活性部に蓄えられる電荷量を所定量に制御して複数の活性部間で電圧を一定にすることが実質できなくなるため、放電時には、活性部の充電量が0になるまで完全に放電を行う必要がある。しかし、活性部に残る電荷量がかなり少ない放電終盤においては、放電側定電流源の電位差が小さくなってしまい、放電電流が非常に小さくなる。すると、放電時間が長く延びてしまう、あるいは、完全に放電できなくなるという問題が生じる。そこで、本発明では、放電側定電流源を構成するFETをデプレッション型とすることで、放電側定電流源の電位差が低くなる、放電終盤においても放電電流を所定以上に確保することができる。
第4の発明の液体吐出装置は、複数のノズルを含む流路が形成された流路ユニットと、圧電層とこの圧電層に設けられた複数の第1電極及び複数の第2電極を有し、前記複数の第1電極と前記複数の第2電極とに挟まれた圧電層部分からなりコンデンサとして作用する複数の活性部を備え、前記複数の活性部によって前記複数のノズルからそれぞれ液体を吐出させる圧電アクチュエータと、前記複数の活性部と接続された充電側定電流源と、同じく前記複数の活性部と接続された放電側定電流源と、前記充電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の充電スイッチと、前記放電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の放電スイッチと、前記複数の活性部の充放電される電荷量が全て等しくなるように、各活性部の充電時間及び放電時間を決定する充放電時間決定部と、前記充放電時間決定部で決定された前記充電時間及び前記放電時間に基づいて、前記充電スイッチと前記放電スイッチの切り換えタイミングを決定し、各活性部の充電及び放電を制御する充放電制御回路とを備え、
前記充放電時間決定部は、各活性部に充電される電荷量が、その活性部が蓄えることのできる最大電荷量未満となるように、且つ、前記充電側定電流源の電位差が所定値以上である間に各活性部の充電を終了するように、前記充電時間を決定することを特徴とするものである。
第5の発明の液体吐出装置は、前記第4の発明において、前記複数の活性部のそれぞれの静電容量データを記憶する記憶部をさらに備え、前記充放電時間決定部は、前記記憶部に記憶された複数の活性部の静電容量データに基づいて、全ての活性部において、充電される電荷量が前記最大電荷量未満となるように、前記充電時間を決定することを特徴とするものである。
本発明によれば、全ての活性部において最大電荷量まで充電されないため、充電終盤になっても活性部の電圧は低いことから、充電側定電流源の電位差が一定以上に確保され、充電電流の低下が抑えられる。
本実施形態に係るインクジェットプリンタを概略的に示す平面図である。 インクジェットヘッドの平面図である。 図2の一部拡大図である。 図3のIV-IV線断面図である。 ドライバICの回路図である。 一般的なFETの電圧(Vds)−電流(Ids)の特性を示す図である。 デプレッション型FETの電圧(Vgs)−電流(Ids)の特性を示す図である。 図7の特性を示すデプレッション型FETの、ドレイン−ソース間電圧Vdsとドレイン−ソース間電流Idsとの関係を、一般的なFETと比較した図である。 インクジェットプリンタの制御系を示すブロック図である。
次に、本発明の実施の形態について説明する。本実施形態は、記録用紙に対してインクの液滴を噴射するインクジェットヘッドを備えたインクジェットプリンタに本発明を適用した一例である。
まず、本実施形態のインクジェットプリンタ1の概略構成について説明する。図1は、本実施形態のインクジェットプリンタの概略平面図である。この図1に示すように、プリンタ1は、所定の走査方向(図1の左右方向)に沿って往復移動可能に構成されたキャリッジ2と、このキャリッジ2に搭載されたインクジェットヘッド3と、記録用紙Pを、走査方向と直交する搬送方向に搬送する搬送機構4等を備えている。
キャリッジ2は、走査方向(図1の左右方向)に平行に延びる2本のガイド軸17に沿って往復移動可能に構成されている。また、キャリッジ2には、無端ベルト18が連結されており、キャリッジ駆動モータ19によって無端ベルト18が走行駆動されたときに、キャリッジ2は、無端ベルト18の走行に伴って走査方向に移動するようになっている。尚、プリンタ1には、走査方向に間隔を空けて配列された多数の透光部(スリット)を有するリニアエンコーダ10が設けられている。一方、キャリッジ2には、発光素子と受光素子とを有する透過型のフォトセンサ11が設けられている。そして、プリンタ1は、キャリッジ2の移動中にフォトセンサ11が検出したリニアエンコーダ10の透光部の計数値(検出回数)から、キャリッジ2の走査方向に関する現在位置を認識できるようになっている。
このキャリッジ2には、インクジェットヘッド3が搭載されている。インクジェットヘッド3は、その下面(図1の紙面向こう側の面)に多数のノズル30(図2〜図4参照)を備えている。このインクジェットヘッド3は、搬送機構4により図1の下方(搬送方向)に搬送される記録用紙Pに対して、図示しないインクカートリッジから供給されたインクを多数のノズル30から噴射するように構成されている。
