JP5449087B2 - 翼体 - Google Patents

翼体 Download PDF

Info

Publication number
JP5449087B2
JP5449087B2 JP2010180895A JP2010180895A JP5449087B2 JP 5449087 B2 JP5449087 B2 JP 5449087B2 JP 2010180895 A JP2010180895 A JP 2010180895A JP 2010180895 A JP2010180895 A JP 2010180895A JP 5449087 B2 JP5449087 B2 JP 5449087B2
Authority
JP
Japan
Prior art keywords
front edge
wing body
suction surface
notch step
rear edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010180895A
Other languages
English (en)
Other versions
JP2012041821A (ja
Inventor
勲 冨田
幹 惠比寿
浩 鈴木
義規 茂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010180895A priority Critical patent/JP5449087B2/ja
Publication of JP2012041821A publication Critical patent/JP2012041821A/ja
Application granted granted Critical
Publication of JP5449087B2 publication Critical patent/JP5449087B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本発明は、例えば、ガスタービン圧縮機や車両用冷却ファンなどの流体機械用や、航空機用等の翼体に関するものである。
一般に、流体機械や航空機に用いられる翼体は、翼表面が前縁部と後縁部とを基準として、流体から圧力を受ける正圧面と、正圧面に作用する圧力に対して相対的に負圧となる負圧面とに区分されている。例えば、ガスタービン圧縮機や車両用冷却ファンに用いられる翼体は、翼形状(前縁と後縁を結んだ翼弦に沿って、翼長方向に直交する断面)が弓型状に形成されており、正圧面に沿って流れる流体の圧力を上昇させると共に、負圧面に沿って流れる流体の圧力を相対的に負圧とし、これにより駆動力を発生させている。
このような翼体は、所定の風量、静圧、回転数等の設計動作点が定められて、翼形状が最適なものとなるようにされている。ところが、実際の使用においては、上記の設計動作点よりも高負荷で使用される場合があり、負圧面に沿って流れる流体が剥離して、騒音や翼性能の低下を招いてしまう。
下記特許文献1に記載の翼体は、翼前縁付近の平均表面粗さを、正圧面側及び負圧面側の平均表面粗さより粗く形成すると共に、その粗さを、流動流体に乱流遷移を起こさせる粗さに形成している。すなわち、この翼体は、負圧面に沿って流れる作動流体を強制的に乱流遷移させて、負圧面に生じる剥離を抑止しようとしている。
また、下記特許文献2の翼体では、背高が最も高くされた頂角が気流の上流端に設置され、後流側に向けて背面高さを直線的に減少させると共に、横幅を直線的に増大させた平面視が三角形にされたプラウ材を翼面に設けている。これにより、気流がプラウ材を乗り越える際に生じる縦渦によって、翼面に生じる流れの剥離を抑止できるとされている。
特開2000−104501号公報 特開2003−108144号公報
しかしながら、上記特許文献1の翼体は、翼前縁付近の平均表面粗さを調整して乱流遷 移を起こさせるものであるが、単に乱流遷移を起こさせるだけでは、剥離抑制効果が小さいという問題がある。特に、流体に粉塵が含まれる場合には、翼前縁表面の凹部に粉塵が堆積するために乱流遷移の効果が低下して、剥離抑制効果がさらに小さくなってしまうという問題がある。
また、上記特許文献2の翼体は、翼面にプラウ材を設けて縦渦を発生させるものであるが、このような突起物を気流の上端端に配置すると、剥離が生じ難い状態においては流動抵抗として機能してしまうという問題がある。また、剥離が生じ易い流れの状態においては、プラウ材よりも上流側で生じる剥離を抑制することができないという問題がある。
本発明は、上述した事情に鑑みてなされたものであって、負圧面における流れの剥離を、最小限の流動抵抗で効果的に抑制することができる翼体を提供するものである。
上記課題を解決するために、この発明は以下の手段を提案している。
本発明の翼体は、前縁部と後縁部とを接続し圧力が作用する正圧面と、該正圧面と対向して設けられ、前縁部から後縁部へと凸状に湾曲して形成され、正圧面に作用する圧力に対して相対的に負圧が作用する負圧面と、該負圧面側に、前記前縁部に沿って設けられ、前記正圧面側に窪んで前記負圧面との間に段差を形成するとともに、翼長方向の幅寸法が前縁部側の始端から後縁部側の終端に向かうに従って漸次小さくなるように形成され、底面、及び該底面と前記負圧面との間で前記段差を形成する側面を有する切欠段差部と、該切欠段差部よりも後縁部側で、前記負圧面の前縁部から後縁部へ向かう曲率が最大となる最大転向部または該最大転向部よりも前縁部側に突出して設けられた突起部とを備えることを特徴としている。
