JP5445252B2 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
JP5445252B2
JP5445252B2 JP2010059964A JP2010059964A JP5445252B2 JP 5445252 B2 JP5445252 B2 JP 5445252B2 JP 2010059964 A JP2010059964 A JP 2010059964A JP 2010059964 A JP2010059964 A JP 2010059964A JP 5445252 B2 JP5445252 B2 JP 5445252B2
Authority
JP
Japan
Prior art keywords
gas
mounting table
film forming
forming apparatus
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010059964A
Other languages
English (en)
Other versions
JP2011190519A (ja
Inventor
薫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2010059964A priority Critical patent/JP5445252B2/ja
Priority to KR1020110021519A priority patent/KR101263565B1/ko
Priority to US13/045,755 priority patent/US20110226181A1/en
Priority to TW100108621A priority patent/TW201202470A/zh
Publication of JP2011190519A publication Critical patent/JP2011190519A/ja
Application granted granted Critical
Publication of JP5445252B2 publication Critical patent/JP5445252B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76873Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroplating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、半導体ウエハ等の被処理体に原料ガスを用いて薄膜を形成する成膜装置に関する。
今日の半導体集積回路装置では、微細化とともに、層間絶縁膜中に形成されるCuビアプラグの径が65nmから45nmへ縮小されてきており、近い将来、ビアプラグ径はさらに32nmあるいは22nmへ縮小されるもの予測される。
このような半導体集積回路装置の微細化に伴って、微細なビアホールあるいは配線溝においては、バリアメタル膜あるいはCuシード層の成膜が、従来のPVD法では、ステップカバレッジの観点から困難となっており、low−K材料よりなる層間絶縁膜にダメージを与えないような低温で、且つ優れたステップカバレッジを実現できるMOCVD法あるいはALD法による成膜技術が研究されている。
ところで、MOCVD法やALD法は、一般に金属原子が有機基と結合した有機金属化合物を原料として使うため、形成された膜中に不純物が残留しやすく、このため一見すると良好なステップカバレッジで形成された膜でも膜質が不安定で、たとえばTaバリアメタル膜上にMOCVD法によりCuシード層を形成した場合、形成されたCuシード層は凝集を生じやすく、Taバリア膜を安定して一様な膜厚で覆うCuシード層の成膜は困難であった。このような凝集を生じたシード層を電極としてCu層の電解メッキを行うと、配線溝あるいはビアホールを充填するCu層中に潜在的な欠陥が含まれ、電気抵抗の増加のみならず、エレクトロンマイグレーション耐性やストレスマイグレーション耐性の劣化などの問題を引き起こす。
そこで近年、金属カルボニル原料を使った金属膜のMOCVD技術によりバリアメタル膜あるいはCuシード層を層間絶縁膜上に直接形成する方法が提案されている(例えば特許文献1、2)。金属カルボニル原料は比較的低温で容易に熱分解し金属膜を形成できると同時に金属カルボニル原料の配位子であるCOは形成された膜中に残留せずそのまま成膜反応系外へ排気され、不純物の極めて少ない良質なバリアメタル膜やCuシード層を形成することができる。この方法によりバリアメタル膜として例えばW(CO) を使い、W膜を成膜したり、Cuシード層として例えばRu (CO) 12を使い、Ru膜を形成したりすることが できる。
この場合、金属カルボニル原料は比較的低温において極めて分解し易い性質をもつため、分解抑制作用のあるCOガスをキャリアガスとして用いることが行われている。そして、金属カルボニル原料よりなる原料ガスは、処理容器の天井部に設けたシャワーヘッドから供給され、加熱された半導体ウエハ上に例えばCVDにより成膜するようになっている。ここで図9を参照して上記従来の成膜装置の一例を説明する。図9は従来の成膜装置の一例を示す概略構成図である。図9に示すように、成膜装置10は排気系11により排気され、シリコン基板等よりなる被処理体Wを保持する載置台13を備えた処理容器12を有し、上記処理容器12には、さらに被処理体Wを出し入れするゲートバルブ12Gが形成されている。
上記載置台13は図示しないヒータを内蔵しており、駆動ライン13Aを介してかかるヒータを駆動することにより、上記被処理体Wを所望の処理温度に保持する。上記排気系11は、ターボ分子ポンプ11Aとドライポンプ11Bを直列接続した構成を有し、上記ターボ分子ポンプ11Aにはバルブ11bを介して窒素ガスが供給される。上記処理容器12とターボ分子ポンプ11Aの間には、可変コンダクタンスバルブ11aが設けられ、上記処理容器12内の全圧を一定に維持する。
さらに成膜装置10では、上記処理容器12をドライポンプ11Bにより粗引するために、上記ターボ分子ポンプ11Aをバイパスする排気経路11Cが設けられており、排気経路11Cにはバルブ11cが、ターボ分子ポンプ11Aの下流側には別のバルブ11dが設けられている。上記処理容器12には、バブラ14Aを含む原料供給系14から成膜原料が、気体の形で、ガス導入ライン14Bを介して供給される。
図示の例では、上記バブラ14A中にはRuのカルボニル化合物であるRu (CO) が保持され、MFC(質量流量制御装置)14bを含むバブリングガスライン14aからCOガスをキャリアガスとして供給することにより、気化したRu (CO) 12原料ガスが上記ガス導入ライン14Bおよびシャワーヘ ッド14Sを介して、ラインMFC14cを含むライン14dからのCOキャ リアガスと共に、上記原料ガスとCOキャリアガスよりなる処理ガスとして上記処理容器12に供給される。
さらに上記原料供給系14に、バルブ14g、14hおよびMFC14eを含みArなどの不活性ガスを供給するライン14fが設けられており、上記ライン14Bを介して上記処理容器12に供給されるRu (CO) 12原料ガスに、 不活性ガスが添加される。
さらに、上記成膜装置10は、上記処理容器12、排気系11、原料供給系14を制御する制御装置10Aが設けられている。
また、上記Ru (CO) 12原料を用いた分解反応によるRu膜の形成は、 以下の化学式ように生じる。
Ru (CO) 12→3Ru+12CO