搬送機構4は、インクジェットヘッド3よりも搬送方向上流側に配置された給紙ローラ12と、インクジェットヘッド3よりも搬送方向下流側に配置された排紙ローラ13とを有する。給紙ローラ12と排紙ローラ13は、それぞれ、給紙モータ14と排紙モータ15により回転駆動される。そして、この搬送機構4は、給紙ローラ12により、記録用紙Pを図1の上方からインクジェットヘッド3へ搬送するとともに、排紙ローラ13により、インクジェットヘッド3によって画像や文字等が記録された記録用紙Pを図1の下方へ排出する。
次に、インクジェットヘッド3について説明する。図2はインクジェットヘッドの平面図、図3は図2の一部拡大図、図4は図3のIV-IV線断面図である。図2〜図4に示すように、インクジェットヘッド3は、ノズル30や圧力室24を含むインク流路が形成された流路ユニット6と、圧力室24内のインクに圧力を付与する圧電アクチュエータ7とを備えている。
まず、流路ユニット6について説明する。図4に示すように、流路ユニット6はキャビティプレート20、ベースプレート21、マニホールドプレート22、及びノズルプレート23を備えており、これら4枚のプレート20〜23が積層状態で接合されている。このうち、キャビティプレート20、ベースプレート21及びマニホールドプレート22は、それぞれ、ステンレス鋼等の金属材料からなる平面視で略矩形状の板である。そのため、これら3枚のプレート20〜22に、後述するマニホールド27や圧力室24等のインク流路をエッチングにより容易に形成することができるようになっている。また、ノズルプレート23は、例えば、ポリイミド等の高分子合成樹脂材料により形成され、マニホールドプレート22の下面に接着剤で接合される。あるいは、このノズルプレート23も、他の3枚のプレート20〜22と同様にステンレス鋼等の金属材料で形成されていてもよい。
図2〜図4に示すように、4枚のプレート20〜23のうち、最も上方に位置するキャビティプレート20には、平面に沿って配列された複数の圧力室24がプレート20を貫通する孔により形成されている。また、複数の圧力室24は、搬送方向(図2の上下方向)に千鳥状に2列に配列されている。また、図4に示すように、複数の圧力室24は上下両側から後述の振動板40及びベースプレート21によりそれぞれ覆われている。さらに、各圧力室24は、平面視で走査方向(図2の左右方向)に長い、略楕円形状に形成されている。
図3、図4に示すように、ベースプレート21の、平面視で圧力室24の長手方向両端部と重なる位置には、それぞれ連通孔25,26が形成されている。また、マニホールドプレート22には、平面視で、2列に配列された圧力室24の連通孔25側の部分と重なるように、搬送方向に延びる2つのマニホールド27が形成されている。これら2つのマニホールド27は、後述の振動板40に形成されたインク供給口28に連通しており、図示しないインクタンクからインク供給口28を介してマニホールド27へインクが供給される。さらに、マニホールドプレート22の、平面視で複数の圧力室24のマニホールド27と反対側の端部と重なる位置には、それぞれ、複数の連通孔26に連なる複数の連通孔29も形成されている。
さらに、ノズルプレート23の、平面視で複数の連通孔29にそれぞれ重なる位置には、複数のノズル30が形成されている。図2に示すように、複数のノズル30は、搬送方向に沿って2列に配列された複数の圧力室24の、マニホールド27と反対側の端部とそれぞれ重なるように配置され、2列のノズル列を構成している。
そして、図4に示すように、マニホールド27は連通孔25を介して圧力室24に連通し、さらに、圧力室24は、連通孔26,29を介してノズル30に連通している。このように、流路ユニット6内には、マニホールド27から圧力室24を経てノズル30に至る個別インク流路31が複数形成されている。
尚、図2においては、説明の簡単のため、1つのインク供給口28に連なる1種類の流路構造(マニホールド27、圧力室24、ノズル30等)のみが描かれているが、インクジェットヘッド3が、図2に示されている流路構造が走査方向に複数並べて設けられた構成を備え、複数色(例えば、ブラック、イエロー、シアン、マゼンタの4色)のインクをそれぞれ噴射可能な、カラーインクジェットヘッドであってもよい。
次に、圧電アクチュエータ7について説明する。図2〜図4に示すように、圧電アクチュエータ7は、複数の圧力室24を覆うように流路ユニット6(キャビティプレート20)の上面に配置された振動板40と、この振動板40の上面に、複数の圧力室24と対向するように配置された圧電層41と、圧電層41の上面に配置された複数の個別電極42とを備えている。
振動板40は、平面視で略矩形状の金属板であり、例えば、ステンレス鋼等の鉄系合金、銅系合金、ニッケル系合金、あるいは、チタン系合金などからなる。この振動板40は、キャビティプレート20の上面に複数の圧力室24を覆うように配設された状態で、キャビティプレート20に接合されている。また、導電性を有する振動板40の上面は、圧電層41の下面側に配置されることによって、上面の複数の個別電極42との間で圧電層41に厚み方向の電界を生じさせる、共通電極を兼ねている。この共通電極としての振動板40は、圧電アクチュエータ7を駆動するドライバIC47のグランド配線に接続されて、常にグランド電位に保持される。