この構成によれば、前縁部に切欠段差部が設けられているので、負圧面側に流れた流体の一部は、まず切欠段差部に流入して、この切欠段差部から負圧面に乗り上げる。この負圧面に乗り上げた流体は、乗り上げる際に巻き込むようにして縦渦を形成し、この縦渦が負圧面に沿って下流側へと流れていく。すなわち、この縦渦が負圧面近傍に高エネルギ流体を誘引して負圧面近傍の境界層の発達を抑制するので、剥離抑制効果を大きくすることができる。また、前縁部に沿って切欠段差部を設けているので、負圧面の上流側で生じる剥離を効果的に抑制することができる。さらに、切欠段差部が正圧面側に窪んでいるので、負圧面に突起物を設けた場合と比較して、流動抵抗を小さくすることができる。その一方で、負圧面において、切欠段差部より下流側で、曲率が最大となる最大転向部または最大転向部より前縁側には、突起部が設けられ、該突起部により負圧面に沿う流れには縦渦が改めて形成される。このため、流れの向きが大きく変わることで比較的剥離が生じやすい最大転向部において、切欠段差部によって形成される縦渦が弱まってしまったとしても、突起部よって発生する縦渦によって剥離が生じてしまうことを効果的に抑制することができる。
また、上記の翼体において、前記切欠段差部の前記側面は、前記始端から前記終端へかけて凸面状に形成されていることを特徴としている。
この構成によれば、切欠段差部の段差を形成する面が始端から終端にかけて凸面状に形成されていることで、互いに対向する段差を形成する面同士の間隔で規定される切欠段差部の幅は、始端において大きく設定されているとともに、始端から中間部にかけて高い減少率で減少する。その一方、中間部から終端部へかけては、切欠段差部の幅は、小さな幅で比較的低い減少率で減少していく。従って、始端においては、負圧面側に流れる流体を効果的に切欠段差部に流入させるととともに、幅が高い減少率で減少することで切欠段差部に流入した流体を流出させて縦渦を発生させるようにさせ、さらに中間部から終端にかけては比較的に低い減少率で減少することで、中間部から終端にわたって全体でバランス良く流体を流出させて縦渦を形成することができる。
また、上記の翼体において、前記切欠段差部は、前縁部側から後縁部側に向かう方向視した断面積の変化率が、前縁部側の少なくとも途中から後縁部側へかけて一定となるように形成されていることを特徴としている。
この構成によれば、切欠段差部の断面積の変化率が前縁部側の少なくとも途中から後縁部側へかけて一定となっていることで、当該一定の変化率となる範囲全体において、一定流量で流体を流出させて均一な縦渦を形成して効果的に剥離を抑制することができる。
また、上記の翼体において、前記切欠段差部及び前記突起部は、翼長方向に互いに異なる位置となるように複数設けられていることを特徴としている。
この構成によれば、切欠段差部と突起部とが翼長方向に互いに異なる位置としていることで、切欠段差部で発生する縦渦と突起部で発生する縦渦とを互いに重ならないようにすることができ、翼長方向全体にわたってバランス良く縦渦を発生させて剥離を抑制することができる。
また、上記の翼体において、前記突起部は、前記負圧面の曲率が大きくなるのに応じて前記負圧面から突出する高さが高くなるようにして、前縁部側から後縁部側へ向かって複数設けられていることを特徴としている。
この構成によれば、突起部が前縁部から後縁部へ向かって複数設けられていることで、切欠段差部及び複数の突起部によって、前縁部から後縁部へ向かって段階的に縦渦を発生させることができる。また、前縁部から後縁部へ向かって負圧面の曲率に応じて突起部の突出する高さが高くなるようになっていることで、曲率の高い箇所ではより効果的に縦渦を発生させて剥離を抑制しつつ、曲率の比較的低く剥離が生じにくい箇所では流動抵抗を最小限に抑えることができる。
また、本発明の翼体は、前縁部と後縁部とを接続し圧力が作用する正圧面と、該正圧面と対向して設けられ、前縁部から後縁部へと凸状に湾曲して形成され、正圧面に作用する圧力に対して相対的に負圧が作用する負圧面と、前記負圧面側に、前記前縁部に沿って設けられ、前記正圧面側に窪んで前記負圧面との間に段差を形成するとともに、翼長方向の幅寸法が前縁部側から後縁部側に向かうに従って漸次小さくなるように形成され、底面、及び該底面と前記負圧面との間で前記段差を形成する側面を有する切欠段差部とを備え、該切欠段差部の前記側面は、前縁部側の始端から、後縁部側の終端へかけて凸面状に形成されていることを特徴としている。
この構成によれば、前縁部に切欠段差部が設けられているので、負圧面側に流れた流体の一部は、まず切欠段差部に流入して、この切欠段差部から負圧面に乗り上げる。この負圧面に乗り上げた流体は、乗り上げる際に巻き込むようにして縦渦を形成し、この縦渦が負圧面に沿って下流側へと流れていく。すなわち、この縦渦が負圧面近傍に高エネルギ流体を誘引して負圧面近傍の境界層の発達を抑制するので、剥離抑制効果を大きくすることができる。また、前縁部に沿って切欠段差部を設けているので、負圧面の上流側で生じる剥離を効果的に抑止することができる。さらに、切欠段差部が正圧面側に窪んでいるので、負圧面に突起物を設けた場合と比較して、流動抵抗を小さくすることができる。また、切欠段差部の段差を形成する面が始端から終端にかけて凸面状に形成されていることで、互いに対向する段差を形成する面同士の間隔で規定される切欠段差部の幅は、始端において大きく設定されているとともに、始端から中間部にかけて高い減少率で減少する。その一方、中間部から終端部へかけては、切欠段差部の幅は、小さな幅で比較的低い減少率で減少していく。従って、始端においては、負圧面側に流れる流体を効果的に切欠段差部に流入させるととともに、幅が高い減少率で減少することで切欠段差部に流入した流体を流出させるようにさせて縦渦を発生させるようにさせ、さらに中間部から終端にかけては比較的に低い減少率で減少することで、中間部から終端にわたってバランス良く流体を流出させて縦渦を形成することができる。
また、上記の翼体において、前記切欠段差部の前記側面は、前記負圧面と共に稜辺を形成する絶壁面とされていることを特徴としている。
この構成によれば、切欠段差部に流入した流体が絶壁面に衝突又は絶壁面に沿って流れ
て、負圧面に乗り上げる際に稜辺を巻き込むようにして強い縦渦を形成するので、境界層
の発達をさらに抑制し、剥離抑制効果をより大きくすることができる。
また、上記の翼体において、前記切欠段差部の底面は、前記始端から前記終端に進むに従って漸次浅くなり、前記終端が曲率をもって前記負圧面と滑らかに接続されていることを特徴としている。
この構成によれば、切欠段差部に流入した流体のうち終端まで流れたものが滑らかに負
圧面へと導かれるので、圧力損失の増大を抑制することができる。