この反応は成膜反応系(処理容器)に存在するCOガスの分圧が低いと右側に進行するため、COガスが処理容器12外に排気されるとともに反応が一気に進み、結果として形成された膜のステップカバレッジが悪化する。このため、上記処理容器12内部を高濃度のCOガス雰囲気とし、上記分解反応が過剰に進行するのを抑制している(特許文献2)。
ところで、上述のようにガスの供給手段として上記シャワーヘッドを用いて原料ガスを供給すると、ウエハの中心部の膜厚が大きくて、ウエハの周辺部に行くに従って膜厚が小さくなるような膜厚特性を有していた。このため、本出願人は成膜速度を改善すると共に、膜厚の面内均一性も改善するようにした成膜装置を提案した(特許文献3)。
この特許文献3における成膜装置では、膜厚の面内均一性を高めるために、処理容器内の天井部には、従来のおいて一般的に用いられるシャワーヘッドではなくて、成膜速度をある程度抑制しつつ膜厚の面内均一性を高める目的でバッフル板を設けており、更に処理容器内の処理空間を囲むように内部区画壁を設け、このバッフル板の周縁部に設けたガス放出口から被処理体Wの外周端よりも外側の領域に向けて原料ガスを放出するようになっている。
これにより、原料ガスを上記ガス放出口から垂直方向の下方に向けて放出し、大部分の原料ガスは下方向へ流れると共に、原料ガスの一部が処理空間の中心方向へ拡散して流れて行き、これによって被処理体の表面に薄膜が形成されることになる。そして、処理空間のガスは内部区画壁の下端部と載置台の周辺部との間に環状に形成されているガス出口から下方向に向けて排気されて行く。このようにして、被処理体Wの表面に形成される薄膜の膜厚の面内均一性と成膜速度とを改善するようになっている。
特開2002−60944号公報 特開2004−346401号公報 特開2009−239104号公報
しかしながら、上述したようなバッフル板を用いて成膜装置を構成したために、膜厚の面内均一性は十分に高く維持できたが、反応効率が十分ではないために成膜速度を十分に高くすることはできず、この点に関して更なる改良が望まれていた。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明は、膜厚の面内均一性を向上させると共に、反応効率を向上させて成膜速度も高くすることができる成膜装置である。
請求項1に係る発明は、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する成膜装置において、真空排気が可能になされた処理容器と、加熱ヒータが設けられると共に前記被処理体を載置する載置台と、前記載置台に対向させて設けられており、前記原料ガスの分解を促進させる分解促進ガスを導入させるために前記載置台上の前記被処理体に対向するように配置された複数の分解促進ガス導入口と原料ガスを導入させるために前記複数の分解促進ガス導入口が形成された領域を囲むようにして配置された原料ガス導入口とを有するガス導入手段と、を備えたことを特徴とする成膜装置である。
このように、有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する成膜装置において、真空排気が可能になされた処理容器と、加熱ヒータが設けられると共に被処理体を載置する載置台と、載置台に対向させて設けられており、原料ガスの分解を促進させる分解促進ガスを導入させるために載置台上の被処理体に対向するように配置された複数の分解促進ガス導入口と原料ガスを導入させるために複数の分解促進ガス導入口が形成された領域を囲むようにして配置された原料ガス導入口とを有するガス導入手段とを備え、分解促進ガス導入口から分解促進ガスを流すと共に原料ガス導入口から原料ガスを流すようにしたので、膜厚の面内均一性を向上させると共に、反応効率を向上させて成膜速度も高くすることが可能となる。
本発明に係る成膜装置によれば、次のように優れた作用効果を発揮することができる。
有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する成膜装置において、真空排気が可能になされた処理容器と、加熱ヒータが設けられると共に被処理体を載置する載置台と、載置台に対向させて設けられており、原料ガスの分解を促進させる分解促進ガスを導入させるために載置台上の被処理体に対向するように配置された複数の分解促進ガス導入口と原料ガスを導入させるために複数の分解促進ガス導入口が形成された領域を囲むようにして配置された原料ガス導入口とを有するガス導入手段とを備え、分解促進ガス導入口から分解促進ガスを流すと共に原料ガス導入口から原料ガスを流すようにしたので、膜厚の面内均一性を向上させると共に、反応効率を向上させて成膜速度も高くすることができる。
本発明に係る成膜装置の全体構成を示す概略構成図である。 本発明に係る成膜装置の一例を示す概略断面図である。 成膜装置に用いるガス導入手段の下面の一例を示す平面図である。 載置台を示す拡大断面図である。 原料ガスと分解促進ガスの流れを示すための模式図である。 分解促進ガス(Ar)の作用を示すグラフである。 ガスの放出態様と成膜速度及び膜厚の面内均一性を説明するための模式図である。 本発明の変形実施例1を示す部分断面図である。 従来の成膜装置の一例を示す概略構成図である。
以下に、本発明に係る成膜装置の好適な一実施例を添付図面に基づいて詳述する。図1は本発明に係る成膜装置の全体構成を示す概略構成図、図2は本発明に係る成膜装置の一例を示す概略断面図、図3は成膜装置に用いるガス導入手段の下面の一例を示す平面図、図4は載置台を示す拡大断面図である。
まず、成膜装置に接続されるガス供給系や排気系を含めた処理システムの全体について説明する。図1に示すように、成膜装置20は処理容器22を有しており、この処理容器22内に被処理体として例えばシリコン基板よりなる半導体ウエハWが収容される。この処理容器22内の雰囲気を排気するために排気系11が接続されている。上記排気系11は、ターボ分子ポンプ11Aとドライポンプ11Bを直列接続した構成を有し、前記ターボ分子ポンプ11Aにはバルブ11bを介して窒素ガスが供給される。前記処理容器22とターボ分子ポンプ11Aの間には、可変コンダクタンスバルブ11aが設けられ、前記処理容器22内の全圧を一定に維持する。
さらにこの成膜装置20では、前記処理容器22をドライポンプ11Bにより粗引するために、前記ターボ分子ポンプ11Aをバイパスする排気経路11Cが設けられており、排気経路11Cにはバルブ11cが設けられている。また、ターボ分子ポンプ11Aの下流側には別のバルブ11dが設けられている。尚、ドライポンプ11Bの下流側には、排気ガス中から残留成分を除去するトラップ機構(図示せず)が設けられている。
前記処理容器22には、原料ガス等の各種のガスを供給するガス供給系14が接続される。このガス供給系14では、バブラ14Aが設けられており、成膜原料が、気体の形で、ガス導入ライン14Bを介して供給される。このバブラ14Aに収容する原料は、原料の種類に応じて液体の場合もあるし、固体の場合もある。
図示例では、前記バブラ14A中にはRuのカルボニル化合物であるRu (CO) が原料として保持され、MFC(質量流量制御器)14bを含むバブリングガスライン14aからCOガスをキャリアガスとして供給することにより、気化したRu (CO) 12原料ガスが前記ガス導入ライン14Bを介して、 処理容器22内へ導入される。
さらに上記ガス供給系14には、バルブ14g、14hおよびMFC14eを含みArなどの不活性ガスを供給するガス導入ライン14fが設けられており、前記処理容器22に必要に応じてこの不活性ガスを供給し得るようになっている。