圧電層41は、チタン酸鉛とジルコン酸鉛との固溶体であり強誘電体であるチタン酸ジルコン酸鉛(PZT)を主成分とする圧電材料からなる。図2に示すように、この圧電層41は、振動板40の上面において、複数の圧力室24に跨って連続的に形成されている。また、この圧電層41は、少なくとも圧力室24と対向する領域において厚み方向に分極されている。
圧電層41の上面の、複数の圧力室24と対向する領域には、複数の個別電極42がそれぞれ配置されている。各々の個別電極42は圧力室24よりも一回り小さい略楕円形の平面形状を有し、圧力室24の中央部と対向している。また、複数の個別電極42の端部からは、ドライバIC47を実装したフレキシブル配線基板(図示省略)と接続される、複数の接点部45が個別電極42の長手方向に沿ってそれぞれ引き出されている。尚、上述した複数の個別電極42が本願における複数の第1電極に相当し、また、共通電極としての振動板40のうちの、複数の個別電極42とそれぞれ対向して圧電層41を挟む複数の部分が、本願における複数の第2電極に相当する。
また、複数の個別電極42と共通電極としての振動板40とに挟まれた、複数の圧電層部分(活性部41a)は、予め、その厚み方向に分極されている。そして、個別電極42と振動板40との間に電位差(電圧)が発生したときには、活性部41aには圧電変形(圧電歪み)が発生し、この変形によって、その活性部41aと対向する圧力室24内のインクに圧力が付与されることになる。
以上の圧電アクチュエータ7には、この圧電アクチュエータ7を駆動するドライバIC47(駆動装置)を実装した、図示しないフレキシブル配線基板(FPC)が接続され、FPC上の配線を介してドライバIC47と複数の個別電極42、及び、共通電極としての振動板40が電気的に接続される。
後ほど詳述するが、圧電アクチュエータ7を駆動するドライバIC47は、圧電アクチュエータ7の複数の活性部41aに対して一定の充電電流を供給し、複数の活性部41a間の電荷量を等しくすることにより、各活性部41a(個別電極42−共通電極(振動板40)の間)にその静電容量に応じた電圧を発生させる。また、一定の放電電流で活性部41aに蓄えられた電荷を放電することにより、各活性部41aの電圧を0にする。この充放電によって活性部41aへの電圧印加とその解除とを繰り返し、活性部41aを駆動する。このドライバIC47の具体的構成については、後ほど説明する。
次に、インク噴射時における圧電アクチュエータ7の作用について説明する。個別電極42と共通電極としての振動板40とに挟まれた、各々の活性部41aにおいて、電荷が蓄えられていない状態では、個別電極42の電位が振動板40と同じグランド電位となっている。このとき、活性部41aに電界が作用しておらず、圧電歪みは生じていない。
この状態から、ある活性部41aに対して、ドライバIC47から一定の充電電流が所定時間供給されると、その活性部41aに所定量の電荷が蓄えられるとともに、個別電極42の電位がグランド電位の振動板40に対して高くなる。従って、この活性部41aを挟む個別電極42と振動板40との間に、活性部41aの静電容量と、蓄えられた電荷量によって定まる、所定の電圧が印加されることになり、活性部41aには厚み方向の電界が作用する。この電界の方向は圧電層41の分極方向と平行であるから、活性部41aが厚み方向と直交する面方向に収縮する。ここで、圧電層41の下側の振動板40はキャビティプレート20に固定されているため、この振動板40の上面に位置する圧電層41が面方向に収縮するのに伴って、振動板40の圧力室24を覆う部分が圧力室24側に凸となるように変形する(ユニモルフ変形)。このとき、圧力室24内の容積が減少するために圧力室24内のインク圧力が上昇し、この圧力室24に連通するノズル30からインクが噴射される。
また、活性部41aに所定量の電荷が蓄えられた状態から、ドライバIC47によって一定の放電電流で電荷が放電されると、個別電極42の電位が再びグランド電位となり、活性部41aには電界が作用しなくなることから、活性部41aの変形状態が解消され、振動板40は、元の状態(キャビティプレート10と平行な状態)に戻る。
次に、ドライバIC47の具体的な構成について説明する。図5は、ドライバIC47の回路図である。図5に示すように、ドライバIC47は、電源電圧(VDD)に接続された2つの定電流源(充電側定電流源50、放電側定電流源51)と、充電側定電流源50と複数の活性部41aとの接続/遮断をそれぞれ切り換える充電スイッチSW1と、放電側定電流源51と複数の活性部41aとの接続/遮断をそれぞれ切り換える放電スイッチSW2と、複数の充電スイッチSW1及び複数の放電スイッチSW2の切り換えを制御する充放電制御回路52とを備えている。
充電側定電流源50と放電側定電流源51は、それぞれ、MOSFET型トランジスタTaと、トランジスタTaのソースに接続された抵抗Rと、複数の活性部41aにそれぞれ対応した複数のMOSFET型トランジスタTbとを有する。各々の定電流源50,51のトランジスタTaのドレインは電源(VDD)と接続され、ソースは抵抗Rを介してグランドと接続されている。