また、上記の翼体において、前記切欠段差部は、前記前縁部に沿って複数設けられ、隣接する二つの前記切欠段差部の間には、前記負圧面の法線方向から見て前記負圧面が略三角形状に残存したデルタ部が形成されていることを特徴としている。
この構成によれば、切欠段差部が翼前縁に沿って複数連続的に設けられているので
、翼幅方向の広い範囲において縦渦を形成することができる。これにより、翼幅方向の広
い範囲において、剥離を抑制することができる。
本発明の翼体によれば、負圧面における流れの剥離を、最小限の流動抵抗で効果的に抑制することができる。
本発明の第1の実施形態のガスタービンの概要図である。 本発明の第1の実施形態のガスタービンの圧縮機において、圧縮機動翼の詳細を示す斜視図である。 本発明の第1の実施形態の圧縮機動翼において、翼長方向に直交する断面図である。 本発明の第1の実施形態の圧縮機動翼において、前縁部及び負圧面の詳細を示す部分斜視図である。 図4の切断線II−IIにおける断面図である。 図4のIII矢視した平面図である。 本発明の第1の実施形態の圧縮機動翼において負圧面の形状を表すグラフであって、(a)負圧面上の翼弦に沿う位置と、翼弦と負圧面の接線とがなす角との関係を表すグラフ、(b)負圧面上の翼弦に沿う位置と、翼弦と負圧面の接線とがなす角の変化率との関係を表すグラフである。 本発明の第1の実施形態の圧縮機動翼の作用説明図であって、低負荷運転時の状態を示す断面図である。 本発明の第1の実施形態の圧縮機動翼の作用説明図であって、低負荷運転時の状態を示す部分斜視図である。 本発明の第1の実施形態の圧縮機動翼の作用説明図であって、高負荷運転時の状態を示す断面図である。 本発明の第1の実施形態の変形例の圧縮機動翼において、前縁部及び負圧面の詳細を示す部分斜視図である。 本発明の第2の実施形態の圧縮機動翼の前縁部及び負圧面の詳細を示す部分平面図である。 本発明の第2の実施形態の圧縮機動翼の前縁部の詳細を示す部分断面図である。 本発明の第2の実施形態の圧縮機動翼において切欠段差部の形状を表すグラフであって、(a)始端からの位置と切欠段差部の幅との関係を表すグラフ、(b)始端からの位置と切欠段差部の深さとの関係を表すグラフ、(c)始端からの位置と切欠段差部の断面積との関係を表すグラフ、(d)始端からの位置と切欠段差部の断面積の変化率との関係を表すグラフである。 本発明の第3の実施形態の圧縮機動翼の詳細を示す斜視図である。 本発明の第4の実施形態の圧縮機動翼において、翼長方向に直交する断面図である。 本発明の翼体を適用した他の実施形態としてプロペラファンを示す正面図である。 図17に示すプロペラファンの翼体の詳細を示す斜視図である。
(第1の実施形態)
以下、本発明に係る第1の実施形態について図面を参照して説明する。
図1は、本発明の翼体を適用した一例として、ガスタービンを示している。
図1に示すように、ガスタービン1は、ロータ2と、圧縮空気を生成する圧縮機3と、圧縮機3から供給される圧縮空気に燃料を供給して燃焼ガスGを生成する燃焼器4と、燃焼器4から供給される燃焼ガスGにより回転駆動するタービン5とを備える。圧縮機3は、ロータ2の外周に配された圧縮機ケーシング3aと、ロータ2に固定されて環状に配列された複数の圧縮機動翼3bと、圧縮機ケーシング3aに支持されて環状に配列された複数の圧縮機静翼3cとを備え、圧縮機動翼3b及び圧縮機静翼3cは、タービン軸方向Rに複数段交互に配されている。また、タービン5は、ロータ2の外周に配されて内部を燃焼ガス流路Fとするタービンケーシング5aと、ロータ2に固定され環状に配列された複数のタービン動翼5bと、タービンケーシング5aに支持されて環状に配列された複数のタービン静翼5cとを備え、タービン動翼5b及びタービン静翼5cは、タービン軸方向Rに複数段交互に配されている。そして、第1の実施形態では、圧縮機動翼3bに、本発明の一態様を示す翼体が適用されている。以下に詳細を示す。
図2に示すように、圧縮機動翼3bは、断面が翼型をなす翼本体10と、翼本体10の基端から張り出すように設けられたプラットフォーム11と、プラットフォーム11から基端側へ突出した翼根12とを備える。翼根12は、ロータ2に形成された図示しない翼溝と対応する形状のセレーション12aが形成されており、該翼根12を図示しない翼溝に嵌合させることで、圧縮機動翼3bは翼本体10の翼長方向Yがロータ2の径方向となるようにしてロータ2に固定される。
翼本体10は、圧縮空気の気流の流れ方向上流側の前縁部13と、流れ方向下流側の後縁部14と、前縁部13と後縁部14とを接続し圧力が作用する正圧面15と、正圧面15と対向して設けられて正圧面15に作用する圧力に対して相対的に負圧が作用する負圧面16とを備える。図3に示すように、本実施形態では、翼本体10は、翼長方向Yに直交する断面において、正圧面15が凸状の曲面をなし、負圧面16が凹状の曲面をなし、前縁部13側から後縁部14側へかけて次第に幅寸法が小さくなるようにして全体として弓形に形成されている。また、前縁部13及び後縁部14の表面は、正圧面15及び負圧面16を滑らかに接続するように、翼長方向Yに直交する断面において略円弧状となる曲面に形成されている。なお、このような圧縮機動翼3bは、所定の風量、静圧、回転数等の設計動作点が定められて、翼型が最適なものとなるように設計されている。
また、図2及び図3に示すように、翼本体10は、負圧面16側に前縁部13に沿って設けられ、正圧面15側に窪んで負圧面16との間に段差を形成する切欠段差部20と、切欠段差部20よりも後縁部14側に設けられた突起部21とを備える。負圧面16には、前縁部13に沿って複数の切欠段差部20が連続的に形成されており、隣接する切欠段差部20の間には、デルタ部22が形成されている。
図4は、切欠段差部20及び突起部21の拡大斜視図であり、図5は、図4におけるII−II線断面図であり、図6は、図4におけるIII矢視図である。
図6に示すように、切欠段差部20は、負圧面16の法線方向から見て二等辺三角形状となっており、後縁部14側の終端20bを後縁部14側に頂点を向け、前縁部13側の始端20aを底辺とするように形成されている。すなわち、この切欠段差部20は、翼長方向Yの幅寸法Pが、前縁部13側の始端20aから後縁部14側の終端20bに進むに従って漸次小さくなっている。
