JP5433269B2 - Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof - Google Patents

Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof Download PDF

Info

Publication number
JP5433269B2
JP5433269B2 JP2009070128A JP2009070128A JP5433269B2 JP 5433269 B2 JP5433269 B2 JP 5433269B2 JP 2009070128 A JP2009070128 A JP 2009070128A JP 2009070128 A JP2009070128 A JP 2009070128A JP 5433269 B2 JP5433269 B2 JP 5433269B2
Authority
JP
Japan
Prior art keywords
aluminum
ppm
stamper
forging
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009070128A
Other languages
Japanese (ja)
Other versions
JP2010222629A (en
Inventor
浩昭 北
孝太 白井
照己 金森
岳志 興津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Nippon Light Metal Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd, Nippon Light Metal Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2009070128A priority Critical patent/JP5433269B2/en
Publication of JP2010222629A publication Critical patent/JP2010222629A/en
Application granted granted Critical
Publication of JP5433269B2 publication Critical patent/JP5433269B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)
  • Forging (AREA)

Description

本発明は、アルミニウム表面に陽極酸化処理(以下、「アルマイト処理」とも記す。)を施した凹凸構造を形成した鋳型(スタンパ)を作製し、そのスタンパを用いて反射防止物品などを作製するための、処理皮膜欠陥の少ないアルミニウム原型、それを用いたスタンパ、及びそれらの製造方法に関する。   In the present invention, a mold (stamper) having a concavo-convex structure in which an aluminum surface is anodized (hereinafter also referred to as “alumite treatment”) is produced, and an antireflection article or the like is produced using the stamper. The present invention relates to an aluminum original mold having few treatment film defects, a stamper using the same, and a method for producing them.

近年、凹凸構造の周期を可視光の波長以下に制御した微細凹凸構造を有する反射防止構造を設けることによって、テレビや携帯電話などの液晶面の反射戻り光を減少させる研究がなされている。そしてその方法の一つとして、アルミニウムをアルマイト処理することで微細凹凸構造を生成し、この凹凸部を樹脂などの成形材料に転写することで反射防止物品を製造する方法が採用されてきており、アルマイト処理により形成した凹凸パターンとして、円錐や四角錐などの錐形体が報告されている。   In recent years, studies have been made to reduce reflected return light on a liquid crystal surface of a television or a mobile phone by providing an antireflection structure having a fine concavo-convex structure in which the period of the concavo-convex structure is controlled to be equal to or less than the wavelength of visible light. And as one of its methods, a method of producing an antireflection article by generating a fine concavo-convex structure by anodizing aluminum and transferring the concavo-convex part to a molding material such as resin has been adopted. As an uneven pattern formed by anodizing, cones such as cones and quadrangular pyramids have been reported.

アルミニウムにアルマイト処理を施し、この表面を鋳型として転写物を製造する場合、スタンパ表面の形状がそのまま転写物に反映されるため、その表面の規則性や形状が反射防止機能に重要である。
そのため、アルマイト処理皮膜の欠陥になりうるアルミニウム中の第2相粒子は極力少ないことが好ましく、その第2相粒子の元になる添加元素および不純物が少ない純アルミニウムを適用することで処理皮膜欠陥のない微細凹凸構造がえられることがわかっているため、純アルミニウムが用いられてきた(例えば特許文献1の段落〔0025〕参照)。
When aluminum is alumite-treated and a transfer product is produced using this surface as a mold, the shape of the stamper surface is directly reflected in the transfer product. Therefore, the regularity and shape of the surface are important for the antireflection function.
Therefore, it is preferable that the number of second phase particles in aluminum that can cause defects in an alumite-treated film is as small as possible. By applying pure aluminum with few additional elements and impurities that are the source of the second phase particles, Pure aluminum has been used since it is known that a fine uneven structure can be obtained (see, for example, paragraph [0025] of Patent Document 1).

特開2005−156695JP 2005-156695 A

しかしながら、純アルミニウムを単純に鋳造した場合、結晶粒が粗くなり易く、アルミニウム表面に粗い結晶の模様が生じてしまう。このため、表面の結晶模様が粗いままアルマイト処理を施すと、結晶の模様がアルマイト処理表面にも現れてしまう。そしてその結果、樹脂などの転写物の表面にもこの結晶の模様が転写されてしまい、見た目を損なってしまう。
この粗い結晶は塑性加工・熱処理による再結晶を利用し、微細な再結晶粒とすることができるが、この再結晶粒は元の粗い結晶粒の方位の痕跡が残り、結晶方位の不均一さが視覚で認識できる大きさで残ってしまう。
そのため、元の粗い結晶粒に起因した結晶方位の不均一さを取り除くために再結晶を繰り返す、すなわち、塑性加工と熱処理を繰り返す必要があり、工程数が増大して結果的にコスト高になってしまうという傾向があった。
However, when pure aluminum is simply cast, the crystal grains are likely to be rough, and a rough crystal pattern is generated on the aluminum surface. For this reason, if an alumite process is performed with the crystal pattern on the surface being rough, the crystal pattern also appears on the anodized surface. As a result, the crystal pattern is also transferred to the surface of a transfer product such as a resin, and the appearance is impaired.
This coarse crystal can be made into fine recrystallized grains by utilizing recrystallization by plastic working and heat treatment, but the recrystallized grains leave traces of the orientation of the original coarse crystal grains, and the crystal orientation is not uniform. Will remain in a size that can be recognized visually.
Therefore, it is necessary to repeat recrystallization in order to remove the non-uniformity of crystal orientation due to the original coarse crystal grains, that is, it is necessary to repeat plastic working and heat treatment, resulting in an increase in the number of steps and consequently cost. There was a tendency to end up.

本発明は、このような問題を解消すべく案出されたものであり、素材アルミニウムの結晶粒を微細化して塑性加工及び熱処理の回数低減を可能にするとともに第2相粒子の出現を抑制し、陽極酸化処理後に方向性のない均一な凹凸模様の形成が可能な反射防止物品の製造に用いられるスタンパ用アルミニウム原型、並びにそれを用いた反射防止物品の製造に用いられるスタンパを低コストで提供することを目的とする。 The present invention has been devised to solve such problems, and it is possible to reduce the number of plastic working and heat treatments by refining the crystal grains of the material aluminum and to suppress the appearance of second phase particles. A stamper used for the manufacture of anti-reflective articles that can be used to produce anti-reflective articles capable of forming a uniform uneven pattern with no directivity after anodizing treatment, and a stamper used for the manufacture of anti-reflective articles using the same are provided at low cost. The purpose is to do.

本発明の反射防止物品の製造に用いられるスタンパ用アルミニウム原型は、その目的を達成するため、Ti含有率を150〜500ppm及びB含有率を3〜50ppmとし、その他の不可避的不純物元素の合計が500ppm以下であり、残部がアルミニウムからなる成分組成を有することを特徴とする。
不可避的不純物であるFeの含有量は200ppm以下とすることが好ましい。
また、この反射防止物品の製造に用いられるスタンパ用アルミニウム原型は、平均結晶粒径が70μm以下である金属組織を有していることが好ましい。
In order to achieve the object, the stamper aluminum prototype used for manufacturing the antireflection article of the present invention has a Ti content of 150 to 500 ppm and a B content of 3 to 50 ppm, and the total of other inevitable impurity elements is It is 500 ppm or less, and the remainder has the component composition which consists of aluminum.
The content of Fe, which is an inevitable impurity, is preferably 200 ppm or less.
Moreover, it is preferable that the aluminum prototype for stampers used for manufacturing this antireflection article has a metal structure having an average crystal grain size of 70 μm or less.

このような反射防止物品の製造に用いられるスタンパ用アルミニウム原型は、Ti含有率を150〜500ppm及びB含有率を3〜50ppmとし、その他の不可避的不純物元素の合計が500ppm以下であり、残部がアルミニウムからなる成分組成を有するアルミニウム金属からなり、鋳造後の平均結晶粒径が1mm以下でありその後熱間鍛造により再結晶を平均結晶粒径が70μm以下とすることにより得られる。
熱間鍛造の代わりに冷間鍛造及び焼鈍することにしてもよい。また、熱間鍛造、冷間鍛造及び焼鈍を組み合わせてもよい。
このような反射防止物品の製造に用いられるスタンパ用アルミニウム原型のアルミニウム表面に陽極酸化処理することにより表面に微細凹凸構造を形成した反射防止物品の製造に用いられるスタンパが得られる。
なお、本発明の反射防止物品の製造に用いられるスタンパ用アルミニウム原型は、Al中に他の元素を積極的に含ませてはいるが、実質3N以上の純度のアルミニウム金属塊により形作られているため、本明細書では、「合金」とは記さず、「金属」と記すことにする。
The stamper aluminum prototype used in the manufacture of such an antireflection article has a Ti content of 150 to 500 ppm and a B content of 3 to 50 ppm, the total of other inevitable impurity elements is 500 ppm or less, and the balance is It is made of an aluminum metal having a component composition made of aluminum. The average crystal grain size after casting is 1 mm or less, and then recrystallization is performed by hot forging so that the average crystal grain size is 70 μm or less.
Instead of hot forging, cold forging and annealing may be performed. Moreover, you may combine hot forging, cold forging, and annealing.
By stamping the aluminum surface of the stamper aluminum prototype used in the manufacture of such an antireflection article, a stamper used in the manufacture of the antireflection article having a fine concavo-convex structure formed on the surface can be obtained.
The aluminum stamper for stamper used in the production of the antireflection article of the present invention is made of aluminum metal block having a purity of substantially 3N or more, although other elements are positively included in Al. Therefore, in this specification, it is not described as “alloy” but as “metal”.