充電側定電流源50の複数のトランジスタTbのドレインは電源(VDD)と接続されている。また、放電側定電流源51の複数のトランジスタTbのソースはグランドと接続されている。さらに、充電側定電流源50の複数のトランジスタTbのソースと放電側定電流源51の複数のトランジスタTbのドレインとがそれぞれ接続され、前述した複数の活性部41aの充放電をそれぞれ行うための複数の充放電経路53が構成されている。また、各充放電経路53からは、活性部41aの個別電極42と接続される接続経路54が分岐している。
また、各々の定電流源50,51において、トランジスタTa,Tbのゲート端子は互いに接続されるとともに、これらゲート端子には電源電圧(VDD)が印加されており、トランジスタTa,Tbはカレントミラー回路を構成している。これにより、トランジスタTaのドレイン−ソース間には抵抗Rによって定まる一定の電流が流れる一方で、トランジスタTaとそれぞれカレントミラー回路を構成する、複数のトランジスタTbのドレイン−ソース間にもトランジスタTaと同じ一定の電流が流れることになる。これにより、活性部41aへの充電時には充電側定電流源50により活性部41aへ供給される充電電流が一定に保たれ、また、活性部41aからの放電時には活性部41aからの放電電流が放電側定電流源51によって一定に保たれる。
接続経路54の充放電経路53からの分岐点P1と充電側定電流源50との間、及び、分岐点P1と放電側定電流源51との間に、MOSFET型のトランジスタT1,T2からなる、充電スイッチSW1及び放電スイッチSW2がそれぞれ設けられている。充電スイッチSW1は、ONのときに充電側定電流源50と活性部41aとを接続して、活性部41aへの充電を行う。また、放電スイッチSW2は、ONのときに放電側定電流源51と活性部41aとを接続して、活性部41aの放電を行う。
充放電制御回路52は、各充放電経路53に設けられた、充電スイッチSW1を構成するトランジスタT1と放電スイッチSW2を構成するトランジスタT2の、それぞれのゲート端子にゲート電圧を印加して、充電スイッチSW1及び放電スイッチSW2のON/OFFを切り換える。より具体的には、充放電制御回路52は、活性部41aに電圧を印加して活性部41aに圧電変形を生じさせる際には、充電スイッチSW1をONにするとともに放電スイッチSW2をOFFにし、充電側定電流源50と活性部41aとを接続して、図5中矢印Aで示す経路で活性部41aに一定の充電電流を供給する。また、活性部41aの電圧を0にして活性部41aの変形を元に戻す際には、充電スイッチSW1をOFFにするとともに放電スイッチSW2をONにし、図5中矢印Bで示す経路で活性部41aに蓄えられた電荷を、一定の放電電流で放電する。
ここで、各圧力室24内のインクに付与される圧力(即ち、ノズル30から噴射される液滴に与えられるエネルギー)は、各活性部41aに電圧(個別電極42と共通電極としての振動板40との電位差)が印加されたときの圧電変形量によって定まる。しかし、複数の活性部41a間で静電容量にばらつきが存在する場合には、同じ電圧が印加されても静電容量の大きさによって圧電変形量が異なる。例えば、厚みが小さい(静電容量が大きい)活性部41aにおいては変形量が大きくなり、厚みが大きい(静電容量が小さい)活性部41aにおいては変形量が小さくなってしまう。
そこで、充放電制御回路52は、複数の活性部41aの充放電される電荷量が等しくなるように充電スイッチSW1及び放電スイッチSW2の切り換えタイミング(即ち、充電時間及び放電時間)を制御する。これにより、Q=CVの関係においてQが一定とすることで、静電容量が大きい活性部41aへの印加電圧は小さく、逆に、静電容量が小さい活性部41aへの印加電圧は大きくなることから、複数の活性部41a間での圧電変形量のばらつきが抑えられる。
上記内容について、より具体的に説明する。各活性部41aの充電電流I1と放電電流I2は、充電側定電流源50と放電側定電流源51によってそれぞれ一定に保たれる。尚、本実施形態では、充電側定電流源50と放電側定電流源51の構成が同一であるため充電電流I1と放電電流I2は同じ値となるが、充電電流I1と放電電流I2が異なる値となるように、充電側定電流源50と放電側定電流源51の構成(例えば、抵抗Rの電気抵抗値等)が異なっていてもよい。
このように、充電電流I1と放電電流I2はそれぞれ一定であることから、所定の電荷量Qを充放電するための、各活性部41aの充電時間T1と放電時間T2は、T1=Q/I1、T2=Q/I2となる。そこで、充放電制御回路52は、まず、充電スイッチSW1がON(充電側定電流源50と活性部41aの接続状態)で、且つ、放電スイッチSW2がOFF(放電側定電流源51と活性部41aとの遮断状態)となる時間がT1になるように、充電スイッチSW1と放電スイッチSW2の切り換えタイミングを制御する。次に、充電スイッチSW1がOFF(充電側定電流源50と活性部41aの遮断状態)で、且つ、放電スイッチSW2がON(放電側定電流源51と活性部41aとの接続状態)となる時間がT2になるように、充電スイッチSW1と放電スイッチSW2の切り換えタイミングを制御する。