図3に示すように、この切欠段差部20は、翼弦長をL(前縁部13と後縁部14とを結んだ直線の長さ)、切欠長をD(始端20aと終端20bとを結んだ直線の長さ)とすると、本実施形態ではD/L=0.05となるように形成されている。
図5に示すように、この切欠段差部20は、底面20cと、この底面20cと負圧面16との間で段差を形成する側面20d、20eとを備えている。底面20cは、始端20aで前縁部13の表面13aに接続されているとともに、終端20bで負圧面16に接続されている。また、側面20d、20eは、絶壁面として負圧面16と共に稜辺(角張った辺)23を形成しており、また、底面20cと共にθ=90°となる角隅部24を形成している。
図6に示すように、デルタ部22は、負圧面16の法線方向から見て、負圧面16が二等辺三角形状に残存した部位であり、切欠段差部16の形状及び配置関係から、前縁部13側に頂点を向け、後縁部14側に底辺を向けている。
図6に示すように本実施形態では、デルタ部22は、頂点におけるなす角である頂角αが60°となるように設定されている。
また、図5に示すように、切欠段差部20の深さ、すなわち底面20cからデルタ部22の負圧面16までの高さ(より厳密には、翼型において底面20cと負圧面16とに接する内接円の直径)をHとし、隣接する切欠段差部20の終端20b間の寸法をWとすると、本実施形態ではHmax/Wを0.3としている。
また、図3及び図4に示すように、突起部21は、例えば三角錘状に形成されており、負圧面16に接続される底面を構成する三角形の一頂点21aを前縁部13側へ向けるようにして配置されている。また、突起部21において、前縁部13側へ向けた当該頂点21aと、底面と対向し負圧面16から突出した頂点21bとを結ぶ稜線21cの負圧面16に対する傾斜に対して、当該稜線21cと対向する後縁部14側を向く側面21dの負圧面16に対する傾斜がなだらかな角度となるように設定されている。図7は、負圧面形状の一例を表すものであり、(a)が翼長方向に直交する断面において、負圧面上における翼弦方向の位置と、負圧面の接線の翼弦に対する角度φとの関係を示すグラフであり、(b)が負圧面上における翼弦方向の位置と、角度φの変化率、すなわち負圧面の曲率との関係を示すグラフである。なお、負圧面上における翼弦方向の位置は、負圧面の前縁部との接続部を0とし、当該接続部からの距離Nによって表している。図7(a)に示すように、本例では、前縁部側で翼弦に対して一定の角度を有し、後縁部側に向かうに従って角度が大きく変化して次第に翼弦と平行、すなわちなす角度φが0に近づき、その後翼弦とのなす角度が負の値となることで、全体として凸状の曲面を形成している。また、図7(b)に示すように、負圧面の曲率は、前縁部から中間部にかけて次第に高くなり、ある位置で曲率が最大となる最大転向部となり、その後、後縁部14に向かうに従って曲率が小さくなっている。そして、図3に示すように、突起部21は、翼長方向Yに直交する断面において、この負圧面16の前縁部13から後縁部14へ向かう曲率が最大となる最大転向部Mに設けられている。さらに、本実施形態において、突起部21は、切欠段差部20と翼長方向Yの位置が異なるようにして、すなわち、切欠段差部20同士の間に形成されたデルタ部22と翼長方向Yの位置が一致するようにして配置されている。
次に、上記の構成からなる翼体10の作用について説明する。
まず、図1に示すように、ロータ27が回転駆動して、圧縮機3において圧縮機動翼3bが回転することで、吸気された空気は圧縮機動翼3bにより圧縮され、圧縮空気となって燃焼器4に供給される。この際、圧縮機動翼3bによって圧縮される空気は、前縁部13において正圧面15に沿った気流と負圧面16に沿った気流とに分かれて後縁部14側へと流れ、該後縁部14から、その後方の圧縮機静翼3c間へと流入する。
正圧面15に沿った気流は、正圧面15に沿って流れる過程で、徐々に圧力が高められて後縁部14から排出される。一方、負圧面16に沿った気流は、その一部が切欠段差部20によって縦渦T1となって、負圧面16に沿って後方に流れていく。さらに、負圧面16に沿って後方に流れる気流は、その一部が突起部21に衝突して縦渦T2となって負圧面16に沿って後縁部14側まで流れていく。以下、気流に対する切欠段差部20及び突起部21の作用の詳細を説明する。
まず、切欠段差部20における縦渦形成の作用について説明する。
図8及び図9に示すように、前縁部13から負圧面16に沿って流れた気流の大部分が複数に分かれて各切欠段差部20に流入する。そして、この切欠段差部20に流入した気流が側面20d、20eに衝突又は側面20d、20eに沿って流れ、このうちの一部が近接する負圧面16に乗り上げる。この際、負圧面16に乗り上げた気流は、図8に示すように、稜辺23を巻き込むようにして強い縦渦T1を形成する。そして、図9に示すように、各稜辺23において、始端20a側から終端20b側に進むに従って徐々に縦渦T1が大きく、強いものとなっていく。換言すれば、縦渦T1の中心が稜辺23に沿って翼長方向Yに移動しながら縦渦T1が大きくなり、終端20bに達すると縦渦T1が下流に向けて流れていく。このようにして形成された縦渦T1は、負圧面16の下流側まで良好に維持される。
圧縮機3の所定の設計動作点を下回る運転時(低負荷運転時)においては、図8に示すように、前縁部13に対する気流の流入角度は想定内のものとなり、負圧面16においても流れの剥離が生じ難い。このような状態であっても、切欠段差部20は、縦渦T1を形成するが、正圧面15側に窪んでいるために、気流に対する流動抵抗としては小さなものとなる。
圧縮機3の所定の設計動作点を上回る運転時(高負荷運転時)においては、図10に示すように、前縁部13に対する気流の流入角度が想定外のものとなって、負圧面16の上流側で流れの剥離が生じ易くなる。このような状態であっても、切欠段差部20によって形成された縦渦T1が、負圧面16の上流側において高エネルギ流体を誘引する。すなわち、この高エネルギ流体が負圧面16近傍に誘引されることにより、低エネルギとなる境界層の発達が抑制され、剥離の発生を阻害する。