次に、図2を参照して、本発明に係る成膜装置20を説明する。この成膜装置20は、上述したように例えばアルミニウム合金等よりなる筒体状の処理容器22を有している。この処理容器22は、内径が大きくなされた上部室と、それよりも内径が小さくなされた下部室とよりなり、この下部室内が排気空間24として形成されている。この下部室である排気空間24を区画する下部側壁に排気口26が形成され、この排気口26に、上記排気系11が接続されている。この処理容器22内には、被処理体である半導体ウエハWを載置して保持する載置台28が設けられる。
この載置台28は、全体が例えば円板状に成形されており、その直径が半導体ウエハWの直径よりも大きくなされて、この上面側に半導体ウエハWを載置するようになっている。そして、この載置台28は、処理容器22の底部側より起立された例えばアルミニウム合金等よりなる金属製の支柱30の上端部に取り付け固定されている。そして、この支柱30は、上記排気空間24を区画する底部を貫通して下方へ延びており、図示しないアクチュエータにより、この載置台28の全体を上下方向へ昇降可能として任意の位置に停止できるようになっている。また上記支柱30の容器底部に対する貫通部には、伸縮可能になされた金属製のベローズ32が設けられており、処理容器22内の気密性を維持しつつ載置台28の昇降を許容するようになっている。
この載置台28中にはその上部側に加熱手段として例えばタングステンワイヤヒータやカーボンワイヤヒータ等よりなる加熱ヒータ34が埋め込むようにして設けられて上記半導体ウエハWを加熱するようになっており、上記加熱ヒータ34の下方にはこの載置台28の下部や側部を冷却して温度調整する冷却水等の冷媒を流すための冷媒通路36が設けられている。この載置台28の詳細については後述する。また、この載置台28の周辺部には、複数、例えば3つの(図示例では2つのみ記す)のピン挿通孔37が設けられており、この各ピン挿通孔37内にはリフタピン38が挿通できるようになっている。
そして、各リフタピン38の下端部は、昇降アーム40に支持されており、この昇降アーム40は、容器底部をベローズ42により気密に貫通する昇降ロッド44により昇降可能になされている。そして、ウエハWの移載位置に上記載置台28を下方へ降下させた状態で、上記リフタピン38を、載置台28の上方へ出没させてウエハWを押し上げたり、押し下げたりするようになっている。そして、上記載置台28を下方へ降下させた位置において、載置台28の上面の水平レベルに対応する容器側壁に搬送アーム(図示せず)により半導体ウエハWを搬出入する開口46が形成されており、この開口46には、これを気密に開閉するためのゲートバルブ48が設けられている。
そして、上記処理容器22の側壁や天井部にはそれぞれヒータ49A、49Bが設けられており、これらを所定の温度に維持することにより原料ガスが固化や液化することを防止するようになっている。
また、上記載置台28は、上記半導体ウエハWを載置すると共に内部に上記加熱ヒータ34が設けられた載置台本体50と、この載置台本体50の側面と底面とを図示しない断熱層を介して囲んだ状態で載置台本体50を支持すると共に内部に冷媒を流す上記冷媒通路36が設けられて原料ガスの分解温度未満で且つ固化温度又は液化温度以上の温度範囲に維持された基台52とにより主に構成されている。尚、図4においてはピン挿通孔37やリフタピン38の記載は省略している。
上記載置台本体50は、全体がセラミック材や金属等により円板状に成形されており、加熱手段としてその内部に略全面に亘ってタングステンワイヤやカーボンワイヤ等よりなる上記加熱ヒータ34が絶縁された状態で埋め込むようにして設けられており、この上面に直接的に載置されて接している半導体ウエハWを所望の温度に加熱して温度制御をできるようになっている。
上記セラミック材としては、例えば窒化アルミニウム(AlN)、酸化アルミニウム(Al )、シリコンカーバイト(SiC)等を用いることができ、上記金属としては、アルミニウム、アルミニウム合金等を用いることができる。また、この載置台本体50の直径は、半導体ウエハWの直径よりも僅かに小さく設定されており、例えば半導体ウエハWの直径が300mmの場合には載置台本体50の直径は295mm程度に設定されている。上記載置台本体50の周縁部には、断面が直角状に切り取られた段部54(図4参照)がその周方向に沿ってリング状に形成されている。
また上記基台52は、全体が金属により形成されている。そして、基台52は、内部に上記冷媒通路36が略全面に亘って設けられた円板状の金属製のベース部56と、このベース部56の周縁部に上記載置台本体50の側面を囲むようにして起立させて設けられたリング状の金属製のエッジリング58とにより構成されている。上記冷媒通路36には、図示しない配管を介して冷媒として冷却水、フロリナート、ガルデン(登録商標)等を流すようになっている。
上記ベース部56とエッジリング58との間には、このエッジリング58の冷却を緩和するために熱伝導性が低い金属よりなるリング状の熱伝導緩和部材60が介在させて設けられている。そして、これらのエッジリング58、熱伝導緩和部材60及びベース部56は、その上方より複数個のボルト62により着脱可能(分解可能)に一体的に結合されている。
ここで上記ベース部56やエッジリング58は、それぞれアルミニウムやアルミニウム合金よりなり、熱伝導緩和部材60は、上記アルミニウムやアルミニウム合金よりも熱伝導性が劣るステンレススチールよりなっている。尚、この熱伝導緩和部材60は、必要に応じて設ければよいので省略することもできる。また、上記ベース部56やエッジリング58は、アルミニウムやアルミニウム合金に替えて熱伝導性は少し劣るがステンレススチールを用いるようにしてもよい。
また上記ベース部56の上面と載置台本体50の底部(下面)との間には、断熱材64が介設された状態で上記載置台本体50を支持しており、両者間の断熱を図るようになっている。この断熱材64としては、熱伝導性が低くて、且つ耐熱性に優れるセラミック材やステンレススチール等を用いることができる。
そして、上記エッジリング58の上面は、半導体ウエハWの載置面の水平レベルと同一レベルを保ちながら半導体ウエハWの半径方向外方へ所定の長さだけ延びるようにしてリング状にフランジ部66が形成されている。
また、このエッジリング58の内周側の上部には、半導体ウエハW側へ突出した突起部68がその周方向に沿ってリング状に設けられており、この突起部68は載置台本体50の段部54の途中まで延びている。そして、この突起部68には、これを下方へ貫通させて固定ネジ70が設けられており、この固定ネジ70を下方向へ前進させることによって載置台本体50の周辺部を押圧してこれを固定するようになっている。従って、上記エッジリング58の内周面と載置台本体50の外周面とは直接的には接触しておらず、両者間には断熱を図る空間部72が形成されている。また上記固定ネジ70は全体で例えば6本程度しか設けられておらず、エッジリング58と載置台本体50との間の断熱性を高めるようになっている。
また、上記載置台本体50の段部54の側面とエッジリング58の突起部68の内周面との間には、リング状のシールドリング74が遊嵌状態で着脱可能に設けられている。このシールドリング74は、アルミニウムやアルミニウム合金等の金属よりなり、この機能は載置台本体50の側壁への成膜防止、半導体ウエハWの面内温度均一性の確保、半導体ウエハWの裏面への成膜防止、載置台本体50とエッジリング58との間の断熱等である。
また、上記エッジリング58の上面側に半導体ウエハWの端面であるベベル部に膜が付着することを防止するためにリング状のカバーリング76を設けている。このカバーリング76は、例えばアルミナや窒化アルミニウム等のセラミック材よりなる。このカバーリング76の温度も上記エッジリング58と同様に成膜時には、原料ガスの分解温度未満で、且つ固化温度又は液化温度以上の温度範囲に維持される。