本発明によれば、高純度のアルミニウムに添加する、微細化機能を有するTi及びBの添加量を細かく調整することによって微細化組織を有する鋳塊が得られるので、その後の、塑性加工回数を低減しても微細かつ方位の均一な結晶粒が得られるため、併せて他の不可避的不純物含有量を極力少なくしていることに伴う第2相粒子の出現が抑制されているため、その後に陽極酸化処理を施した時に方向性のない均一な模様の凹凸転写面が容易に形成され、精度の高いスタンパが、結果的に安価に提供できることとなる。   According to the present invention, an ingot having a refined structure can be obtained by finely adjusting the addition amount of Ti and B having a refinement function, which is added to high-purity aluminum. Since fine and uniform crystal grains can be obtained even if reduced, the appearance of second phase particles accompanying the reduction of the content of other inevitable impurities as much as possible is suppressed. When the anodic oxidation treatment is performed, a concavo-convex transfer surface having a uniform pattern with no directivity is easily formed, and as a result, a highly accurate stamper can be provided at low cost.

Ti添加量及び微細化剤添加量と鋳塊結晶粒の関係を示す金属組織写真Metallographic photographs showing the relationship between the amount of Ti and the amount of refiner added and ingot crystal grains Ti及び微細化剤の有無により鋳塊結晶粒の違いを示す金属組織写真Metallographic photographs showing differences in ingot crystal grains with and without Ti and refiner 実施例及び比較例における鋳塊結晶粒の状況を示す金属組織写真Metallographic photographs showing the status of ingot crystal grains in Examples and Comparative Examples

純度99.95%以上の純アルミニウムを一般的なDC鋳造法などによって鋳造した場合、柱状晶が得られ結晶粒の大きさはセンチメートルオーダーである。この粗い結晶粒を有する鋳塊に塑性加工及び熱処理を施し、再結晶を利用して微細結晶粒を得ることは可能である。しかしながら、この再結晶組織には鋳塊の粗い結晶粒の痕跡が残り、結晶粒径は目視不可能なレベルまで微細しても、方位の不均一さに起因した目視できる大きさの不均一さが残ってしまう。
この方位の不均一さは、後のアルマイト処理にて方位による皮膜の成長速度の差に起因する凹凸の原因となり、このアルマイト処理表面を鋳型とした転写物にもこの凹凸が転写されてしまい見た目を損なってしまう。この方位の不均一さを低減するために、塑性加工及び熱処理による再結晶を繰り返すことが有効であるが、工数の増加による製造コストの上昇が難点として挙げられる。
When pure aluminum having a purity of 99.95% or more is cast by a general DC casting method or the like, columnar crystals are obtained and the size of crystal grains is on the centimeter order. It is possible to obtain fine crystal grains by performing plastic working and heat treatment on the ingot having coarse crystal grains and utilizing recrystallization. However, in this recrystallized structure, traces of coarse crystal grains of the ingot remain, and even though the crystal grain size is fine to an invisible level, the non-uniformity of the visible size due to the non-uniform orientation Will remain.
This non-uniform orientation causes unevenness due to the difference in the growth rate of the film depending on the orientation in the subsequent anodizing treatment, and the unevenness is also transferred to the transferred material using the anodized surface as a mold. Will be damaged. In order to reduce this non-uniform orientation, it is effective to repeat recrystallization by plastic working and heat treatment, but an increase in manufacturing cost due to an increase in the number of man-hours is cited as a difficulty.

そこで、本発明者等は、純度の高いアルミニウムであってもアルマイト処理皮膜に均一な凹凸が形成できるように、鋳造組織を極力微細化する手段について鋭意検討を重ねてきた。
その過程で、純アルミニウムに前もって適量のTiを添加し、その後に少量のAl−5%Ti−1%B等の微細化剤を添加することによって微細化した鋳造組織が得られること、また、その後、塑性加工等の回数を減らしても微細な結晶粒が得られ、結晶方位の均一さ、製造コストの削減を達成することができることを見出した。また同時に、添加元素や不純物を最小減に抑えることによってアルマイト皮膜の欠陥になりうる第2相粒子の低減も達成されることを見出した。
以下にその詳細を説明する。
Accordingly, the present inventors have intensively studied means for miniaturizing the cast structure as much as possible so that uniform irregularities can be formed on the alumite-treated film even with high purity aluminum.
In that process, a refined cast structure can be obtained by adding an appropriate amount of Ti to pure aluminum in advance, and then adding a small amount of a refining agent such as Al-5% Ti-1% B, Thereafter, it was found that even if the number of times of plastic working or the like is reduced, fine crystal grains can be obtained, and the uniformity of crystal orientation and the reduction of manufacturing cost can be achieved. At the same time, it has been found that by reducing the additive elements and impurities to a minimum, the reduction of second phase particles that can cause defects in the alumite film is also achieved.
Details will be described below.

まず、本発明スタンパ用アルミニウム原型を構築しているアルミニウム金属の組織微細化のための成分組成から説明する。
鋳造組織の微細化
鋳塊の結晶粒が粗大であると痕跡が塑性加工及び熱処理後にも粗大に残ってしまうため、鋳塊の結晶粒を微細にすることでその痕跡が目立たないようにした。
アルミニウムの鋳塊の微細化のためには、一般的には、アルミニウム溶湯にAl−5%Ti−1%B、Al−3%Ti−1%B、Al−5%Ti−0.2%B等の微細化剤を加えTiB2粒子を核として結晶核の発生数を増やすことが行われている。しかしながら、純度99.95%以上のアルミニウムの場合、Al−5%Ti−1%Bを0.1〜1.0kg/tonなる通常の微細化剤の添加量では微細化せず、Ti量に換算して350ppmに相当する7.0kg/tonのAl−5%Ti−1%Bの微細化剤を添加しても微細化しなかった。
First, the component composition for refining the structure of the aluminum metal that constitutes the aluminum prototype for the stamper of the present invention will be described.
If the crystal grain of the refined ingot of the cast structure is coarse, the trace remains coarse even after plastic working and heat treatment, so that the trace is made inconspicuous by making the crystal grain of the ingot fine.
In order to refine an aluminum ingot, generally, Al-5% Ti-1% B, Al-3% Ti-1% B, Al-5% Ti-0.2% are used in molten aluminum. The number of crystal nuclei generated is increased by adding a finer such as B and using TiB 2 particles as nuclei. However, in the case of aluminum having a purity of 99.95% or more, Al-5% Ti-1% B is not refined by the addition amount of a normal refiner of 0.1 to 1.0 kg / ton, and the amount of Ti is reduced. Even when a 7.0 kg / ton Al-5% Ti-1% B micronizing agent corresponding to 350 ppm in terms of conversion was added, the material was not refined.

また一般的には、Al−Ti−B系の微細化剤の添加は、第2相粒子であるTiB2の増加につながりアルマイト処理皮膜の欠陥を増加させるとともに、その後の切削工程でのスクラッチの原因となる。そのため、微細化剤の添加量は、Al−5%Ti−1%Bにして0.10〜2.0kg/tonに抑えBの添加量を最小減とする必要がある。
一方、MgやSiと言った合金元素を添加することで微細化剤の添加量は抑えることができるが、その場合、合金元素に起因する第2相粒子が生じてしまいアルマイト処理皮膜の欠陥が増えてしまう。
In general, the addition of an Al-Ti-B-based micronizing agent leads to an increase in TiB 2 which is the second phase particle and increases defects in the alumite-treated film. Cause. Therefore, the addition amount of the micronizing agent needs to be Al-5% Ti-1% B and is suppressed to 0.10 to 2.0 kg / ton, and the addition amount of B needs to be reduced to the minimum.
On the other hand, the addition amount of the micronizing agent can be suppressed by adding an alloy element such as Mg or Si, but in this case, second-phase particles due to the alloy element are generated and defects in the alumite treatment film are caused. It will increase.