一方、突起部21では、前縁部13側の稜線21cで翼長方向Yに分岐した気流は、稜線21cを形成する両側面に沿って流れ、これら側面と後縁部14側に面する側面21dとの間に形成する稜線を乗り越え、この時に強い縦渦T2を形成する。ここで、突起部21は、負圧面16において曲率が最大となる最大転向部Mに設けられている。このため、切欠段差部20によって形成された縦渦T1が弱まってしまったとしても、あらためて突起部21によって縦渦T2が形成されることにより、負圧面16に沿う気流が曲率が大きくなる最大転向部M及びその近傍において剥離してしまうことを効果的に抑制することができる。
以上のように、本実施形態の圧縮機動翼3bでは、切欠段差部20によって流動抵抗が増大を抑えつつ、前縁部13において縦渦T1を発生させて前縁部13から下流側での剥離を効果的に抑制するとともに、負圧面16上において縦渦T2を発生させて剥離を抑制し得る突起部21を、最も剥離が生じやすい最大転向部Mに配置することで、流動抵抗を最小限に抑えつつ効果的に剥離を抑制することができる。このような圧縮機動翼3bが複数設けられた圧縮機3では、高負荷運転時においても、剥離に起因する振動などが発生してしまうことなく、安定的に作動して空気を圧縮し、燃焼器4に供給することができる。
また、本実施形態では、切欠段差部20において側面20d、20eが負圧面16と稜辺23を形成しているので、気流が側面20d、20eに衝突又は側面20d、20eに沿って流れて負圧面16に乗り上げる際に、稜辺23を巻き込むようにして強い縦渦T1を形成する。これにより、境界層の発達をさらに抑制し、剥離抑制効果をより大きくすることができる。
また、切欠段差部20が前縁部13に沿って複数連続的に設けられているので、翼長方向Yの広い範囲において縦渦T1を形成することができる。これにより、翼長方向Yの広い範囲において、気流の剥離を抑制することができる。また、切欠段差部20と突起部21とが翼長方向Yに互いに異なる位置としていることで、切欠段差部20で発生する縦渦T1と突起部21で発生する縦渦T2とを互いに重ならないようにすることができ、翼長方向Y全体にわたってバランス良く縦渦を発生させて剥離を抑制することができる。
なお、上述した構成では、切欠段差部20において、D/Lの値を0.05としたが、この値に限られることはなく、他の値を設定することができる。但し、D/L<0.1の条件で設定するのが望ましい。同様に、Hmax/Wの値を0.3としたが、この値に限られることなく、他の値に設定することができる。但し、0.2≦Hmax/W≦0.5の範囲で設定するのが望ましい。
また、上述した構成では、角隅部24の角度を底面20cに対して垂直(θ=90°)としたが、他の角度となるように形成してもよい。この際、θ=90〜120°となるように形成すると縦渦T1が良好に形成される。また、上述した構成では、稜辺23を形成したが、稜辺23を設けずに面取りをしてもよい。また、上述した構成では、デルタ部22の頂角αを60°としたが、他の角度としてもよい。この際、50°≦α≦70°となるようにすると縦渦T1が良好に形成される。
また、上記実施形態では、切欠段差部20の底面20cの形状は、三角形状として、終端20bで幅Pがゼロとなるように形成されるものとしたが、これに限るものではない。図11に示すように、終端20bでも一定の幅を有していて全体として台形状に形成されるものとしても良い。このようにすることで、互いに対向する側面のそれぞれを乗り越えて形成される縦渦T1同士の離間距離を保つことができ、縦渦同士が干渉し合うことがない。すなわち、高密度の縦渦T1が翼長方向Yの広い範囲に亘って形成されて、負圧面16近傍に高エネルギ流体を誘引し、境界層の発達をさらに抑制する。これにより、流体の剥離抑制効果をより大きくすることができる。また、終端20bにおいて底面20cが曲率をもって負圧面16と滑らかに接続するようにするものとしても良い。このようにすることで、切欠段差部20に流入した気流のうち終端20bまで流れたものが滑らかに負圧面16へと導かれるので、圧力損失の増大を抑制することができる。
また、本実施形態では、突起部21が、三角錐状として、前縁部13側に稜線21cを有し、当該稜線21cと対向して後縁部14側に傾斜面21dを有する構成としたが、これに限るものではなく、前後逆向きとなるようにしても良い。この場合には、前縁部13側からの気流が傾斜面21dを乗り越えた際に縦渦T2が形成されることとなる。さらに突起部21の形状は、三角錐状に限るものではなく、少なくとも、負圧面16から離間する方向に気流を案内するような突起形状であれば、案内された気流が当該突起部21を乗り越えた際に縦渦T2を形成することができる。また、突起部21を設ける位置は最大転向部Mとしたが、これに限るものではなく、最大転向部Mよりも前縁部13側としても、当該突起部21よって形成された縦渦T2が最大転向部M上を流れるようにすることで、最大転向部M近傍における剥離を効果的に抑制することができる。
また、本実施形態では、突起部21は、翼長方向Yに一列に配置されているが、これに限ることはない。例えば最大転向部Mに配置するとしても、断面形状が翼長方向Yに変化する場合には、前縁部13から後縁部14に向かって曲率が最大となる最大転向部Mの位置も翼長方向Yに直交する各断面で異なることなり、これに応じて突起部21の配列も翼長方向Yと平行とならない配列となり得る。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。図12から図14は、本発明の第2の実施形態を示したものである。なお、この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