これにより、各活性部41aの充電時には、各活性部41aへ一定の充電電流I1が充電時間T1だけ流れて、各活性部41aに電荷Qが蓄えられ、各活性部41aにはその静電容量に応じた電圧が印加される。また、各活性部41aの充電時には、各活性部41aから一定の放電電流I2が放電時間T2だけ流れて、各活性部41aから電荷Qが放電されて電圧が0になる。
ところで、充放電時間の制御によって各活性部41aに充放電される電荷量Qを所定値に制御するには、定電流源により、充電電流及び放電電流がそれぞれ常に一定に保たれることが前提となるが、実際には、充放電時に充電電流及び放電電流が一定に保たれない状況が起こり得る。図6は、定電流源を構成する一般的なトランジスタの電流特性を示す図である。尚、図6の横軸はドレイン−ソース電圧(Vds)、縦軸はドレイン−ソース電流(Ids)を示している。図6に示すように、ドレイン−ソース間の電圧Vdsが大きい場合(Vds=Va)には、ドレイン−ソース間を流れる電流Idsは一定電流Iaに維持される。しかし、Vdsが小さくなって、例えばVb以下になると、IdsはIaよりも小さくなってしまう。そして、上述した定電流源50,51においては、充電終盤及び放電終盤に、トランジスタTbのVdsが小さくなる現象が発生する。
活性部41aへの充電が進んだ充電終盤には、活性部41aの電圧が大きくなっている。即ち、充電側定電流源50の下流側(活性部41a側)の電位(分岐点P1の電位)が上昇している。特に、活性部41aに、その最大電荷量(蓄えることが可能な電荷量の最大値)までフル充電されるときには、充電終盤における定電流源の電位差(トランジスタTbのVds)は非常に小さいものとなり、充電電流がほぼ0に近い状態となる。
また、先にも述べたように、フル充電されたときに各活性部41aに蓄えられる最大電荷量Qmaxは、各活性部41aの静電容量Cn、最大印加電圧Vmax(=定電流源に接続される電源電圧)とすると、Qmax=Cn×Vmaxで表され、複数の活性部41aで静電容量がばらついていると最大電荷量Qmaxも異なることになる。即ち、活性部41aの静電容量が大きいほど、その最大電荷量Qmaxも大きくなる。そのため、複数の活性部41aへの充電電荷量を全て所定の電荷量Qに等しく設定したときに、静電容量の大きな活性部41aにおいては、前記所定の電荷量Qが、その活性部41aの最大電荷量未満であったとしても、これとは別の、静電容量の小さな活性部41aにおいては前記所定の電荷量Qが最大電荷量となってしまうことがあり得る。そして、最大電荷量まで充電される一部の活性部41aにおいては、充電終盤において分岐点P1の電位が電源電圧VDDに限りなく近くなることから、充電側定電流源50においてVdsを図6のVb以上に確保することができなくなり、充電電流が小さくなってしまう。このように充電電流が小さくなると、充電時間がかなり遅くなってしまうという問題や、一定の充電電流が維持されると想定して設定された所定の充電時間を経過しても、実際の充電電荷量が所望の電荷量に達していないという問題が生じる。
また、活性部41aからの放電が進んだ放電終盤においては、活性部41aの電圧が小さく(ほぼ0)になっている。即ち、放電側定電流源51よりも上流側(活性部41a側)の電位(分岐点P1の電位)が低くなっていることから、放電側定電流源51においてもVdsをVb以上に確保することができなくなり、放電電流が小さくなってしまう。この場合は、放電時間が長く延びてしまう、あるいは、完全に放電できなくなるといった問題が生じる。また、完全に放電される前に次の充電が始まってしまうと、その予め定められた所定の電荷量の充電が終了したときには、その所定の充電量だけでなく、放電しきれなかった電荷が余計に活性部41aに蓄えられた状態となってしまい、活性部41aに実際に蓄えられる電荷の総量が設定値を超え、活性部41aの電圧が所定電圧よりも大きくなってしまう。
そこで、本実施形態では、充電時及び放電時において、充電電流及び放電電流の減少を抑制することが可能に構成されている。
まず、充電電流の低下を抑制する構成について述べる。上述したように、複数の活性部41aのそれぞれについて、電圧が等しくなるような充電電荷量を個別に設定したときに、設定された電荷量が最大電荷量となる活性部41aが存在すると、その活性部41aにおける充電電流の低下が問題になる。そこで、充放電制御回路52は、各活性部41aに充電される電荷量Qが、その活性部41aが蓄えることのできる最大電荷量未満となるように、充電スイッチSW1及び放電スイッチSW2のON/OFFを切り換えて、充電時間を制御する。このように、全ての活性部41aにおいて最大電荷量Qmaxまで充電されないと、フル充電される場合と比べて、充電終盤であっても活性部41aの電圧が低い状態となる。従って、充電側定電流源50の電位差が図6のVb以上に確保され、充電電流が一定値(Ia)に維持される。
次に、放電電流の低下を抑制する構成について述べる。放電電流の低下は、放電終盤の、活性部41aに蓄えられた電荷量がかなり少なくなった状態で生じるものであり、先に述べた充電電流の低下とは異なり、充電電荷量とは関係なく全ての活性部41aで起こる。つまり、充電電荷量を制限しても放電電流の低下は抑制できない。