そこで、鋳造組織の微細化を補助する働きがあるものの第2相粒子を生じ難いTiに着目し、Al−Ti−B系の微細化剤の添加の前にTiのみを添加し、その後TiB2が増加しないように少なめのAl−Ti−B系の微細化剤を添加することで鋳塊の結晶粒を微細化することができた。
また、微細化剤の添加前のTiの添加量を減らした場合には、少なめの微細化剤添加量では微細化しなかった。Tiの添加量を鋳造組織が微細化するギリギリに抑えることで第2相粒子の生成量を抑えた。添加するTiは合計で150〜500ppmだが、300ppmに近いほど好ましい。150ppmに満たないと微細化効果が十分ではなく500ppmを超える程に多くなるとTiAl3のような第2相粒子が生じてしまう。
Accordingly, attention is paid to Ti which has a function of assisting the refinement of the cast structure but does not easily generate the second phase particles, and only Ti is added before the addition of the Al-Ti-B type micronizer, and then TiB 2 is added. The crystal grains of the ingot could be refined by adding a small amount of an Al—Ti—B type refining agent so as not to increase.
In addition, when the amount of Ti added before the addition of the micronizing agent was reduced, it was not refined with a small amount of micronizing agent added. The amount of second phase particles generated was suppressed by limiting the amount of Ti added to the limit at which the cast structure becomes finer. The total amount of Ti to be added is 150 to 500 ppm, but the closer to 300 ppm, the better. If the amount is less than 150 ppm, the effect of refining is not sufficient, and if the amount exceeds 500 ppm, second phase particles such as TiAl 3 are generated.

Ti添加量とAl−Ti−B系微細化剤添加量と小型鋳塊の結晶粒の微細化の関係を図1に示す。微細化剤添加前のTi添加量が50ppm以下の場合は十分に微細化しておらず(図1(a)〜(d)参照)、微細化剤添加前のTi添加量が100ppmにてほぼ微細化している(図1(e)、(f)参照)。一方、前もってTiを添加せず、単純にTi量に換算して350ppmに相当する微細化剤Al−5%Ti−1%Bのみを7kg/ton添加した場合には微細化していない(図1(c)参照)。微細化剤の添加以前にTiを100ppm以上添加し、その後に微細化剤Al−5%Ti−1%Bを添加することで微細化する。また、前もってTiを添加することで微細化剤の添加量を低減することができ、第2相粒子であるTiB2を低減できる。
また、この結果を受けて行った大型鋳塊の結晶粒の微細化について図2を示す。図2(a)はTi及び微細化剤添加を行わなかった場合、図2(b)は微細化剤添加前に300ppmのTiを添加し、その後0.15kg/tonの微細化剤Al−5%Ti−1%Bを添加した場合である。図2(b)に見られるように、Tiとその後のAl−Ti−B系微細化剤の添加により、200〜300μmの微細な結晶粒となっている。
FIG. 1 shows the relationship between the addition amount of Ti, the addition amount of the Al—Ti—B system refining agent, and the refinement of crystal grains of the small ingot. When the amount of Ti added before the addition of the micronizing agent is 50 ppm or less, it is not sufficiently miniaturized (see FIGS. 1A to 1D), and the amount of Ti added before the addition of the micronizing agent is almost fine at 100 ppm. (See FIGS. 1E and 1F). On the other hand, when Ti is not added in advance and only 7 kg / ton of a finer agent Al-5% Ti-1% B corresponding to 350 ppm is simply converted into Ti amount, it is not refined (FIG. 1). (See (c)). Prior to the addition of the micronizing agent, 100 ppm or more of Ti is added, and then the micronizing agent Al-5% Ti-1% B is added to refine the material. Moreover, the addition amount of the micronizing agent can be reduced by adding Ti in advance, and TiB 2 as the second phase particles can be reduced.
Further, FIG. 2 shows the refinement of crystal grains of a large ingot performed in response to this result. FIG. 2 (a) shows the case where Ti and the finening agent are not added. FIG. 2 (b) shows the case where 300 ppm of Ti is added before the addition of the finening agent, and then 0.15 kg / ton of the finening agent Al-5. This is a case where% Ti-1% B is added. As seen in FIG. 2B, fine crystal grains of 200 to 300 μm are formed by the addition of Ti and the subsequent Al—Ti—B finer.

また、Bの添加量は3〜50ppmだが、3〜10ppmが第2相粒子であるTiB2の量を制御できるためより好ましい。3ppmに満たないと微細化剤の微細化効果が作用せず、50ppmを超える程に多くなるとTiB2のような第2相粒子が生じやすくなってしまう。そのため、微細化剤の添加前にTiを添加することで、微細化剤の添加量を低減しBの添加量を抑えることが重要である。また、含有されているその他の不純物は500ppm以下であることが必要である。不純物が500ppmを超える程に多くなると第2相粒子が生じる原因となってしまう。このような組成のアルミニウムを用いることで第2相粒子が少なくかつ鋳造のみで微細化しかつ冷間鍛造後の焼鈍にて結晶が粗大化しないアルミニウム原型をえることができる。 The amount of B is 3~50ppm but preferable because it can control the amount of TiB 2 3~10Ppm is a second phase particles. If the amount is less than 3 ppm, the effect of refining the finer agent does not act, and if the amount exceeds 50 ppm, second phase particles such as TiB 2 tend to be generated. Therefore, it is important to reduce the addition amount of the micronizing agent and suppress the addition amount of B by adding Ti before the addition of the micronizing agent. Further, the other impurities contained must be 500 ppm or less. If the amount of impurities increases to exceed 500 ppm, the second phase particles are generated. By using aluminum having such a composition, it is possible to obtain an aluminum prototype that has a small number of second phase particles, is refined only by casting, and does not coarsen crystals by annealing after cold forging.

Feは純アルミニウムにおいても不可避的不純物として多く含有されやすくかつアルミニウムに固溶しにくい元素のため、不純物がFe単独の場合でもAl−Fe系の第2相粒子を生成しやすい。そのためFeの含有量は200ppm以下が好ましい。
以上に説明したように、アルミニウム溶湯中に添加・含有させるTi及びBの量、さらには不可避的不純物量を細かく規制すれば、通常のDC鋳造法などにより、結晶粒が微細化された鋳塊が得られる。
Fe is an element that is easily contained in pure aluminum as an unavoidable impurity and is not easily dissolved in aluminum, so that even when Fe is used alone, Al-Fe-based second phase particles are easily generated. Therefore, the Fe content is preferably 200 ppm or less.
As described above, if the amount of Ti and B to be added to and contained in the molten aluminum, and further the amount of inevitable impurities are finely regulated, the ingot in which the crystal grains are refined by a normal DC casting method or the like Is obtained.

次に、組織微細化のための処理方法について説明する。
塑性加工の方法
上記、成分組成の調整により鋳造組織の微細化が可能となり、この結晶粒の微細化により結晶の方位に起因した不均一さは低減できることになる。しかしながら、結晶粒度がいまだ大きく、目視にて目立たなくなる70μm以下を満たしていない場合は、さらに微細をすることが好ましい。
圧延や押出といった塑性加工方法では加工方向が限られているため鋳塊の結晶粒が加工方向に延びた加工組織となり、熱処理による再結晶後にも加工組織の痕跡が加工方向に残ってしまい、筋っぽい組織となってしまう。このような組織は均一ではなく見た目を損なってしまう。一方、自由鍛造は加工方向を自由に選べるため、異方性が無い均一な組織を作る上で有利である。
Next, a processing method for refining the structure will be described.
Method of plastic working As described above, it is possible to refine the cast structure by adjusting the composition of the components, and it is possible to reduce non-uniformity due to crystal orientation by refining the crystal grains. However, if the crystal grain size is still large and does not satisfy 70 μm or less, which is inconspicuous by visual observation, it is preferable to make it finer.
In plastic processing methods such as rolling and extrusion, the processing direction is limited, so the ingot crystal grains become a processing structure extending in the processing direction, and traces of the processing structure remain in the processing direction even after recrystallization by heat treatment. It will be like an organization. Such a structure is not uniform and looks bad. On the other hand, free forging is advantageous in forming a uniform structure without anisotropy because the processing direction can be freely selected.

また、圧延や押出は加工方向が限られているため、加工前の素材寸法と最終製品寸法にて加工度が決まってしまう。一方、自由鍛造は加工方向を入れ替えることで塑性加工を繰り返し加えることができるため、より大きな加工度を得ることができる。より大きな加工度は再結晶の駆動力となる歪の蓄積につながり、この歪の蓄積は再結晶組織をより微細とし、このようなアルミニウム原型を用いてアルマイト処理し、モスアイ構造を製造すると均一な微細凹凸が得られ、アルマイト処理皮膜を鋳型とした転写物の均一性に寄与する。   Also, since the processing direction of rolling and extrusion is limited, the degree of processing is determined by the material dimensions before processing and the final product dimensions. On the other hand, since free forging can repeatedly apply plastic working by changing the processing direction, a larger degree of processing can be obtained. A larger degree of processing leads to the accumulation of strain that becomes the driving force for recrystallization. This accumulation of strain makes the recrystallized structure finer, and anodized with such an aluminum prototype to produce a uniform moth-eye structure. Fine irregularities are obtained, which contributes to the uniformity of the transferred material using the alumite-treated film as a mold.