第2の実施形態では、切欠段差部の形状に特徴を有する。図12及び図13に示すように、本実施形態の切欠段差部30は、段差を形成する側面30d、30eが前縁部13側の始端30aから、後縁部14側の終端30bへかけて凸面状に湾曲した曲面に形成されている。このため、図14(a)に示すように、互いに対向する側面30d、30e同士の間隔で規定される切欠段差部30の幅Pは、始端20aにおいて大きく設定されているとともに、始端30aから中間部にかけて高い減少率で減少する。その一方、中間部から終端30b部へかけては、切欠段差部30の幅Pは、小さな幅で比較的低い減少率で減少していく。なお、図14において、横軸Qは、切欠段差部20における位置を、始端20aを基点として終端20bへ向かう直線距離で表したものである。また、図13に示すように、切欠段差部30の底面30cは、始端30aにおいて翼本体10の断面中心線L10に略平行であるとともに、次第に負圧面16に向かうように凹面状に湾曲している。このため、図14(b)に示すように、前縁部13の表面13a及び負圧面16と、底面20cによって規定される深さHは、始端20a側では前縁部13の表面13aの形状により高い増加率で急激に増加するとともに、中間部において前縁部13の表面13aから負圧面16に連続する面が断面中心線L10に沿うようになる。その一方、中間部から終端20bにかけては、底面20cが負圧面16に向かうように断面中心線L10となす角が大きくなることで、深さHの変化は増加から減少に転じ、終端30b付近では減少率が高くなって深さHが急激に小さくなるように形成されている。そして、図14(c)、(d)に示すように、幅Pと深さHの積によって求められる切欠段差部30の前縁部13側から後縁部14側に向かう方向視した断面積Aは、その変化率dA/dQが中間部から終端30bにかけて略一定の変化率で減少するように設定されている。
本実施形態では、切欠段差部30の段差を形成する側面30d、30eが始端30aから終端30bにかけて凸面状に形成されていることで、互いに対向する段差を形成する側面30d、30e同士の間隔で規定される切欠段差部30の幅Pは、上記のとおりに変化する。このため、始端30aにおいては、負圧面16側に流れる気流を効果的に切欠段差部30に流入させるととともに、幅Pが高い減少率で減少することで切欠段差部30に流入した気流を流出させて縦渦T1を発生させるようにさせる。さらに中間部から終端30bにかけては幅Pが比較的に低い減少率で減少することで、中間部から終端30bにわたって全体でバランス良く気流を流出させて縦渦T1を形成することができる。さらに、本実施形態では、上記のように側面30d、30eが凸面状の曲面に形成され、側面30d、30eによって規定される幅Pと、底面30cが前縁部13の表面13a及び負圧面16とで規定される深さHとの関係から、断面積Aが中間部から終端30bにかけて一定となっていることで、当該一定の変化率となる範囲全体において、一定流量で気流を流出させて均一な縦渦T1を形成することで、効果的に剥離を抑制することができる。
(第3の実施形態)
次に、本発明の第3の実施形態について説明する。図15及び図16は、本発明の第3の実施形態を示したものである。なお、この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。
図15及び図16に示すように、この実施形態の圧縮機動翼40は、突起部21を前縁部13側から後縁部14側へ向かって複数備えている。より具体的には、本実施形態では、前縁部13側から後縁部14側へ向かって2箇所に突起部21(21A、21B)が設けられている。ここで、突起部21A、21Bの負圧面16から突出する高さは、負圧面16の曲率が大きくなるのに応じて高く設定されており、最大転向部Mに相対的に近い後縁部14側の突起部21Bの方が高く設定されている。
本実施形態の圧縮機動翼40では、突起部21(21A、21B)が前縁部13から後縁部14へ向かって複数設けられていることで、切欠段差部30及び複数の突起部21(21A、21B)によって、前縁部13から後縁部14へ向かって段階的に縦渦T1、T2を発生させて、より効果的に剥離を抑制することができる。また、前縁部13から後縁部14へ向かって負圧面16の曲率に応じて突起部21(21A、21B)の突出する高さが高くなるようになっていることで、曲率の高い箇所ではより効果的に縦渦T2を発生させて剥離を抑制しつつ、曲率の比較的低く剥離が生じにくい箇所では流動抵抗を最小限に抑えることができる。
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
なお、上記各実施形態では、圧縮機動翼3b、40が、切欠段差部20、30や突起部21を備えるものとしたが、これに限るものではなく、圧縮機静翼3cに備えるようにしても、同様の効果を奏する。また、タービン動翼5bやタービン静翼5bに適用するものとしてもよい。さらには、切欠段差部20、30や突起部21を備えた翼体としては、ガスタービン1における圧縮機動翼3b、圧縮機静翼3c、タービン動翼5b及びタービン静翼5cに限るものではなく、様々な翼体に適用可能である。例えば、図17及び図18に示すように、車両用冷却ファンとして用いられるプロペラファン50の回転翼車51において、プロペラ52の前縁部52aに沿って切欠段差部53を設け、また、プロペラ52の負圧面54において最大転向部Mまたは最大転向部Mよりも前縁部52a側に突起部55を設けるようにしても良い。この場合にも、上記同様の効果を奏する。また、ガスタービン1やプロペラファン50などの回転機械に組み込まれる翼体に限らず、航空機に用いられる翼体、例えば飛行機の主翼などに適用可能である。また、上記各実施形態では、翼体である圧縮機動翼3b、40は、正圧面で凹状の曲面をなし、負圧面で凸状の曲面をなし、全体として弓形をなしているものとしたが、これに限ることなく、適用される用途に応じて様々な形状となり得る。例えば、負圧面のみならず正圧面も凸状の曲面である翼体や、全体としてS字状に形成された翼体にも適用し得る。
3b、40 圧縮機動翼(翼体)
13 前縁部
14 後縁部
15 正圧面
16 負圧面
20、30 切欠段差部
20a、30a 始端
20b、30b 終端
21 突起部
22 デルタ部
M 最大転向部
Y 翼長方向