そこで、放電側定電流源51を構成するトランジスタTbとして、デプレッション型のFETを採用する。図7は、デプレッション型FETのVgs(ゲート−ソース電圧)とIds(ドレイン−ソース電流)の関係を示す図である。尚、デプレッション型FETとは、ゲート酸化膜に不純物が注入されることによって、図7に示すように、ゲート−ソース間電圧Vgsが0のときであっても、ドレイン−ソース間に電流Idsが流れる特性を有するFETである。
さらに、図7の特性を示すデプレッション型FETの、ドレイン−ソース間電圧Vdsとドレイン−ソース間電流Idsとの関係を、一般的なFETと比較したものを図8に示す。同じVgs(ゲート−ソース電圧)が印加されているという条件下では、図8に示すように、デプレッション型FETは、一般的なFET(ノーマル:図中破線)と比較して、より多くの電流(Ids)を流すことができる。従って、Idsが一定電流Iaよりも小さくなる、VdsがVbよりも小さい範囲においても、一般的なFETよりも多くの電流が流れることになり、放電終盤における放電電流の低下が抑制される。
尚、上の説明では、放電側定電流源51にのみデプレッション型FETを用いたが、充電側定電流源50にもデプレッション型FETを用いて充電終盤の充電電流の低下を抑制することも可能である。しかし、複数の活性部41aで静電容量がばらついても圧電変形量が一定になるように、充電電荷量Qを一定に制御するという本来の発明思想からは、複数の活性部41aの全ての充電量Qnがそれぞれ最大電荷量Qmaxに設定されるという状況が発生することはほとんど考えられない。そこで、本実施形態では、充電電荷量Qを、全ての活性部41aにおいて最大電荷量Qmax未満となるように設定することで、充電電流の低下を抑制している。また、デプレッション型FETの製造には、ゲートに不純物を注入する特別な工程が必要なことからコストが高くなる。この点からも、充電側定電流源50の全てのトランジスタTbをデプレッション型FETにすることは、現実的ではないと言える。
次に、プリンタ1の制御系について、図9のブロック図を参照して説明しておく。制御装置8は、中央処理装置であるCPU(Central Processing Unit)60、ROM(Read Only Memory)61、RAM(Random Access Memory)62、及び、これらを接続するバス63からなるマイクロコンピュータを有する。また、バス63には、インクジェットヘッド3のドライバIC47、キャリッジ2を駆動するキャリッジ駆動モータ19、搬送機構4の給紙モータ14及び排紙モータ15等を制御する、ASIC(Application Specific Integrated Circuit)64が接続されている。また、このASIC64は、入出力インターフェイス(I/F)68を介して外部装置であるPC(パーソナルコンピュータ)69とデータ通信可能に接続されている。
また、ASIC54には、PC69から入力された印刷データに基づいてインクジェットヘッド3のドライバIC47とキャリッジ駆動モータ19をそれぞれ制御するヘッド制御回路71と、同じく前記印刷データに基づいて搬送機構4の給紙モータ14と排紙モータ15をそれぞれ制御する搬送制御回路72等が組み込まれている。
さらに、ヘッド制御回路71は記憶部73を備えており、この記憶部73には、ドライバIC47等の制御に用いる様々なデータが記憶されている。その中でも、記憶部73には、圧電アクチュエータ7の複数の活性部41aの静電容量Cnに関するデータが格納されている。尚、複数の活性部41aのそれぞれの静電容量Cnは、インクジェットヘッド3の出荷前検査等において測定され、その測定値が記憶部73に記憶される。
また、ヘッド制御回路71は充放電時間決定部74を備えている。この充放電時間決定部74は、記憶部73に記憶された複数の活性部41aの静電容量Cnのデータに基づいて、全てのノズル30について所定の液滴噴射速度が実現できるような、複数の活性部41aに共通の充電電荷量Qを設定し、さらに、この電荷量Qから充電時間T1及び放電時間T2を決定する。また、充放電時間決定部74は、ドライバIC47に対して、各活性部41aの充電時間T1及び放電時間T2に関する信号を送る。これらの信号に基づいて、前述したドライバIC47の充放電制御回路52は、各活性部41aの充電時間及び放電時間が、充放電時間決定部74で決定された時間T1、T2となるように、充電スイッチSW1及び放電スイッチSW2のON/OFF切り換えを制御する。
次に、前記実施形態に種々の変更を加えた変更形態について説明する。但し、前記実施形態と同様の構成を有するものについては同じ符号を付して適宜その説明を省略する。
1]前記実施形態では、放電側定電流源51のトランジスタTbとして、デプレッション型FETを採用しているが、この構成は必ずしも必要ではない。即ち、放電電流の低下による放電時間が延びる等の問題が生じるものの、コスト低減等の観点から、放電側定電流源51のトランジスタTbを、充電側定電流源50と同様に、デプレッション型ではない、図6の特性を有する一般的なFETを採用してもよい。
2]前記実施形態の圧電アクチュエータ7では、圧電層41の一方の面に複数の個別電極42(第1電極)、圧電層41の他方の面に共通電極としての振動板40(第2電極)が配置されており、これら2種類の電極42,40によって厚み方向に挟まれた圧電層部分が活性部41aとして作用するようになっている。しかし、本発明を適用可能な圧電アクチュエータは上記構成には限られない。
例えば、振動板が共通電極を兼ねている必要は必ずしもなく、共通電極が、複数の圧力室を覆う振動板とは別に、この振動板の上面に設けられてもよい。また、第2電極は、圧電層の面全体に形成される、いわゆる、ベタ電極である必要もなく、複数の第1電極とそれぞれ対向する位置に複数の第2電極が互いに分離して設けられてもよい。
あるいは、圧電層の1つの面に2種類の電極の両方が配置され、これら2種類の電極によって面方向に挟まれた圧電層部分が、活性部として作用するものであってもよい。
3]充電側定電流源、放電側定電流源、充電スイッチ、及び、放電スイッチの少なくとも1つ、あるいは、全部が、バイポーラトランジスタで構成されていてもよい。
以上説明した実施形態は、インクジェットヘッド用の圧電アクチュエータの駆動装置に本発明を適用した一例であるが、本発明の適用対象は液体を扱う装置に使用される圧電アクチュエータには限られない。例えば、活性部に生じる圧電歪みによって固形の駆動対象を振動させるような圧電アクチュエータの駆動装置に対しても、本発明を適用できる。
7 圧電アクチュエータ
40 振動板
41 圧電層
41a 活性部
42 個別電極
50 充電側定電流源
51 放電側定電流源
52 充放電制御回路
47 ドライバIC
SW1 充電スイッチ
SW2 放電スイッチ
Tb トランジスタ

Claims (5)

  1. 圧電層とこの圧電層に設けられた複数の第1電極及び複数の第2電極を有し、前記複数の第1電極と前記複数の第2電極とに挟まれた圧電層部分からなりコンデンサとして作用する複数の活性部を備えた、圧電アクチュエータを駆動する駆動装置であって、
    前記複数の活性部と接続された充電側定電流源と、
    同じく前記複数の活性部と接続された放電側定電流源と、
    前記充電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の充電スイッチと、
    前記放電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の放電スイッチと、
    前記複数の活性部の充放電される電荷量が全て等しくなるように、前記充電スイッチと前記放電スイッチの切り換えタイミングを決定し、各活性部の充電時間及び放電時間を制御する充放電制御回路とを備え、
    前記充放電制御回路は、
    各活性部に充電される電荷量が、その活性部が蓄えることのできる最大電荷量未満となるように、且つ、前記充電側定電流源の電位差が所定値以上である間に各活性部の充電を終了するように、前記充電時間を制御することを特徴とする圧電アクチュエータの駆動装置。
  2. 前記充放電制御回路は、前記複数の活性部の静電容量に基づいて、全ての活性部において、充電される電荷量が前記最大電荷量未満となるように、前記充電時間を制御することを特徴とする請求項1に記載の圧電アクチュエータの駆動装置。
  3. 前記放電側定電流源が、デプレッション型のFETで構成されていることを特徴とする請求項1又は2に記載の圧電アクチュエータの駆動装置。
  4. 複数のノズルを含む流路が形成された流路ユニットと、
    圧電層とこの圧電層に設けられた複数の第1電極及び複数の第2電極を有し、前記複数の第1電極と前記複数の第2電極とに挟まれた圧電層部分からなりコンデンサとして作用する複数の活性部を備え、前記複数の活性部によって前記複数のノズルからそれぞれ液体を吐出させる圧電アクチュエータと、
    前記複数の活性部と接続された充電側定電流源と、
    同じく前記複数の活性部と接続された放電側定電流源と、
    前記充電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の充電スイッチと、
    前記放電側定電流源と前記複数の活性部の接続/遮断をそれぞれ切り換える複数の放電スイッチと、
    前記複数の活性部の充放電される電荷量が全て等しくなるように、各活性部の充電時間及び放電時間を決定する充放電時間決定部と、
    前記充放電時間決定部で決定された前記充電時間及び前記放電時間に基づいて、前記充電スイッチと前記放電スイッチの切り換えタイミングを決定し、各活性部の充電及び放電を制御する充放電制御回路とを備え、
    前記充放電時間決定部は、
    各活性部に充電される電荷量が、その活性部が蓄えることのできる最大電荷量未満となるように、且つ、前記充電側定電流源の電位差が所定値以上である間に各活性部の充電を終了するように、前記充電時間を決定することを特徴とする液体吐出装置。
  5. 前記複数の活性部のそれぞれの静電容量データを記憶する記憶部をさらに備え、
    前記充放電時間決定部は、
    前記記憶部に記憶された複数の活性部の静電容量データに基づいて、全ての活性部において、充電される電荷量が前記最大電荷量未満となるように、前記充電時間を決定することを特徴とする請求項4に記載の液体吐出装置。