また処理容器22の天井部には、上記載置台28に対向させて必要なガスを導入するためのガス導入手段80が設けられる。そして、上記ガス導入手段80により、原料ガスと、この原料ガスの分解を促進させるための分解促進ガスとを別々に処理空間Sに導入するようになっている。上記原料ガスは前述したようにキャリアガス(COガス)により搬送されてくる。
この場合、上記分解促進ガスを放出するために上記載置台28上のウエハWに対向させて複数の分解促進ガス導入口80Aが形成されており、この分解促進ガス導入口80Aが形成された領域を囲むようにして上記原料ガスを導入する原料ガス導入口80Bが形成されている。
具体的には、上記ガス導入手段80は、ここではシャワーヘッド82により構成されている。図3(A)にも示すように、このシャワーヘッド82の下面のガス噴射面の中央部側の領域83には、上記複数の分解促進ガス導入口80Aが形成されている。そして、この分解促進ガス導入口80Aが形成されている領域83の周囲を囲むようにして上記原料ガス導入口80Bが形成されている。そして、このシャワーヘッド82内は、2つの空間に仕切るように区切られており、2つの拡散室84A、84Bが区画形成されている。
容器天井部には、上記各拡散室84A、84Bにそれぞれ連通するようにガス導入口86A、86Bが形成されている。そして、一方のガス導入口86Aには、上記ガス供給系14のガス導入ライン14fが接続されており、Arよりなる不活性ガスを分解促進ガスとして供給できるようになっている。また、他方のガス導入口86Bには、上記ガス供給系14のガス導入ライン14Bが接続されており、キャリアガスを伴った原料ガスを供給できるようになっている。
ここでは、上記分解促進ガス導入口80Aは、直径が0.5〜10mm程度の大きさの貫通孔よりなっている。他方、上記原料ガス導入口80Bは、シャワーヘッド82の周方向に沿って大きな開口面積になされた円弧形状に成形されている。そして、上述したように、上記分解促進ガス導入口80Aは、載置台28上のウエハWに対向するように分散させて設けられているのに対し、上記原料ガス導入口80Bは、上記載置台28上のウエハWの外周端よりも外側の領域に対応させて、その垂直方向の上方に位置されている。すなわち、上記分解促進ガス導入口80Aは、上記載置台28上のウエハWの垂直方向上方に対応させて配置されており、上記原料ガス導入口80Bは、上記載置台上のウエハWの外周端よりも外側の領域の垂直方向上方に対応させて配置されている。
このようにして、非常に分解し易い原料ガスがウエハWの中央部に集中することを抑制してウエハ面内に均一に成膜が行われるようにし、且つ原料ガスの分解を促進して成膜速度を上げるようにしている。
換言すれば、上記原料ガス導入口80Bの直下はウエハWの外周端よりも外側の領域に対応することになり、この外側の領域に向けて原料ガスを放出するようになっている。このように、ウエハWの上面には直接的には原料ガスを流下させないで、ウエハWの周縁部よりも外側の領域に向けて原料ガスを流下させることで、ウエハW上に膜厚の面内均一性を確保して成膜するようになっている。
尚、上記原料ガス導入口80Bとしては、図3(A)に示すような円弧形状の大きな開口に替えて、図3(B)に示すようにこの部分に上記分解促進ガス導入口80Aと同じような形状で直径の小さな貫通孔を多数形成するようにしてもよい。上記シャワーヘッド82は、熱伝導性が良好な金属材料、例えばアルミニウムやアルミニウム合金で形成されている。そして、ここでは上記シャワーヘッド82の側壁部分を下方向へ更に延在させるようにしてリング状に内部区画壁90が設けられている。
この内部区画壁90は、ここでは上記シャワーヘッド82と一体化して設けられてシャワーヘッド82と同じ材料が用いられている。この内部区画壁90は、載置台28の上方の処理空間Sの周囲を囲むようにして設けられており、その下端部を載置台28に接近させている。そして、この内部区画壁90の下端部と載置台28の周縁部との間で排気用のガス出口92を形成している。
このガス出口92は、載置台28の周方向に沿って環状に形成されることになり、このガス出口92より処理空間Sの雰囲気がウエハWの外周側から均等に排気されるようになっている。上記ガス出口92を区画する内部区画壁90は、載置台28の周縁部に位置するフランジ部66及びカバーリング76の上方に位置されており、カバーリング76の上面(フランジ部66の上面も一部含む)と一定の厚さを有する内部区画壁90の下端面との間で上記ガス出口92が形成されている。このガス出口92の上下方向の幅L1は、2〜19.5mmの範囲内、ここでは例えば5mm程度に設定されている。
そして、図1へ戻って、このように構成された成膜装置20の全体の動作、例えばガスの供給の開始、停止、プロセス温度、プロセス圧力、冷媒通路36に流す冷媒の温度制御は、例えばコンピュータよりなる装置制御部100により行われることになる。
この制御に必要なコンピュータに読み取り可能なプログラムは記憶媒体102に記憶されており、この記憶媒体102としては、フレキシブルディスク、CD(CompactDisc)、CD−ROM、ハードディスク、フラッシュメモリ或いはDVD等を用いることができる。
次に、以上のように構成された成膜装置20を用いて行われる成膜処理について図5乃至図7も参照して説明する。図5は原料ガスと分解促進ガスの流れを示すための模式図、図6は分解促進ガス(Ar)の作用を示すグラフ、図7はガスの放出態様と成膜速度及び膜厚の面内均一性を説明するための模式図である。まず、図1に示すように、この成膜装置20においては、排気系11が継続的に駆動されて、処理容器22内が真空引きされて所定の圧力に維持されており、また載置台28に支持された半導体ウエハWは加熱ヒータ34により所定の温度に維持されている。
また処理容器22の側壁、天井部、ガス導入手段80を形成するシャワーヘッド82及び内部区画壁90もそれぞれヒータ49A、49Bにより所定の温度に維持されている。この温度は原料ガスの分解温度未満で且つ固化温度又は液化温度以上の温度範囲であり、例えば80℃程度にそれぞれ加熱されている。そして、ガス供給系14から原料ガス(Ru (CO)12)がCOガスよりなるキャリアガスと共に供給され、また、分解促進ガスとして不活性ガスであるArガスが供給されてガス導入手段80であるシャワーヘッド82へそれぞれ流量制御されつつ流入する。上記Arガスは、ガス入口86Aから一方の拡散室84A内へ流入し、この中を拡散しつつ分解促進ガス導入口80Aより処理空間Sに向けて放出される。また原料ガスは、キャリアガスと共にガス入口86Bから他方の拡散室84B内へ流入し、この中を拡散しつつ原料ガス導入口80Bより処理空間Sに向けて放出される。
ここで図5に示すように、上記Arガスは多数の分解促進ガス導入口80AからウエハW上に向けて矢印110に示すように下方へ流下して行く。これに対して、分解促進ガス導入口80Aの外側を囲むようにして設けた原料ガス導入口80BからはウエハWの外周端の外側の領域に向けて矢印112に示すように下方へ流して行く。この原料ガスの流下する方向は、載置台28の周縁部であってウエハWの外周端の外側の領域に向かっている。そして、この原料ガスの一部は、この流下の途中で矢印114に示すように、処理空間S内の中央部に向かって拡散して行き、滞留することになる。そして、この処理空間Sで上記原料ガスとArガスとが混合されて、原料ガスの分解が促進されることになる。尚、処理空間S内で初めてガスを混合する供給態様をポストミックスと称す。
そして、その原料ガスの一部は処理空間S内に滞留すると同時に、Arガスにより原料ガスの分解が促進され、多くの原料ガス(COが含まれる)はArガスと共に流路面積が絞り込まれたガス出口92を通って矢印116に示すように載置台28の下方の空間へと流れていくことになる。そして、この処理容器22内の雰囲気は排気口26を通って容器外へ排出されて行く。この時、処理空間S内では原料ガスが熱分解してCVDにより薄膜であるRu膜が形成される。また同時に、上述したようにArガスにより原料ガスの分解が促進されて成膜速度も高くなる。上記成膜反応は下記の化学式で示され、反応によってキャリアガスと同じガス種であるCO(一酸化炭素)が発生している。
Ru (CO)12 ⇔ Ru (CO)12
Ru (CO)12↑ ⇔ Ru (CO)12−x↑+XCO↑
Ru (CO)12−x↑+Q → 3Ru+(12−X)CO↑
Ru (CO)12↑+Q → 3Ru+12CO↑
ここで”⇔”は可逆的であることを示し、”↑”はガス状態であることを示し、”↑”が付いていないものは固体状態であることを示し、”Q”は熱量が加わることを示す。上記可逆的な化学式から明らかなように、Arガスが加えられるとCOガス濃度が希釈化されるので、反応が右方向(正方向)へ進むことになり、この結果、上述のように原料ガスの分解が促進されることになる。尚、キャリアガスであるCOガスは、逆に原料ガスの分解を抑制するように作用し、反応が左方向(逆方向)へ進むことになる。
このように、ウエハW上へはArガスを流し、その周辺部側へ原料ガス(COを含む)を流すようにしたので、処理空間S内に原料ガスは適度な時間で滞留し、しかも処理空間Sの中央部では原料ガスが過剰にならず、この処理空間S内の雰囲気はガス出口92を介して排出されて行くことになる。すなわち、処理空間Sにおいて周辺部と比較して中央部の原料ガス濃度が高くなることはない。これと同時に、ウエハ上に供給されたArガスにより原料ガスの分解は促進されることになり、その分、成膜速度を高くすることができる。この結果、膜厚の面内均一性を高く維持しつつ高い成膜速度で薄膜であるRu膜を堆積することができる。また原料ガスの分解を促進させることができるので、その分、原料ガスの使用効率も高めることができる。
この時のプロセス条件は、プロセス圧力が0.001〜1Torrの範囲内の圧力、例えば0.1Torr(13.3Pa)、ウエハ温度が原料ガスの分解温度以上、例えば150〜250℃の範囲内の温度、例えば190〜230℃程度の高温状態である。また原料ガスの流量は1〜2sccm、キャリアガスであるCOガスの流量は100sccm、分解促進ガスであるArガスの流量は1〜200sccm程度である。そして、シャワーヘッド82や内部区画壁90や載置台28の周縁部のカバーリング76等は、前述のように原料ガスの分解温度以下で、固化温度、或いは液化温度以上の温度、例えば80〜110℃程度の低温状態に設定されているので、これらの部材の表面にはほとんど不要な膜が堆積することはない。
<Arガスの作用と各ガスの供給態様>
ここで上記Arガスの作用と各ガスの供給態様について説明する。まず、前述した化合式に基づいて、原料ガスの分解を促進するガスとしてArガスを用いて検証実験を行った。実験では、シャワーヘッド構造のガス導入手段を用いて、成膜時には上記原料ガス(Ru (CO)12)をキャリアガスであるCOガスと共に供給しつつArガスを同時に供給している。その時の成膜速度を図6に示す。
図6では、Arガスの流量を0sccm、10sccm、98sccmとなるように変化させており、他のプロセス条件は同一になるように設定している。図6に示すように、Arガスが0sccmの場合には相対膜厚が”0.75”であった。これに対して、Arガスを僅かに10sccmだけ添加した時には相対膜厚が”0.80”になって少し増加しただけであったが、Arガスを98sccmだけ添加した時には相対膜厚が”1.10”になって大幅に増加したことが判った。
このように、Arガスを添加すると、その分、原料ガスの分解を促進して成膜速度を大幅に向上できることが理解できた。しかし、単にArガスを添加しただけでは、膜厚の面内均一性が劣化することが考えられるので、この点についても検討を行った。図7はこの検討結果を模式的に示す図である。図7中において、ガス導入手段より必要なガスを導入した時のウエハW上の成膜速度と膜厚の面内均一性との関係を示している。ここではArガスの供給の有無を除いて、他のプロセス条件は同一となるように設定している。
図7(A)は、ガス導入手段としてシャワーヘッドを用い、原料ガスとCOガスのみを流した供給態様(Arガスはなし)の時の結果を示す。この場合には、成膜速度は低く、且つ膜厚の面内均一性もそれ程高くないことが判った。図7(B)は、ガス導入手段としてバッフル板を用いてウエハWの外周端よりも外側の領域に向けて原料ガスとCOガスのみを流した供給態様(Arガスはなし)の時の結果を示す。このガス供給態様は、例えば特開2009−239104号公報に開示されているようなガス供給態様である。この場合には、膜厚の面内均一性は十分に改善されて良好になってはいるが、依然として、成膜速度が不十分であることが判った。
図7(C)は、ガス導入手段としてポストミックス型のシャワーヘッドを用い、COガスを含む原料ガスとArガスとを、いわゆるポストミックスで流した供給態様の時の結果を示す。この場合には、成膜速度を大幅に向上させることができたが、膜厚の面内均一性がかなり低下することが判った。
これに対して、図7(D)は、先に説明した本発明装置に対応するものである。ここでは、前述したようにウエハWの上方よりArガスを流し、その外側を囲むようにしてCOガスと共に原料ガスを流した供給態様の時の結果を示す。この場合には、成膜速度を大幅に向上させることができると共に、膜厚の面内均一性も大幅に向上させることができることが判った。
このように、本発明によれば、有機金属化合物の原料よりなる原料ガスを用いて被処理体として例えば半導体ウエハWの表面に薄膜を形成する成膜装置において、真空排気が可能になされた処理容器22と、加熱ヒータ34が設けられると共に被処理体を載置する載置台28と、載置台28に対向させて設けられており、原料ガスの分解を促進させる分解促進ガスを導入させるために載置台上の被処理体に対向するように配置された複数の分解促進ガス導入口80Aと原料ガスを導入させるために複数の分解促進ガス導入口80Aが形成された領域を囲むようにして配置された原料ガス導入口80Bとを有するガス導入手段80とを備え、分解促進ガス導入口から分解促進ガスを流すと共に原料ガス導入口から原料ガスを流すようにしたので、膜厚の面内均一性を向上させると共に、反応効率を向上させて成膜速度も高くすることができる。
<変形実施例1>
次に、本発明の変形実施例1について説明する。先の実施例では、内部区画壁90の下端部側に設けたガス出口92の流路面積をある程度大きく設定したが、これに限定されず、この部分にオリフィス部を設けて流路面積を絞り込むことにより、処理空間Sにおける原料ガスの滞留時間を長くするようにしてもよい。図8はこのような本発明の変形実施例1を示す部分断面図である。尚、図2に示す構成部分と同一構成部分については、同一参照符号を付して、その説明を省略する。
図8に示すように、この変形実施例1では、処理空間Sの周囲を囲む内部区画壁90の下端部にオリフィス形成部材96が設けられている。具体的には、このオリフィス形成部材96は、上記内部区画壁90の下端部に、これより上記載置台28の半径方向の内方に向けて延在させて設けられており、載置台28の周方向に沿ってリング状に形成されている。そして、このオリフィス形成部材96の下面と載置台28の周縁部との間で、上記ガス出口92に連通するオリフィス部98を形成するようになっている。従って、このオリフィス部98は、上記オリフィス形成部材96の下面と載置台28の周縁部に配置されたカバーリング76の上面との間で区画形成され、載置台28の周方向に沿ってリング状に形成されることになる。
このオリフィス形成部材96の材料は、上記内部区画壁90と同じ熱伝導性が良好な材料、例えばアルミニウムやアルミニウム合金等よりなり、ここでは両者は一体的に成形されている。このように、オリフィス形成部材96を処理容器22の中心方向へ延在させて設けることにより、この上方より流下してきた原料ガスの一部を処理容器22の中心方向へ一時的に流れを変更させると共に、上記オリフィス部98により排気される雰囲気の流路面積を絞り込むことによって処理空間Sにおける原料ガスの滞留時間を適度に長くさせて膜厚の面内均一性を維持しつつ成膜速度を向上させるようになっている。
ここで、オリフィス部98の上下方向の幅L2は、例えば2〜19.5mmの範囲内に設定し、ここではガス出口92の幅と同じ5mmに設定している。この場合には、処理空間S内を流下した原料ガスの大部分は、内部区画壁90の下端部に処理空間Sの中央部に向けて延在させて設けたオリフィス形成部材96に当たり、処理空間Sの中央部側へ向けて一旦曲げられる。
そして、その原料ガスの一部はArガスで分解が促進されて処理空間S内に滞留すると同時に、多くの原料ガスは流路面積が絞り込まれたオリフィス部98内を流れ、更にガス出口92を通って載置台28の下方の空間へと流れていくことになる。この変形実施例1の場合には、先の実施例の場合よりも原料ガスの分解を更に促進させて成膜速度を更に向上させることができ、原料ガスの使用効率もより向上させることができる。
尚、上記各実施例にあっては、ガス導入手段80として用いたシャワーヘッド82から2種類のガスを供給するようにしたが、これに限定されず、分解促進ガスの供給用にシャワーヘッドを設け、このシャワーヘッドの外側全体を、これよりも所定の隙間だけ隔てて覆うようにしてカバー部材を設け、このカバー部材の内側の上記隙間部分にキャリアガスであるCOガスにより搬送された原料ガスを流して供給するようにしてもよい。
また、上記各実施例では、原料ガス導入口80Bは、ウエハWの外周端よりも外側の領域に対応させて、その上方に設けるようにしたが、これに限定されず、上記原料ガス導入口80Bは、ウエハWの外周端よりも少し内側まで入った領域に対応させて設けるようにしてもよい。換言すれば、上記原料ガス導入口80Bを、ウエハWの周縁部の上方に位置させて設けるようにしてもよい。
更に、上記各実施例では、原料ガスの分解促進ガスとしてArガスを用いた場合を例にとって説明したが、これに限定されず、He、Ne等の他の希ガス、或いはN ガスを用いるようにしてもよい。
また、上記各実施例においては、原料の有機金属化合物としては、Ru (CO)12、W(CO) 、Ni(CO) 、Mo(CO) 、Co (CO) 、Rh (CO)12、Re (CO)10、Cr(CO) 、Os (CO)12、Ta(CO) 、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD) 、TaCl 、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド−トリ−ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、Cp Mn[=Mn(C ]、(MeCp) Mn[=Mn(CH ]、(EtCp) Mn[=Mn(C ]、(i−PrCp) Mn[=Mn(C ]、MeCpMn(CO) [=(CH )Mn(CO) ]、(t−BuCp) Mn[=Mn(C ]、CH Mn(CO) 、Mn(DPM) [=Mn(C1119 ]、Mn(DMPD)(EtCp)[=Mn(C11 )]、Mn(acac) [=Mn(C ]、Mn(DPM) [=Mn(C1119 ]、Mn(acac) [=Mn(C ]よりなる群から選択される1の材料を用いることができる。
また、ここでは被処理体として半導体ウエハを例にとって説明したが、この半導体ウエハにはシリコン基板やGaAs、SiC、GaNなどの化合物半導体基板も含まれ、更にはこれらの基板に限定されず、液晶表示装置に用いるガラス基板やセラミック基板等にも本発明を適用することができる。
20 成膜装置
22 処理容器
28 載置台
34 加熱ヒータ
50 載置台本体
52 基台
80 ガス導入手段
80A 分解促進ガス導入口
80B 原料ガス導入口
82 シャワーヘッド
90 内部区画壁
92 ガス出口
96 オリフィス形成部材
98 オリフィス部
S 処理空間
W 半導体ウエハ(被処理体)

Claims (7)

  1. 有機金属化合物の原料よりなる原料ガスを用いて被処理体の表面に薄膜を形成する成膜装置において、
    真空排気が可能になされた処理容器と、
    加熱ヒータが設けられると共に前記被処理体を載置する載置台と、
    前記載置台に対向させて設けられており、前記原料ガスの分解を促進させる分解促進ガスを導入させるために前記載置台上の前記被処理体に対向するように配置された複数の分解促進ガス導入口と原料ガスを導入させるために前記複数の分解促進ガス導入口が形成された領域を囲むようにして配置された原料ガス導入口とを有するガス導入手段と、
    を備えたことを特徴とする成膜装置。
  2. 前記分解促進ガス導入口は、前記載置台上の前記被処理体の垂直方向上方に対応させて配置されており、前記原料ガス導入口は、前記載置台上の前記被処理体の外周端よりも外側の領域の垂直方向上方に対応させて配置されていることを特徴とする請求項1記載の成膜装置。
  3. 前記処理容器内には、前記載置台の上方の処理空間を囲むように区画しつつその下端部が前記載置台に接近させて設けられて前記下端部と前記載置台の周縁部との間でガス出口を形成する内部区画壁を有していることを特徴とする請求項1又は2記載の成膜装置。
  4. 前記内部区画壁の下端部に前記載置台の半径方向の内方に向けて延在させて設けられて、前記載置台の周縁部との間で前記ガス出口に連通するオリフィス部を形成するオリフィス形成部材を有することを特徴とする請求項3記載の成膜装置。
  5. 前記内部区画壁と前記オリフィス形成部材は、前記原料ガスの分解温度未満で且つ固化温度又は液化温度以上の温度範囲に維持されていることを特徴とする請求項4に記載の成膜装置。
  6. 前記載置台は、昇降可能になされていることを特徴とする請求項1乃至5のいずれか一項に記載の成膜装置。
  7. 前記有機金属化合物は、Ru (CO)12、W(CO) 、Ni(CO) 、Mo(CO) 、Co (CO) 、Rh (CO)12、Re (CO)10、Cr(CO) 、Os (CO)12、Ta(CO) 、TEMAT(テトラキスエチルメチルアミノチタニウム)、TAIMATA、Cu(EDMDD) 、TaCl 、TMA(トリメチルアルミニウム)、TBTDET(ターシャリーブチルイミド−トリ−ジエチルアミドタンタル)、PET(ペンタエトキシタンタル)、TMS(テトラメチルシラン)、TEH(テトラキスエトキシハフニウム)、Cp Mn[=Mn(C ]、(MeCp) Mn[=Mn(CH ]、(EtCp) Mn[=Mn(C ]、(i−PrCp) Mn[=Mn(C ]、MeCpMn(CO) [=(CH )Mn(CO) ]、(t−BuCp) Mn[=Mn(C ]、CH Mn(CO) 、Mn(DPM) [=Mn(C1119 ]、Mn(DMPD)(EtCp)[=Mn(C11 )]、Mn(acac) [=Mn(C ]、Mn(DPM) [=Mn(C1119 ]、Mn(acac) [=Mn(C ]よりなる群から選択される1の材料よりなることを特徴とする請求項1乃至6のいずれか一項に記載の成膜装置。
JP2010059964A 2010-03-16 2010-03-16 成膜装置 Active JP5445252B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010059964A JP5445252B2 (ja) 2010-03-16 2010-03-16 成膜装置
KR1020110021519A KR101263565B1 (ko) 2010-03-16 2011-03-10 성막 장치
US13/045,755 US20110226181A1 (en) 2010-03-16 2011-03-11 Film forming apparatus
TW100108621A TW201202470A (en) 2010-03-16 2011-03-15 Film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010059964A JP5445252B2 (ja) 2010-03-16 2010-03-16 成膜装置

Publications (2)

Publication Number Publication Date
JP2011190519A JP2011190519A (ja) 2011-09-29
JP5445252B2 true JP5445252B2 (ja) 2014-03-19

Family

ID=44646190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010059964A Active JP5445252B2 (ja) 2010-03-16 2010-03-16 成膜装置

Country Status (4)

Country Link
US (1) US20110226181A1 (ja)
JP (1) JP5445252B2 (ja)
KR (1) KR101263565B1 (ja)
TW (1) TW201202470A (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9404180B2 (en) * 2010-03-16 2016-08-02 Tokyo Electron Limited Deposition device
JP5902896B2 (ja) * 2011-07-08 2016-04-13 東京エレクトロン株式会社 基板処理装置
JP6078354B2 (ja) * 2013-01-24 2017-02-08 東京エレクトロン株式会社 プラズマ処理装置
GB201309583D0 (en) * 2013-05-29 2013-07-10 Spts Technologies Ltd Apparatus for processing a semiconductor workpiece
CN103436856A (zh) * 2013-08-01 2013-12-11 光垒光电科技(上海)有限公司 反应腔室
JP5917477B2 (ja) * 2013-11-29 2016-05-18 株式会社日立国際電気 基板処理装置、半導体装置の製造方法及びプログラム
JP6379550B2 (ja) * 2014-03-18 2018-08-29 東京エレクトロン株式会社 成膜装置
JP2016036018A (ja) * 2014-07-31 2016-03-17 東京エレクトロン株式会社 プラズマ処理装置及びガス供給部材
JP6456712B2 (ja) 2015-02-16 2019-01-23 東京エレクトロン株式会社 基板保持機構及びこれを用いた基板処理装置
JP6419644B2 (ja) * 2015-05-21 2018-11-07 東京エレクトロン株式会社 金属ナノドットの形成方法、金属ナノドット形成装置及び半導体装置の製造方法
US10954594B2 (en) 2015-09-30 2021-03-23 Applied Materials, Inc. High temperature vapor delivery system and method
JP6750534B2 (ja) * 2017-02-24 2020-09-02 東京エレクトロン株式会社 成膜装置
KR102516885B1 (ko) * 2018-05-10 2023-03-30 삼성전자주식회사 증착 장비 및 이를 이용한 반도체 장치 제조 방법
JP7224175B2 (ja) * 2018-12-26 2023-02-17 東京エレクトロン株式会社 成膜装置及び方法
CN110408910B (zh) * 2019-08-16 2020-08-28 中国科学院上海微***与信息技术研究所 高通量气相沉积设备及气相沉积方法
KR102360733B1 (ko) * 2019-11-19 2022-02-10 세메스 주식회사 기판 처리 방법 및 기판 처리 장치
US20210343508A1 (en) * 2020-04-30 2021-11-04 Applied Materials, Inc. Metal oxide preclean chamber with improved selectivity and flow conductance
KR102409311B1 (ko) * 2020-05-13 2022-06-16 (주)아이작리서치 원자층 증착 설비
JP2022094569A (ja) * 2020-12-15 2022-06-27 東京エレクトロン株式会社 基板処理装置及び基板処理方法
TWI792523B (zh) * 2021-08-24 2023-02-11 天虹科技股份有限公司 可提高沉積均勻度的薄膜沉積設備及其遮擋構件
CN115101400B (zh) * 2022-08-25 2022-11-15 拓荆科技(上海)有限公司 半导体加工装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333058Y2 (ja) * 1987-06-26 1991-07-12
US5647945A (en) * 1993-08-25 1997-07-15 Tokyo Electron Limited Vacuum processing apparatus
US5744049A (en) * 1994-07-18 1998-04-28 Applied Materials, Inc. Plasma reactor with enhanced plasma uniformity by gas addition, and method of using same
JPH08148439A (ja) * 1994-11-15 1996-06-07 Nissin Electric Co Ltd 薄膜気相成長装置
TW323387B (ja) * 1995-06-07 1997-12-21 Tokyo Electron Co Ltd
JP3599204B2 (ja) * 1995-06-08 2004-12-08 アネルバ株式会社 Cvd装置
EP0854210B1 (en) * 1996-12-19 2002-03-27 Toshiba Ceramics Co., Ltd. Vapor deposition apparatus for forming thin film
JPH11200052A (ja) * 1998-01-13 1999-07-27 Nissin Electric Co Ltd 化学的気相成長装置
JP4487338B2 (ja) * 1999-08-31 2010-06-23 東京エレクトロン株式会社 成膜処理装置及び成膜処理方法
WO2001057289A1 (de) * 2000-02-04 2001-08-09 Aixtron Ag Vorrichtung und verfahren zum abscheiden einer oder mehrerer schichten auf ein substrat
US6444039B1 (en) * 2000-03-07 2002-09-03 Simplus Systems Corporation Three-dimensional showerhead apparatus
US6916398B2 (en) * 2001-10-26 2005-07-12 Applied Materials, Inc. Gas delivery apparatus and method for atomic layer deposition
JP4417669B2 (ja) * 2003-07-28 2010-02-17 日本エー・エス・エム株式会社 半導体処理装置および半導体ウエハーの導入方法
US20050109276A1 (en) * 2003-11-25 2005-05-26 Applied Materials, Inc. Thermal chemical vapor deposition of silicon nitride using BTBAS bis(tertiary-butylamino silane) in a single wafer chamber
US8317968B2 (en) * 2004-04-30 2012-11-27 Lam Research Corporation Apparatus including gas distribution member supplying process gas and radio frequency (RF) power for plasma processing
JP5235407B2 (ja) * 2005-07-14 2013-07-10 東京エレクトロン株式会社 基板載置機構および基板処理装置
KR101044355B1 (ko) * 2005-12-06 2011-06-29 가부시키가이샤 알박 가스 헤드 및 박막제조장치
US8454749B2 (en) * 2005-12-19 2013-06-04 Tokyo Electron Limited Method and system for sealing a first assembly to a second assembly of a processing system
US20070234955A1 (en) * 2006-03-29 2007-10-11 Tokyo Electron Limited Method and apparatus for reducing carbon monoxide poisoning at the peripheral edge of a substrate in a thin film deposition system
US7794788B2 (en) * 2007-03-28 2010-09-14 Tokyo Electron Limited Method for pre-conditioning a precursor vaporization system for a vapor deposition process
JP5347294B2 (ja) * 2007-09-12 2013-11-20 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP2009088229A (ja) * 2007-09-28 2009-04-23 Tokyo Electron Ltd 成膜装置、成膜方法、記憶媒体及びガス供給装置
JP5444599B2 (ja) * 2007-09-28 2014-03-19 東京エレクトロン株式会社 ガス供給装置及び成膜装置
US20090236214A1 (en) * 2008-03-20 2009-09-24 Karthik Janakiraman Tunable ground planes in plasma chambers
JP4731580B2 (ja) * 2008-03-27 2011-07-27 東京エレクトロン株式会社 成膜方法および成膜装置
KR20110031466A (ko) * 2008-06-20 2011-03-28 어플라이드 머티어리얼스, 인코포레이티드 가스 분배 샤워헤드 스커트
US9404180B2 (en) * 2010-03-16 2016-08-02 Tokyo Electron Limited Deposition device
JP5567392B2 (ja) * 2010-05-25 2014-08-06 東京エレクトロン株式会社 プラズマ処理装置

Also Published As

Publication number Publication date
KR20110104434A (ko) 2011-09-22
TW201202470A (en) 2012-01-16
JP2011190519A (ja) 2011-09-29
KR101263565B1 (ko) 2013-05-13
US20110226181A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5445252B2 (ja) 成膜装置
JP5778132B2 (ja) 成膜装置
US8992686B2 (en) Mounting table structure, film forming apparatus and raw material recovery method
US9540733B2 (en) Film forming method, film forming apparatus and recording medium
JP5699425B2 (ja) 載置台構造及び成膜装置
JP6706903B2 (ja) タングステン膜の成膜方法
US9536745B2 (en) Tungsten film forming method
TWI461561B (zh) Film forming method and film forming device
KR102388169B1 (ko) RuSi막의 형성 방법 및 성막 장치
JP6391355B2 (ja) タングステン膜の成膜方法
TW200849398A (en) Method of forming film and film forming apparatus
WO2006046386A1 (ja) 成膜方法、半導体装置の製造方法、半導体装置、プログラムおよび記録媒体
US20120040085A1 (en) METHOD FOR FORMING Cu FILM AND STORAGE MEDIUM
JP2019031746A (ja) タングステン膜の成膜方法および成膜装置
JP2010212323A (ja) Cu膜の成膜方法および記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Ref document number: 5445252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250