Claims (10)

  1. 前縁部と後縁部とを接続し圧力が作用する正圧面と、
    該正圧面と対向して設けられ、前縁部から後縁部へと凸状に湾曲して形成され、正圧面に作用する圧力に対して相対的に負圧が作用する負圧面と、
    該負圧面側に、前記前縁部に沿って設けられ、前記正圧面側に窪んで前記負圧面との間に段差を形成するとともに、翼長方向の幅寸法が前縁部側の始端から後縁部側の終端に向かうに従って漸次小さくなるように形成され、底面、及び該底面と前記負圧面との間で前記段差を形成する側面を有する切欠段差部と、
    該切欠段差部よりも後縁部側で、前記負圧面の前縁部から後縁部へ向かう曲率が最大となる最大転向部または該最大転向部よりも前縁部側に突出して設けられた突起部とを備えることを特徴とする翼体。
  2. 請求項1に記載の翼体において、
    前記切欠段差部の前記側面は、前記始端から前記終端へかけて凸面状に形成されていることを特徴とする翼体。
  3. 請求項2に記載の翼体において、
    前記切欠段差部は、前縁部側から後縁部側に向かう方向視した断面積の変化率が、前縁部側の少なくとも途中から後縁部側へかけて一定となるように形成されていることを特徴とする翼体。
  4. 請求項1から請求項3のいずれか一項に記載の翼体において、
    前記切欠段差部及び前記突起部は、翼長方向に互いに異なる位置となるように複数設けられていることを特徴とする翼体。
  5. 請求項1から請求項4のいずれか一項に記載の翼体において、
    前記突起部は、前記負圧面の曲率が大きくなるのに応じて前記負圧面から突出する高さが高くなるようにして、前縁部側から後縁部側へ向かって複数設けられていることを特徴とする翼体。
  6. 前縁部と後縁部とを接続し圧力が作用する正圧面と、
    該正圧面と対向して設けられ、前縁部から後縁部へと凸状に湾曲して形成され、正圧面に作用する圧力に対して相対的に負圧が作用する負圧面と、
    前記負圧面側に、前記前縁部に沿って設けられ、前記正圧面側に窪んで前記負圧面との間に段差を形成するとともに、翼長方向の幅寸法が前縁部側から後縁部側に向かうに従って漸次小さくなるように形成され、底面、及び該底面と前記負圧面との間で前記段差を形成する側面を有する切欠段差部とを備え、
    該切欠段差部の前記側面は、前縁部側の始端から、後縁部側の終端へかけて凸面状に形成されていることを特徴とする翼体。
  7. 請求項1から請求項6のいずれか一項に記載の翼体において、
    前記切欠段差部の前記側面は、前記負圧面と共に稜辺を形成する絶壁面とされていることを特徴とする翼体。
  8. 請求項1から請求項7のいずれか一項に記載の翼体において、
    前記切欠段差部の底面は、前記始端から前記終端に進むに従って漸次浅くなり、前記終端が曲率をもって前記負圧面と滑らかに接続されていることを特徴とする翼体。
  9. 請求項1から請求項8のいずれか一項に記載の翼体において、
    前記切欠段差部は、前記前縁部に沿って複数設けられ、
    隣接する二つの前記切欠段差部の間には、前記負圧面の法線方向から見て前記負圧面が略三角形状に残存したデルタ部が形成されていることを特徴とする翼体。
  10. 請求項9に記載の翼体において、
    前記切欠段差部は、前記終端の翼長方向の幅寸法が、隣接する前記切欠段差部同士の終端との間隔以上となる大きさに設定されていることを特徴とする翼体。
JP2010180895A 2010-08-12 2010-08-12 翼体 Expired - Fee Related JP5449087B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180895A JP5449087B2 (ja) 2010-08-12 2010-08-12 翼体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180895A JP5449087B2 (ja) 2010-08-12 2010-08-12 翼体