JP2009226068A 2009-09-30 2009-09-30 圧電アクチュエータの駆動装置、及び、液体吐出装置 Active JP5471245B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009226068A JP5471245B2 (ja) 2009-09-30 2009-09-30 圧電アクチュエータの駆動装置、及び、液体吐出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009226068A JP5471245B2 (ja) 2009-09-30 2009-09-30 圧電アクチュエータの駆動装置、及び、液体吐出装置

Publications (2)

Publication Number Publication Date
JP2011078190A JP2011078190A (ja) 2011-04-14
JP5471245B2 true JP5471245B2 (ja) 2014-04-16

Family

ID=44021584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009226068A Active JP5471245B2 (ja) 2009-09-30 2009-09-30 圧電アクチュエータの駆動装置、及び、液体吐出装置

Country Status (1)

Country Link
JP (1) JP5471245B2 (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3053149B2 (ja) * 1993-01-19 2000-06-19 アイシン精機株式会社 内燃機関の燃料噴射制御装置
JP2001150666A (ja) * 1999-11-24 2001-06-05 Matsushita Electric Ind Co Ltd インクジェットヘッドの駆動回路
JP3596599B2 (ja) * 2000-03-24 2004-12-02 セイコーエプソン株式会社 液滴噴射方法、及び液滴噴射装置
JP4229804B2 (ja) * 2003-10-24 2009-02-25 Necエレクトロニクス株式会社 半導体出力回路
JP2006165011A (ja) * 2004-12-02 2006-06-22 Toyota Gakuen 圧電素子駆動装置および圧電素子の駆動方法
JP4086085B2 (ja) * 2007-05-01 2008-05-14 セイコーエプソン株式会社 インクジェット記録装置

Also Published As

Publication number Publication date
JP2011078190A (ja) 2011-04-14

Similar Documents

Publication Publication Date Title
US7585058B2 (en) Ink-jet head
JP6232802B2 (ja) 圧電アクチュエータ、及び、液体吐出装置
US8506056B2 (en) Piezoelectric actuator and liquid transfer device
JP4924335B2 (ja) 液体移送装置及び圧電アクチュエータ
US8708460B2 (en) Piezoelectric actuator device and printer
US7841685B2 (en) Printing apparatus and driver IC having a dummy drive circuit
JP6464842B2 (ja) 液体吐出装置
JP2010263002A (ja) 圧電アクチュエータ装置、及び、圧電アクチュエータ装置を備えた液体移送装置
US7926901B2 (en) Inkjet recording apparatus
JP5471245B2 (ja) 圧電アクチュエータの駆動装置、及び、液体吐出装置
JP5251896B2 (ja) 圧電アクチュエータの駆動装置、及び、インクジェットプリンタ
JP6107507B2 (ja) 液体吐出装置及び短絡検出方法
JP5251818B2 (ja) 圧電アクチュエータの駆動装置
JP5206071B2 (ja) 圧電アクチュエータ及び液体移送装置
JP4687794B2 (ja) 記録装置
JP2011156666A (ja) アクチュエータの駆動装置
US11522119B2 (en) Piezoelectric actuator
JP2010233428A (ja) 圧電アクチュエータの駆動装置
JP5991069B2 (ja) 液滴吐出装置および特性変化検査方法
JP2023042965A (ja) 液体吐出ヘッド
CN114953741A (zh) 液体喷出头以及液体喷出装置
JP2012245715A (ja) 液体吐出装置
JP2012187855A (ja) 画像記録装置及びプログラム
JP2010155383A (ja) 圧電アクチュエータ装置及びそれを備えた液滴噴射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5471245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150