鍛造方法は、比較的粗い鋳造組織を破壊し均一化を主目的とする熱間鍛造と、熱間鍛造により均一化した素材の微細化を主目的とする冷間鍛造及びその後の熱処理に大別される。高い均一性を要求される場合、まず熱間鍛造にて均一化を図り、その後の冷間鍛造と熱処理にて微細化を図るが、高い均一性を要求されない場合は、熱間鍛造を省くことができる。
熱間鍛造に先立つ余熱温度は重要であり、低温すぎると鍛造時に再結晶が起こらないため均一化が期待できず、高温すぎると余熱時の粒成長が顕著となり粗大な結晶粒が生じこれの痕跡が冷間鍛造後も残ってしまう。余熱温度は370〜470℃が好ましく、420℃に近いほど好ましい。熱間鍛造は(1.5S―2/3U)×3サイクルを基本とし、より高い均一性が求められる場合には再余熱後に同様の熱間鍛造を繰り返す。
ここで、1.5Sや2/3Uという表記はJISにて定義されているように、1.5Sとは鍛錬成形比1.5の実体鍛錬を示し、2/3Uとは鍛錬成形比2/3のスエ込鍛錬を示す。この実体鍛錬とスエ込鍛錬の順序は問わず、逆になっても良い。
Forging methods are roughly divided into hot forging, which mainly aims to destroy and uniformize a relatively rough cast structure, cold forging, which mainly aims to refine the material that has been made uniform by hot forging, and subsequent heat treatment. Is done. If high uniformity is required, homogenize first by hot forging and then refine by cold forging and heat treatment. If high uniformity is not required, omit hot forging. Can do.
The preheating temperature prior to hot forging is important. If the temperature is too low, recrystallization does not occur during forging, so homogenization cannot be expected.If the temperature is too high, grain growth during preheating becomes prominent, resulting in coarse crystal grains. Will remain after cold forging. The preheating temperature is preferably 370 to 470 ° C, and is preferably closer to 420 ° C. Hot forging is based on (1.5S-2 / 3U) × 3 cycles, and when higher uniformity is required, similar hot forging is repeated after reheating.
Here, as the notation of 1.5S and 2 / 3U is defined in JIS, 1.5S indicates actual training with a forging ratio of 1.5, and 2 / 3U indicates forging ratio of 2 / Shows 3 suede training. The order of this physical training and the suede training is not limited, and may be reversed.

熱間鍛造のサイクル回数は多い方が均一組織を得られ易いが、鍛造時間の増加による鍛造材の温度の低下が大きくなる。この温度低下により鍛造材の温度が330℃未満になると再結晶を起こし難くなり、熱間鍛造の第一の目的である組織の均一化が達成できなくなる。数度繰り返す熱間鍛造で十分に組織を均一化するためには、その間の余熱温度を高める必要がでてくるが、余熱温度を高めるとこの余熱の際に結晶粒の粗大化が起こりやすくなる。そのため、鍛造のサイクル回数は多い方が良いが3サイクル程度に止めることが好ましい。鍛造のサイクル回数を減らし鍛造中の温度低下を抑え、これにより余熱温度を下げることもできるが、この場合、均一組織を得るためにサイクル回数の減少を熱間鍛造・再加熱の回数を増やすことで補うことになり、工業的に現実的では無い。また、熱間鍛造による再結晶の代わりに冷間鍛造+焼鈍を繰り返すことによる再結晶も考えられるが、工数が増えてしまい工業的に現実的ではない。   When the number of hot forging cycles is large, a uniform structure can be obtained more easily, but the temperature of the forging material is greatly lowered due to an increase in forging time. When the temperature of the forged material becomes less than 330 ° C. due to this temperature decrease, recrystallization is difficult to occur, and it becomes impossible to achieve the homogenization of the structure, which is the first purpose of hot forging. In order to make the structure sufficiently uniform by hot forging repeated several times, it is necessary to increase the preheating temperature during that time, but if the preheating temperature is increased, the coarsening of the crystal grains tends to occur during this preheating. . Therefore, it is better that the number of forging cycles is larger, but it is preferable to stop at about 3 cycles. It is possible to reduce the number of forging cycles and suppress the temperature drop during forging, thereby reducing the preheating temperature. In this case, in order to obtain a uniform structure, increase the number of hot forging and reheating to reduce the number of cycles. Therefore, it is not realistic industrially. Also, recrystallization by repeating cold forging + annealing instead of recrystallization by hot forging is conceivable, but the number of man-hours increases and it is not industrially realistic.

また、(2S―1/2U)×3サイクルのように一度の鍛錬成形比を大きくすると同じサイクル回数でも歪の蓄積が多く結晶粒微細化の点では有利である。しかしながら、鍛造時に表面のシワが内部に巻き込まれやすく、このシワが後のアルマイト処理時に欠陥となって現れるため好ましくない。
冷間鍛造は再結晶粒の微細化のための歪の蓄積が主目的のため、より高い鍛錬成形比の方が微細化には良い。しかしながら、鍛錬成形比が高すぎる場合、鍛造時に割れが入るため(1.5S―2/3U)×3サイクルが良い。また、冷間鍛造時には加工熱により鍛造材の温度が上昇する。歪の開放が顕著となる150℃を超えた場合は、水冷・空冷等により冷却する方が好ましい。
Further, if the forging ratio is increased once as in (2S-1 / 2U) × 3 cycles, the accumulation of strain is large even in the same number of cycles, which is advantageous in terms of crystal grain refinement. However, it is not preferable because the surface wrinkles are easily caught inside during forging, and the wrinkles appear as defects during the subsequent alumite treatment.
Since cold forging is mainly aimed at accumulating strain for recrystallized grain refinement, a higher forging ratio is better for refinement. However, if the forging ratio is too high, cracking occurs during forging (1.5S-2 / 3U) × 3 cycles. Further, during cold forging, the temperature of the forging material rises due to processing heat. When the temperature exceeds 150 ° C. at which the strain release becomes significant, it is preferable to cool by water cooling, air cooling or the like.

鍛造後の焼鈍は、冷間鍛造にて蓄積された歪を駆動力とし再結晶を起こさせるために行う。焼鈍温度は重要であり、低すぎると再結晶が起こらず加工組織が残ってしまう。一方、高すぎると粒成長が起こってしまい粗大な結晶粒は生じてしまう。焼鈍温度は330〜380℃が好ましく、340℃に近いほど良い。焼鈍時間は短すぎると加工組織が残ってしまい、長すぎると不純物元素に起因した第2相粒子の粗大化を生じる。焼鈍時間は30〜120minが好ましい。   Annealing after forging is performed in order to cause recrystallization using the strain accumulated in cold forging as a driving force. The annealing temperature is important, and if it is too low, recrystallization does not occur and a processed structure remains. On the other hand, if it is too high, grain growth occurs and coarse crystal grains are produced. The annealing temperature is preferably 330 to 380 ° C, and the closer to 340 ° C, the better. If the annealing time is too short, a processed structure remains, and if it is too long, the second phase particles are coarsened due to the impurity elements. The annealing time is preferably 30 to 120 minutes.

このようにして製造した鍛造・焼鈍材を所望形状に切削加工してアルミニウム原型とする。アルミニウム原型は、板形状でもロール形状でもよいが、本発明による素材は切削加工によって容易に所望の形状を得ることができる。特に、アルミニウム原型は、ロール形状に切削し、表面をアルマイト処理することで、微細凹凸構造を連続的に転写でき、生産性を高めることが可能である。スパッタ法などによって、表面にアルミニウムを蒸着したロール形状の素材を作製する場合、ロール形状にアルミニウムをスパッタできる特殊な装置が必要となってしまうため、コストが増大してしまうが、本発明の素材からは容易にロール形状を得ることができる。得られたアルミニウム原型に、公知の方法によってアルマイト処理をした微細凹凸構造を形成する。具体的には、陽極酸化処理によって深さ方向に細孔形成を行う工程と、エッチングによってアルミナ層面内方向に孔径を拡大する工程とを繰り返すことで所望の形状の微細凹凸構造を得ることができる。   The forged / annealed material thus manufactured is cut into a desired shape to obtain an aluminum prototype. The aluminum prototype may be plate-shaped or roll-shaped, but the material according to the present invention can easily obtain a desired shape by cutting. In particular, the original aluminum can be cut into a roll shape and anodized on the surface, whereby the fine concavo-convex structure can be continuously transferred and the productivity can be increased. When producing a roll-shaped material with aluminum deposited on the surface by sputtering or the like, a special device that can sputter aluminum into a roll shape is required, which increases costs, but the material of the present invention Can easily obtain a roll shape. A fine concavo-convex structure formed by alumite treatment by a known method is formed on the obtained aluminum prototype. Specifically, a fine concavo-convex structure having a desired shape can be obtained by repeating a step of forming pores in the depth direction by anodization and a step of expanding the pore diameter in the in-plane direction of the alumina layer by etching. .

微細凹凸構造を形成する方法は公知の方法を用いればよく、特に限定されないが、例えば、0.3Mシュウ酸浴中、化成電圧40V、浴温17℃にて10分間程度陽極酸化を行い、基板上のポーラスアルミナを得た後、30℃の1mol/Lの燐酸に19分間程度浸漬させてエッチングを行う工程をくりかえすことで、微細凹凸構造をえることができる。
陽極酸化工程とエッチング工程とを短い間隔で多数回繰り返すと、略円錐状の細孔を得ることができる。また、陽極酸化工程とエッチング工程の時間を調整することで逆釣鐘状や、先鋭形状の凹凸構造を形成することができ、適宜形状を変化させたスタンパを製造することができる。
なお、本明細書中でアルマイト処理とはこのように陽極酸化によって得られた陽極酸化皮膜をエッチングなどによって所望の形状にする一連の処理も含むものとする。
A well-known method may be used as a method for forming the fine concavo-convex structure, and is not particularly limited. For example, the substrate is anodized in a 0.3 M oxalic acid bath at a formation voltage of 40 V and a bath temperature of 17 ° C. for about 10 minutes. After obtaining the above porous alumina, a fine concavo-convex structure can be obtained by repeating the etching process by dipping in 1 mol / L phosphoric acid at 30 ° C. for about 19 minutes.
When the anodizing step and the etching step are repeated many times at short intervals, substantially conical pores can be obtained. Further, by adjusting the time of the anodizing step and the etching step, a reverse bell shape or a sharp concavo-convex structure can be formed, and a stamper whose shape is appropriately changed can be manufactured.
In this specification, the alumite treatment includes a series of treatments in which the anodized film thus obtained by anodic oxidation is formed into a desired shape by etching or the like.

以下の実施例、比較例では、得られた加工品をHCl:HNO3:HF=75:25:5のエッチング液にてエッチングし、評価に供している。
評価方法は、結晶粒度については求積法を用いた。第2相粒子については、EPMAによる直接観察を行い、その粒子数と面積率にて行った。結晶方位の不均一さについては、エッチング後の外観観察と光沢度による方法を併用した。結晶方位の差は、エッチング時の溶解速度の差として現れエッチング後に凹凸となって現れる。結晶粒が微細かつ均一でありその結晶方位がランダムな場合、エッチングによりキメの細かい凹凸が生じるため、乱反射が起こり光沢度は低くなる。
In the following examples and comparative examples, the obtained processed products are etched with an etching solution of HCl: HNO 3 : HF = 75: 25: 5 and used for evaluation.
As the evaluation method, the quadrature method was used for the crystal grain size. The second phase particles were directly observed by EPMA, and the number of particles and the area ratio were measured. For the non-uniformity of the crystal orientation, a method based on the appearance observation after etching and the glossiness was used in combination. The difference in crystal orientation appears as a difference in dissolution rate during etching and appears as irregularities after etching. When the crystal grains are fine and uniform and the crystal orientation is random, fine irregularities are generated by etching, so that irregular reflection occurs and the glossiness becomes low.

実施例1:
純度99.98%のアルミニウムに316ppmのTiを添加し溶解した。この溶湯を508mm厚×1110mm巾のDC鋳造鋳型にて、鋳造温度680℃、鋳造速度52mm/min、冷却水量230L/min/鋳型長さ1m当り、の鋳造条件にて長さ3850mmの鋳塊を鋳造した。この鋳造の際、鋳型へ流れ込む溶湯へ微細化剤(Al−5%Ti−1%B)を溶湯1ton当り0.15kgの比率になるように連続的に添加し、アルミニウムの純度が99.94%、Ti含有量が324ppm、B含有量が7ppm、Fe含有量が83ppm、それら以外の不純物量の合計が140ppmの鋳塊とした。
この鋳塊より508mm×260mm×213mmを切出し後の鍛造素材とした。
Example 1:
316 ppm of Ti was added to 99.98% purity aluminum and dissolved. This molten metal was cast into a 3850 mm long ingot in a casting condition of 508 mm thick × 1110 mm wide DC casting mold at a casting temperature of 680 ° C., a casting speed of 52 mm / min, a cooling water amount of 230 L / min and a mold length of 1 m. Casted. During the casting, a refiner (Al-5% Ti-1% B) is continuously added to the molten metal flowing into the mold so that the ratio of 0.15 kg per 1 ton of molten metal is obtained, and the purity of aluminum is 99.94. %, Ti content was 324 ppm, B content was 7 ppm, Fe content was 83 ppm, and the total of other impurities was 140 ppm.
From this ingot, 508 mm × 260 mm × 213 mm was used as a forging material after cutting.

この鍛造素材を414℃まで加熱し(2/3U―1.5S)×3サイクルの1回目の熱間鍛造を行い281℃にて終えた。ついで386℃に再加熱を行った後に(2/3U―1.5S)×3サイクルの2回目の熱間鍛造を行い277℃にて終えた。
この素材を17℃まで冷却後、(2/3U―1.5S)×2サイクル―0.56U−2Sの冷間鍛造を行い、φ240mm×600mmLの形状とし143℃にて終えた。
この鍛造塊を340℃にて60min焼鈍し、これよりφ240mm×20mmLを切出し、切断面を平坦とするためのフライス加工を行った。
This forging material was heated to 414 ° C. (2 / 3U-1.5S) × 3 cycles of the first hot forging and finished at 281 ° C. Then, after reheating to 386 ° C., the second hot forging of (2 / 3U-1.5S) × 3 cycles was performed, and finished at 277 ° C.
After this material was cooled to 17 ° C., it was cold forged (2 / 3U-1.5S) × 2 cycles−0.56U-2S to obtain a shape of φ240 mm × 600 mmL and finished at 143 ° C.
The forged ingot was annealed at 340 ° C. for 60 min, and φ240 mm × 20 mmL was cut out therefrom, and milling was performed to flatten the cut surface.

その後、研磨面をEPMAにて確認したところ、第2相粒子の面積率が0.03%、粒子数が118個/mm2と少なかった。
得られた加工品をHCl:HNO3:HF=75:25:5のエッチング液にてエッチングし、各種の評価に供した。
その評価結果を表4に示す。
結晶方位の不均一さは、鋳造時に微細化していることと熱間鍛造・冷間鍛造を組合わせたため目立たず、光沢度の平均が8.9となった。この実物を図3(a)に示す。
また平均結晶粒度は、49μmと微細であった。
Then, when the polished surface was confirmed by EPMA, the area ratio of the second phase particles was 0.03% and the number of particles was 118 / mm 2 .
The obtained processed product was etched with an etching solution of HCl: HNO 3 : HF = 75: 25: 5 and subjected to various evaluations.
The evaluation results are shown in Table 4.
The non-uniformity of the crystal orientation was not noticeable due to the combination of refinement during casting and hot forging / cold forging, resulting in an average glossiness of 8.9. This actual product is shown in FIG.
The average crystal grain size was as fine as 49 μm.

実施例2;
純度99.98%のアルミニウムに316ppmのTiを添加し溶解した。この溶湯を508mm厚×1110mm巾のDC鋳造鋳型にて、鋳造温度680℃、鋳造速度52mm/min、冷却水量230L/min/鋳型長さ1m当り、の鋳造条件にて長さ3850mmの鋳塊を鋳造した。この鋳造の際、鋳型へ流れ込む溶湯へ微細化剤(Al−5%Ti−1%B)を溶湯1ton当り0.15kgの比率になるように連続的に添加し、アルミニウムの純度が99.94%、Ti含有量が324ppm、B含有量が7ppm、Fe含有量が83ppm、それら以外の不純物量の合計が140ppmの鋳塊とした。
この鋳塊より508mm×260mm×213mmを切出し後の鍛造素材とした。
Example 2;
316 ppm of Ti was added to 99.98% purity aluminum and dissolved. This molten metal was cast into a 3850 mm long ingot in a casting condition of 508 mm thick × 1110 mm wide DC casting mold at a casting temperature of 680 ° C., a casting speed of 52 mm / min, a cooling water amount of 230 L / min and a mold length of 1 m. Casted. During the casting, a refiner (Al-5% Ti-1% B) is continuously added to the molten metal flowing into the mold so that the ratio of 0.15 kg per 1 ton of molten metal is obtained, and the purity of aluminum is 99.94. %, Ti content was 324 ppm, B content was 7 ppm, Fe content was 83 ppm, and the total of other impurities was 140 ppm.
From this ingot, 508 mm × 260 mm × 213 mm was used as a forging material after cutting.

熱間鍛造を行わずこの素材が15℃の状態から(2/3U―1.5S)×2サイクル−0.56U―2Sの冷間鍛造を行い、φ240mm×600mmLの形状とし135℃にて終えた。
この鍛造塊を340℃にて60min焼鈍し、これよりφ240mm×20mmLを切出し、切断面を平坦とするためのフライス加工を行った。
Without hot forging, this material was cold forged (2 / 3U-1.5S) x 2 cycles-0.56U-2S from a state of 15 ° C and finished at 135 ° C in a shape of φ240mm x 600mmL It was.
The forged ingot was annealed at 340 ° C. for 60 min, and φ240 mm × 20 mmL was cut out therefrom, and milling was performed to flatten the cut surface.

その後、研磨面をEPMAにて確認したところ、第2相粒子の面積率が0.03%、粒子数が120個/mm2と少なかった。
得られた加工品をHCl:HNO3:HF=75:25:5のエッチング液にてエッチングし、各種の評価に供した。
その評価結果を表4に併せて示す。
結晶方位の不均一さは、鋳造時に微細化しているため目立たず、実施例1には及ばないものの光沢度は13.7となった。この実物を図3(b)に示す。
また平均結晶粒度は、52μmと十分微細であった。
Thereafter, when the polished surface was confirmed by EPMA, the area ratio of the second phase particles was 0.03%, and the number of particles was as small as 120 particles / mm 2 .
The obtained processed product was etched with an etching solution of HCl: HNO 3 : HF = 75: 25: 5 and subjected to various evaluations.
The evaluation results are also shown in Table 4.
The non-uniformity of the crystal orientation was not noticeable because it was refined at the time of casting, and although it did not reach Example 1, the glossiness was 13.7. This actual product is shown in FIG.
The average crystal grain size was sufficiently fine at 52 μm.

比較例1;
実施例よりも不純物の多い純度99.9%のアルミニウムにTiを添加せずに溶解した。純度99.95%未満のアルミニウムは、Tiを添加しなくても微細化剤のみの添加で比較的容易に微細化が可能である。この溶湯を508mm厚×1110mm巾のDC鋳造鋳型にて、鋳造温度680℃、鋳造速度50mm/min、冷却水量315L/min/鋳型長さ1m当り、の鋳造条件にて長さ3850mmの鋳塊を鋳造した。この鋳造の際、鋳型へ流れ込む溶湯へ微細化剤(Al−5%Ti−1%B)を溶湯1ton当り3.60kgの比率になるように連続的に添加し、アルミニウムの純度が99.9%、Ti含有量が75ppm、B含有量が7ppm、Fe含有量が501ppm、それら以外の不純物量の487ppmの鋳塊とした。
この鋳塊より508mm×500mm×500mmを切出し後の鍛造素材とした。
Comparative Example 1;
It melt | dissolved, without adding Ti to the aluminum of purity 99.9% with more impurities than an Example. Aluminum having a purity of less than 99.95% can be refined relatively easily by adding only a micronizing agent without adding Ti. This molten metal was cast into a 850 mm thick × 1110 mm wide DC casting mold with a casting temperature of 680 ° C., a casting speed of 50 mm / min, a cooling water amount of 315 L / min, and a casting length of 3850 mm under casting conditions of 1 m. Casted. During the casting, a refiner (Al-5% Ti-1% B) is continuously added to the molten metal flowing into the mold so as to have a ratio of 3.60 kg per ton of molten metal, and the purity of aluminum is 99.9. %, Ti content was 75 ppm, B content was 7 ppm, Fe content was 501 ppm, and other impurities were 487 ppm ingots.
A forging material after cutting out 508 mm × 500 mm × 500 mm from this ingot was used.

この鍛造素材を380℃まで加熱し2.97Sの1回目の熱間鍛造を行い350℃にて終えた。ついで380℃に再加熱を行った後に(1/2U―2S)×2サイクルの2回目の熱間鍛造を行い320℃にて終えた。
この素材を室温まで冷却後、(1/2U―2S)×2サイクルの冷間鍛造を行い、φ230mm×3060mmLの形状とした。この鍛造塊を340℃にて60min焼鈍し、これよりφ230mm×20mmLを切出し、切断面を平坦とするためのフライス加工および研磨を行った。
The forging material was heated to 380 ° C., and the first hot forging of 2.97 S was performed and finished at 350 ° C. Next, after reheating to 380 ° C., the second hot forging of (1 / 2U−2S) × 2 cycles was performed, and the operation was completed at 320 ° C.
After cooling this material to room temperature, cold forging of (1 / 2U-2S) × 2 cycles was performed to obtain a shape of φ230 mm × 3060 mmL. This forged ingot was annealed at 340 ° C. for 60 min, and φ230 mm × 20 mmL was cut out from this and milled and polished to flatten the cut surface.

その後、研磨面をEPMAにて確認したところ、Fe501ppmとFe、Ti、B以外の不純物484ppmに起因する第2相粒子の面積率が0.20%、粒子数が832個/mm2と実施例に比べて多かった。
また、HCl:HNO3:HF=75:25:5のエッチング液にてエッチングしたところ、結晶方位の不均一さは、鋳造時に微細化剤を添加したため目立たず光沢度は4.4となった。この実物を図3(c)に示す。Ti含有量が実施例よりも少ないにも関わらず不均一さが目立たないのは、純度が99.95%未満でありTiを添加しなくても微細化剤のみで鋳造組織が微細化しているためである。
平均結晶粒度は、41μmと十分微細であった。
結晶粒は微細かつ均一であり結晶方位もランダムなものの、第2相粒子が多かった。
Thereafter, the polished surface was confirmed by EPMA. As a result, the area ratio of the second phase particles due to Fe501 ppm and impurities 484 ppm other than Fe, Ti, and B was 0.20%, and the number of particles was 832 particles / mm 2. It was more than.
Further, when etching was performed with an etching solution of HCl: HNO 3 : HF = 75: 25: 5, the non-uniformity of the crystal orientation was inconspicuous and the glossiness was 4.4 because a finer was added during casting. . This actual product is shown in FIG. Even though the Ti content is lower than in the examples, the non-uniformity is not noticeable because the purity is less than 99.95%, and the cast structure is refined only with the micronizing agent even without adding Ti. Because.
The average grain size was sufficiently fine as 41 μm.
Although the crystal grains were fine and uniform and the crystal orientation was random, there were many second phase particles.

比較例2;
比較例1よりも不純物を低減し純度99.95%のアルミニウムを溶解した。この溶湯を508mm厚×1110mm巾のDC鋳造鋳型にて、鋳造温度680℃、鋳造速度52mm/min、冷却水量230L/min/鋳型長さ1m当り、の鋳造条件にて長さ3850mmの鋳塊を鋳造した。この際、微細化剤は投入せず、アルミニウムの純度が99、95%、Ti含有量が1ppm、B含有量が9ppm、Fe含有量が161ppm、それら以外の不純物量の319ppmの鋳塊とした。
この鋳塊より300mm×300mm×300mmを切出し後の鍛造素材とした。
Comparative Example 2;
Impurities were reduced as compared with Comparative Example 1, and aluminum having a purity of 99.95% was dissolved. This molten metal was cast into a 3850 mm long ingot in a casting condition of 508 mm thick × 1110 mm wide DC casting mold at a casting temperature of 680 ° C., a casting speed of 52 mm / min, a cooling water amount of 230 L / min and a mold length of 1 m. Casted. At this time, the refiner was not added, and the aluminum purity was 99, 95%, the Ti content was 1 ppm, the B content was 9 ppm, the Fe content was 161 ppm, and the other impurities were 319 ppm ingots. .
300 mm × 300 mm × 300 mm was used as the forging material after cutting from this ingot.

この鍛造素材を414℃まで加熱し(2S―1/2U)×2サイクルの1回目の熱間鍛造を行い354℃にて終えた。ついで393℃に再加熱を行った後に(2S―1/2U)×2サイクルの2回目の熱間鍛造を行い323℃にて終えた。
この素材を32℃まで冷却後、(2S―1/2U)×2サイクルの冷間鍛造を行い、300mmT×250mmW×360mmLの形状とし144℃にて終えた。この鍛造塊を340℃にて60min焼鈍し、これより300mmT×200mmW×20mmLを切出し、切断面を平坦とするためのフライス加工および研磨を行った。
The forging material was heated to 414 ° C., and the first hot forging of (2S−1 / 2U) × 2 cycles was performed and finished at 354 ° C. Subsequently, after reheating to 393 ° C., the second hot forging of (2S−1 / 2U) × 2 cycles was performed, and finished at 323 ° C.
After cooling this material to 32 ° C., cold forging of (2S−1 / 2U) × 2 cycles was performed to form a shape of 300 mmT × 250 mmW × 360 mmL and finished at 144 ° C. This forged ingot was annealed at 340 ° C. for 60 min, and 300 mmT × 200 mmW × 20 mmL was cut out therefrom, and milling and polishing for flattening the cut surface were performed.

その後、研磨面をEPMAにて確認したところ、161ppmのFeと、Fe、Ti、B以外の不純物319ppmに起因する第2相粒子の面積率が0.08%、粒子数が169個/mm2となり、比較例1よりも第2相粒子が低減された。
また、HCl:HNO3:HF=75:25:5のエッチング液にてエッチングしたところ、結晶方位の不均一さは、鋳造時に微細化剤を添加しなかったため目立ち、光沢度は27.3となった。この実物を図3(d)に示す。
また平均結晶粒度は、40μmと十分微細であった。
Thereafter, when the polished surface was confirmed by EPMA, the area ratio of the second phase particles due to 161 ppm of Fe and 319 ppm of impurities other than Fe, Ti, and B was 0.08%, and the number of particles was 169 particles / mm 2. Thus, the second phase particles were reduced as compared with Comparative Example 1.
Further, when etching was performed with an etching solution of HCl: HNO 3 : HF = 75: 25: 5, the crystal orientation non-uniformity was conspicuous because no finer was added during casting, and the glossiness was 27.3. became. This actual product is shown in FIG.
The average grain size was sufficiently fine as 40 μm.

比較例3;
比較例2よりも不純物を低減し純度99.99%のアルミニウムを溶解した。この溶湯を508mm厚×1110mm巾のDC鋳造鋳型にて、鋳造温度680℃、鋳造速度52mm/min、冷却水量230L/min/鋳型長さ1m当り、の鋳造条件にて長さ3850mmの鋳塊を鋳造した。この際、微細化剤は投入せず、アルミニウムの純度が99.99%、Ti含有量が0ppm、B含有量が0ppm、Fe含有量が15ppm、それら以外の不純物量の84ppmの鋳塊とした。
この鋳塊より300mm×300mm×300mmを切出し後の鍛造素材とした。
Comparative Example 3;
Impurities were reduced as compared with Comparative Example 2 and aluminum having a purity of 99.99% was dissolved. This molten metal was cast into a 3850 mm long ingot in a casting condition of 508 mm thick × 1110 mm wide DC casting mold at a casting temperature of 680 ° C., a casting speed of 52 mm / min, a cooling water amount of 230 L / min and a mold length of 1 m. Casted. At this time, the refiner was not added, and the aluminum purity was 99.99%, the Ti content was 0 ppm, the B content was 0 ppm, the Fe content was 15 ppm, and the other impurities were 84 ppm ingots. .
300 mm × 300 mm × 300 mm was used as the forging material after cutting from this ingot.

この鍛造素材を420℃まで加熱し(2S―1/2U)×2サイクルの1回目の熱間鍛造を行い360℃にて終えた。ついで423℃に再加熱を行った後に(2S―1/2U)×2サイクルの2回目の熱間鍛造を行い356℃にて終えた。
この素材を31℃まで冷却後、(2S―1/2U)×2サイクルの冷間鍛造を行い、300mmT×250mmW×360mmLの形状とし128℃にて終えた。この鍛造塊を340℃にて60min焼鈍し、これより300mmT×200mmW×20mmLを切出し、切断面を平坦とするためのフライス加工および研磨を行った。
The forging material was heated to 420 ° C., and the first hot forging of (2S−1 / 2U) × 2 cycles was performed and finished at 360 ° C. Subsequently, after reheating to 423 ° C., the second hot forging of (2S−1 / 2U) × 2 cycles was performed, and the process was completed at 356 ° C.
After cooling this material to 31 ° C., cold forging of (2S−1 / 2U) × 2 cycles was performed to obtain a shape of 300 mmT × 250 mmW × 360 mmL and finished at 128 ° C. This forged ingot was annealed at 340 ° C. for 60 min, and 300 mmT × 200 mmW × 20 mmL was cut out therefrom, and milling and polishing for flattening the cut surface were performed.

その後、研磨面をEPMAにて確認したところ、15ppmのFeと、Fe、Ti、B以外の不純物84ppmに起因する第2相粒子の面積率が0.01%、粒子数が57個/mm2となり、比較例3よりも第2相粒子が低減された。
また、HCl:HNO3:HF=75:25:5のエッチング液にてエッチングしたところ、結晶方位の不均一さは、鋳造時に微細化剤を添加しなかったため目立ち光沢度は50.4となった。この実物を図3(e)に示す。
しかしながら、不純物を低減したため冷間鍛造後の焼鈍時に結晶粒成長が起こりやすくなり、平均結晶粒径は86μmと粗大になり始めた。
Thereafter, when the polished surface was confirmed by EPMA, the area ratio of the second phase particles due to 15 ppm of Fe and 84 ppm of impurities other than Fe, Ti, and B was 0.01%, and the number of particles was 57 particles / mm 2. Thus, the second phase particles were reduced as compared with Comparative Example 3.
Further, when etching was performed with an etching solution of HCl: HNO 3 : HF = 75: 25: 5, the crystal orientation non-uniformity was noticeable glossiness of 50.4 because no finer was added during casting. It was. This actual product is shown in FIG.
However, since the impurities were reduced, crystal grain growth was likely to occur during annealing after cold forging, and the average crystal grain size began to become as coarse as 86 μm.

比較例4;
純度99.98%のアルミニウムを溶解した。この溶湯を508mm厚×1110mm巾のDC鋳造鋳型にて、鋳造温度680℃、鋳造速度52mm/min、冷却水量230L/min/鋳型長さ1m当り、の鋳造条件にて長さ3850mmの鋳塊を鋳造した。この際、微細化剤は投入せず、アルミニウムの純度が99.99%、Ti含有量が1ppm、B含有量が6ppm、Fe含有量が83ppm、それら以外の不純物量の150ppmの鋳塊とした。
この鋳塊より480mm×480mm×480mmを切出し後の鍛造素材とした。
Comparative Example 4;
Aluminum with a purity of 99.98% was dissolved. This molten metal was cast into a 3850 mm long ingot in a casting condition of 508 mm thick × 1110 mm wide DC casting mold at a casting temperature of 680 ° C., a casting speed of 52 mm / min, a cooling water amount of 230 L / min and a mold length of 1 m. Casted. At this time, the refiner was not added, and the aluminum purity was 99.99%, the Ti content was 1 ppm, the B content was 6 ppm, the Fe content was 83 ppm, and the other impurities were 150 ppm ingots. .
480 mm × 480 mm × 480 mm was cut from this ingot and used as the forging material after cutting.

この鍛造素材を412℃まで加熱し(2/3U―1.5S)×3サイクルの1回目の熱間鍛造を行い308℃にて終えた。ついで379℃に再加熱を行った後に(2/3U―1.5S)×3サイクルの2回目の熱間鍛造を行い318℃にて終えた。
この素材を19℃まで冷却後、(2/3U―1.5S)×2サイクル―2/3Uの1回目の冷間鍛造を行い120℃にて終えた。続く冷間鍛造による発熱にて150℃を超える可能性があったため、再度冷却を行い40℃にした後、5.72Sの2回目の冷間鍛造を行い132℃で終えた。続く冷間鍛造による発熱にて150℃を超える可能性があったため、再度冷却を行い21℃とした後、1.28Sの3回目の冷間鍛造を行い、φ245mm×2350mmLの形状とし51℃にて終えた。
この鍛造塊を340℃にて60min焼鈍し、これよりφ240mm×20mmLを切出し、切断面を平坦とするためのフライス加工および研磨を行った。
This forging material was heated to 412 ° C. (2 / 3U-1.5S) × 3 cycles of the first hot forging and finished at 308 ° C. Subsequently, after reheating to 379 ° C., the second hot forging of (2 / 3U-1.5S) × 3 cycles was performed, and the operation was completed at 318 ° C.
After cooling this material to 19 ° C., the first cold forging of (2 / 3U-1.5S) × 2 cycles−2 / 3U was performed and finished at 120 ° C. Since there was a possibility of exceeding 150 ° C. due to the heat generated by the subsequent cold forging, it was cooled again to 40 ° C., and then the second cold forging of 5.72 S was performed and finished at 132 ° C. Since there was a possibility that it would exceed 150 ° C due to the heat generated by the subsequent cold forging, it was cooled again to 21 ° C, and then the third cold forging of 1.28S was performed to obtain a shape of φ245 mm × 2350 mmL to 51 ° C. Finished.
The forged ingot was annealed at 340 ° C. for 60 min, and φ240 mm × 20 mmL was cut out therefrom, and milling and polishing for flattening the cut surface were performed.

その後、塩酸:硝酸:フッ酸=75:25:5のエッチング液にてエッチングしたところ、結晶方位の不均一さは、鍛造時の据込・鍛伸回数を増やすことでやや軽減したものの光沢度は28.9となり、工数を増やした割にはTiを添加した実施例に比べ不均一さの軽減が達成不十分であった。この実物を図3(f)に示す。
また、平均結晶粒径は35μmと十分微細であった。
After that, etching with an etching solution of hydrochloric acid: nitric acid: hydrofluoric acid = 75: 25: 5 revealed that the non-uniformity of the crystal orientation was slightly reduced by increasing the number of upsetting / forging times during forging. As a result, the non-uniformity was not sufficiently reduced as compared with the example in which Ti was added. This actual product is shown in FIG.
The average crystal grain size was sufficiently fine as 35 μm.

以上の実施例及び比較例について、各例素材の成分組成、製造条件並びに鍛造・焼鈍品の評価結果を、表1〜4に示している。
これらを見てもわかるように、実施例は方位の不均一さ、光沢度、結晶粒度全てにおいて、規定条件をクリアしているため、アルマイト処理を施してスタンパを形成する際にアルマイト処理欠陥がなく均一な微細凹凸構造をえることができている。
About the above Example and comparative example, the component composition of each example raw material, manufacturing conditions, and the evaluation result of a forge / annealing product are shown to Tables 1-4.
As can be seen from these, the examples clear the specified conditions in all of the non-uniformity of orientation, glossiness, and crystal grain size, so there are alumite processing defects when forming the stamper by applying alumite treatment. And a uniform fine concavo-convex structure can be obtained.

Claims (8)

Ti含有率を150〜500ppm及びB含有率を3〜50ppmとし、その他の不可避的不純物元素の合計が500ppm以下であり、残部がアルミニウムからなる成分組成を有することを特徴とする反射防止物品の製造に用いられるスタンパ用アルミニウム原型。 Production of anti-reflective article characterized in that Ti content is 150 to 500 ppm and B content is 3 to 50 ppm, the total of other inevitable impurity elements is 500 ppm or less, and the balance has a component composition made of aluminum. Aluminum stamper for stampers used in 不可避的不純物であるFeの含有量が200ppm以下である請求項1に記載の反射防止物品の製造に用いられるスタンパ用アルミニウム原型。 The aluminum prototype for stamper used for manufacturing the antireflection article according to claim 1, wherein the content of Fe, which is an inevitable impurity, is 200 ppm or less. 平均結晶粒径が70μm以下である金属組織を有する請求項1又は2に記載の反射防止物品の製造に用いられるスタンパ用アルミニウム原型。 The aluminum prototype for stampers used in the manufacture of the antireflection article according to claim 1 or 2, having a metal structure having an average crystal grain size of 70 µm or less. 請求項1〜3のいずれか1項に記載のアルミニウム表面に陽極酸化処理することにより表面に微細凹凸構造を形成した反射防止物品の製造に用いられるスタンパ。 The stamper used for manufacture of the reflection preventing article which formed the fine uneven structure on the surface by anodizing the aluminum surface of any one of Claims 1-3. Ti含有率を150〜500ppm及びB含有率を3〜50ppmとし、その他の不可避的不純物元素の合計が500ppm以下であり、残部がアルミニウムからなる成分組成を有するアルミニウム金属からなり、鋳造後の平均結晶粒径が1mm以下でありその後熱間鍛造により再結晶を平均結晶粒径が70μm以下とすることを特徴とする反射防止物品の製造に用いられるスタンパ用アルミニウム原型の製造方法。 The average crystal after casting is made of an aluminum metal having a Ti content of 150 to 500 ppm and a B content of 3 to 50 ppm, the total of other inevitable impurity elements being 500 ppm or less, and the balance being composed of aluminum. A method for producing an aluminum prototype for a stamper used in the production of an antireflection article , wherein the grain size is 1 mm or less, and then recrystallization is performed by hot forging so that the average crystal grain size is 70 μm or less. 熱間鍛造の代わりに冷間鍛造及び焼鈍することを特徴とする請求項5記載の反射防止物品を製造するためのスタンパ用アルミニウム原型の製造方法。 6. The method for producing a stamper aluminum prototype for producing an antireflection article according to claim 5, wherein cold forging and annealing are performed instead of hot forging. 熱間鍛造、冷間鍛造及び焼鈍を組み合わることを特徴とする請求項5記載の反射防止物品の製造に用いられるスタンパ用アルミニウム原型の製造方法。 6. A method for producing an aluminum prototype for a stamper used for producing an antireflection article according to claim 5, wherein hot forging, cold forging and annealing are combined. 請求項5〜7のいずれか1項に記載の方法で製造されたアルミニウム原型に陽極酸化処理を施すことを特徴とする反射防止物品の製造に用いられるスタンパの製造方法。 The manufacturing method of the stamper used for manufacture of the antireflection article | item characterized by performing an anodizing process to the aluminum original mold manufactured by the method of any one of Claims 5-7.
JP2009070128A 2009-03-23 2009-03-23 Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof Active JP5433269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009070128A JP5433269B2 (en) 2009-03-23 2009-03-23 Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009070128A JP5433269B2 (en) 2009-03-23 2009-03-23 Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010222629A JP2010222629A (en) 2010-10-07
JP5433269B2 true JP5433269B2 (en) 2014-03-05

Family

ID=43040138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009070128A Active JP5433269B2 (en) 2009-03-23 2009-03-23 Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5433269B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474401B2 (en) * 2009-04-24 2014-04-16 公益財団法人神奈川科学技術アカデミー Aluminum base material for stamper manufacturing and method for manufacturing stamper
JP5425516B2 (en) * 2009-04-24 2014-02-26 公益財団法人神奈川科学技術アカデミー Aluminum base material for stamper manufacturing and method for manufacturing stamper
WO2012043607A1 (en) * 2010-09-29 2012-04-05 日本軽金属株式会社 Stamp, article, and method for manufacturing said stamp and article
JP2019137906A (en) * 2018-02-15 2019-08-22 昭和電工株式会社 MANUFACTURING METHOD OF Al-Zn-Mg-BASED ALLOY CASTING MATERIAL

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5333950B2 (en) * 1972-07-17 1978-09-18
JPS5838502A (en) * 1981-09-02 1983-03-07 株式会社日立製作所 Fabric shoes
JP4059707B2 (en) * 2002-03-12 2008-03-12 古河スカイ株式会社 Aluminum alloy plate for lithographic printing plate support and method for producing the same
JP4406553B2 (en) * 2003-11-21 2010-01-27 財団法人神奈川科学技術アカデミー Method for manufacturing antireflection film
KR100898470B1 (en) * 2004-12-03 2009-05-21 샤프 가부시키가이샤 Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
BRPI0713932B1 (en) * 2006-06-30 2018-08-07 Kanagawa Institute Of Industrial Science And Technology MOLD, MOLD PRODUCTION PROCESS, AND PLATE PRODUCTION PROCESS
JP2008209540A (en) * 2007-02-26 2008-09-11 Mitsubishi Rayon Co Ltd Reflection preventing article

Also Published As

Publication number Publication date
JP2010222629A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP4754617B2 (en) Method for manufacturing tantalum sputtering target
KR100903249B1 (en) Malleable, high mechanical strength aluminum alloy which can be anodized in a decorative manner, method for producing the same and aluminum product based on said alloy
JP4883546B2 (en) Method for manufacturing tantalum sputtering target
JP6077102B2 (en) Titanium target for sputtering and manufacturing method thereof
JP5578496B2 (en) Tantalum sputtering target
JP5515167B2 (en) Commercial magnesium alloy sheet with improved room temperature formability and method for producing the same
JP4263900B2 (en) Ta sputtering target and manufacturing method thereof
KR101303585B1 (en) Magnesium alloy sheet having excellent room temperature formability and method of fabricating the same
CN108239712A (en) A kind of aviation 6082 aluminum alloy plate materials and its production technology
US10900103B2 (en) Magnesium-lithium alloy, rolled material and shaped article
JP5433269B2 (en) Aluminum stamper for stamper used for manufacturing antireflective article, stamper used for manufacturing antireflective article, and manufacturing method thereof
KR20020040869A (en) Process for producing sputtering target materials
JP2011115812A (en) Method for producing light alloy vehicle wheel
JP2008223075A (en) Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP3768909B2 (en) Magnesium alloy member and manufacturing method thereof
JP2011179075A (en) Magnesium alloy sheet material having improved cold-formability and in-plane anisotropy, and method for manufacturing the same
JP2010053386A (en) Magnesium alloy sheet material which is excellent in formability, and producing method therefor
JP2011127163A (en) Magnesium alloy sheet material having excellent formability, and method for production thereof
JP2003253411A (en) Method of producing titanium material for target
KR101188339B1 (en) SPUTTERING TARGET Ta SHEET AND MANUFACTURING METHOD OF THE SAME
RU2345173C1 (en) Method of producing superductile plates from aluminium alloys of aluminium-magnesium-lithium system
TW201738390A (en) Method for producing al-mg-Si alloy plate
KR101374281B1 (en) SPUTTERING TARGET Ta SHEET AND MANUFACTURING METHOD OF THE SAME
Yim et al. Effect of the reduction ratio per pass on the microstructure of a hot-rolled AZ31 magnesium alloy sheet
CN113755924B (en) Aluminum alloy part, preparation method thereof and electronic equipment comprising aluminum alloy part

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5433269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250