Publications (2)

Publication Number Publication Date
JP2012041821A JP2012041821A (ja) 2012-03-01
JP5449087B2 true JP5449087B2 (ja) 2014-03-19

Family

ID=45898422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180895A Expired - Fee Related JP5449087B2 (ja) 2010-08-12 2010-08-12 翼体

Country Status (1)

Country Link
JP (1) JP5449087B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477430A (zh) * 2016-12-26 2019-03-15 三菱重工业株式会社 涡轮及燃气轮机

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9488055B2 (en) * 2012-06-08 2016-11-08 General Electric Company Turbine engine and aerodynamic element of turbine engine
KR101392610B1 (ko) 2012-08-07 2014-05-08 엘지전자 주식회사
KR101466261B1 (ko) * 2013-02-27 2014-11-28 삼성중공업 주식회사 축류팬의 소음 방지 구조
JP6719933B2 (ja) 2016-03-16 2020-07-08 三菱重工業株式会社 ジェットエンジン、飛しょう体、および、ジェットエンジンの動作方法
JP6820735B2 (ja) * 2016-12-26 2021-01-27 三菱重工業株式会社 タービン及びガスタービン
WO2018179075A1 (ja) * 2017-03-28 2018-10-04 三菱電機株式会社 プロペラファン
CN108180169A (zh) * 2018-02-09 2018-06-19 广东美的厨房电器制造有限公司 风扇和微波炉
CN215860972U (zh) * 2021-08-07 2022-02-18 广东美的暖通设备有限公司 轴流风轮、空调室外机及空调器
WO2023242950A1 (ja) * 2022-06-14 2023-12-21 三菱電機株式会社 プロペラファンおよび軸流送風機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160400U (ja) * 1987-04-09 1988-10-20
JP2006002691A (ja) * 2004-06-18 2006-01-05 Calsonic Kansei Corp 送風機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109477430A (zh) * 2016-12-26 2019-03-15 三菱重工业株式会社 涡轮及燃气轮机
CN109477430B (zh) * 2016-12-26 2021-06-22 三菱重工业株式会社 涡轮及燃气轮机

Also Published As

Publication number Publication date
JP2012041821A (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5449087B2 (ja) 翼体
JP5433793B2 (ja) 遷音速翼
JP3621216B2 (ja) タービンノズル
JP6060145B2 (ja) 高キャンバ圧縮機ロータブレード
JP4640339B2 (ja) 軸流機械の壁形状及びガスタービンエンジン
JP4889123B2 (ja) ターボ機械用可動ブレード
JP5301148B2 (ja) ガスタービンエンジンのタービン組立体及びその製造方法
US20080044273A1 (en) Turbomachine with reduced leakage penalties in pressure change and efficiency
JP4664890B2 (ja) 遷音速翼及び軸流回転機
US6837679B2 (en) Gas turbine engine
JP5562566B2 (ja) 流体機械用翼体
US6638021B2 (en) Turbine blade airfoil, turbine blade and turbine blade cascade for axial-flow turbine
US9377029B2 (en) Blade of a turbomachine
KR20170120202A (ko) 터보머신들의 인접한 블레이드 요소들의 흐름장들의 결합을 가하는 구조들 및 방법들, 그리고 그들을 포함하는 터보머신들
JP6017033B2 (ja) 半径流入式軸流タービン及びターボチャージャ
EP1260674B1 (en) Turbine blade and turbine
WO2008075467A1 (ja) 軸流圧縮機の翼列
KR100587571B1 (ko) 터빈날개
CN110939603A (zh) 叶片及使用其的轴流叶轮
JP2003227302A (ja) 伴流混合促進翼
JP6606613B2 (ja) ターボチャージャ及びターボチャージャのノズルベーン並びにタービン
CN109312658B (zh) 可变容量型涡轮增压器
JP4402503B2 (ja) 風力機械のディフューザおよびディフューザ
JP6605147B2 (ja) ターボチャージャ及びターボチャージャのノズルベーン並びにタービン
JP2017015080A (ja) 二次流の制御及び最適ディフューザ性能のための膨出ノズル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R151 Written notification of patent or utility model registration

Ref document number: 5449087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees